
© 2025. Sameeksha Gupta. This research/review article is distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of 
the article are reproduced in any manner. Applicable licensing terms are at https://creative commons. org/licenses/by-nc-nd/4.0/. 

Global Journal of Computer Science and Technology: A 
Hardware & computation 
Volume 25 Issue 1 Version 1.0 Year 2025 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 
 
Silent Data Errors in GPUs: Challenges and Mitigation in 
Modern Silicon  

By Sameeksha Gupta 
Abstract- Silent data errors in graphics processing units (SDEs) represent a critical challenge for 
modern computational systems that rely on these accelerators in high-performance computing, 
artificial intelligence, and data center operations. These errors propagate through calculations 
without triggering detection mechanisms, potentially compromising results in critical applications 
from autonomous vehicles to medical diagnosis. Quantitative analysis reveals disturbing error 
rates: 8.15×10^-3 FIT per device at sea level (one error per 14,000 device-hours), with error 
rates increasing 17-32% when running at full computational capacity in data centers. The 
physical causes of SDEs include cosmic radiation (causing 61.7% of faults to propagate 
undetected in streaming multiprocessors), manufacturing variations (contributing to 4.3% of 
silent computational failures), thermal stress cycles, voltage fluctuations, and aging effects that 
impact semiconductor reliability.  

Keywords: silent data errors, GPU reliability, cosmic radiation sensitivity, architectural vulnerability, 
workload resilience, error mitigation strategies.  

GJCST-A Classification: LCC Code: QA76.9.C65 

SilentDataErrorsinGPUsChallengesandMitigationinModernSilicon                                             
                                                              
  
  
 
 
                                                                      
 

 

Strictly as per the compliance and regulations of:



Silent Data Errors in GPUs: Challenges and 
Mitigation in Modern Silicon 

Sameeksha Gupta 

 
 

 

  
   

 

Abstract-

 

Silent data errors in graphics processing units 
(SDEs) represent a critical challenge for modern 
computational systems that rely on these accelerators in high-
performance computing, artificial intelligence, and data center 
operations. These errors propagate through calculations 
without triggering detection mechanisms, potentially 
compromising results in critical applications from autonomous 
vehicles to medical diagnosis. Quantitative analysis reveals 
disturbing error rates: 8.15×10^-3 FIT per device at sea level 
(one error per 14,000 device-hours), with error rates increasing 
17-32% when running at full computational capacity in data 
centers. The physical causes of SDEs include cosmic radiation 
(causing 61.7% of faults to propagate undetected in streaming 
multiprocessors), manufacturing variations (contributing to 
4.3% of silent computational failures), thermal stress cycles, 
voltage fluctuations, and aging effects that impact 
semiconductor reliability. Architectural vulnerability varies 
significantly: register files exhibit 36% silent data corruption 
rates versus 23% for shared memory and 11% for global 
memory, while instruction vulnerability ranges from 6.1% for 
integer operations to 42.7% for atomic operations. Workload 
characteristics dramatically affect error sensitivity, with 
machine learning inference showing up to 19.3% accuracy 
reduction from moderate error rates in transformer models 
versus 8.6% in convolutional networks. Mitigation strategies 
span hardware (ECC reducing corruption by 78.5%), firmware, 
and software domains, with recent selective redundancy 
techniques achieving 91% error coverage with only 32% 

performance overhead. Cross-layer resilience approaches 
demonstrated in recent research can reduce critical data 
integrity errors by up to 93.4% compared to default protection 
methods. Understanding these complex interactions and 
implementing targeted protection systems is essential for 
developing resilient GPU computing platforms that maintain 
both performance at scale and reliability. 

 silent data errors, GPU reliability, cosmic 
radiation sensitivity, architectural vulnerability, workload 
resilience, error mitigation strategies. 

I. Introduction 

raphics Processing Units (GPUs) have increased 
in various fields ranging from niche rendering 
hardware to core computational accelerators, 

such as high-performance computing (HPC), Artificial 
Intelligence, and Data-Scalable Operations. This role 
has made GPUs key infrastructure elements for 
applications from weather forecasting and molecular 
simulations to deep learning model training. As per 
Maleki et al., a comprehensive investigation of 
performance and reliability in modern GPUs reveals that 
for current technology nodes at sea level, silent data 
corruption (SDC) rates can reach alarming levels of 0.51 
FIT/Mbit (Failures In Time per million bits) with overall 
observable error rates of 0.89 FIT/Mbit [1]. This equates 
to a disturbing rate of undetectable errors in high-scale 
deployments, where the total memory footprint of as 
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many as petabytes is possible. But the unrelenting 
quest for performance gains through higher transistor 
densities and lower operating voltages has brought forth 
substantial reliability issues, most notably in the guise of 
silent data errors (SDEs). 

