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Abstract- This study explores the construction of several 
classic graphs in graph theory through Python programming, 
offering a hands-on computational approach to understanding 
their mathematical properties. The selected graphs-including 
the Wagner, Desargues, Herschel, Möbius-Kantor, Franklin, 
truncated icosahedral, and triangular grid graphs-are chosen 
for their historical significance and structural complexity. Using 
Python’s turtle graphics module, each graph is visualized 
through trigonometric and geometric logic, illustrating core 
concepts such as regularity, symmetry, Hamiltonicity, and 
planarity. In addition to manual code development, the study 
integrates generative AI, specifically ChatGPT, to reproduce 
graph constructions via prompt engineering. This dual 
approach showcases the educational potential of AI-assisted 
programming and reinforces algorithmic thinking. The work 
aims to bridge the gap between theoretical graph concepts 
and their algorithmic applications. It provides a replicable 
methodology that enhances student engagement, supports 
active learning, and promotes interdisciplinary exploration 
across mathematics, computer science, and education.
Keywords: graph theory, python programming, graph 
visualization, classic graphs, generative AI, prompt 
engineering.

I. Introduction

raph theory, a foundational discipline within 
discrete mathematics, explores graphs 
comprising vertices (or nodes) connected by 

edges(or links). These abstract constructs are powerful 
tools for modeling pair wise relationships across various 
fields, including computer science, biology, physics, 
chemistry, transportation, and social network analysis. 
Graphs enable the representation of systems as diverse 
as internet connectivity, molecular structures, urban 
transportation networks, and social interactions. The 
construction and analysis of specific types of graphs 
provide deeper insights into the properties and 
behaviors of these complex systems.

This paper presents a computational approach 
to constructing classic graphs in graph theory using 
Python programming. The primary objective is to bridge 
the theoretical framework of graph theory with the 
practical application of computer programming to foster 
understanding, visualization, and manipulation of 
intricate graph structures. With its ease of use, extensive 
libraries, and built-in graphic capabilities like the turtle 
module, Python offers a suitable platform for modeling 
and animating these graphs in an educational and 
research context.

The study focuses on a collection of well-known 
graphs that hold historical, mathematical, and practical 
significance. These include the Wagner graph, 
Desargues graph, Herschel graph, Möbius–Kantor 
graph, Franklin graph, truncated icosahedral graph, and 
triangular grid graph. Each graph selected for this 
project embodies unique structural and topological 
properties that make it ideal for exploring advanced 
concepts such as regularity, symmetry, non-planarity, 
chromatic characteristics, and Hamiltonicity.

The Wagner graph, a 3-regular graph with 8 
vertices and 12 edges, is a key structure in minor theory 
used in studying apex and toroidal graphs. Its girth of 4, 
radius and diameter of 2, and chromatic number of 3 
exemplify important constraints in planar graph theory 
and are instrumental in Ramsey's theory.

The Desargues graph, with 20 vertices and 30 
edges, is known for its high symmetry and serves as a 
model in stereochemistry. Its distance-transitive and 
Hamiltonian nature makes it a powerful object in 
mathematics and chemistry. This graph also belongs to 
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the family of cubic, distance-regular graphs and exhibits 
elegant structural harmony.

The Herschel graph, though relatively small with 
11 vertices and 18 edges, holds significance as the 
smallest non-Hamiltonian polyhedral graph. It provides a 
clear example of the limits of Hamiltonian cycles in 
three-dimensional graph structures and plays a crucial 
role in understanding planar graph exceptions.

The Möbius–Kantor graph, a cubic bipartite 
symmetric graph with 16 vertices and 24 edges, offers 
insights into the behavior of generalized Petersen 
graphs. It is a helpful substructure within higher-
dimensional graphs like the hypercube and plays a key 
role in studying symmetry and Cayley graphs.

The Franklin graph, famous for its application to 
topological coloring problems, was used by Philip 
Franklin to disprove the Heawood conjecture on the 
Klein bottle. With 12 vertices and 18 edges, it remains 
an essential case study in topological graph theory and 
graph coloring.

The truncated icosahedral graph, or the 
Buckminster Fullerene graph, is derived from an 
Archimedean solid and features 60 vertices and 90 
edges. Its structure models the carbon molecule C₆₀ and 
is widely recognized in chemistry and architecture. As a 
3-regular graph, it demonstrates the complexity and 
symmetry of polyhedral graphs and the feasibility of 
rendering them computationally.

Finally, the triangular grid graph is a visual 
model for lattice structures. It represents the layout of 
triangular tilings and has applications in physics, 
chemistry, and game theory. These graphs are 
important in modeling networks with hexagonal or 
triangular symmetry.

In this research, each graph is constructed 
algorithmically using Python’s turtle module. The 
process involves deriving polar coordinates for vertex 
placement, calculating edge connections using 
trigonometry, and applying stylized rendering for clear 
visualization. This computational method enables 
students and researchers to dynamically visualize and 
interact with graph properties, fostering deeper 
engagement with abstract concepts.

Additionally, this study incorporates generative 
artificial intelligence tools, such as ChatGPT, to 
reproduce and verify Python programs for each graph. 
Through prompt engineering, the researchers crafted 
queries that guided the AI in generating accurate code 
representations of each graph structure. This dual 
approach-combining manual programming with AI-
assisted verification-demonstrates the synergy between 
human logic and machine learning in computational 
mathematics.

The integration of Python into graph theory 
education offers numerous pedagogical advantages. It 
provides a platform for visual experimentation, 
encourages algorithmic thinking, and bridges the gap 

between abstract mathematical definitions and concrete 
visual outputs. Furthermore, using AI tools introduces 
learners to emerging technologies in computational 
science, enhancing their digital literacy and 
programming fluency.

