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We present a path-integral methods field solution that merges machine learning with 
microscopic physics models for mesoscopic phenomena. This interpretable multiscale algorithm 
treats physical and machine learning field solutions as equivalent, enabling seamless integration 
of microscopic physics intomachine learning algorithms for mesoscopic pattern learning and 
generation. Our approach incorporates microscopic physics mechanisms as hidden fields and 
represents their interactions with mesoscopic fields through auxiliary fields. Rather than imposing 
statistical assumptions on hidden nodes and learning weight statistics from data, our method 
derives a hidden fields formalism based on physics interaction mechanisms and determines 
connecting weights through action functional minimization and neural operators machine 
learning.Combining the strengths of both physicsmodeling and machine learning techniques,our 
method achieves strong performance in learning and generating mesoscopic patterns from 
limited data.
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Abstract-

 

We present a path-integral methods field solution 
that merges machine learning with microscopic physics 
models for mesoscopic phenomena. This interpretable 
multiscale algorithm treats physical and machine learning field 
solutions as equivalent, enabling seamless integration of 
microscopic physics intomachine learning algorithms for 
mesoscopic pattern learning and generation. Our approach 
incorporates microscopic physics mechanisms as hidden 
fields and represents their interactions with mesoscopic fields 
through auxiliary fields. Rather than imposing statistical 
assumptions on hidden nodes and learning weight statistics 
from data, our method derives a hidden fields formalism 
based on physics interaction mechanisms and determines 
connecting weights through action functional minimization and 
neural operators machine learning.Combining the strengths of 
both physicsmodeling and machine learning techniques,our 
method achieves strong performance in learning and 
generating mesoscopic patterns from limited data. It can 
capture physics interactions occurring at different 
scales,allowing forextrapolation when dealing with patterns 
with different interacting parameters and pattern evolution 
dynamics. We demonstrate our solution through a concrete 
case of two interacting species with microscopic chain 
structures, widely used for polymer material and biomolecular 
simulation. Our mesoscopicfield approach unifying machine 
learning and physics modelscan be readily usedin various 
areas of material science, biology, and social dynamics.

 

I.

 

Introduction

 

esoscopic phenomena arise at intermediate 
scales across disciplines like physics, 
chemistry, biology, and materials science 

[1][2][3][4][5][6][7][8][9], where structured patterns 
emerge from the interactions of many microscopic 
parts. While these interactions are fundamentally rooted 
in the laws of nature, the concept of mesoscopic 
organization extends far beyond the boundaries of the 
natural sciences. In fact, the same principles can be 
applied to understand and model complex systems 
within society-such as

 

political opinions, financial 
markets, and collective social behavior [10][11][12].

 

This universal applicability arises because 
mesoscopic frameworks focus on how localized 
interactions among individual components can give rise 
to observable, large-scale patterns, regardless of 
whether those components are atoms, organisms, or 
people. Thus, emergent phenomena like traffic 

congestion, shifts in political opinion, and market 
crashes are governed by collective dynamics analogous 
to those found in physical and biological systems. The 
mesoscopic approach provides a powerful lens to 
reveal hidden connections and unify our understanding 
of complex systems across both the natural and societal 
realms. 

A mesoscopic model should learn mesoscopic 
patterns directly from mesoscopic data, be capable of 
prediction, remain interpretable, and align with 
microscopic physical interactions. This is challenging 
due to the range of scales involved, nonlinear 
interactions, and direct observational data existing only 
at a mesoscopic scale. Machine learning algorithms 
with mesoscopic data usually do not explicitly consider 
microscopic physics processes, resulting in unreliable 
pattern generation with limited data and unpredictable 
outcomes as interacting parameters change, and 
dynamics evolve.  

This paper introduces a mesoscopic field 
solution that combines microscopic physical models 
with machine learning techniques [13]. Recent years 
have seen significant research achievements at the 
intersection of machine learning and physics. Machine 
learning and AI can contribute to advancements in 
physics (refer to review article [14] and cited 
references), just as applying physics principles can 
generate novel machine learning algorithms and AI 
paradigms (refer to review article [15] and cited 
references). For practical applications, combining 
physics models and machine learning approaches is 
effective in addressing challenges related to physics 
model uncertainties, data limitation and computational 
scalability (ref to example references [16][17][18][19]). 
Our contribution [13] is to treat data-driven machine 
learning solutions and principle-based physics model 
solutions as fundamentally equivalent through a field 
theory approach.  