Silent data errors pose a specifically pernicious 
challenge to computational integrity, being ones that 
afflict systems in silence without activating immediate 
detection mechanisms within system software or 
hardware. In contrast to traditional faults that give rise to 
well-defined, readily recognizable system crashes or 
diagnostic messages, SDEs travel through calculations 
undetected, potentially contaminating result accuracy, 
destabilizing system reliability, and eroding availability in 
deployed environments. Data center deployments using 
GPU acceleration for data analysis have shown that 
error rates grow 17-32% when running at full 
computational capacity, with an estimated 22% of such 
errors occurring in the form of silent corruptions that go 
undetected by traditional monitoring infrastructure, 
based on SQream's large-scale field testing on 1,500 
production nodes [2]. The significance goes beyond 
simple inconvenience, with potential impact on pivotal 
decision-making processes in applications like 
autonomous systems, medical diagnostics, and 
financial modeling. 

This work discusses the multi-faceted character 
of SDEs in contemporary GPU architectures, pinpointing 
primary vulnerability factors along architectural sub-
components and operational regimes. The discussion 
covers both physical error-inducing mechanisms and 
architectural aspects that condition error propagation 
paths. In addition, this paper analyzes existing mitigation 
techniques and recommends approaches to improve 
GPU reliability against SDEs. The comprehension of 
such intricate interactions is crucial to developing future-
generation GPU systems with the ability to provide both 
reliability and performance at scale. 

II. Root Causes of Silent Data Errors 
in Modern gpu Silicon 

Silent data errors in GPUs result from several 
connected physical effects influencing semiconductor 
dependability. Cosmic radiation is an important external 
factor with high-energy neutrons that traverse shielding 
materials and create electron-hole pairs in 
semiconductor substrates. Charged particles perturb 
stored values in memory devices and logic circuits, 
leading to bit flips that can go undetected. According to 
Ferreira et al., comprehensive neutron beam testing 
across multiple generations of GPU architectures has 
demonstrated that the architectural vulnerability factor 
(AVF) of register files increases by approximately 25.1% 
with each process node shrink, with contemporary 
GPUs exhibiting approximately 8.15×10^-3 FIT per 
device at sea level altitude—equating to one silent data 

error in approximately 14,000 device-hours under typical 
workloads [3]. Their neutron beam testing of 15,840 
device-hours experiments proved that streaming 
multiprocessors (SMs) exhibited especially high 
susceptibility, where 61.7% of faults injected indeed 
propagated undetected through computations, as 
opposed to only 17.2% in traditional CPU pipelines. 
Susceptibility to such radiation-induced transient faults 
rises with decreasing feature sizes and degrading 
critical charge thresholds in future manufacturing nodes. 
Manufacturing process variations represent another 
intrinsic source of weakness. Even for advanced 
fabrication processes, statistical fluctuations in dopant 
levels, gate oxide thickness, and lithographic alignment 
result in marginally functional circuit regions. These 
fluctuations appear as timing violations under some 
operating conditions and may result in wrong 
computation outcomes without activating error detection 
circuits. Research presented at the Workshop on GPU 
Reliability has demonstrated that process fluctuations in 
advanced GPU designs can cause threshold voltage 
(Vt) variations of up to 30mV for individual streaming 
multiprocessors, resulting in timing differences of 7.5-
11.2% on critical paths [4]. Their diligent examination of 
27 production GPUs showed that about 4.3% of all silent 
computational failures were directly attributable to 
manufacturing differences, with an average seen rate of 
1.7×10^-10 errors per operation when running at 
nominal voltage levels—a number that increases by 
orders of magnitude to 4.9×10^-8 errors per operation 
when running at lowered voltage margins to reduce 
power consumption. The issue is compounded in GPUs, 
which contain billions of transistors over huge die areas, 
raising the statistical probability of having susceptible 
elements. 

