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Absiract- Silent data errors in graphics processing units
(SDEs) represent a critical challenge for modern
computational systems that rely on these accelerators in high-
performance computing, artificial intelligence, and data center
operations. These errors propagate through calculations
without triggering detection mechanisms, potentially
compromising results in critical applications from autonomous
vehicles to medical diagnosis. Quantitative analysis reveals
disturbing error rates: 8.15x10” -3 FIT per device at sea level
(one error per 14,000 device-hours), with error rates increasing
17-32% when running at full computational capacity in data
centers. The physical causes of SDEs include cosmic radiation
(causing 61.7% of faults to propagate undetected in streaming
multiprocessors), manufacturing variations (contributing to
4.3% of silent computational failures), thermal stress cycles,
voltage fluctuations, and aging effects that impact
semiconductor reliability. Architectural vulnerability varies
significantly: register files exhibit 36% silent data corruption
rates versus 23% for shared memory and 11% for global
memory, while instruction vulnerability ranges from 6.1% for
integer operations to 42.7% for atomic operations. Workload
characteristics dramatically affect error sensitivity, with
machine learning inference showing up to 19.3% accuracy
reduction from moderate error rates in transformer models
versus 8.6% in convolutional networks. Mitigation strategies
span hardware (ECC reducing corruption by 78.5%), firmware,
and software domains, with recent selective redundancy
techniques achieving 91% error coverage with only 32%

Author: Independent Researcher, USA
e-mail: sameekshasamgupta@gmail.com

performance overhead. Cross-layer resilience approaches
demonstrated in recent research can reduce critical data
integrity errors by up to 93.4% compared to default protection
methods. Understanding these complex interactions and
implementing targeted protection systems is essential for
developing resilient GPU computing platforms that maintain
both performance at scale and reliability.

Keywords: silent data errors, GPU reliability, cosmic
radiation sensitivity, architectural vulnerability, workload
resilience, error mitigation strategies.

[. INTRODUCTION
( a raphics Processing Units (GPUs) have increased

in various fields ranging from niche rendering

hardware to core computational accelerators,
such as high-performance computing (HPC), Atrtificial
Intelligence, and Data-Scalable Operations. This role
has made GPUs key infrastructure elements for
applications from weather forecasting and molecular
simulations to deep learning model training. As per
Maleki et al., a comprehensive investigation of
performance and reliability in modern GPUs reveals that
for current technology nodes at sea level, silent data
corruption (SDC) rates can reach alarming levels of 0.51
FIT/Mbit (Failures In Time per million bits) with overall
observable error rates of 0.89 FIT/Mbit [1]. This equates
to a disturbing rate of undetectable errors in high-scale
deployments, where the total memory footprint of as
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many as petabytes is possible. But the unrelenting
quest for performance gains through higher transistor
densities and lower operating voltages has brought forth
substantial reliability issues, most notably in the guise of
silent data errors (SDEs).

Silent data errors pose a specifically pernicious
challenge to computational integrity, being ones that
afflict systems in silence without activating immediate
detection mechanisms within system software or
hardware. In contrast to traditional faults that give rise to
well-defined, readily recognizable system crashes or
diagnostic messages, SDEs travel through calculations
undetected, potentially contaminating result accuracy,
destabilizing system reliability, and eroding availability in
deployed environments. Data center deployments using
GPU acceleration for data analysis have shown that
error rates grow 17-32% when running at full
computational capacity, with an estimated 22% of such
errors occurring in the form of silent corruptions that go
undetected by traditional monitoring infrastructure,
based on SQream's large-scale field testing on 1,500
production nodes [2]. The significance goes beyond
simple inconvenience, with potential impact on pivotal
decision-making processes in applications like
autonomous systems, medical diagnostics, and
financial modeling.

This work discusses the multi-faceted character
of SDEs in contemporary GPU architectures, pinpointing
primary vulnerability factors along architectural sub-
components and operational regimes. The discussion
covers both physical error-inducing mechanisms and
architectural aspects that condition error propagation
paths. In addition, this paper analyzes existing mitigation
techniques and recommends approaches to improve
GPU reliability against SDEs. The comprehension of
such intricate interactions is crucial to developing future-
generation GPU systems with the ability to provide both
reliability and performance at scale.