This paper aims to serve as both a research 
contribution and a teaching resource. Illustrating how 
classic graphs can be constructed through code 
provides a replicable methodology for instructors and 
students to explore graph theory in an interactive, 
project-based environment. Including code, figures, and 
AI-generated examples supports active learning and 
promotes inquiry-based exploration.

In the following sections, the mathematical 
characteristics of each selected graph are discussed in 
detail, followed by their respective Python 
implementations. Through this work, the authors aim to 
deepen understanding, inspire further research, and 
promote computational literacy in graph theory.

II. Methodologies

This study adopts a computational and 
algorithmic methodology to construct and analyze 
classic graphs in graph theory using Python 
programming. The primary goal is to bridge 
mathematical abstraction with visual comprehension by 
implementing graph structures through code. Python’s 
flexibility, particularly its turtle graphics module, is the 
foundation for this approach, enabling accurate and 
dynamic graph rendering based on geometric and 
trigonometric calculations.

The methodology follows a systematic, 
replicable process applied across all selected graphs. 
Each begins with a thorough mathematical analysis-
defining vertex counts, edge arrangements, degrees, 
symmetries, and other graph invariants. Next, the design 
transitions to coordinate planning, typically utilizing polar 
geometry to determine optimal vertex placement around 
circular or polygonal paths. Edges are drawn between 
these vertices by calculating precise movements and 
rotations within the turtle environment.

Each Python program is customized to the 
individual graph’s structure. This includes 3-regular 
graphs like the Wagner and Franklin graphs, symmetric 
bipartite graphs like the Möbius–Kantor graph, and 
complex polyhedral graphs like the truncated 
icosahedral graph. The visualizations often employ 
color-coded vertices, labeled nodes, and edge 
stylizations to reflect graph attributes like chromatic 
number, connectivity, and planarity for enhanced 
educational value and clarity.

In addition to constructing the graphs manually 
through code, this study integrates generative AI tools, 
specifically ChatGPT, by using prompt engineering to 
generate alternative Python implementations. This dual 
strategy-manual coding followed by AI-assisted 
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reproduction-enables cross-verification of graphical 
outputs and exposes learners to collaborative AI 
programming practices.

Overall, this methodology emphasizes 
reproducibility, educational accessibility, and 
computational precision. It supports the theoretical 
exploration of graph properties and enables hands-on 
learning and experimentation. By merging algorithmic 
thinking with visual modeling, this framework equips 
students and researchers with a powerful toolkit for 
advancing their understanding of graph theory through 
Python.

III. Wagner Graph

In the mathematical field of graph theory, the 
Wagner graph is a 3-regular graph with 8 vertices and 
12 edges (Bondy & Murty, 2007). It is the 8-vertex 
Möbius ladder graph. It is nonplanar but has a crossing 
number of one, making it an apex graph. It can be 
embedded without crossings on a torus or projective 
plane and is also a toroidal graph. It has girth 4, 
diameter 2, radius 2, chromatic number 3, chromatic 
index 3, and is both 3-vertex-connected and 3-edge-
connected. It is a vertex-transitive graph but is not edge-
transitive. Its whole automorphism group is isomorphic 
to the dihedral group D8 of order 16, the group of an 
octagon symmetries, including rotations and reflections 
("Wagner Graph," 2024). 

The Wagner graph is triangle-free and has 
independence number three, providing one half of the 
proof that the Ramsey number R(3,4) (the least number 
n such that any n-vertex graph contains either a triangle 
or a four-vertex independent set) is 9 (Soifer, 2008).

The Wagner graph is also one of four minimal 
forbidden minors for the graphs of tree width at most 
three (the other three being the complete graph K5, the 
graph of the regular octahedron, and the graph of the 
pentagonal prism) and one of four minimal forbidden 
minors for the graphs of branch width at most three (the 
other three being K5, the graph of the octahedron, and 
the cube graph) ("Wagner Graph," 2024; Bodlaender, 
1998; Bodlaender & Thilikos, 1999).

Wagner's famous conjecture asserts that for any 
infinite set of graphs, one of its members is isomorphic 
to a minor of another (all graphs in this paper are finite) 
(Wagner, 1970). The project proving Wagner’s 
conjecture was started by Robertson and Seymour, later 
joined by Thomas, and completed in 2004, which led to 
entirely new concepts and a new way of looking at 
graph theory (Lovász, 2006).

Python Program for Wagner Graph
import turtle 
import math    
t = turtle.Turtle()
t.speed("fastest")
for k in range(8):
    t.penup()
    x1 = 300*math.cos(math.pi*((45*k)%360)/180)
    y1 = 300*math.sin(math.pi*((45*k)%360)/180)
    t.goto(x1,y1)     
    t.pendown()
    x2 = 300*math.cos\
(math.pi*((45*k+45)%360)/180)
    y2 = 300*math.sin(math.pi*((45*k+45)%360)/180)
    t.goto(x2,y2)
radius = 300
for k in range(8):
    t.penup()
    t.goto(0,0)
    t.setheading(45*k)
    t.forward(radius)   
    t.pendown()
    t.fillcolor("blue")
    t.begin_fill()
    t.circle(4)
    t.end_fill()
radius = 300
for k in range(4):
    t.penup()
    x1 = radius*math.cos(math.pi*((45*k)%360)/180)
    y1 = radius*math.sin(math.pi*((45*k)%360)/180)
    t.goto(x1,y1)     
    t.pendown()
    x2 = radius*math.cos\
(math.pi*((45*k+180)%360)/180)
    y2 = radius*math.sin\
(math.pi*((45*k+180)%360)/180)
    t.goto(x2, y2)    
t.hideturtle()

Using the previous algorithm, we generate the 
Wagner graph as shown in Figure 1.

