

Volume 25 Issue 1 Version 1.0 Year 2025
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Constructing Classic Graphs in Graph Theory using Python
and Generative AI: A Case Study in Computational
Visualization and Prompt Engineering

By Dr. Shanzhen Gao, Dr. Weizheng Gao, Dr. Julian D. Allagan,
Dr. Jianning Su, Dr. Ephrem Eyob & Dr. Hank B. Strevel

Virginia State University

Abstract- This study explores the construction of several classic graphs in graph theory through
Python programming, offering a hands-on computational approach to understanding their
mathematical properties. The selected graphs-including the Wagner, Desargues, Herschel,
Möbius-Kantor, Franklin, truncated icosahedral, and triangular grid graphs-are chosen for their
historical significance and structural complexity. Using Python’s turtle graphics module, each
graph is visualized through trigonometric and geometric logic, illustrating core concepts such as
regularity, symmetry, Hamiltonicity, and planarity. In addition to manual code development, the
study integrates generative AI, specifically ChatGPT, to reproduce graph constructions via
prompt engineering.

Keywords: graph theory, python programming, graph visualization, classic graphs, generative AI,
prompt engineering.

GJCST-F Classification: For Code: 080199

ConstructingClassicGraphsinGraphTheoryusingPythonandGenerativeAIACaseStudyinComputationalVisualizationandPromptEngineering

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: F
GRAPHICS & VISION

© 2025. Dr. Shanzhen Gao, Dr. Weizheng Gao, Dr. Julian D. Allagan, Dr. Jianning Su, Dr. Ephrem Eyob & Dr. Hank B. Strevel.
This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC
BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any
manner. Applicable licensing terms are at https://creative commons.org/licenses/by-nc-nd/4.0/.

Constructing Classic Graphs in Graph Theory
using Python and Generative AI:

A Case Study in Computational Visualization
and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

1

© 2025 Global Journals

Abstract- This study explores the construction of several
classic graphs in graph theory through Python programming,
offering a hands-on computational approach to understanding
their mathematical properties. The selected graphs-including
the Wagner, Desargues, Herschel, Möbius-Kantor, Franklin,
truncated icosahedral, and triangular grid graphs-are chosen
for their historical significance and structural complexity. Using
Python’s turtle graphics module, each graph is visualized
through trigonometric and geometric logic, illustrating core
concepts such as regularity, symmetry, Hamiltonicity, and
planarity. In addition to manual code development, the study
integrates generative AI, specifically ChatGPT, to reproduce
graph constructions via prompt engineering. This dual
approach showcases the educational potential of AI-assisted
programming and reinforces algorithmic thinking. The work
aims to bridge the gap between theoretical graph concepts
and their algorithmic applications. It provides a replicable
methodology that enhances student engagement, supports
active learning, and promotes interdisciplinary exploration
across mathematics, computer science, and education.
Keywords: graph theory, python programming, graph
visualization, classic graphs, generative AI, prompt
engineering.

I. Introduction

raph theory, a foundational discipline within
discrete mathematics, explores graphs
comprising vertices (or nodes) connected by

edges(or links). These abstract constructs are powerful
tools for modeling pair wise relationships across various
fields, including computer science, biology, physics,
chemistry, transportation, and social network analysis.
Graphs enable the representation of systems as diverse
as internet connectivity, molecular structures, urban
transportation networks, and social interactions. The
construction and analysis of specific types of graphs
provide deeper insights into the properties and
behaviors of these complex systems.

This paper presents a computational approach
to constructing classic graphs in graph theory using
Python programming. The primary objective is to bridge
the theoretical framework of graph theory with the
practical application of computer programming to foster
understanding, visualization, and manipulation of
intricate graph structures. With its ease of use, extensive
libraries, and built-in graphic capabilities like the turtle
module, Python offers a suitable platform for modeling
and animating these graphs in an educational and
research context.

The study focuses on a collection of well-known
graphs that hold historical, mathematical, and practical
significance. These include the Wagner graph,
Desargues graph, Herschel graph, Möbius–Kantor
graph, Franklin graph, truncated icosahedral graph, and
triangular grid graph. Each graph selected for this
project embodies unique structural and topological
properties that make it ideal for exploring advanced
concepts such as regularity, symmetry, non-planarity,
chromatic characteristics, and Hamiltonicity.

The Wagner graph, a 3-regular graph with 8
vertices and 12 edges, is a key structure in minor theory
used in studying apex and toroidal graphs. Its girth of 4,
radius and diameter of 2, and chromatic number of 3
exemplify important constraints in planar graph theory
and are instrumental in Ramsey's theory.

The Desargues graph, with 20 vertices and 30
edges, is known for its high symmetry and serves as a
model in stereochemistry. Its distance-transitive and
Hamiltonian nature makes it a powerful object in
mathematics and chemistry. This graph also belongs to

G
Author α: “Lifetime Fellow of the Institute for Combinatorics and
its Applications”. Department of Computer Information
Systems. Reginald F Lewis College of Business. Virginia State
University Petersburg VA 23806, USA.
Corresponding Author σ: Department of Mathematics,
Computer Science and Engineering Technology. Elizabeth City
State University. Elizabeth City, NC 27909, USA.
e-mail: wegao@ecsu.edu
Author ρ: Department of Mathematics, Computer Science and
Engineering Technology. Elizabeth City State University.
Elizabeth City, NC 27909, USA.
Author Ѡ: Department of Mathematics, Computer Science and
Engineering. Perimeter College, Georgia State University.
Atlanta, GA 30303, USA.
Author ¥ §: Reginald F Lewis College of Business. Virginia
State University, Petersburg VA 23806, USA..

 Dr. Shanzhen Gao α, Dr. Weizheng Gao σ, Dr. Julian D. Allagan ρ, Dr. Jianning Su Ѡ, Dr. Ephrem Eyob ¥

& Dr. Hank B. Strevel §

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

2

© 2025 Global Journals

the family of cubic, distance-regular graphs and exhibits
elegant structural harmony.

The Herschel graph, though relatively small with
11 vertices and 18 edges, holds significance as the
smallest non-Hamiltonian polyhedral graph. It provides a
clear example of the limits of Hamiltonian cycles in
three-dimensional graph structures and plays a crucial
role in understanding planar graph exceptions.

The Möbius–Kantor graph, a cubic bipartite
symmetric graph with 16 vertices and 24 edges, offers
insights into the behavior of generalized Petersen
graphs. It is a helpful substructure within higher-
dimensional graphs like the hypercube and plays a key
role in studying symmetry and Cayley graphs.

The Franklin graph, famous for its application to
topological coloring problems, was used by Philip
Franklin to disprove the Heawood conjecture on the
Klein bottle. With 12 vertices and 18 edges, it remains
an essential case study in topological graph theory and
graph coloring.