[I. RooT CAUSES OF SILENT DATA ERRORS
IN MODERN GPU SILICON

Silent data errors in GPUs result from several
connected physical effects influencing semiconductor
dependability. Cosmic radiation is an important external
factor with high-energy neutrons that traverse shielding
materials and create electron-hole  pairs in
semiconductor substrates. Charged particles perturb
stored values in memory devices and logic circuits,
leading to bit flips that can go undetected. According to
Ferreira et al., comprehensive neutron beam testing
across multiple generations of GPU architectures has
demonstrated that the architectural vulnerability factor
(AVF) of register files increases by approximately 25.1%
with each process node shrink, with contemporary
GPUs exhibiting approximately 8.15x107-3 FIT per
device at sea level altitude—equating to one silent data
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error in approximately 14,000 device-hours under typical
workloads [3]. Their neutron beam testing of 15,840
device-hours experiments proved that streaming
multiprocessors  (SMs)  exhibited especially  high
susceptibility, where 61.7% of faults injected indeed
propagated undetected through computations, as
opposed to only 17.2% in traditional CPU pipelines.
Susceptibility to such radiation-induced transient faults
rises with decreasing feature sizes and degrading
critical charge thresholds in future manufacturing nodes.
Manufacturing process variations represent another
intrinsic source of weakness. Even for advanced
fabrication processes, statistical fluctuations in dopant
levels, gate oxide thickness, and lithographic alignment
result in marginally functional circuit regions. These
fluctuations appear as timing violations under some
operating conditions and may result in wrong
computation outcomes without activating error detection
circuits. Research presented at the Workshop on GPU
Reliability has demonstrated that process fluctuations in
advanced GPU designs can cause threshold voltage
(V) variations of up to 30mV for individual streaming
multiprocessors, resulting in timing differences of 7.5-
11.2% on critical paths [4]. Their diligent examination of
27 production GPUs showed that about 4.3% of all silent
computational failures were directly attributable to
manufacturing differences, with an average seen rate of
1.7x107-10 errors per operation when running at
nominal voltage levels—a number that increases by
orders of magnitude to 4.9x10 " -8 errors per operation
when running at lowered voltage margins to reduce
power consumption. The issue is compounded in GPUs,
which contain billions of transistors over huge die areas,
raising the statistical probability of having susceptible
elements.

Thermal cycling also degrades silicon reliability
by causing differential expansion coefficients among
materials in the GPU package. Electro migration
processes are sped up, and the progression of crack
formation in interconnect structures is accelerated by
repeated thermal cycling. These impacts are especially
significant in GPUs because of their high power
densities and dynamic workload profiles, which cause
extreme temperature gradients within the die. Voltage
variations, both long-term droop and short-term noise,
are another important mechanism for generating SDEs.
Contemporary GPUs run at very tight voltage margins in
order to achieve better energy efficiency, narrowing the
gap between nominal operation voltage and minimum
voltage for correct function. This reduced margin
heightens vulnerability to temporary voltage fluctuations
that could lead to timing violations in critical paths
without invoking protective action.
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Table 1: Physical Phenomena Contributing to Silent Data Errors in GPUs [3, 4]

Physical Mechanism | Error Manifestation

Vulnerability Trends

Key Affected Components

Electron-hole pair

Cosmic Radiation .
generation

Increases with node

shrinking Register files, SRAM cells

Manufacturing

Variations Timing violations

Higher impact in large

Critical timing paths, marginal

dies circuits

Electromigration

Thermal Stress .
acceleration

Exacerbated by workload

Interconnect structures,

variation package interfaces

Voltage Fluctuations | Timing margin violations

Worsens with efficiency

Critical paths, dynamic voltage

optimizations domains

Aging Effects (NBTI,
HCI, TDDB)