Wagner graph has 392 spanning trees; it and 
the complete bipartite graph K3,3 have the most 
spanning trees among all cubic graphs with the same 
number of vertices (Jakobson & Rivin, 1999).
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Figure 1: Wagner Graph

Using ChatGPT to Reproduce the Above Graph
After uploading the above graph to ChatGPT, 

we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 1(a).

Figure 1(a)

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 1(b).

Figure 1(b)

IV. Desargues Graph

The Desargues graph is a distance-transitive, 
cubic graph with 20 vertices and 30 edges. It is named 
after Girard Desargues, arises from several different 
combinatorial constructions, has a high level of 
symmetry, is the only known non-planar cubic partial 
cube, and has been applied in chemical databases. It is 
a symmetric graph with symmetries that take any vertex 
to any other vertex and any edge to any other edge. Its 
symmetry group has order 240, and is isomorphic to the 
product of a symmetric group on 5 points with a group 
of order 2 ("Desargues Graph," 2024).

In chemistry, the Desargues graph is known as 
the Desargues–Levi graph; it is used to organize 
systems of stereoisomers of 5-ligand compounds. In 
this application, the thirty edges of the graph 
correspond to pseudorotations of the ligands 
("Desargues Graph," 2024; Balaban, Fǎrcaşiu, & Bǎnicǎ, 
1966; Mislow, 1970).

It has chromatic number 2, chromatic index 3, 
radius 5, diameter 5, and girth 6. It is also a 3-vertex-
connected and a 3-edge-connected Hamiltonian graph. 
It has a book thickness of 3 and a queue number of 2 
("Desargues Graph," 2024).

All the cubic distance-regular graphs are known 
(Brouwer, Cohen, & Neumaier, 1989).  The Desargues 
graph is one of the 13 such graphs ("Desargues Graph," 
2024).

Python Program for Creating Desargues Graph
import turtle 
import math    
t = turtle.Turtle()
t.speed("fastest")
t.penup()
t.goto(0,-300)
t.pendown()
t.circle(300)
radius = 300
for k in range(10):
    t.penup()
    t.goto(0,0)
    t.setheading(36*k)
    t.forward(radius)   
    t.pendown()
    t.fillcolor("blue")
    t.begin_fill()
    t.circle(4)
    t.end_fill()
radius = 150
for k in range(10):
    t.penup()
    t.goto(0,0)
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    t.setheading(36*k)
    t.forward(radius)   
    t.pendown()
    t.fillcolor("red")
    t.begin_fill()
    t.circle(4)
    t.end_fill()
for k in range(10):
    t.penup()
    x1 = 300*math.cos(math.pi*((36*k)%360)/180)
    y1 = 300*math.sin(math.pi*((36*k)%360)/180)
    t.goto(x1,y1)     
    t.pendown()
    x2 = 150*math.cos(math.pi*((36*k)%360)/180)
    y2 = 150*math.sin(math.pi*((36*k)%360)/180)
    t.goto(x2,y2)
for k in range(10):
    t.penup()
    x1 = 150*math.cos(math.pi*((36*k)%360)/180)
    y1 = 150*math.sin(math.pi*((36*k)%360)/180)
    t.goto(x1,y1)     
    t.pendown()
    x2 = 150*math.cos\
(math.pi*((36*k+108)%360)/180)
    y2 = 150*math.sin\
(math.pi*((36*k+108)%360)/180)
    t.goto(x2,y2)
t.hideturtle()

Using the previous algorithm, we generate the 
Desargues graph shown in Figure 2.

Figure 2: Desargues Graph

Using ChatGPT to Reproduce the Above Graph
After uploading the above graph to ChatGPT, 

we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 2 (a).

Figure 2 (a)

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 2 (b).

Figure 2 (b)

V. Herschel Graph

The Herschel graph is a bipartite undirected 
graph with 11 vertices and 18 edges. It is a polyhedral 
graph (the graph of a convex polyhedron). It is the 
smallest polyhedral graph that does not have a 
Hamiltonian cycle, a cycle passing through all its 
vertices. It is named after British astronomer Alexander 
Stewart Herschel, because Herschel studied 
Hamiltonian cycles in polyhedral graphs (but not of this 
graph) (Wikipedia contributors, 2023).
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Herschel graph has three vertices of degree 
four and eight vertices of degree three. Each two distinct 
degree-four vertices share two degree-three neighbors, 
forming a four-vertex cycle with these shared neighbors. 
Three of these cycles pass through six of the eight 
degree-three vertices. Two more degree-three vertices 
do not participate in these four-vertex cycles; instead, 
each is adjacent to three of the six vertices (Wikipedia 
contributors, 2023; Lawson-Perfect, 2013).

Herschel's graph also provides an example of a 
polyhedral graph for which the medial graph has no 
Hamiltonian decomposition into two edge-disjoint 
Hamiltonian cycles. The medial graph of the Herschel 
graph is a 4-regular graph with 18 vertices, one for each 
edge of the Herschel graph; two vertices are adjacent in 
the medial graph whenever the corresponding edges of 
the Herschel graph are consecutive on one of its faces 
(Wikipedia contributors, 2023; (Bondy & Häggkvist, 
1981).