Thermal cycling also degrades silicon reliability 
by causing differential expansion coefficients among 
materials in the GPU package. Electro migration 
processes are sped up, and the progression of crack 
formation in interconnect structures is accelerated by 
repeated thermal cycling. These impacts are especially 
significant in GPUs because of their high power 
densities and dynamic workload profiles, which cause 
extreme temperature gradients within the die. Voltage 
variations, both long-term droop and short-term noise, 
are another important mechanism for generating SDEs. 
Contemporary GPUs run at very tight voltage margins in 
order to achieve better energy efficiency, narrowing the 
gap between nominal operation voltage and minimum 
voltage for correct function. This reduced margin 
heightens vulnerability to temporary voltage fluctuations 
that could lead to timing violations in critical paths 
without invoking protective action. 
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Table 1: Physical Phenomena Contributing to Silent Data Errors in GPUs [3, 4] 

Physical Mechanism Error Manifestation Vulnerability Trends Key Affected Components 

Cosmic Radiation 
Electron-hole pair 

generation 
Increases with node 

shrinking Register files, SRAM cells 

Manufacturing 
Variations 

Timing violations Higher impact in large 
dies 

Critical timing paths, marginal 
circuits 

Thermal Stress Electromigration 
acceleration 

Exacerbated by workload 
variation 

Interconnect structures, 
package interfaces 

Voltage Fluctuations Timing margin violations Worsens with efficiency 
optimizations 

Critical paths, dynamic voltage 
domains 

Aging Effects (NBTI, 
HCI, TDDB) 

Progressive parameter 
shift 

Cumulative degradation 
over time 

Transistor characteristics, 
noise margins 

III. Error Manifestation Across GPU 
Architectural Units 

The heterogeneity of GPU architectures 
generates varied avenues through which silent data 
errors emerge and spread. In memory subcutaneous, 
SRAM-based units such as register files, cache, and 
shared memories are especially susceptible to single

-

phenomena upset. Such devices usually run at low 
voltage levels to save electricity, reduce their noise 
immunity, and increase sensitivity to transient 
disturbances. According to Sullivan et al., detailed 
characterization of GPU vulnerability through extensive 
fault injection campaigns has revealed that memory 
devices exhibit significantly different error propagation 
patterns, with approximately 36% of fault injections in 
register files manifesting as silent data corruptions 
compared to 23% for shared memory and 11% for 
global memory [5]. Their work proved register file faults 
are especially challenging because they presented an 
average 4,372-cycle latency before detection, with errors 
having the potential to propagate through several 
computational phases. Furthermore, 47% of register file 
faults in scientific simulations left the system in 
functional mode but with silent computational errors 
without crashing the system, exacerbating a reliability 
gap. While bigger memory organizations such as HBM 
and GDDR6 generally include error-correcting codes 
(ECC), internal SRAM buffers, and smaller caches in 
most GPU implementations are not protected or apply 
only parity-based detection without correction. 

Execution units have unique vulnerability 
profiles depending on their computation properties. 
Floating-point units have intricate arithmetic circuits with 
long computational pipelines that prolong temporal 
vulnerability windows. Integer units, though overall more 
tolerant, are still vulnerable to errors in timing-critical 
paths. Tensor cores, optimized for matrix operations 
within AI applications, mix high computation density with 
low-precision formats, forming intricate error-
propagation channels that can amplify initially subtle 
perturbations among matrix elements. Research by Mei 

et al. using advanced fault-injection methodologies 
demonstrated that instruction-level susceptibility varies 
dramatically, with architectural vulnerability factors (AVF) 
of 6.1% for basic integer instructions, 29.4% for complex 
floating-point operations, and peaks of 42.7% for atomic 
instructions that interact with memory subsystems [6]. 
Their fine-grain analysis of 16 GPGPU programs 
exposed that single-precision floating-point multiply-
accumulate instructions had an average of 2.13 single-
bit errors propagating into an average of 9.47 output 
elements, resulting in a significant error magnification 
effect. Most problematic was the fact that in 88,467 
instruction-level fault injections, nearly 18.3% of 
computational unit errors led to results that looked valid 
but actually were erroneous, highlighting the difficulty of 
silent data corruptions.

 Data movement infrastructure, such as on-chip 
networks, memory controllers, and PCIe interfaces, 
adds new error vectors. These elements need to 
preserve signal integrity over different distances and 
across multiple clock domains, providing opportunities 
for transmission errors that go undetected. This problem 
is compounded by sophisticated power management 
features that dynamically manage clock frequencies and 
voltage

 
levels, setting up potentially transient conditions 

that enable silent failures during domain crossing or 
state transitions. Control logic that manages thread 
scheduling, workload allocation, and synchronization is 
a very sensitive point of vulnerability.