Progressive parameter
shift

Cumulative degradation

Transistor characteristics,

over time noise margins

[1I. ERROR MANIFESTATION ACROSS GPU
ARCHITECTURAL UNITS

The heterogeneity of GPU architectures
generates varied avenues through which silent data
errors emerge and spread. In memory subcutaneous,
SRAM-based units such as register files, cache, and
shared memories are especially susceptible to single
phenomena upset. Such devices usually run at low
voltage levels to save electricity, reduce their noise
immunity, and increase sensitivity to transient
disturbances. According to Sullivan et al., detailed
characterization of GPU vulnerability through extensive
fault injection campaigns has revealed that memory
devices exhibit significantly different error propagation
patterns, with approximately 36% of fault injections in
register files manifesting as silent data corruptions
compared to 23% for shared memory and 11% for
global memory [5]. Their work proved register file faults
are especially challenging because they presented an
average 4,372-cycle latency before detection, with errors
having the potential to propagate through several
computational phases. Furthermore, 47% of register file
faults in scientific simulations left the system in
functional mode but with silent computational errors
without crashing the system, exacerbating a reliability
gap. While bigger memory organizations such as HBM
and GDDR6 generally include error-correcting codes
(ECC), internal SRAM buffers, and smaller caches in
most GPU implementations are not protected or apply
only parity-based detection without correction.

Execution units have unique vulnerability
profiles depending on their computation properties.
Floating-point units have intricate arithmetic circuits with
long computational pipelines that prolong temporal
vulnerability windows. Integer units, though overall more
tolerant, are still vulnerable to errors in timing-critical
paths. Tensor cores, optimized for matrix operations
within Al applications, mix high computation density with
low-precision  formats, forming intricate  error-
propagation channels that can amplify initially subtle
perturbations among matrix elements. Research by Mei

et al. using advanced fault-injection methodologies
demonstrated that instruction-level susceptibility varies
dramatically, with architectural vulnerability factors (AVF)
of 6.1% for basic integer instructions, 29.4% for complex
floating-point operations, and peaks of 42.7% for atomic
instructions that interact with memory subsystems [6].
Their fine-grain analysis of 16 GPGPU programs
exposed that single-precision floating-point multiply-
accumulate instructions had an average of 2.13 single-
bit errors propagating into an average of 9.47 output
elements, resulting in a significant error magnification
effect. Most problematic was the fact that in 88,467
instruction-level  fault injections, nearly 18.3% of
computational unit errors led to results that looked valid
but actually were erroneous, highlighting the difficulty of
silent data corruptions.

Data movement infrastructure, such as on-chip
networks, memory controllers, and PCle interfaces,
adds new error vectors. These elements need to
preserve signal integrity over different distances and
across multiple clock domains, providing opportunities
for transmission errors that go undetected. This problem
is compounded by sophisticated power management
features that dynamically manage clock frequencies and
voltage levels, setting up potentially transient conditions
that enable silent failures during domain crossing or
state transitions. Control logic that manages thread
scheduling, workload allocation, and synchronization is
a very sensitive point of vulnerability. Failures impacting
these structures have the potential to create
multiplicative failures by sending computation to the
wrong execution elements, misallocating memory
access behaviors, or polluting synchronization
primitives.
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Table 2: Error Vulnerability across GPU Architectural Components [5, 6]

Architectural
Component

Vulnerability Profile

Error Propagation Characteristics

Protection Status

Register Files

High (SRAM-based,
reduced voltage)

Extended propagation before
detection

Limited/Parity only

Shared Memory

Moderate vulnerability

Medium propagation scope

Partial ECC in newer

designs
Gl&%?nl/;?M Lower relative vulnerability Limited propagation scope Typically ECC protected
Floab%%;PO'nt High (complex arithmetic) | Error amplification in dependent ops Minimal protection

Integer Units

Moderate vulnerability

Limited error propagation

Limited protection

Tensor Cores

High (dense operations)