The truncated icosahedral graph, or the
Buckminster Fullerene graph, is derived from an
Archimedean solid and features 60 vertices and 90
edges. Its structure models the carbon molecule C₆₀ and
is widely recognized in chemistry and architecture. As a
3-regular graph, it demonstrates the complexity and
symmetry of polyhedral graphs and the feasibility of
rendering them computationally.

Finally, the triangular grid graph is a visual
model for lattice structures. It represents the layout of
triangular tilings and has applications in physics,
chemistry, and game theory. These graphs are
important in modeling networks with hexagonal or
triangular symmetry.

In this research, each graph is constructed
algorithmically using Python’s turtle module. The
process involves deriving polar coordinates for vertex
placement, calculating edge connections using
trigonometry, and applying stylized rendering for clear
visualization. This computational method enables
students and researchers to dynamically visualize and
interact with graph properties, fostering deeper
engagement with abstract concepts.

Additionally, this study incorporates generative
artificial intelligence tools, such as ChatGPT, to
reproduce and verify Python programs for each graph.
Through prompt engineering, the researchers crafted
queries that guided the AI in generating accurate code
representations of each graph structure. This dual
approach-combining manual programming with AI-
assisted verification-demonstrates the synergy between
human logic and machine learning in computational
mathematics.

The integration of Python into graph theory
education offers numerous pedagogical advantages. It
provides a platform for visual experimentation,
encourages algorithmic thinking, and bridges the gap

between abstract mathematical definitions and concrete
visual outputs. Furthermore, using AI tools introduces
learners to emerging technologies in computational
science, enhancing their digital literacy and
programming fluency.

This paper aims to serve as both a research
contribution and a teaching resource. Illustrating how
classic graphs can be constructed through code
provides a replicable methodology for instructors and
students to explore graph theory in an interactive,
project-based environment. Including code, figures, and
AI-generated examples supports active learning and
promotes inquiry-based exploration.

In the following sections, the mathematical
characteristics of each selected graph are discussed in
detail, followed by their respective Python
implementations. Through this work, the authors aim to
deepen understanding, inspire further research, and
promote computational literacy in graph theory.

II. Methodologies

This study adopts a computational and
algorithmic methodology to construct and analyze
classic graphs in graph theory using Python
programming. The primary goal is to bridge
mathematical abstraction with visual comprehension by
implementing graph structures through code. Python’s
flexibility, particularly its turtle graphics module, is the
foundation for this approach, enabling accurate and
dynamic graph rendering based on geometric and
trigonometric calculations.

The methodology follows a systematic,
replicable process applied across all selected graphs.
Each begins with a thorough mathematical analysis-
defining vertex counts, edge arrangements, degrees,
symmetries, and other graph invariants. Next, the design
transitions to coordinate planning, typically utilizing polar
geometry to determine optimal vertex placement around
circular or polygonal paths. Edges are drawn between
these vertices by calculating precise movements and
rotations within the turtle environment.

Each Python program is customized to the
individual graph’s structure. This includes 3-regular
graphs like the Wagner and Franklin graphs, symmetric
bipartite graphs like the Möbius–Kantor graph, and
complex polyhedral graphs like the truncated
icosahedral graph. The visualizations often employ
color-coded vertices, labeled nodes, and edge
stylizations to reflect graph attributes like chromatic
number, connectivity, and planarity for enhanced
educational value and clarity.

In addition to constructing the graphs manually
through code, this study integrates generative AI tools,
specifically ChatGPT, by using prompt engineering to
generate alternative Python implementations. This dual
strategy-manual coding followed by AI-assisted

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

3

© 2025 Global Journals

reproduction-enables cross-verification of graphical
outputs and exposes learners to collaborative AI
programming practices.

Overall, this methodology emphasizes
reproducibility, educational accessibility, and
computational precision. It supports the theoretical
exploration of graph properties and enables hands-on
learning and experimentation. By merging algorithmic
thinking with visual modeling, this framework equips
students and researchers with a powerful toolkit for
advancing their understanding of graph theory through
Python.

III. Wagner Graph

In the mathematical field of graph theory, the
Wagner graph is a 3-regular graph with 8 vertices and
12 edges (Bondy & Murty, 2007). It is the 8-vertex
Möbius ladder graph. It is nonplanar but has a crossing
number of one, making it an apex graph. It can be
embedded without crossings on a torus or projective
plane and is also a toroidal graph. It has girth 4,
diameter 2, radius 2, chromatic number 3, chromatic
index 3, and is both 3-vertex-connected and 3-edge-
connected. It is a vertex-transitive graph but is not edge-
transitive. Its whole automorphism group is isomorphic
to the dihedral group D8 of order 16, the group of an
octagon symmetries, including rotations and reflections
("Wagner Graph," 2024).

The Wagner graph is triangle-free and has
independence number three, providing one half of the
proof that the Ramsey number R(3,4) (the least number
n such that any n-vertex graph contains either a triangle
or a four-vertex independent set) is 9 (Soifer, 2008).

The Wagner graph is also one of four minimal
forbidden minors for the graphs of tree width at most
three (the other three being the complete graph K5, the
graph of the regular octahedron, and the graph of the
pentagonal prism) and one of four minimal forbidden
minors for the graphs of branch width at most three (the
other three being K5, the graph of the octahedron, and
the cube graph) ("Wagner Graph," 2024; Bodlaender,
1998; Bodlaender & Thilikos, 1999).

Wagner's famous conjecture asserts that for any
infinite set of graphs, one of its members is isomorphic
to a minor of another (all graphs in this paper are finite)
(Wagner, 1970). The project proving Wagner’s
conjecture was started by Robertson and Seymour, later
joined by Thomas, and completed in 2004, which led to
entirely new concepts and a new way of looking at
graph theory (Lovász, 2006).

Python Program for Wagner Graph
import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
for k in range(8):
 t.penup()
 x1 = 300*math.cos(math.pi*((45*k)%360)/180)
 y1 = 300*math.sin(math.pi*((45*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 300*math.cos\
(math.pi*((45*k+45)%360)/180)
 y2 = 300*math.sin(math.pi*((45*k+45)%360)/180)
 t.goto(x2,y2)
radius = 300
for k in range(8):
 t.penup()
 t.goto(0,0)
 t.setheading(45*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("blue")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
radius = 300
for k in range(4):
 t.penup()
 x1 = radius*math.cos(math.pi*((45*k)%360)/180)
 y1 = radius*math.sin(math.pi*((45*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = radius*math.cos\
(math.pi*((45*k+180)%360)/180)
 y2 = radius*math.sin\
(math.pi*((45*k+180)%360)/180)
 t.goto(x2, y2)
t.hideturtle()

Using the previous algorithm, we generate the
Wagner graph as shown in Figure 1.

Wagner graph has 392 spanning trees; it and
the complete bipartite graph K3,3 have the most
spanning trees among all cubic graphs with the same
number of vertices (Jakobson & Rivin, 1999).

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

4

© 2025 Global Journals

Figure 1: Wagner Graph

Using ChatGPT to Reproduce the Above Graph
After uploading the above graph to ChatGPT,

we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 1(a).