Unlike other methods, we do not utilize different 
machine learning structures to represent physics or 
embed physics into machine learning models such as 
neural networks. Instead, machine learning architectures 
and physics models are represented by the same field 
theoretical entity. For the mesoscopic system field 
solution, as illustrated in this manuscript, microscopic 
physics and interactions with mesoscopic fields are the 
same as hidden nodes and connecting weights 
between layers in machine learning architecture.  This 
enables a unified framework that explicitly includes 
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microscale physics interactions for mesoscopic spatial 
(and time) varying data, which would otherwise require 
additional network structure or embedding 
schema. Seamlessly integrating microscopic physics 
models into mesoscopic machine learning algorithms 
achieves strong performance in learning and generating 
mesoscopic patterns from limited data. Instead of 
imposing statistical assumptions on hidden nodes and 
learning weight statistics from data-driven approaches, 
our method derives the hidden fields formalism based 
on physics interaction mechanisms and determines the 
connecting weights by combining physics principle with 
machine learning techniques. It also provides predictive 
capability when dealing with changing, interacting 
parameters and pattern evolution dynamics.  

We study generic mesoscopic patterns formed 
by interacting species, each with distinct microstructures 
and internal interactions. The species' components, 
called particles, occupy specific spatial positions. Let 
ri,μ denote the spatial location of the th particle in 
species i. The Hamilton of the interacting system can be 
written as:  

  

where 𝑈𝑈𝑖𝑖(𝑟𝑟𝑖𝑖 .𝜇𝜇 , 𝑟𝑟𝑖𝑖 .𝜎𝜎  ) is the internal interaction energy of 
particles  and  of the same  species 𝑖𝑖, 𝑉𝑉𝑖𝑖 ,𝑗𝑗 (𝑟𝑟𝑖𝑖 .𝜇𝜇 , 𝑟𝑟𝑗𝑗 .𝜎𝜎 ) is the 
interaction energy between particle 𝜇𝜇 of species 𝑖𝑖 and 
particle 𝜎𝜎 of species j.  

Mesoscopic spatial patterns are observed as 
the collective behavior of interacting particles. For 
example, the mesoscopic pattern density function can 
be written as: 

 

where r is the spatial location of the mesoscopic pattern 
and 𝛿𝛿 is the Dirac delta function. The density function, 
aggregated from numerous particles, is a mesoscopic 
field function. For mesoscopic machine learning and 
physics models, all observations are described by the 
mesoscopic field function. Information about the 
mesoscopic field function φ(r) can be obtained from: 

 

where F[φ] is a functional of the mesoscopic field φ(r), P 
is the probability density functional for the mesoscopic 
field φ(r), and D is the probability measure. In principle, 
F[φ] can be any functional of the field 𝜑𝜑(r) (i.e. φ(r) for 
mean and φ(r)2 for variance, etc.) in order to obtain all 
the statistical information of the system.  

For a physics model, the probability density 
functional P[φ] of the field is based on physical 
thermodynamic principles and mesoscopic system 
dynamics: 

    

where A[φ] is the action functional of the mesoscopic 
system, β=1/kBT is the temperature effect and ZA=De-
βA[φ] is the normalization factor, also known as the 
system’s partition function.  For physics models, the 
action functional A[φ] is derived from the microscopic 
interaction Hamiltonian (1). 

For a machine learning, data-driven approach, 
let there be a set ofobserved mesoscopic data points 𝜑𝜑𝑖𝑖  
at spatial location 𝑟𝑟𝑖𝑖 , 𝑖𝑖 = 1. . ,𝑁𝑁. We want to find a 
machine learning field solution 𝜑𝜑(𝑟𝑟)that best fits the 
observed data points. The field solution is drawn from a 
probability density that matches the machine learning 
fitting criterion. We will choose a statistical sample 
according to the fitting criterion: 

   

where E(φ) is a field functional associated with the 
machine learning fitting algorithm, α is a parameter for 
uncertainty, and ZE is the normalization factor.  It is 
important to note that in machine learning, the set of N 
data points may consist of batches containing identical 
observations; this is commonly needed for deep 
learning algorithms and statistical ensemble methods.    