Python Program for Creating Herschel Graph 
import turtle 
import math    
t = turtle.Turtle()
t.speed("fastest")
t.penup()
t.goto(0,0)
t.pendown()
t.fillcolor("blue")
t.begin_fill()
t.circle(4)
t.end_fill()
t.penup()
t.goto(0,-300)
t.pendown()
t.circle(300)
radius = 300
for k in range(4):
    t.penup()
    t.goto(0,0)
    t.setheading(90*k)
    t.forward(radius)   
    t.pendown()
    t.fillcolor("blue")
    t.begin_fill()
    t.circle(4)
    t.end_fill()
radius = 150
for k in range(6):
    t.penup()
    t.goto(0,0)
    t.setheading(60*k)

    t.forward(radius)   
    t.pendown()
    t.fillcolor("red")
    t.begin_fill()
    t.circle(4)
    t.end_fill()
for k in range(1,3,1):
    t.penup()
    x1 = 150*math.cos(math.pi*((60*k)%360)/180)
    y1 = 150*math.sin(math.pi*((60*k)%360)/180)
    t.goto(x1,y1)     
    t.pendown()
    t.goto(0,0)
for k in range(4,6,1):
    t.penup()
    x1 = 150*math.cos(math.pi*((60*k)%360)/180)
    y1 = 150*math.sin(math.pi*((60*k)%360)/180)
    t.goto(x1,y1)     
    t.pendown()
    t.goto(0,0)
t.penup()
x1 = 300*math.cos(math.pi*((90*0)%360)/180)
y1 = 300*math.sin(math.pi*((90*0)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*0)%360)/180)
y2 = 150*math.sin(math.pi*((60*0)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*1)%360)/180)
y1 = 300*math.sin(math.pi*((90*1)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*1)%360)/180)
y2 = 150*math.sin(math.pi*((60*1)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*1)%360)/180)
y1 = 300*math.sin(math.pi*((90*1)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*2)%360)/180)
y2 = 150*math.sin(math.pi*((60*2)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*2)%360)/180)
y1 = 300*math.sin(math.pi*((90*2)%360)/180)
t.goto(x1,y1)     
t.pendown()
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x2 = 150*math.cos(math.pi*((60*3)%360)/180)
y2 = 150*math.sin(math.pi*((60*3)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*3)%360)/180)
y1 = 300*math.sin(math.pi*((90*3)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*4)%360)/180)
y2 = 150*math.sin(math.pi*((60*4)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*3)%360)/180)
y1 = 300*math.sin(math.pi*((90*3)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*5)%360)/180)
y2 = 150*math.sin(math.pi*((60*5)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*0)%360)/180)
y1 = 150*math.sin(math.pi*((60*0)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*1)%360)/180)
y2 = 150*math.sin(math.pi*((60*1)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*0)%360)/180)
y1 = 150*math.sin(math.pi*((60*0)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*5)%360)/180)
y2 = 150*math.sin(math.pi*((60*5)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*3)%360)/180)
y1 = 150*math.sin(math.pi*((60*3)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*2)%360)/180)
y2 = 150*math.sin(math.pi*((60*2)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*3)%360)/180)
y1 = 150*math.sin(math.pi*((60*3)%360)/180)
t.goto(x1,y1)     
t.pendown()
x2 = 150*math.cos(math.pi*((60*4)%360)/180)

y2 = 150*math.sin(math.pi*((60*4)%360)/180)
t.goto(x2,y2) 
t.hideturtle()

We generate the Herschel graph shown in 
Figure 3 using the previous algorithm.

Figure 3: Herschel Graph

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 3 (a).

Figure 3 (a)

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 3 (b).



 

Figure 3 (b) 

VI. Möbius–Kantor Graph 

The Möbius–Kantor graph is a symmetric 
bipartite cubic graph with 16 vertices and 24 edges 
named after August Ferdinand Möbius and Seligmann 

Kantor. It can be defined as the generalized Petersen 
graph G(8,3): that is, it is formed by the vertices of an 
octagon, connected to the vertices of an eight-point star 
in which each point of the star is connected to the points 
three steps away from it (Wikipedia contributors, 2024). 

Möbius–Kantor graph is a subgraph of the four-
dimensional hypercube graph, formed by removing 
eight edges from the hypercube. Since the hypercube is 
a unit distance graph, the Möbius–Kantor graph can 
also be drawn in the plane with all edges unit length, 
although such a drawing will necessarily have some 
pairs of crossing edges. The Möbius–Kantor graph also 
often occurs as an induced subgraph of the Hoffman–
Singleton graph. Each of these instances is, in fact, an 
eigenvector of the Hoffman-Singleton graph, with an 
associated eigenvalue of -3. Each vertex not in the 
induced Möbius–Kantor graph is adjacent to exactly four 
vertices in the Möbius–Kantor graph, two each in half of 
a bipartition of the Möbius–Kantor graph. The Möbius–
Kantor graph cannot be embedded without crossings in 
the plane; it has crossing number 4, and is the smallest 
cubic graph with that crossing number (Wikipedia 
contributors, 2024; Coxeter, 1950).

 

The automorphism group of the Möbius–Kantor 
graph is a group of order 96. It acts transitively on the 
graph's vertices, edges, and arcs. Therefore, the 
Möbius–Kantor graph is a symmetric graph. It has 
automorphisms that take any vertex to any other vertex 
and any edge to any other edge. According to the 
Foster census, the Möbius–Kantor graph is the unique 
cubic symmetric graph with 16 vertices, and the 
smallest cubic symmetric graph is not also distance-