Significant error ampilification

Implementation-dependent

Control Logic

Critical vulnerability

Multiplicative error effects

Limited redundancy

Data Movement

Moderate with hotspots

Cross-domain propagation

Protocol-level detection

Infrastructure

IV. WORKLOAD CHARACTERISTICS AND
ERROR SENSITIVITY

Computational ~ workloads have  different
degrees of resistance to silent data errors, thus having a
multifaceted relationship between application properties
and error sensitivity. Scientific computing applications
based on iterative solvers can show intrinsic error
attenuation in  some instances, since numerical
algorithms converge toward reliable solutions even with
transient perturbations. But these same applications
usually have pivotal computations where even small
mistakes can cause disastrous divergence or invalidate
results altogether. As demonstrated in quantum
computing research by Zhao et al.,, detailed error
analysis of GPU-accelerated scientific codes reveals
significant variation in error manifestation rates, with
numerical simulation codes exhibiting Silent Data
Corruption (SDC) in 37.5% of observed events, while
signal processing applications showed only 18.2% SDC
rates under identical testing conditions [7]. Their in-
depth experiment with 2,304 hours of neutron beam
testing showed matrix multiplication kernels to be far
more sensitive to single-bit flipping (43.7% of faults
injected resulting in incorrect outputs) than FFT
implementations (21.3%). Of particular note was that
they found around 27.8% of radiation-induced errors in
iterative  solvers  spreading through  subsequent
computational steps undetected, despite the presence
of checking routines to detect numerical irregularities.
This heterogeneity poses immense difficulties for broad

error protection measures and emphasizes the
necessity  for  application-dependent resilience
strategies.

Machine learning applications exhibit a very
subtle error sensitivity profile. Training stages typically
exhibit resistance to the occasional numerical
inaccuracies because optimization algorithms are
stochastic and training datasets involve inherent noise.

© 2025 Global Journals

This native resilience has led to an investigation into
deliberatively lowered precision computations that
sacrifice numerical accuracy for speed and energy
efficiency. Inference workloads, however, tend to need
more accurate computations, especially in safety-critical
domains where misleading predictions could have
deleterious effects. Experiments by Sharma and Sharma
illustrate through extensive fault injection campaigns
across various neural network architectures that bit error
rates of as low as 107 -6 in tensor cores can lead to a
classification accuracy loss of 12.7% for inference
workloads, while training operations would have decent
convergence even for error rates of 107 -4 [8]. Their
thorough analysis of 12,800 error injection cases across
five typical DNN models disclosed that transformer
models exhibited exceptionally strong sensitivity, with a
mean accuracy reduction of 19.3% at moderate error
rates versus 8.6% for convolutional networks. Most
alarming was the discovery of their work that 31.2% of
silent errors in safety-critical vision models yielded high-
confidence misclassifications of critical objects such as
pedestrians and traffic signals. This extreme contrast
highlights the necessity of error containment strategies
specific to deployment context as opposed to protection
mechanisms in general.

Graphics rendering pipelines exhibit aspects of
both deterministic and probabilistic computation. Some
rendering  algorithms, especially those utilizing
stochastic sampling methods such as path tracing,
exhibit inherent tolerance to the rare occurrence of
errors. On the other hand, geometry processing phases
demand accurate computation to preserve visual
correctness, with any errors tending to show up as
observable artifacts or structural distortions in rasterized
scenes. Data-dependent sensitivity of error makes
things even tougher. Some patterns of data or
sequential operations tend to activate weaknesses in
certain circuit components that are normally latent.
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Table 3: Workload Characteristics and Error Resilience [7, 8]

Application Domain Error Resilience Critical Vulnerability Points | Error Ampilification Risk
Smentn‘p Computing: Moderate Qatural Convergenge—crltlcal Low to Moderate
lterative Solvers attenuation operations
Scientific Computing: , . . . . .
. . .p ) d Low inherent resilience Core arithmetic operations High
Matrix Multiplication
Scientific Computing: FFT Moderate resilience Initial transform stages Moderate
ML: Training High natural resilience Final convergence phases Low
ML: Inference . . .
Very | | All | Very High
(Transformers) ery low resilience computational stages ery Hig
ML: Inference (CNNs) Low resilience Initial and final layers High
Graphics: Path Tracing High inherent resilience Sampling procedures Low
Graphics: Geomet . . . .
P . i Low resilience Coordinate transformations High
Processing
Safety-Critical Applications Minimal tolerance All computational stages Critical