Figure 1(a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 1(b).

Figure 1(b)

IV. Desargues Graph

The Desargues graph is a distance-transitive,
cubic graph with 20 vertices and 30 edges. It is named
after Girard Desargues, arises from several different
combinatorial constructions, has a high level of
symmetry, is the only known non-planar cubic partial
cube, and has been applied in chemical databases. It is
a symmetric graph with symmetries that take any vertex
to any other vertex and any edge to any other edge. Its
symmetry group has order 240, and is isomorphic to the
product of a symmetric group on 5 points with a group
of order 2 ("Desargues Graph," 2024).

In chemistry, the Desargues graph is known as
the Desargues–Levi graph; it is used to organize
systems of stereoisomers of 5-ligand compounds. In
this application, the thirty edges of the graph
correspond to pseudorotations of the ligands
("Desargues Graph," 2024; Balaban, Fǎrcaşiu, & Bǎnicǎ,
1966; Mislow, 1970).

It has chromatic number 2, chromatic index 3,
radius 5, diameter 5, and girth 6. It is also a 3-vertex-
connected and a 3-edge-connected Hamiltonian graph.
It has a book thickness of 3 and a queue number of 2
("Desargues Graph," 2024).

All the cubic distance-regular graphs are known
(Brouwer, Cohen, & Neumaier, 1989). The Desargues
graph is one of the 13 such graphs ("Desargues Graph,"
2024).

Python Program for Creating Desargues Graph
import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
t.penup()
t.goto(0,-300)
t.pendown()
t.circle(300)
radius = 300
for k in range(10):
 t.penup()
 t.goto(0,0)
 t.setheading(36*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("blue")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
radius = 150
for k in range(10):
 t.penup()
 t.goto(0,0)

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

5

© 2025 Global Journals

 t.setheading(36*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("red")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
for k in range(10):
 t.penup()
 x1 = 300*math.cos(math.pi*((36*k)%360)/180)
 y1 = 300*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 150*math.cos(math.pi*((36*k)%360)/180)
 y2 = 150*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x2,y2)
for k in range(10):
 t.penup()
 x1 = 150*math.cos(math.pi*((36*k)%360)/180)
 y1 = 150*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 150*math.cos\
(math.pi*((36*k+108)%360)/180)
 y2 = 150*math.sin\
(math.pi*((36*k+108)%360)/180)
 t.goto(x2,y2)
t.hideturtle()

Using the previous algorithm, we generate the
Desargues graph shown in Figure 2.

Figure 2: Desargues Graph

Using ChatGPT to Reproduce the Above Graph
After uploading the above graph to ChatGPT,

we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 2 (a).

Figure 2 (a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 2 (b).

Figure 2 (b)

V. Herschel Graph

The Herschel graph is a bipartite undirected
graph with 11 vertices and 18 edges. It is a polyhedral
graph (the graph of a convex polyhedron). It is the
smallest polyhedral graph that does not have a
Hamiltonian cycle, a cycle passing through all its
vertices. It is named after British astronomer Alexander
Stewart Herschel, because Herschel studied
Hamiltonian cycles in polyhedral graphs (but not of this
graph) (Wikipedia contributors, 2023).

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

6

© 2025 Global Journals

Herschel graph has three vertices of degree
four and eight vertices of degree three. Each two distinct
degree-four vertices share two degree-three neighbors,
forming a four-vertex cycle with these shared neighbors.
Three of these cycles pass through six of the eight
degree-three vertices. Two more degree-three vertices
do not participate in these four-vertex cycles; instead,
each is adjacent to three of the six vertices (Wikipedia
contributors, 2023; Lawson-Perfect, 2013).

Herschel's graph also provides an example of a
polyhedral graph for which the medial graph has no
Hamiltonian decomposition into two edge-disjoint
Hamiltonian cycles. The medial graph of the Herschel
graph is a 4-regular graph with 18 vertices, one for each
edge of the Herschel graph; two vertices are adjacent in
the medial graph whenever the corresponding edges of
the Herschel graph are consecutive on one of its faces
(Wikipedia contributors, 2023; (Bondy & Häggkvist,
1981).

Python Program for Creating Herschel Graph
import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
t.penup()
t.goto(0,0)
t.pendown()
t.fillcolor("blue")
t.begin_fill()
t.circle(4)
t.end_fill()
t.penup()
t.goto(0,-300)
t.pendown()
t.circle(300)
radius = 300
for k in range(4):
 t.penup()
 t.goto(0,0)
 t.setheading(90*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("blue")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
radius = 150
for k in range(6):
 t.penup()
 t.goto(0,0)
 t.setheading(60*k)

 t.forward(radius)
 t.pendown()
 t.fillcolor("red")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
for k in range(1,3,1):
 t.penup()
 x1 = 150*math.cos(math.pi*((60*k)%360)/180)
 y1 = 150*math.sin(math.pi*((60*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 t.goto(0,0)
for k in range(4,6,1):
 t.penup()
 x1 = 150*math.cos(math.pi*((60*k)%360)/180)
 y1 = 150*math.sin(math.pi*((60*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 t.goto(0,0)
t.penup()
x1 = 300*math.cos(math.pi*((90*0)%360)/180)
y1 = 300*math.sin(math.pi*((90*0)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*0)%360)/180)
y2 = 150*math.sin(math.pi*((60*0)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*1)%360)/180)
y1 = 300*math.sin(math.pi*((90*1)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*1)%360)/180)
y2 = 150*math.sin(math.pi*((60*1)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*1)%360)/180)
y1 = 300*math.sin(math.pi*((90*1)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*2)%360)/180)
y2 = 150*math.sin(math.pi*((60*2)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*2)%360)/180)
y1 = 300*math.sin(math.pi*((90*2)%360)/180)
t.goto(x1,y1)
t.pendown()

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

7

© 2025 Global Journals

x2 = 150*math.cos(math.pi*((60*3)%360)/180)
y2 = 150*math.sin(math.pi*((60*3)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*3)%360)/180)
y1 = 300*math.sin(math.pi*((90*3)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*4)%360)/180)
y2 = 150*math.sin(math.pi*((60*4)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 300*math.cos(math.pi*((90*3)%360)/180)
y1 = 300*math.sin(math.pi*((90*3)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*5)%360)/180)
y2 = 150*math.sin(math.pi*((60*5)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*0)%360)/180)
y1 = 150*math.sin(math.pi*((60*0)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*1)%360)/180)
y2 = 150*math.sin(math.pi*((60*1)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*0)%360)/180)
y1 = 150*math.sin(math.pi*((60*0)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*5)%360)/180)
y2 = 150*math.sin(math.pi*((60*5)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*3)%360)/180)
y1 = 150*math.sin(math.pi*((60*3)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*2)%360)/180)
y2 = 150*math.sin(math.pi*((60*2)%360)/180)
t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((60*3)%360)/180)
y1 = 150*math.sin(math.pi*((60*3)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((60*4)%360)/180)

y2 = 150*math.sin(math.pi*((60*4)%360)/180)
t.goto(x2,y2)
t.hideturtle()

We generate the Herschel graph shown in
Figure 3 using the previous algorithm.