transitive. The Möbius–Kantor graph is also a Cayley 
graph (Wikipedia contributors, 2024). 
Python Program for Creating Möbius–Kantor Graph 
import turtle  
import math     
t = turtle.Turtle() 
t.speed("fastest") 
t.penup() 
t.goto(0,-300) 
t.pendown() 
t.circle(300) 
radius = 300 
for k in range(8): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(45*k) 
    t.forward(radius)    
    t.pendown() 
    t.fillcolor("blue") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
radius = 150 
for k in range(8): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(45*k) 
    t.forward(radius)    
    t.pendown() 
    t.fillcolor("red") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
for k in range(8): 
    t.penup() 
    x1 = 150*math.cos(math.pi*((45*k)%360)/180) 
    y1 = 150*math.sin(math.pi*((45*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 300*math.cos\ 
(math.pi*((45*k+45)%360)/180) 
    y2 = 300*math.sin\ 
(math.pi*((45*k+45)%360)/180) 
    t.goto(x2,y2) 
for k in range(4): 
    t.penup() 
    x1 = 150*math.cos(math.pi*((45*k)%360)/180) 
    y1 = 150*math.sin(math.pi*((45*k)%360)/180) 
    t.goto(x1,y1)      
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    t.pendown() 
    x2 = 150*math.cos\ 
(math.pi*((45*k+135)%360)/180) 
    y2 = 150*math.sin\ 
(math.pi*((45*k+135)%360)/180) 
    t.goto(x2,y2) 
for k in range(4): 
    t.penup() 
    x1 = 150*math.cos(math.pi*((45*k)%360)/180) 
    y1 = 150*math.sin(math.pi*((45*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 150*math.cos\ 
(math.pi*((45*k+225)%360)/180) 
    y2 = 150*math.sin\ 
(math.pi*((45*k+225)%360)/180) 
    t.goto(x2,y2) 
t.penup() 
x1 = 150*math.cos(math.pi*((45*4)%360)/180) 
y1 = 150*math.sin(math.pi*((45*4)%360)/180) 
t.goto(x1,y1)      
t.pendown() 
x2 = 150*math.cos(math.pi*((45*7)%360)/180) 
y2 = 150*math.sin(math.pi*((45*7)%360)/180) 
t.goto(x2,y2) 
t.hideturtle() 

Using the previous algorithm, we generate  
Möbius the Möbius-Kantor graph as shown in Figure 4. 

 

Figure 4: Möbius–Kantor graph 

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?” 

The Python program generated by ChatGPT 
produced the following image in Figure 4 (a). 

 

Figure 4 (a) 

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?” 

The Python program generated by ChatGPT 
produced the following image in Figure 4 (b). 

 

Figure 4 (b) 

VII. Franklin Graph 

The Franklin graph is a 3-regular graph with 12 
vertices and 18 edges. Franklin graph is named after 
Philip Franklin, who disproved the Heawood conjecture 
on the number of colors needed when a two-
dimensional surface is partitioned into cells by a graph 
embedding (Wikipedia contributors, 2022; Franklin, 
1934). 

The Heawood conjecture implied that the 
maximum chromatic number of a map on the Klein 
bottle should be seven, but Franklin proved that in this 
case six colors always suffice. (The Klein bottle is the 
only surface for which the Heawood conjecture fails.) 
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The Franklin graph can be embedded in the Klein bottle 
so that it forms a map requiring six colors, showing that 
six colors are sometimes necessary in this case. 
Franklin graph is Hamiltonian and has chromatic 
number 2, chromatic index 3, radius 3, diameter 3 and 
girth 4. It is also a 3-vertex-connected and 3-edge-
connected perfect graph (Wikipedia contributors, 2022).  

Python Program for Creating Franklin Graph 
import turtle  
import math     
t = turtle.Turtle() 
t.speed("fastest") 
t.pensize(1) 
for k in range(12): 
    t.penup() 
    x1 = 300*math.cos(math.pi*((30*k)%360)/180) 
    y1 = 300*math.sin(math.pi*((30*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 300*math.cos\ 
(math.pi*((30*k+30)%360)/180) 
    y2 = 300*math.sin\ 
(math.pi*((30*k+30)%360)/180) 
    t.goto(x2,y2) 
radius = 300 
for k in range(12): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(30*k) 
    t.forward(radius)    
    t.pendown() 
    t.fillcolor("blue") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
radius = 300 
for k in range(0,12,2): 
    t.penup() 
    x1 = radius*math.cos(math.pi*((30*k)%360)/180) 
    y1 = radius*math.sin(math.pi*((30*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = radius*math.cos\ 
(math.pi*((30*k+150)%360)/180) 
    y2 = radius*math.sin\ 
(math.pi*((30*k+150)%360)/180) 
    t.goto(x2,y2) 
t.hideturtle() 

Using the previous algorithm we generate the 
Franklin graph as shown in Figure 5. 

 

Figure 5: Franklin graph 

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?” 

The Python program generated by ChatGPT 
produced the following image in Figure 5 (a). 

 

Figure 5 (a) 

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?” 

The Python program generated by ChatGPT 
produced the following image in Figure 5 (b). 
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Figure 5 (b) 

VIII. Truncated Icosahedral Graph 

In geometry, the truncated icosahedron is a 
polyhedron that can be constructed by truncating all of 
the regular icosahedron's vertices. Intuitively, it may be 
regarded as footballs (or soccer balls) that are typically 
patterned with white hexagons and black pentagons. It 
can be found in the application of geodesic dome 
structures such as those whose architecture 
Buckminster Fuller pioneered are often based on this 
structure. It is an example of an Archimedean solid, as 
well as a Goldberg polyhedron (Weisstein, 2025). 

According to Steinitz's theorem, the skeleton of 
a truncated icosahedron, like that of any convex 
polyhedron, can be represented as a polyhedral graph, 
meaning a planar graph (one that can be drawn without 
crossing edges) and 3-vertex-connected graph 
(remaining connected whenever two of its vertices are 
removed). The graph is known as truncated icosahedral 
graph, with 60 vertices and 90 edges. It is an 
Archimedean graph because it resembles one of the 
Archimedean solids. It is a cubic graph, meaning that 
each vertex is incident to exactly three edges. It is 
sometimes known as the Buckminster Fullerene graph 
(Weisstein, 2025; Wikipedia contributors, 2024). 