V. DETECTION AND MITIGATION
STRATEGIES

Each special error mechanism and vulnerability
pattern, along with hardware, involves the detection of
errors in firmware and software platforms and error
mitigation techniques. For hardware, error-correcting
codes (ECC) form the basis of protection for memory
hierarchies. Higher-end implementations go beyond the
basic single-error correction, double-error detection
(SECDED) designs to include more advanced codes
designed for multi-bit error coverage. These are Bose-
Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon
flavors, and chipkill-type implementations that guard
against failure of whole memory devices or data paths.
According to software-based attestation research by Shi
et al., a comprehensive evaluation of error protection
mechanisms in enterprise computing environments
reveals that approximately 71% of current GPU
deployments implement some form of ECC protection,
yet only 25% extend this protection beyond main
memory to include register files and cache structures,
which account for 49% of silent data error origins [9].
The use of full protection schemes can lower data
corruption events by as much as 78.5% in production
environments, although this has attendant costs—an
average slowdown of 11.3% in performance and a
14.7% boost in power consumption for typical GPU
workloads. Their site survey of 1,287 enterprise GPU
deployments illustrated that companies using complete
protection methods had 93.4% fewer critical data
integrity errors than those using default protection
methods, but with substantial operating and financial

savings in the long run, notwithstanding initial
performance sacrifices.
Redundant execution is another potent

hardware-based technique. The technique takes the
form of repeating important calculations multiple times

and checking for differences to detect errors. Time
redundancy performs the same function at other times
to reduce transient error, whereas spatial redundancy
employs distinct physical facilities for parallel
processing. Although total triplication with voting (Triple
Modular Redundancy) offers complete protection, more
economically selective redundancy techniques focus
protection on the most susceptible or significant
elements. Research by Yang et al. demonstrates
through systematic fault injection experiments that
detailed error propagation patterns can be mapped and
selectively protected, achieving up to 91% error
coverage with merely 32% performance overhead
compared to unprotected execution [10]. Their
exhaustive study of 13,500 error injection instances of
eight GPU-accelerated applications indicated that
control flow instruction-originating errors propagated to
an average of 58.2 following instructions, whereas
arithmetic instruction-originating errors impacted merely
6.7 dependent operations on average. This striking
variation in propagation properties guided their selective
duplication strategy, which removed 96.8% Silent Data
Corruptions (SDCs) by safeguarding only 27% of the
most susceptible instruction sequences, providing a
much more effective solution than wholesale
redundancy strategies that generally double execution
time and energy usage.

Circuit-level  hardening strategies address
inherent vulnerability drivers. These encompass raising
the critical charge thresholds for memory cells, using
dual-interlocked storage cells (DICE) for critical state
elements, and temporal hardening using delayed
sampling. Guard-banding techniques also integrate
design margins in timing and voltage domains to
account for worst-case manufacturing variation and
aging. Runtime monitoring mechanisms ensure adaptive
protection through ongoing evaluation of system health
and environmental factors. Canary circuits located at
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timing margins of critical importance are early waming to  scheduled timeouts ensure  computational
systems for impending failures. Built-in self-test (BIST)  correctness among functional units.

procedures carried out during idle cycles or according

ROOT CAUSES

Cosmic Radiation Process Variation | Thermal 5tress | Voltage Fluctuation Aging Effects
s =
123.1% AVF per node shrink | 61.7% 5M fault propagation | +17-32% error rate at full capacity
L ¥
ARCHITECTURAL VULNERABILITY {18.3% silent cormuptions)
Memory Execution Units. Data Movement Control Logic
Regisler Files: 36% 50C Inieger. £.1% AVF Grchip N Thread Scheduling
Shared Memory: 233 SDC Fha'l.r!g-PnnL 29.4% ANF Marcry Conkrellars Sywchwonizalion
Global Memory: 11% SDC Aramic Ops: 42.7% AVF

MITIGATION STRATEGIES (Up to 93.4% error reduction)

Hardware Firmvware Software Emiarging
ECC {,78.5% cormupsan] Rundime Manitaring Alparitim-Based ML -hemsed Predicion
e Guard-banding Faull Tolerance Cross-layer Resiience
91% coverage, 32% overhead) Canary Ciruits Checkpaint-Restart Vilrerability-aware
e Buill-in Self-test Apprasimate Comauting Srhadufng
Temporal Hardening
Figure 1: GPU Silent Data Error Framework
Table 4: Error Detection and Mitigation Strategies [9, 10]
Protection Approach Implementation Coverage Effectiveness Performance Implement§t|on
Level Impact Complexity
SECDED ECC Hardware (Memory) Moderate Low Low
Advanced ECC (BCH, RS) Hardware (Memory) High Moderate Moderate
Full Redundant Execution Hardware/Software Very High Very High Low
Selective Redundancy Hardware/Software High Moderate High
Circuit-Level Hardening Hardware Design Moderate Low High
Temporal Hardening Hardware Design Moderate Low Moderate
Voltage/'l’ iming Guard Hardware/Firmware Moderate Moderate Low
banding
Runtime Monitoring Firmware Moderate Low Moderate
Algorithm-Based Fault . — o Low to .
Tolerance Software High (application-specific) Moderate High
Checkpoint-Restart System Software Moderate Periodic Moderate
Overhead
Approximate Computing Algorithm/Software Application-dependent NLeOgV;tcii/re High