Figure 3: Herschel Graph

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 3 (a).

Figure 3 (a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 3 (b).

Figure 3 (b)

VI. Möbius–Kantor Graph

The Möbius–Kantor graph is a symmetric
bipartite cubic graph with 16 vertices and 24 edges
named after August Ferdinand Möbius and Seligmann

Kantor. It can be defined as the generalized Petersen
graph G(8,3): that is, it is formed by the vertices of an
octagon, connected to the vertices of an eight-point star
in which each point of the star is connected to the points
three steps away from it (Wikipedia contributors, 2024).

Möbius–Kantor graph is a subgraph of the four-
dimensional hypercube graph, formed by removing
eight edges from the hypercube. Since the hypercube is
a unit distance graph, the Möbius–Kantor graph can
also be drawn in the plane with all edges unit length,
although such a drawing will necessarily have some
pairs of crossing edges. The Möbius–Kantor graph also
often occurs as an induced subgraph of the Hoffman–
Singleton graph. Each of these instances is, in fact, an
eigenvector of the Hoffman-Singleton graph, with an
associated eigenvalue of -3. Each vertex not in the
induced Möbius–Kantor graph is adjacent to exactly four
vertices in the Möbius–Kantor graph, two each in half of
a bipartition of the Möbius–Kantor graph. The Möbius–
Kantor graph cannot be embedded without crossings in
the plane; it has crossing number 4, and is the smallest
cubic graph with that crossing number (Wikipedia
contributors, 2024; Coxeter, 1950).

The automorphism group of the Möbius–Kantor
graph is a group of order 96. It acts transitively on the
graph's vertices, edges, and arcs. Therefore, the
Möbius–Kantor graph is a symmetric graph. It has
automorphisms that take any vertex to any other vertex
and any edge to any other edge. According to the
Foster census, the Möbius–Kantor graph is the unique
cubic symmetric graph with 16 vertices, and the
smallest cubic symmetric graph is not also distance-

transitive. The Möbius–Kantor graph is also a Cayley
graph (Wikipedia contributors, 2024).
Python Program for Creating Möbius–Kantor Graph
import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
t.penup()
t.goto(0,-300)
t.pendown()
t.circle(300)
radius = 300
for k in range(8):
 t.penup()
 t.goto(0,0)
 t.setheading(45*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("blue")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
radius = 150
for k in range(8):
 t.penup()
 t.goto(0,0)
 t.setheading(45*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("red")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
for k in range(8):
 t.penup()
 x1 = 150*math.cos(math.pi*((45*k)%360)/180)
 y1 = 150*math.sin(math.pi*((45*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 300*math.cos\
(math.pi*((45*k+45)%360)/180)
 y2 = 300*math.sin\
(math.pi*((45*k+45)%360)/180)
 t.goto(x2,y2)
for k in range(4):
 t.penup()
 x1 = 150*math.cos(math.pi*((45*k)%360)/180)
 y1 = 150*math.sin(math.pi*((45*k)%360)/180)
 t.goto(x1,y1)

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

8

© 2025 Global Journals

 t.pendown()
 x2 = 150*math.cos\
(math.pi*((45*k+135)%360)/180)
 y2 = 150*math.sin\
(math.pi*((45*k+135)%360)/180)
 t.goto(x2,y2)
for k in range(4):
 t.penup()
 x1 = 150*math.cos(math.pi*((45*k)%360)/180)
 y1 = 150*math.sin(math.pi*((45*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 150*math.cos\
(math.pi*((45*k+225)%360)/180)
 y2 = 150*math.sin\
(math.pi*((45*k+225)%360)/180)
 t.goto(x2,y2)
t.penup()
x1 = 150*math.cos(math.pi*((45*4)%360)/180)
y1 = 150*math.sin(math.pi*((45*4)%360)/180)
t.goto(x1,y1)
t.pendown()
x2 = 150*math.cos(math.pi*((45*7)%360)/180)
y2 = 150*math.sin(math.pi*((45*7)%360)/180)
t.goto(x2,y2)
t.hideturtle()

Using the previous algorithm, we generate
Möbius the Möbius-Kantor graph as shown in Figure 4.

Figure 4: Möbius–Kantor graph

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 4 (a).

Figure 4 (a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 4 (b).

Figure 4 (b)

VII. Franklin Graph

The Franklin graph is a 3-regular graph with 12
vertices and 18 edges. Franklin graph is named after
Philip Franklin, who disproved the Heawood conjecture
on the number of colors needed when a two-
dimensional surface is partitioned into cells by a graph
embedding (Wikipedia contributors, 2022; Franklin,
1934).

The Heawood conjecture implied that the
maximum chromatic number of a map on the Klein
bottle should be seven, but Franklin proved that in this
case six colors always suffice. (The Klein bottle is the
only surface for which the Heawood conjecture fails.)

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

9

© 2025 Global Journals

The Franklin graph can be embedded in the Klein bottle
so that it forms a map requiring six colors, showing that
six colors are sometimes necessary in this case.
Franklin graph is Hamiltonian and has chromatic
number 2, chromatic index 3, radius 3, diameter 3 and
girth 4. It is also a 3-vertex-connected and 3-edge-
connected perfect graph (Wikipedia contributors, 2022).

Python Program for Creating Franklin Graph
import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
t.pensize(1)
for k in range(12):
 t.penup()
 x1 = 300*math.cos(math.pi*((30*k)%360)/180)
 y1 = 300*math.sin(math.pi*((30*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 300*math.cos\
(math.pi*((30*k+30)%360)/180)
 y2 = 300*math.sin\
(math.pi*((30*k+30)%360)/180)
 t.goto(x2,y2)
radius = 300
for k in range(12):
 t.penup()
 t.goto(0,0)
 t.setheading(30*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("blue")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
radius = 300
for k in range(0,12,2):
 t.penup()
 x1 = radius*math.cos(math.pi*((30*k)%360)/180)
 y1 = radius*math.sin(math.pi*((30*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = radius*math.cos\
(math.pi*((30*k+150)%360)/180)
 y2 = radius*math.sin\
(math.pi*((30*k+150)%360)/180)
 t.goto(x2,y2)
t.hideturtle()

Using the previous algorithm we generate the
Franklin graph as shown in Figure 5.

Figure 5: Franklin graph

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 5 (a).

Figure 5 (a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 5 (b).

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

10

© 2025 Global Journals

Figure 5 (b)

VIII. Truncated Icosahedral Graph

In geometry, the truncated icosahedron is a
polyhedron that can be constructed by truncating all of
the regular icosahedron's vertices. Intuitively, it may be
regarded as footballs (or soccer balls) that are typically
patterned with white hexagons and black pentagons. It
can be found in the application of geodesic dome
structures such as those whose architecture
Buckminster Fuller pioneered are often based on this
structure. It is an example of an Archimedean solid, as
well as a Goldberg polyhedron (Weisstein, 2025).