 
Failures impacting 

these structures have the potential to create 
multiplicative failures by sending computation to the 
wrong execution elements, misallocating memory 
access behaviors, or polluting synchronization 
primitives.
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Table 2: Error Vulnerability across GPU Architectural Components [5, 6] 

Architectural 
Component Vulnerability Profile Error Propagation Characteristics Protection Status 

Register Files 
High (SRAM-based, 

reduced voltage) 
Extended propagation before 

detection Limited/Parity only 

Shared Memory Moderate vulnerability Medium propagation scope Partial ECC in newer 
designs 

Global/HBM 
Memory 

Lower relative vulnerability Limited propagation scope Typically ECC protected 

Floating-Point 
Units 

High (complex arithmetic) Error amplification in dependent ops Minimal protection 

Integer Units Moderate vulnerability Limited error propagation Limited protection 

Tensor Cores High (dense operations) Significant error amplification Implementation-dependent 

Control Logic Critical vulnerability Multiplicative error effects Limited redundancy 
Data Movement 

Infrastructure Moderate with hotspots Cross-domain propagation Protocol-level detection 

 
IV. Workload Characteristics and 

Error Sensitivity 

Computational workloads have different 
degrees of resistance to silent data errors, thus having a 
multifaceted relationship between application properties 
and error sensitivity. Scientific computing applications 
based on iterative solvers can show intrinsic error 
attenuation in some instances, since numerical 
algorithms converge toward reliable solutions even with 
transient perturbations. But these same applications 
usually have pivotal computations where even small 
mistakes can cause disastrous divergence or invalidate 
results altogether. As demonstrated in quantum 
computing research by Zhao et al., detailed error 
analysis of GPU-accelerated scientific codes reveals 
significant variation in error manifestation rates, with 
numerical simulation codes exhibiting Silent Data 
Corruption (SDC) in 37.5% of observed events, while 
signal processing applications showed only 18.2% SDC 
rates under identical testing conditions [7]. Their in-
depth experiment with 2,304 hours of neutron beam 
testing showed matrix multiplication kernels to be far 
more sensitive to single-bit flipping (43.7% of faults 
injected resulting in incorrect outputs) than FFT 
implementations (21.3%). Of particular note was that 
they found around 27.8% of radiation-induced errors in 
iterative solvers spreading through subsequent 
computational steps undetected, despite the presence 
of checking routines to detect numerical irregularities. 
This heterogeneity poses immense difficulties for broad 
error protection measures and emphasizes the 
necessity for application-dependent resilience 
strategies. 

 
Graphics rendering pipelines exhibit aspects of 

both deterministic and probabilistic computation. Some 
rendering algorithms, especially those utilizing 
stochastic sampling methods such as path tracing, 
exhibit inherent tolerance to the rare occurrence of 
errors. On the other hand, geometry processing phases 
demand accurate computation to preserve visual 
correctness, with any errors tending to show up as 
observable artifacts or structural distortions in rasterized 
scenes. Data-dependent sensitivity of error makes 
things even tougher. Some patterns of data or 
sequential operations tend to activate weaknesses in 
certain circuit components that are normally latent. 
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Machine learning applications exhibit a very 
subtle error sensitivity profile. Training stages typically 
exhibit resistance to the occasional numerical 
inaccuracies because optimization algorithms are 
stochastic and training datasets involve inherent noise. 

This native resilience has led to an investigation into 
deliberatively lowered precision computations that 
sacrifice numerical accuracy for speed and energy 
efficiency. Inference workloads, however, tend to need 
more accurate computations, especially in safety-critical 
domains where misleading predictions could have 
deleterious effects. Experiments by Sharma and Sharma 
illustrate through extensive fault injection campaigns 
across various neural network architectures that bit error 
rates of as low as 10^-6 in tensor cores can lead to a 
classification accuracy loss of 12.7% for inference 
workloads, while training operations would have decent 
convergence even for error rates of 10^-4 [8]. Their 
thorough analysis of 12,800 error injection cases across 
five typical DNN models disclosed that transformer 
models exhibited exceptionally strong sensitivity, with a 
mean accuracy reduction of 19.3% at moderate error 
rates versus 8.6% for convolutional networks. Most 
alarming was the discovery of their work that 31.2% of 
silent errors in safety-critical vision models yielded high-
confidence misclassifications of critical objects such as 
pedestrians and traffic signals. This extreme contrast 
highlights the necessity of error containment strategies 
specific to deployment context as opposed to protection 
mechanisms in general.