Python Program for Creating truncated icosahedral graph 
import turtle  
import math     
t = turtle.Turtle() 
t.speed("fastest") 
#20-gons 
for k in range(20): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(18*k) 
    t.forward(300) 

    t.pendown() 
    t.fillcolor("black") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
    t.penup() 
    x1 = 300*math.cos(math.pi*((18*k)%360)/180) 
    y1 = 300*math.sin(math.pi*((18*k)%360)/180) 
    t.goto(x1,y1) 
    t.setposition(x1, y1) 
    t.pendown() 
    letter = str(k+1) 
    t.color('black') 
    t.write(letter, align="right", font=("Verdana", 13, 
"normal")) 
    t.color('black') 
    x2 = 300*math.cos\ 
(math.pi*((18*k+18)%360)/180) 
    y2 = 300*math.sin(math.pi*((18*k+18)%360)/180) 
    t.goto(x2,y2) 
#20 red vertices 
for k in range(20): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(18*k) 
    t.forward(240)    
    t.pendown() 
    t.fillcolor("red") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
    x1 = 240*math.cos(math.pi*((18*k)%360)/180) 
    y1 = 240*math.sin(math.pi*((18*k)%360)/180) 
    t.goto(x1,y1) 
    t.setposition(x1, y1) 
    t.pendown() 
    letter = str(20+k+1) 
    t.color('red') 
    t.write(letter, align="right", font=("Verdana", 13, 
"normal")) 
    t.color('black') 
#10 blue vertices 
radius = 180 
for k in range(10): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(36*k) 
    t.forward(radius)    
    t.pendown() 
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    t.fillcolor("blue") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
    x1 = 180*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 180*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1) 
    t.setposition(x1, y1) 
    t.pendown() 
    letter = str(40+k+1) 
    t.color('blue') 
    t.write(letter, align="right", font=("Verdana", 13, 
"normal")) 
    t.color('black') 
# 10 green vertices 
radius = 120 
for k in range(10): 
    t.penup() 
    t.goto(0,0) 
    t.setheading(36*k) 
    t.forward(radius)    
    t.pendown() 
    t.fillcolor("green") 
    t.begin_fill() 
    t.circle(4) 
    t.end_fill() 
    x1 = 120*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 120*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1) 
    t.setposition(x1, y1) 
    t.pendown() 
    letter = str(50+k+1) 
    t.color('green') 
    t.write(letter, align="right", font=("Verdana", 13, 
"normal")) 
    t.color('black') 
#edges between black and red vertices 
for k in range(0,19,2): 
    t.penup() 
    x1 = 300*math.cos(math.pi*((18*k)%360)/180) 
    y1 = 300*math.sin(math.pi*((18*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    t.color('red') 
    x2 = 240*math.cos(math.pi*((18*k+18)%360)/180) 
    y2 = 240*math.sin(math.pi*((18*k+18)%360)/180) 
    t.goto(x2,y2) 
    t.color('black') 
for k in range(0,19,2): 

    t.penup() 
    x1 = 240*math.cos(math.pi*((18*k)%360)/180) 
    y1 = 240*math.sin(math.pi*((18*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    t.color('green') 
    x2 = 300*math.cos\ 
(math.pi*((18*k+18)%360)/180) 
    y2 = 300*math.sin(math.pi*((18*k+18)%360)/180) 
    t.goto(x2,y2) 
    t.color('black') 
# edges between red vertices 
for k in range(1,20,2): 
    t.penup() 
    x1 = 240*math.cos(math.pi*((18*k)%360)/180) 
    y1 = 240*math.sin(math.pi*((18*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 240*math.cos\ 
(math.pi*((18*k+18)%360)/180) 
    y2 = 240*math.sin(math.pi*((18*k+18)%360)/180) 
    t.goto(x2,y2) 
#edges between red and blue vertices 
for k in range(10): 
    t.penup() 
    x1 = 180*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 180*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 240*math.cos(math.pi*((2*18*k)%360)/180) 
    y2 = 240*math.sin(math.pi*((2*18*k)%360)/180) 
    t.goto(x2,y2) 
for k in range(10): 
    t.penup() 
    x1 = 180*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 180*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 240*math.cos\ 
(math.pi*((2*18*k+54)%360)/180) 
    y2 = 240*math.sin(math.pi*((2*18*k+54)%360)/180) 
    t.goto(x2,y2)  
# edges between blue and green vertices 
for k in range(10): 
    t.penup() 
    x1 = 180*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 180*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
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    x2 = 120*math.cos(math.pi*((36*k)%360)/180) 
    y2 = 120*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x2,y2)  
# edges between green and green vertices 
for k in range(0,10,2): 
    t.penup() 
    x1 = 120*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 120*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 120*math.cos\ 
(math.pi*((36*k+72)%360)/180) 
    y2 = 120*math.sin(math.pi*((36*k+72)%360)/180) 
    t.goto(x2,y2)  
for k in range(1,10,2): 
    t.penup() 
    x1 = 120*math.cos(math.pi*((36*k)%360)/180) 
    y1 = 120*math.sin(math.pi*((36*k)%360)/180) 
    t.goto(x1,y1)      
    t.pendown() 
    x2 = 120*math.cos\ 
(math.pi*((36*k+72)%360)/180) 
    y2 = 120*math.sin(math.pi*((36*k+72)%360)/180) 
    t.goto(x2,y2)  
t.hideturtle() 

Using the previous algorithm we generate the 
truncated icosahedral graph as shown in Figure 6. 