II. Mesoscopic Field physics Model and 
Machine Learning Approach 

The mesoscopic field action functional can be 
derived from the microscopic interacting Hamiltonian 
(1). By employing the mesoscopic density  𝜌𝜌�(𝑟𝑟) defined 
in (2), equation (1) can be expressed as follows: 

 

where  𝜌𝜌�(𝑟𝑟) is the mesoscopic density function of (2) 
and 𝑉𝑉(𝑟𝑟, 𝑟𝑟′)is the interaction energy representing 
interactions between species as defined in (1). The 
thermodynamical partition function of the interacting 
particles is: 

 

Expressions (6) and (7) encompass both 
particle variables and field variables. In pursuit of 
constructing a field theory, we employ a mathematical 
transformation [20], originally known as Hubbard-
Stratonovich transformation [21], to reformulate the 
particle-based approach into a field-based 
representation. Firstly, we rewrite the partition function in 
(7) as follows: 
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(1)

(2)

  (3)< 𝐹𝐹[𝜑𝜑] >= ∫𝐷𝐷[𝜑𝜑]𝑃𝑃[𝜑𝜑]𝐹𝐹[𝜑𝜑]

(4)𝑃𝑃[𝜑𝜑] = 𝑒𝑒−𝛽𝛽𝛽𝛽 [𝜑𝜑]/𝑍𝑍𝛽𝛽

  
(5)𝑃𝑃[𝜑𝜑] = 𝑒𝑒−𝛼𝛼𝛼𝛼 [𝜑𝜑]/𝑍𝑍𝛼𝛼

𝐻𝐻(𝑟𝑟) = ∑ ∑ 𝑈𝑈𝑘𝑘(𝑟𝑟𝑘𝑘 .𝜇𝜇 , 𝑟𝑟𝑘𝑘 .𝜎𝜎)𝜇𝜇 ,𝜎𝜎𝑘𝑘 + ∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′𝜌𝜌�(𝑟𝑟)𝑉𝑉(𝑟𝑟, 𝑟𝑟′)𝜌𝜌�(𝑟𝑟′) (6)

(7)𝑍𝑍𝑝𝑝 = ∫𝑑𝑑𝑟𝑟 𝑒𝑒−𝛽𝛽𝐻𝐻 (𝑟𝑟)

𝐻𝐻(𝑟𝑟) = ∑ ∑ 𝑈𝑈𝑖𝑖(𝑟𝑟𝑖𝑖 .𝜇𝜇 , 𝑟𝑟𝑖𝑖 .𝜎𝜎)𝜇𝜇 ,𝜎𝜎𝑖𝑖 + ∑ ∑ ∑ 𝑉𝑉𝑖𝑖 ,𝑗𝑗 (𝑟𝑟𝑖𝑖 .𝜇𝜇 , 𝑟𝑟𝑗𝑗 .𝜎𝜎)𝜇𝜇 ,𝜎𝜎𝑗𝑗𝑖𝑖

𝜌𝜌�(𝑟𝑟) = ∑ ∑ 𝛿𝛿(𝑟𝑟 − 𝑟𝑟𝑘𝑘 ,𝛼𝛼)𝛼𝛼𝑘𝑘



    (8) 

where we have insertedthe identity 
. We also dropthe subscript p from the partition 

function 𝑍𝑍𝑝𝑝 . Secondly, we introduce an auxiliary field 
𝑓𝑓(𝑟𝑟)viaaFourier transformation of the delta function: 

 

Introduction of the auxiliary field variable f(r) is 
important for mesoscopic field theory. We will now show 
that auxiliary fields separate microscopic species 
degrees of freedom from mesoscopic fields and serve 
as connections between macroscopic degrees of 
freedom and mesoscopic fields.      

 

 

Using mesoscopic density definition (2) and 
𝑑𝑑𝑑𝑑 = ∏ 𝑑𝑑𝑟𝑟𝑘𝑘𝑘𝑘 ,, we can express the portion of the partition 
function that describes the interaction between the 

auxiliary field and species' internal degrees of freedom 
as: 
  

 Partition function (10) can now be written as:  
 

where 𝑍𝑍𝑚𝑚 (𝑓𝑓) is the partition function for internal degree 
of freedom of the species: 

 

 