Table 3: Workload Characteristics and Error Resilience [7, 8] 

Application Domain Error Resilience Critical Vulnerability Points Error Amplification Risk 
Scientific Computing: 

Iterative Solvers 
Moderate natural 

attenuation 
Convergence-critical 

operations 
Low to Moderate 

Scientific Computing: 
Matrix Multiplication 

Low inherent resilience Core arithmetic operations High 

Scientific Computing: FFT Moderate resilience Initial transform stages Moderate 

ML: Training High natural resilience Final convergence phases Low 
ML: Inference 
(Transformers) 

Very low resilience All computational stages Very High 

ML: Inference (CNNs) Low resilience Initial and final layers High 

Graphics: Path Tracing High inherent resilience Sampling procedures Low 

Graphics: Geometry 
Processing 

Low resilience Coordinate transformations High 

Safety-Critical Applications Minimal tolerance All computational stages Critical 
f

V. Detection and Mitigation 
Strategies 

Each special error mechanism and vulnerability 
pattern, along with hardware, involves the detection of 
errors in firmware and software platforms and error 
mitigation techniques. For hardware, error-correcting 
codes (ECC) form the basis of protection for memory 
hierarchies. Higher-end implementations go beyond the 
basic single-error correction, double-error detection 
(SECDED) designs to include more advanced codes 
designed for multi-bit error coverage. These are Bose-
Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon 
flavors, and chipkill-type implementations that guard 
against failure of whole memory devices or data paths. 
According to software-based attestation research by Shi 
et al., a comprehensive evaluation of error protection 
mechanisms in enterprise computing environments 
reveals that approximately 71% of current GPU 
deployments implement some form of ECC protection, 
yet only 25% extend this protection beyond main 
memory to include register files and cache structures, 
which account for 49% of silent data error origins [9]. 
The use of full protection schemes can lower data 
corruption events by as much as 78.5% in production 
environments, although this has attendant costs—an 
average slowdown of 11.3% in performance and a 
14.7% boost in power consumption for typical GPU 
workloads. Their site survey of 1,287 enterprise GPU 
deployments illustrated that companies using complete 
protection methods had 93.4% fewer critical data 
integrity errors than those using default protection 
methods, but with substantial operating and financial 
savings in the long run, notwithstanding initial 
performance sacrifices. 

Redundant execution is another potent 
hardware-based technique. The technique takes the 
form of repeating important calculations multiple times 

and checking for differences to detect errors. Time 
redundancy performs the same function at other times 
to reduce transient error, whereas spatial redundancy 
employs distinct physical facilities for parallel 
processing. Although total triplication with voting (Triple 
Modular Redundancy) offers complete protection, more 
economically selective redundancy techniques focus 
protection on the most susceptible or significant 
elements. Research by Yang et al. demonstrates 
through systematic fault injection experiments that 
detailed error propagation patterns can be mapped and 
selectively protected, achieving up to 91% error 
coverage with merely 32% performance overhead 
compared to unprotected execution [10]. Their 
exhaustive study of 13,500 error injection instances of 
eight GPU-accelerated applications indicated that 
control flow instruction-originating errors propagated to 
an average of 58.2 following instructions, whereas 
arithmetic instruction-originating errors impacted merely 
6.7 dependent operations on average. This striking 
variation in propagation properties guided their selective 
duplication strategy, which removed 96.8% Silent Data 
Corruptions (SDCs) by safeguarding only 27% of the 
most susceptible instruction sequences, providing a 
much more effective solution than wholesale 
redundancy strategies that generally double execution 
time and energy usage. 

Circuit-level hardening strategies address 
inherent vulnerability drivers. These encompass raising 
the critical charge thresholds for memory cells, using 
dual-interlocked storage cells (DICE) for critical state 
elements, and temporal hardening using delayed 
sampling. Guard-banding techniques also integrate 
design margins in timing and voltage domains to 
account for worst-case manufacturing variation and 
aging. Runtime monitoring mechanisms ensure adaptive 
protection through ongoing evaluation of system health 
and environmental factors. Canary circuits located at 
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Figure 1: GPU Silent Data Error Framework

Table 4: Error Detection and Mitigation Strategies [9, 10]

Protection Approach Implementation 
Level Coverage Effectiveness Performance 

Impact
Implementation 

Complexity
SECDED ECC Hardware (Memory) Moderate Low Low
Advanced ECC (BCH, RS) Hardware (Memory) High Moderate Moderate

Full Redundant Execution Hardware/Software Very High Very High Low
Selective Redundancy Hardware/Software High Moderate High