challenge for application developers and system
designers. This work has analyzed the muli
dimensionality of SDEs in contemporary GPU micro
architectures, revealing alarming statistics: register file

VI. FUTURE RESEARCH DIRECTIONS

The ubiquitous deployment of GPUs in
computational applications has elevated silent data
errors from an esoteric reliability problem to a pressing
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architectural vulnerability factors increase by 25.1% with
each process node shrink, 18.3% of computational unit
errors lead to valid-appearing but erroneous results, and
31.2% of silent errors in safety-critical vision models

yield high-confidence misclassifications of critical
objects like pedestrians and traffic signals.
Today's mitigation techniques show

encouraging potential but face increasing challenges as
transistor densities scale and operating margins reduce
further. While complete protection schemes can reduce
data corruption events by 78.5%, they introduce
performance penalties averaging 11.3% and increase
power consumption by 14.7%. More economically,
selective redundancy techniques have achieved 91%
error coverage with only 32% performance overhead by
protecting the most vulnerable 27% of instruction
sequences.

Some promising areas of research stand out
from this evaluation. Cross-layer resilient designs with
coordinated protection across hardware, firmware,
software, and algorithm domains have promise for
greater efficiency than stand-alone solutions. Machine
learning-based  error  predictability models can
potentially facilitate early intervention before the
occurrence of errors, potentially utilizing the same GPU
computational power to protect itself. New architectural
ideas like approximate computing with bounded error
warranty may redefine the reliability problem by
consciously embracing and handling uncertainty instead
of seeking out absolute correctness.

Besides, consistency in benchmarking methods
for error resilience would allow actual comparison
across competing methods and speed up the
advancement of the field. These benchmarks must
include a variety of workloads and error cases to allow
wide-ranging evaluation measures beyond naive fault
injection metrics.

The observations made in this paper highlight
the need for reliability to be addressed as a core design
principle and not an afterthought in GPU design. With
GPUs powering progressively more mission-critical
applications, from autonomous vehicle perception to
medical imaging analysis and financial risk analysis, the
cost of simple calculations for potential effects on
human life and economic stability is beyond pure. To
overcome this challenge, there will be a need to include
collaborative work between semiconductor physics,
circuit design, computer architecture, system software,
and application development, which is to set up a
completely strong GPU computing platform that can
handle the rigorous requirements of future applications.

VII. CONCLUSION

Silent data errors in GPUs represent a critical
reliability challenge at the intersection of semiconductor
physics, architectural design, and application

requirements. Quantitative analysis reveals conceming
vulnerability metrics: error rates of 0.51 FIT/Mbit in
modern nodes, register file AVF increasing 25.1% per
process shrink, and 31.2% of errors causing dangerous
misclassifications in safety-critical applications. While
current mitigation strategies show promise—with ECC
reducing corruption by 78.5% and selective redundancy
achieving 91% coverage with only 32% overhead—the
relentless scaling of transistor densities and narrowing
operating margins demand more sophisticated
approaches. Cross-layer resilience strategies, which
coordinate protection across hardware and software
layers, machine learning-based error prediction, and
vulnerability-aware  scheduling, represent promising
directions that have demonstrated a reduction of up to

98.4% in critical errors. As GPUs increasingly power

mission-critical applications from autonomous vehicles

to medical diagnostics, reliability must transition from an
afterthought to a fundamental design principle, requiring
collaborative efforts across semiconductor physics,
circuit design, computer architecture, and application
development to create truly resilient GPU computing
platforms that balance performance with dependability
guarantees.
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