According to Steinitz's theorem, the skeleton of
a truncated icosahedron, like that of any convex
polyhedron, can be represented as a polyhedral graph,
meaning a planar graph (one that can be drawn without
crossing edges) and 3-vertex-connected graph
(remaining connected whenever two of its vertices are
removed). The graph is known as truncated icosahedral
graph, with 60 vertices and 90 edges. It is an
Archimedean graph because it resembles one of the
Archimedean solids. It is a cubic graph, meaning that
each vertex is incident to exactly three edges. It is
sometimes known as the Buckminster Fullerene graph
(Weisstein, 2025; Wikipedia contributors, 2024).

Python Program for Creating truncated icosahedral graph
import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
#20-gons
for k in range(20):
 t.penup()
 t.goto(0,0)
 t.setheading(18*k)
 t.forward(300)

 t.pendown()
 t.fillcolor("black")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
 t.penup()
 x1 = 300*math.cos(math.pi*((18*k)%360)/180)
 y1 = 300*math.sin(math.pi*((18*k)%360)/180)
 t.goto(x1,y1)
 t.setposition(x1, y1)
 t.pendown()
 letter = str(k+1)
 t.color('black')
 t.write(letter, align="right", font=("Verdana", 13,
"normal"))
 t.color('black')
 x2 = 300*math.cos\
(math.pi*((18*k+18)%360)/180)
 y2 = 300*math.sin(math.pi*((18*k+18)%360)/180)
 t.goto(x2,y2)
#20 red vertices
for k in range(20):
 t.penup()
 t.goto(0,0)
 t.setheading(18*k)
 t.forward(240)
 t.pendown()
 t.fillcolor("red")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
 x1 = 240*math.cos(math.pi*((18*k)%360)/180)
 y1 = 240*math.sin(math.pi*((18*k)%360)/180)
 t.goto(x1,y1)
 t.setposition(x1, y1)
 t.pendown()
 letter = str(20+k+1)
 t.color('red')
 t.write(letter, align="right", font=("Verdana", 13,
"normal"))
 t.color('black')
#10 blue vertices
radius = 180
for k in range(10):
 t.penup()
 t.goto(0,0)
 t.setheading(36*k)
 t.forward(radius)
 t.pendown()

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

11

© 2025 Global Journals

 t.fillcolor("blue")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
 x1 = 180*math.cos(math.pi*((36*k)%360)/180)
 y1 = 180*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.setposition(x1, y1)
 t.pendown()
 letter = str(40+k+1)
 t.color('blue')
 t.write(letter, align="right", font=("Verdana", 13,
"normal"))
 t.color('black')
10 green vertices
radius = 120
for k in range(10):
 t.penup()
 t.goto(0,0)
 t.setheading(36*k)
 t.forward(radius)
 t.pendown()
 t.fillcolor("green")
 t.begin_fill()
 t.circle(4)
 t.end_fill()
 x1 = 120*math.cos(math.pi*((36*k)%360)/180)
 y1 = 120*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.setposition(x1, y1)
 t.pendown()
 letter = str(50+k+1)
 t.color('green')
 t.write(letter, align="right", font=("Verdana", 13,
"normal"))
 t.color('black')
#edges between black and red vertices
for k in range(0,19,2):
 t.penup()
 x1 = 300*math.cos(math.pi*((18*k)%360)/180)
 y1 = 300*math.sin(math.pi*((18*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 t.color('red')
 x2 = 240*math.cos(math.pi*((18*k+18)%360)/180)
 y2 = 240*math.sin(math.pi*((18*k+18)%360)/180)
 t.goto(x2,y2)
 t.color('black')
for k in range(0,19,2):

 t.penup()
 x1 = 240*math.cos(math.pi*((18*k)%360)/180)
 y1 = 240*math.sin(math.pi*((18*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 t.color('green')
 x2 = 300*math.cos\
(math.pi*((18*k+18)%360)/180)
 y2 = 300*math.sin(math.pi*((18*k+18)%360)/180)
 t.goto(x2,y2)
 t.color('black')
edges between red vertices
for k in range(1,20,2):
 t.penup()
 x1 = 240*math.cos(math.pi*((18*k)%360)/180)
 y1 = 240*math.sin(math.pi*((18*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 240*math.cos\
(math.pi*((18*k+18)%360)/180)
 y2 = 240*math.sin(math.pi*((18*k+18)%360)/180)
 t.goto(x2,y2)
#edges between red and blue vertices
for k in range(10):
 t.penup()
 x1 = 180*math.cos(math.pi*((36*k)%360)/180)
 y1 = 180*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 240*math.cos(math.pi*((2*18*k)%360)/180)
 y2 = 240*math.sin(math.pi*((2*18*k)%360)/180)
 t.goto(x2,y2)
for k in range(10):
 t.penup()
 x1 = 180*math.cos(math.pi*((36*k)%360)/180)
 y1 = 180*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 240*math.cos\
(math.pi*((2*18*k+54)%360)/180)
 y2 = 240*math.sin(math.pi*((2*18*k+54)%360)/180)
 t.goto(x2,y2)
edges between blue and green vertices
for k in range(10):
 t.penup()
 x1 = 180*math.cos(math.pi*((36*k)%360)/180)
 y1 = 180*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

12

© 2025 Global Journals

 x2 = 120*math.cos(math.pi*((36*k)%360)/180)
 y2 = 120*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x2,y2)
edges between green and green vertices
for k in range(0,10,2):
 t.penup()
 x1 = 120*math.cos(math.pi*((36*k)%360)/180)
 y1 = 120*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 120*math.cos\
(math.pi*((36*k+72)%360)/180)
 y2 = 120*math.sin(math.pi*((36*k+72)%360)/180)
 t.goto(x2,y2)
for k in range(1,10,2):
 t.penup()
 x1 = 120*math.cos(math.pi*((36*k)%360)/180)
 y1 = 120*math.sin(math.pi*((36*k)%360)/180)
 t.goto(x1,y1)
 t.pendown()
 x2 = 120*math.cos\
(math.pi*((36*k+72)%360)/180)
 y2 = 120*math.sin(math.pi*((36*k+72)%360)/180)
 t.goto(x2,y2)
t.hideturtle()

Using the previous algorithm we generate the
truncated icosahedral graph as shown in Figure 6.

Figure 6: Truncated icosahedral graph

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 6 (a).

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

13

© 2025 Global Journals

Figure 6 (a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 5 (b).

Figure 6 (b)

IX. Triangular Grid Graph

The triangular grid graph Tn is the lattice graph
obtained by interpreting the order-(n+1) triangular grid
as a graph, with the intersection of grid lines being the
vertices and the line segments between vertices being
the edges. Equivalently, it is the graph on vertices (i, j, k)
with i, j, k being nonnegative integers summing to n
such that vertices are adjacent if the sum of absolute
differences of the coordinates of two vertices is 2.