 

Figure 6: Truncated icosahedral graph 

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?” 

The Python program generated by ChatGPT 
produced the following image in Figure 6 (a). 
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Figure 6 (a)

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 5 (b).

Figure 6 (b)

IX. Triangular Grid Graph

The triangular grid graph Tn is the lattice graph 
obtained by interpreting the order-(n+1) triangular grid 
as a graph, with the intersection of grid lines being the 
vertices and the line segments between vertices being 
the edges. Equivalently, it is the graph on vertices (i, j, k) 
with i, j, k being nonnegative integers summing to n 
such that vertices are adjacent if the sum of absolute 
differences of the coordinates of two vertices is 2. 

The graph bandwidth of Tn is n+1. Tn is also the 
hexagonal king graph of order n, i.e., the connectivity 
graph of possible moves of a king chess piece on a 
hexagonal chessboard (West, 2000; Weisstein, 2025).
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Python Program for Creating Tn

import turtle 
import math    
t = turtle.Turtle()
t.speed("fastest")
def Triangular_Grid_Graph(n):
    size = 600//n
    for k in range(0, n+1):
        x_cor = -300+k*size
        for i in range(k+1):
           t.penup()
            t.goto(x_cor,300-i*size*math.sqrt(3)/2)
            t.pendown()
            t.fillcolor("red")
            t.begin_fill()
            t.circle(2)
            t.end_fill()            
            x_cor =  x_cor - size/2
    t.color('black')
    for k in range(0, n):
        x_cor = -300+k*size
        for i in range(k+1):
            t.penup()
            t.goto(x_cor,300-i*size*math.sqrt(3)/2)
            t.setposition(x_cor,300-i*size*math.sqrt(3)/2)
            t.pendown()
            t.goto(x_cor + size,300-i*size*math.sqrt(3)/2) 
            x_cor =  x_cor - size/2    
    for k in range(0, n):
         x_cor = -300+k*size
         for i in range(k+1):
            t.penup()
            t.goto(x_cor,300-i*size*math.sqrt(3)/2)
            t.setposition(x_cor,300-i*size*math.sqrt(3)/2)
            t.pendown()
          t.goto(x_cor+size/2,300(i+1)*size*math.sqrt(3)/2) 
            x_cor =  x_cor - size/2 
    for k in range(0, n):
         x_cor = -300+(k+1)*size
         for i in range(k+1):
            t.penup()
            t.goto(x_cor,300-i*size*math.sqrt(3)/2)
            t.setposition(x_cor,300-i*size*math.sqrt(3)/2)
            t.pendown()
            t.goto(x_cor-size/2,300(i+1)*size*math.sqrt(3)/2) 
            x_cor =  x_cor - size/2 
    t.hideturtle()

Using the previous algorithm we generate the 
truncated icosahedral graphs T15 and T30 as shown in 
Figure 7-A and Figure 7-B, respectively.
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Figure 7-A: Truncated Icosahedral Graph T15

Figure 7-B: Truncated Icosahedral Graph T30

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 7-B (a).
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Figure 7-B (a)

After uploading the above graph to ChatGPT, 
we asked, “Based on the attached image/graph, could 
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT 
produced the following image in Figure 7-B (b).

Figure 7-B (b)

X. Integrating Knowledge Management 
Into Computational Graph Theory 

Education

Knowledge management (KM) is pivotal in 
bridging theory and application in computational graph 
theory, particularly when using Python to model complex 
mathematical structures. As graph construction 
increasingly leverages algorithmic logic and 
programming, effective KM strategies are essential for 
facilitating interdisciplinary learning, enhancing 
educational outcomes, and optimizing research 
processes.

The Knowledge Management Mesosystem 
Model (Gao & Gao, in press) offers a structured 
framework that supports the integration of human 
expertise, algorithmic design, and AI-assisted discovery 
in educational environments. It comprises three 

interdependent layers: the Knowledge/Human Layer, the 
Yin-Yang Knowledge Development and Sharing Layer, 
and the Data/Machine Layer. These layers align well with 
the iterative process of coding, testing, and visualizing 
graphs, allowing students and researchers to transition 
seamlessly between theory development and practical 
application.

Instructors can cultivate higher-order thinking, 
collaboration, and computational creativity by 
incorporating KM strategies into graph theory education. 
Gao et al. (2025) emphasize the role of innovative 
teaching practices in business analytics, which mirror 
similar approaches in computational mathematics-
where hands-on programming tasks and active learning 
deepen student engagement. Moreover, integrating AI 
into KM workflows allows for more dynamic interaction 
between human logic and machine-generated insights, 
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facilitating advanced problem-solving and deeper 
conceptual understanding (Gao et al., 2024).

Russ (2021) further highlights the necessity of 
sustainable KM in technology-driven disciplines, 
underscoring how ethical AI usage and data governance 
must accompany algorithmic exploration. The symbiotic 
relationship between knowledge creation and 
dissemination within KM frameworks is crucial when 
teaching programming-based graph construction, 
where students learn from existing models and 
contribute to evolving digital knowledge ecosystems.

In summary, embedding KM principles into 
computational graph theory enriches the learning 
experience, encourages innovation, and ensures a 
sustainable, interdisciplinary approach to knowledge 
generation in the era of intelligent technologies.

XI. Responsible Integration of AI in 
Computational Research and 

Education

As artificial intelligence (AI) becomes more 
integrated into educational and research contexts, 
adopting a balanced and responsible approach to its 
use is essential. In computational fields such as graph 
theory, AI can support algorithm development, automate 
visualization, and even suggest code for complex graph 
structures. However, using AI wisely means recognizing 
its role as a complement to-not a replacement for-
human logic, creativity, and critical thinking.