Circuit-Level Hardening Hardware Design Moderate Low High

Temporal Hardening Hardware Design Moderate Low Moderate
Voltage/Timing Guard
banding

Hardware/Firmware Moderate Moderate Low

Runtime Monitoring Firmware Moderate Low Moderate
Algorithm-Based Fault 
Tolerance

Software High (application-specific) Low to 
Moderate

High

Checkpoint-Restart System Software Moderate Periodic 
Overhead

Moderate

Approximate Computing Algorithm/Software Application-dependent Low or 
Negative

High

VI. Future Research Directions

The ubiquitous deployment of GPUs in 
computational applications has elevated silent data 
errors from an esoteric reliability problem to a pressing 

challenge for application developers and system 
designers. This work has analyzed the multi
dimensionality of SDEs in contemporary GPU micro
architectures, revealing alarming statistics: register file 

timing margins of critical importance are early warning 
systems for impending failures. Built-in self-test (BIST) 
procedures carried out during idle cycles or according 

to scheduled timeouts ensure computational 
correctness among functional units.



architectural vulnerability factors increase by 25.1% with 
each process node shrink, 18.3% of computational unit 
errors lead to valid-appearing but erroneous results, and 
31.2% of silent errors in safety-critical vision models 
yield high-confidence misclassifications of critical 
objects like pedestrians and traffic signals. 

Today's mitigation techniques show 
encouraging potential but face increasing challenges as 
transistor densities scale and operating margins reduce 
further. While complete protection schemes can reduce 
data corruption events by 78.5%, they introduce 
performance penalties averaging 11.3% and increase 
power consumption by 14.7%. More economically, 
selective redundancy techniques have achieved 91% 
error coverage with only 32% performance overhead by 
protecting the most vulnerable 27% of instruction 
sequences. 

Some promising areas of research stand out 
from this evaluation. Cross-layer resilient designs with 
coordinated protection across hardware, firmware, 
software, and algorithm domains have promise for 
greater efficiency than stand-alone solutions. Machine 
learning-based error predictability models can 
potentially facilitate early intervention before the 
occurrence of errors, potentially utilizing the same GPU 
computational power to protect itself. New architectural 
ideas like approximate computing with bounded error 
warranty may redefine the reliability problem by 
consciously embracing and handling uncertainty instead 
of seeking out absolute correctness. 

Besides, consistency in benchmarking methods 
for error resilience would allow actual comparison 
across competing methods and speed up the 
advancement of the field. These benchmarks must 
include a variety of workloads and error cases to allow 
wide-ranging evaluation measures beyond naive fault 
injection metrics. 

The observations made in this paper highlight 
the need for reliability to be addressed as a core design 
principle and not an afterthought in GPU design. With 
GPUs powering progressively more mission-critical 
applications, from autonomous vehicle perception to 
medical imaging analysis and financial risk analysis, the 
cost of simple calculations for potential effects on 
human life and economic stability is beyond pure. To 
overcome this challenge, there will be a need to include 
collaborative work between semiconductor physics, 
circuit design, computer architecture, system software, 
and application development, which is to set up a 
completely strong GPU computing platform that can 
handle the rigorous requirements of future applications. 

VII. Conclusion 

Silent data errors in GPUs represent a critical 
reliability challenge at the intersection of semiconductor 
physics, architectural design, and application 

requirements. Quantitative analysis reveals concerning 
vulnerability metrics: error rates of 0.51 FIT/Mbit in 
modern nodes, register file AVF increasing 25.1% per 
process shrink, and 31.2% of errors causing dangerous 
misclassifications in safety-critical applications. While 
current mitigation strategies show promise—with ECC 
reducing corruption by 78.5% and selective redundancy 
achieving 91% coverage with only 32% overhead—the 
relentless scaling of transistor densities and narrowing 
operating margins demand more sophisticated 
approaches. Cross-layer resilience strategies, which 
coordinate protection across hardware and software 
layers, machine learning-based error prediction, and 
vulnerability-aware scheduling, represent promising 
directions that have demonstrated a reduction of up to 
93.4% in critical errors. As GPUs increasingly power 
mission-critical applications from autonomous vehicles 
to medical diagnostics, reliability must transition from an 
afterthought to a fundamental design principle, requiring 
collaborative efforts across semiconductor physics, 
circuit design, computer architecture, and application 
development to create truly resilient GPU computing 
platforms that balance performance with dependability 
guarantees. 
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