The graph bandwidth of Tn is n+1. Tn is also the
hexagonal king graph of order n, i.e., the connectivity
graph of possible moves of a king chess piece on a
hexagonal chessboard (West, 2000; Weisstein, 2025).

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

14

© 2025 Global Journals

Python Program for Creating Tn

import turtle
import math
t = turtle.Turtle()
t.speed("fastest")
def Triangular_Grid_Graph(n):
 size = 600//n
 for k in range(0, n+1):
 x_cor = -300+k*size
 for i in range(k+1):
 t.penup()
 t.goto(x_cor,300-i*size*math.sqrt(3)/2)
 t.pendown()
 t.fillcolor("red")
 t.begin_fill()
 t.circle(2)
 t.end_fill()
 x_cor = x_cor - size/2
 t.color('black')
 for k in range(0, n):
 x_cor = -300+k*size
 for i in range(k+1):
 t.penup()
 t.goto(x_cor,300-i*size*math.sqrt(3)/2)
 t.setposition(x_cor,300-i*size*math.sqrt(3)/2)
 t.pendown()
 t.goto(x_cor + size,300-i*size*math.sqrt(3)/2)
 x_cor = x_cor - size/2
 for k in range(0, n):
 x_cor = -300+k*size
 for i in range(k+1):
 t.penup()
 t.goto(x_cor,300-i*size*math.sqrt(3)/2)
 t.setposition(x_cor,300-i*size*math.sqrt(3)/2)
 t.pendown()
 t.goto(x_cor+size/2,300(i+1)*size*math.sqrt(3)/2)
 x_cor = x_cor - size/2
 for k in range(0, n):
 x_cor = -300+(k+1)*size
 for i in range(k+1):
 t.penup()
 t.goto(x_cor,300-i*size*math.sqrt(3)/2)
 t.setposition(x_cor,300-i*size*math.sqrt(3)/2)
 t.pendown()
 t.goto(x_cor-size/2,300(i+1)*size*math.sqrt(3)/2)
 x_cor = x_cor - size/2
 t.hideturtle()

Using the previous algorithm we generate the
truncated icosahedral graphs T15 and T30 as shown in
Figure 7-A and Figure 7-B, respectively.

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

15

© 2025 Global Journals

Figure 7-A: Truncated Icosahedral Graph T15

Figure 7-B: Truncated Icosahedral Graph T30

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 7-B (a).

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

16

© 2025 Global Journals

Figure 7-B (a)

After uploading the above graph to ChatGPT,
we asked, “Based on the attached image/graph, could
you develop a Python program to reproduce it?”

The Python program generated by ChatGPT
produced the following image in Figure 7-B (b).

Figure 7-B (b)

X. Integrating Knowledge Management
Into Computational Graph Theory

Education

Knowledge management (KM) is pivotal in
bridging theory and application in computational graph
theory, particularly when using Python to model complex
mathematical structures. As graph construction
increasingly leverages algorithmic logic and
programming, effective KM strategies are essential for
facilitating interdisciplinary learning, enhancing
educational outcomes, and optimizing research
processes.

The Knowledge Management Mesosystem
Model (Gao & Gao, in press) offers a structured
framework that supports the integration of human
expertise, algorithmic design, and AI-assisted discovery
in educational environments. It comprises three

interdependent layers: the Knowledge/Human Layer, the
Yin-Yang Knowledge Development and Sharing Layer,
and the Data/Machine Layer. These layers align well with
the iterative process of coding, testing, and visualizing
graphs, allowing students and researchers to transition
seamlessly between theory development and practical
application.

Instructors can cultivate higher-order thinking,
collaboration, and computational creativity by
incorporating KM strategies into graph theory education.
Gao et al. (2025) emphasize the role of innovative
teaching practices in business analytics, which mirror
similar approaches in computational mathematics-
where hands-on programming tasks and active learning
deepen student engagement. Moreover, integrating AI
into KM workflows allows for more dynamic interaction
between human logic and machine-generated insights,

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

17

© 2025 Global Journals

facilitating advanced problem-solving and deeper
conceptual understanding (Gao et al., 2024).

Russ (2021) further highlights the necessity of
sustainable KM in technology-driven disciplines,
underscoring how ethical AI usage and data governance
must accompany algorithmic exploration. The symbiotic
relationship between knowledge creation and
dissemination within KM frameworks is crucial when
teaching programming-based graph construction,
where students learn from existing models and
contribute to evolving digital knowledge ecosystems.

In summary, embedding KM principles into
computational graph theory enriches the learning
experience, encourages innovation, and ensures a
sustainable, interdisciplinary approach to knowledge
generation in the era of intelligent technologies.

XI. Responsible Integration of AI in
Computational Research and

Education

As artificial intelligence (AI) becomes more
integrated into educational and research contexts,
adopting a balanced and responsible approach to its
use is essential. In computational fields such as graph
theory, AI can support algorithm development, automate
visualization, and even suggest code for complex graph
structures. However, using AI wisely means recognizing
its role as a complement to-not a replacement for-
human logic, creativity, and critical thinking.

Gao et al. (2024) highlights that while AI can
generate solutions and assist in mathematical
reasoning, it must be tempered with human oversight to
ensure accuracy, especially in domains requiring
rigorous proofs and logical consistency. Misusing
generative AI—such as uncritically accepting outputs
without validation—can lead to erroneous conclusions
and undermine academic integrity.

The Knowledge Management Mesosystem
Model (Gao & Gao, in press) provides a helpful
framework for guiding wise AI integration. Its
Data/Machine Layer emphasizes AI-assisted learning
while maintaining a strong role for human decision-
making. Ethical considerations, data governance, and
contextual understanding must be part of any AI-driven
educational or research activity.

Furthermore, wise AI use aligns with Russ’s
(2021) model of sustainable knowledge management,
which calls for thoughtful integration of technology to
enhance-not replace-human cognitive processes. In a
programming-rich environment like Python-based graph
construction, students and researchers should use AI to
augment their understanding: generating baseline code,
debugging, or exploring design variations while still
being actively involved in problem-solving and model
evaluation.

Ultimately, using AI wisely means fostering an
interdisciplinary mindset where machine intelligence
supports but does not eclipse human reasoning. When
guided by ethical principles and pedagogical goals, AI
can significantly enhance the teaching, learning, and
research of mathematical and computational topics.

XII. Prompt Engineering and its Role in
Graph Construction

Prompt engineering, the art of crafting precise
and effective instructions to guide large language
models (LLMs), has become essential in leveraging
generative artificial intelligence for diverse tasks,
including mathematical problem-solving and
programming support. In the context of this study,
prompt engineering was pivotal in engaging tools like
ChatGPT to recreate Python visualizations of classic
graphs in graph theory. By formulating well-structured
prompts-such as asking for a Python program to
replicate a given graph image-researchers could derive
functional code outputs that accurately reproduced
complex structures like the Wagner and Desargues
graphs.