Gao et al. (2024) highlights that while AI can 
generate solutions and assist in mathematical 
reasoning, it must be tempered with human oversight to 
ensure accuracy, especially in domains requiring 
rigorous proofs and logical consistency. Misusing 
generative AI—such as uncritically accepting outputs 
without validation—can lead to erroneous conclusions 
and undermine academic integrity.

The Knowledge Management Mesosystem 
Model (Gao & Gao, in press) provides a helpful 
framework for guiding wise AI integration. Its 
Data/Machine Layer emphasizes AI-assisted learning 
while maintaining a strong role for human decision-
making. Ethical considerations, data governance, and 
contextual understanding must be part of any AI-driven 
educational or research activity.

Furthermore, wise AI use aligns with Russ’s 
(2021) model of sustainable knowledge management, 
which calls for thoughtful integration of technology to 
enhance-not replace-human cognitive processes. In a 
programming-rich environment like Python-based graph 
construction, students and researchers should use AI to 
augment their understanding: generating baseline code, 
debugging, or exploring design variations while still 
being actively involved in problem-solving and model 
evaluation.

Ultimately, using AI wisely means fostering an 
interdisciplinary mindset where machine intelligence 
supports but does not eclipse human reasoning. When 
guided by ethical principles and pedagogical goals, AI 
can significantly enhance the teaching, learning, and 
research of mathematical and computational topics.

XII. Prompt Engineering and its Role in 
Graph Construction

Prompt engineering, the art of crafting precise 
and effective instructions to guide large language 
models (LLMs), has become essential in leveraging 
generative artificial intelligence for diverse tasks, 
including mathematical problem-solving and 
programming support. In the context of this study, 
prompt engineering was pivotal in engaging tools like 
ChatGPT to recreate Python visualizations of classic 
graphs in graph theory. By formulating well-structured 
prompts-such as asking for a Python program to 
replicate a given graph image-researchers could derive 
functional code outputs that accurately reproduced 
complex structures like the Wagner and Desargues 
graphs.

The power of prompt engineering lies in its 
ability to direct AI toward high-quality, context-aware 
responses. As Hernández et al. (2024) described, 
successful interactions with LLMs depend heavily on 
clarity, specificity, and contextual cues within the 
prompt. Their work provides over 100 examples, 
demonstrating that prompt quality significantly impacts 
response effectiveness across domains. Similarly, 
Mastering Generative AI and Prompt Engineering 
underscores that prompt engineering enhances 
productivity and creativity by allowing users to 
customize AI output to specific goals, such as 
generating reproducible code or verifying mathematical 
properties (Data Science Horizons, 2024).

In graph theory education and computational 
research, prompt engineering bridges human intent and 
machine-generated assistance. It transforms LLMs from 
passive responders into collaborative problem-solvers 
capable of producing code that is not only syntactically 
correct but also aligned with theoretical graph attributes. 
As Python continues to serve as a primary medium for 
algorithmic exploration, prompt engineering empowers 
both students and researchers to interact more 
effectively with AI models, thus streamlining the process 
of constructing, analyzing, and visualizing graphs.

XIII. Conclusion

In the Information Age where information inflows 
and outflows are rapid, complex, and dynamically 
interspersed within highly uncertain environments, the 
imperative nature of the necessity for algorithmic 
learning in higher education has become increasingly 
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clear. Not only is algorithmic learning considered to be 
integral within the Information and Communications 
Technology (ICT) domain (Byrka, Sushchenko, Luchko, 
Perun, & Luchko, 2024), but it is among the most sought 
after skill for millennials (Ananiadou & Claro, 2009). 
More importantly, the inculcation of algorithmic learning 
can help reify an otherwise esoteric way of thinking and, 
therefore, learning, by helping students organize their 
thoughts logically in a stepwise fashion. 

This research has demonstrated how classic 
graphs in graph theory can be effectively constructed, 
visualized, and analyzed using Python programming. By 
focusing on historically significant and mathematically 
rich graphs such as the Wagner, Desargues, Herschel, 
Möbius–Kantor, Franklin, truncated icosahedral, and 
triangular grid graphs, this study bridges the gap 
between abstract mathematical theory and tangible 
computational implementation.

Python’s turtle module proved to be a valuable 
tool for graph rendering, offering a visually intuitive 
means of exploring structural properties such as 
regularity, symmetry, Hamiltonicity, and chromatic 
characteristics. Using trigonometric and geometric 
reasoning in these Python scripts encourages learners 
to connect theoretical graph definitions with algorithmic 
design, deepening mathematical understanding and 
programming skills.

A significant contribution of this study is the 
integration of generative AI, particularly ChatGPT, 
through prompt engineering to reproduce and verify 
Python code for graph construction. This dual approach 
validates the manually written code and introduces 
learners to collaborative human-AI workflows in 
computational mathematics. Prompt engineering 
emerged as a vital skill in effectively guiding AI tools, 
enabling the generation of meaningful and accurate 
programming solutions aligned with graph-theoretic 
goals.

Moreover, this paper underscores the 
educational potential of combining coding with visual 
mathematics. Students and researchers gain a deeper 
appreciation for graph properties and computational 
logic by implementing classic graphs in Python. The 
methodology presented here is replicable and scalable, 
making it ideal for classroom use, student research, and 
interdisciplinary applications across science, 
engineering, and computer science.

Ultimately, this work contributes a practical and 
pedagogically sound approach to teaching and 
exploring graph theory. Hands-on programming and 
responsible AI integration fosters computational literacy 
and inspires further innovation at the intersection of 
mathematics, computer science, and education.
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