The power of prompt engineering lies in its
ability to direct AI toward high-quality, context-aware
responses. As Hernández et al. (2024) described,
successful interactions with LLMs depend heavily on
clarity, specificity, and contextual cues within the
prompt. Their work provides over 100 examples,
demonstrating that prompt quality significantly impacts
response effectiveness across domains. Similarly,
Mastering Generative AI and Prompt Engineering
underscores that prompt engineering enhances
productivity and creativity by allowing users to
customize AI output to specific goals, such as
generating reproducible code or verifying mathematical
properties (Data Science Horizons, 2024).

In graph theory education and computational
research, prompt engineering bridges human intent and
machine-generated assistance. It transforms LLMs from
passive responders into collaborative problem-solvers
capable of producing code that is not only syntactically
correct but also aligned with theoretical graph attributes.
As Python continues to serve as a primary medium for
algorithmic exploration, prompt engineering empowers
both students and researchers to interact more
effectively with AI models, thus streamlining the process
of constructing, analyzing, and visualizing graphs.

XIII. Conclusion

In the Information Age where information inflows
and outflows are rapid, complex, and dynamically
interspersed within highly uncertain environments, the
imperative nature of the necessity for algorithmic
learning in higher education has become increasingly

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

18

© 2025 Global Journals

clear. Not only is algorithmic learning considered to be
integral within the Information and Communications
Technology (ICT) domain (Byrka, Sushchenko, Luchko,
Perun, & Luchko, 2024), but it is among the most sought
after skill for millennials (Ananiadou & Claro, 2009).
More importantly, the inculcation of algorithmic learning
can help reify an otherwise esoteric way of thinking and,
therefore, learning, by helping students organize their
thoughts logically in a stepwise fashion.

This research has demonstrated how classic
graphs in graph theory can be effectively constructed,
visualized, and analyzed using Python programming. By
focusing on historically significant and mathematically
rich graphs such as the Wagner, Desargues, Herschel,
Möbius–Kantor, Franklin, truncated icosahedral, and
triangular grid graphs, this study bridges the gap
between abstract mathematical theory and tangible
computational implementation.

Python’s turtle module proved to be a valuable
tool for graph rendering, offering a visually intuitive
means of exploring structural properties such as
regularity, symmetry, Hamiltonicity, and chromatic
characteristics. Using trigonometric and geometric
reasoning in these Python scripts encourages learners
to connect theoretical graph definitions with algorithmic
design, deepening mathematical understanding and
programming skills.

A significant contribution of this study is the
integration of generative AI, particularly ChatGPT,
through prompt engineering to reproduce and verify
Python code for graph construction. This dual approach
validates the manually written code and introduces
learners to collaborative human-AI workflows in
computational mathematics. Prompt engineering
emerged as a vital skill in effectively guiding AI tools,
enabling the generation of meaningful and accurate
programming solutions aligned with graph-theoretic
goals.

Moreover, this paper underscores the
educational potential of combining coding with visual
mathematics. Students and researchers gain a deeper
appreciation for graph properties and computational
logic by implementing classic graphs in Python. The
methodology presented here is replicable and scalable,
making it ideal for classroom use, student research, and
interdisciplinary applications across science,
engineering, and computer science.

Ultimately, this work contributes a practical and
pedagogically sound approach to teaching and
exploring graph theory. Hands-on programming and
responsible AI integration fosters computational literacy
and inspires further innovation at the intersection of
mathematics, computer science, and education.
Data Availability

The data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest
The authors declare no conflicts of interest.

Funding Statement
This study did not receive any funding in any form.

Acknowledgment

This paper was inspired and initiated by the
talks, posters, and conversations at PyCon US 2024,
held in Pittsburgh, Pennsylvania, from May 17 to 19,
2024. The first author attended the conference with
financial support from the organizers. The work also
drew upon his teaching materials for Introduction to
Computing at the University of Richmond and Computer
Programming I & II at Virginia State University. Part of
the research was conducted during his visit to Elizabeth
City State University (ECSU) from July 14 to 19, 2024,
supported by an ECSU mini-grant. Additional insights
were gained from two recent publications: Gao and
Donald (2024) and Gao, Gao, Allagan, and Su (2025).

References Références Referencias

1. Ananiadou, K., Claro, M. (2009). 21st century skills
and competences for new millennium learners in
OECD countries. OECD Working Papers, 41. Paris:
OECD Publishing.

2. Byrka, M., Sushchenko, A., Luchko, V., Perun, G., &
Luchko, V. (2024). Algorithmic thinking in higher
education: Determining observable measurable
content. Information Technologies and Learning
Tools, 104(6), 1-13.

3. Bondy, J. A., & Murty, U. S. R. (2007). Graph theory
(pp. 275–276). Springer.

4. Wikipedia contributors. (2024, January 27). Wagner
graph. In Wikipedia, the Free Encyclopedia.
Retrieved March 21, 2025, from https://en.
wikipedia.org/w/index.php?title=Wagner_graph&ol
did=1199505619

5. Soifer, A. (2008). The mathematical coloring book
(p. 245). Springer-Verlag.

6. Jakobson, Dmitry; Rivin, Igor (1999). "On some
extremal problems in graph theory". arXiv:math.
CO/9907050.

7. Bodlaender, H. L. (1998). A partial k-arboretum of
graphs with bounded treewidth. Theoretical
Computer Science, 209(1–2), 1–45. https://doi.org/
10.1016/S0304-3975(97)00228-4

8. Bodlaender, H. L., & Thilikos, D. M. (1999). Graphs
with branchwidth at most three. Journal of
Algorithms, 32(2), 167–194. https://doi.org/10.1006/
jagm.1999.1011

9. Wagner, K. (1970). Graphentheorie (B.J. Hoch schul
taschenbücher 248/248a, p. 61). Mannheim.

10. Lovász, L. (2006). Graph minor theory. Bulletin of the
American Mathematical Society, 43(1), 75–86.
https://doi.org/10.1090/S0273-0979-05-01088-8

https://en.wikipedia.org/w/index.php?title=Wagner_graph&oldid=1199505619
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1006/jagm.1999.1011
https://en.wikipedia.org/w/index.php?title=Desargues_graph&oldid=1238340280
https://en.wikipedia.org/w/index.php?title=Herschel_graph&oldid=1188570810
https://doi.org/10.1090/S0002-9904-1950-09407-5
https://en.wikipedia.org/w/index.php?title=Wagner_graph&oldid=1199505619
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1006/jagm.1999.1011
https://doi.org/10.1090/S0273-0979-05-01088-8

Constructing Classic Graphs in Graph Theory using Python and Generative AI: A Case Study in
Computational Visualization and Prompt Engineering

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
F

)
X
X
V
 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

25

19

© 2025 Global Journals

11. Wikipedia contributors. (2024, August 3). Desargues
graph. In Wikipedia, the Free Encyclopedia.
Retrieved March 20, 2025, from https://en.
wikipedia.org/w/index.php?title=Desargues_graph&
oldid=1238340280

12. Balaban, A. T., Fǎrcaşiu, D., & Bǎnicǎ, R. (1966).
Graphs of multiple 1, 2-shifts in carbonium ions and
related systems. Revue Roumaine de Chimie, 11,
1205.

13. Mislow, K. (1970). Role of pseudorotation in the
stereochemistry of nucleophilic displacement
reactions. Accounts of Chemical Research, 3(10),
321–331. https://doi.org/10.1021/ar50034a001

14. Brouwer, A. E., Cohen, A. M., & Neumaier, A.
(1989). Distance-regular graphs. Springer-Verlag.

15. Wikipedia contributors. (2023, December 6).
Herschel graph. In Wikipedia, the Free Encyclopedia.
Retrieved March 21, 2025, from https://en.
wikipedia.org/w/index.php?title=Herschel_graph&ol
did=1188570810

16. Lawson-Perfect, C. (2013, October 13). An
enneahedron for Herschel. The Aperiodical. https://
aperiodical.com/2013/10/an-enneahedron-for-hersc
hel/

17. Bondy, J. A., & Häggkvist, R. (1981). Edge-disjoint
Hamilton cycles in 4-regular planar graphs.
Aequationes Mathematicae, 22(1), 42–45. https://
doi.org/10.1007/BF02190157

18. Wikipedia contributors. (2024, July 24). Möbius–
Kantor graph. In Wikipedia, the Free Encyclopedia.
Retrieved March 22, 2025 from https://en.wikipedia.
org/w/index.php?title=M%C3%B6bius%E2%80%93
Kantor_graph&oldid=1236308906

19. Coxeter, H. S. M. (1950). Self-dual configurations
and regular graphs. Bulletin of the American
Mathematical Society, 56(5), 413–455. https://doi.
org/10.1090/S0002-9904-1950-09407-5

20. Wikipedia contributors. (2022, March 14). Franklin
graph. In Wikipedia, the Free Encyclopedia.
Retrieved March 23, 2025, from https://en.wikipedia.
org/w/index.php?title=Franklin_graph&oldid=10770
59121

21. Franklin, P. (1934). A six color problem. Journal of
Mathematics and Physics, 13, 363–379. https://
doi.org/10.1002/sapm1934131363

22. Wikipedia contributors. (2024, July 28). Truncated
icosahedron. In Wikipedia, the Free Encyclopedia.
Retrieved March 23, 2025, from https://en.
wikipedia.org/w/index.php?title=Truncated_icosahe
dron&oldid=1237263616

23. Weisstein, E. W. (2025). Truncated icosahedral
graph. From MathWorld-A Wolfram Web Resource.
https://mathworld.wolfram.com/TruncatedIcosahedr
alGraph.html

24. West, D. B. (2000). Introduction to graph theory
(2nd ed., pp. 390–392). Prentice Hall.

25. Weisstein, E. W. (2025). Triangular grid graph.
MathWorld-A Wolfram Web Resource. https://math
world.wolfram.com/TriangularGridGraph.html

26. Gao, S., Gao, W., Allagan, J., & Su, J. (2025).
Innovative teaching in business analytics: Bridging
theory, practice, and student engagement. Journal
of Technology Research, 12. Retrieved from
https://www.aabri.com/jtr.html

27. Gao, S., Gao, W., Malomo, O., Allagan, J., Eyob, E.,
Challa, C., & Su, J. (2024). Exploring the interplay
between AI and human logic in mathematical
problem-solving. Online Journal of Applied
Knowledge Management, 12(1), 73--93. https://doi.
org/10.36965/OJAKM.2024.12(1)73-93

28. Gao, S., & Gao, W. (in press). Enhancing business
education with knowledge management meso
system model. In M. Russ & M. Lytras (Eds.), AI-
driven knowledge management: Strategies for the
modern business landscape. Emerald Publishing.

29. Russ, M. (2021). Knowledge management for
sustainable development in the era of continuously
accelerating technological revolutions: A framework
and models. Sustainability, 13(6), 3353. https://doi.
org/10.3390/su13063353

30. Data Science Horizons. (2024). Mastering generative
AI and prompt engineering: A practical guide for
data scientists.

31. Hernández, J. A., Conde, J., Querol, B., Martínez,
G., & Reviriego, P. (2024). ChatGPT: Learning
prompt engineering with 100+ examples. Madrid.

32. Gao, S., Gao, W., Allagan, J., & Su, J. (2025).
Integrating Python and Generative AI for graph
theory visualization and problem-solving. In
Proceedings of the 2025 International Conference on
the AI Revolution: Research, Ethics, and Society
(AIR-RES 2025: April 14--16, 2025, Las Vegas,
USA). Springer Nature (forthcoming).

33. Gao, J. M., & Donald, A. M. (2024). Blending
Computational Thinking and Creativity: Algorithmic
Art with Python. In 2024 International Conference on
Computational Science and Computational
Intelligence (CSCI). Springer Nature (forthcoming).

https://mathworld.wolfram.com/TruncatedIcosahedralGraph.html
https://mathworld.wolfram.com/TriangularGridGraph.html
https://doi.org/10.3390/su13063353
https://en.wikipedia.org/w/index.php?title=Desargues_graph&oldid=1238340280
https://en.wikipedia.org/w/index.php?title=Herschel_graph&oldid=1188570810
https://aperiodical.com/2013/10/an-enneahedron-for-herschel/
https://en.wikipedia.org/w/index.php?title=M%C3%B6bius%E2%80%93Kantor_graph&oldid=1236308906
https://doi.org/10.1090/S0002-9904-1950-09407-5
https://en.wikipedia.org/w/index.php?title=Franklin_graph&oldid=1077059121
https://en.wikipedia.org/w/index.php?title=Truncated_icosahedron&oldid=1237263616
https://mathworld.wolfram.com/TruncatedIcosahedralGraph.html
https://mathworld.wolfram.com/TriangularGridGraph.html
https://doi.org/10.36965/OJAKM.2024.12(1)73-93

	Constructing Classic Graphs in Graph Theory using Pythonand Generative AI: A Case Study in Computational Visualization and Prompt Engineering
	Author
	Keywords
	I. Introduction
	II. Methodologies
	III. Wagner Graph
	IV. Desargues Graph
	V. Herschel Graph
	VI. Möbius–Kantor Graph
	VII. Franklin Graph
	VIII. Truncated Icosahedral Graph
	IX. Triangular Grid Graph
	X. Integrating Knowledge Management Into Computational Graph Theory Education
	XI. Responsible Integration of AI in Computational Research and Education
	XII. Prompt Engineering and its Role in Graph Construction
	XIII. Conclusion
	Acknowledgment
	References Références Referencias