 

where 𝑍𝑍𝑚𝑚0(𝑓𝑓) is the partition function of a single 
species. If there are n species of different kinds, the 

partition function ispartitionedaccording to species 
 𝑍𝑍𝑚𝑚𝑚𝑚  

(𝑖𝑖 = 0 … 𝑠𝑠):𝑍𝑍𝑚𝑚 = (𝑍𝑍𝑚𝑚0)𝑛𝑛0 (𝑍𝑍𝑚𝑚1)𝑛𝑛1 … (𝑍𝑍𝑚𝑚𝑚𝑚 )𝑛𝑛𝑠𝑠 , with 
𝑛𝑛0 + 𝑛𝑛1 + ⋯+ 𝑛𝑛𝑠𝑠 = 𝑛𝑛. Equation (12) highlights the key 
benefit of the auxiliary fields approach: it separates 
mesoscopic field and microscopic species degrees of 
freedom, decouples species interactions so that same-
kind species contribute independently to the partition 
function, and explicitly formulates the coupling 
betweenthe mesoscopic field and microscopic species 
through the auxiliary fields. 
 The Zm(f) term in partition function (12) can be 
written as 𝑍𝑍𝑚𝑚 (𝑓𝑓)). According to the definition of the 
partition function and action functional in (4), the action 
functional of the mesoscopic field can be obtained as:   

  

Thermodynamic information about the 
mesoscopic field can be obtained through (3)(4) with 
action functional (15). 

Unlike physics-based models, machine learning 
approaches driven by mesoscopic data patterns do not 
explicitly represent microscopic interactions. Instead, 
these methods can be seen as energy-based models 
[22][23] that assign lower energies to likely data pattern 
configurations and higher energies to unlikely ones, 
though their energy functions are not derived from 
physics. For instance, the Boltzmann machine [24] is a 
foundational energy-based algorithm used for pattern 
learning and generation. The basic Boltzmann machine 
has energy functional:  

 

where  𝐽𝐽(𝑟𝑟, 𝑟𝑟′)is the connection weight and 𝑏𝑏(𝑟𝑟)
 
is the 

bias vector for the mesoscopic field. These weights and 
bias vectors are trained by mesoscopic data pattern 
samples, and there are no microscopic interactions.  

 When generating mesoscopic patterns, the 
representational power of the basic Boltzmann machine 
(16) is inherently limited by the quadrature coupling of 
mesoscopic

 
fields through connecting weights. As a 

result, the probability distribution generated for the 
mesoscopic field is constrained to a Gaussian function. 
To overcome this limitation, higher-order interaction 
terms can be incorporated into equation (16), allowing 
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𝑍𝑍 = ∫𝑑𝑑𝑟𝑟 ∫𝐷𝐷[𝜌𝜌]𝛿𝛿(𝜌𝜌 − 𝜌𝜌�(𝑟𝑟)) 𝑒𝑒−𝛽𝛽 ∑ ∑ 𝑈𝑈𝑘𝑘 (𝑟𝑟𝑘𝑘 .𝜇𝜇 ,𝑟𝑟𝑘𝑘 .𝜎𝜎 )𝜇𝜇 ,𝜎𝜎𝑘𝑘 −𝛽𝛽 ∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′ 𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟 ,𝑟𝑟′ )𝜌𝜌(𝑟𝑟′ )

(9)𝛿𝛿�𝜌𝜌 − 𝜌𝜌�(𝑟𝑟)� = ∫𝐷𝐷[𝑓𝑓(𝑟𝑟)]𝑒𝑒𝑖𝑖 ∫ 𝑑𝑑𝑟𝑟𝑓𝑓 (𝑟𝑟)(𝜌𝜌−𝜌𝜌�(𝑟𝑟))

(10)∫𝑑𝑑𝑟𝑟 ∫𝐷𝐷[𝜌𝜌]∫𝐷𝐷[𝑓𝑓] 𝑒𝑒𝑖𝑖 ∫ 𝑑𝑑𝑟𝑟𝑓𝑓 (𝑟𝑟)(𝜌𝜌−𝜌𝜌�(𝑟𝑟))−𝛽𝛽 ∑ ∑ 𝑈𝑈𝑘𝑘 (𝑟𝑟𝑘𝑘 .𝜇𝜇 ,𝑟𝑟𝑘𝑘 .𝜎𝜎 )𝜇𝜇 ,𝜎𝜎𝑘𝑘 −𝛽𝛽 ∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′ 𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟 ,𝑟𝑟′ )𝜌𝜌(𝑟𝑟′ )𝑍𝑍 =

(11)∫ dr 𝑒𝑒−𝑖𝑖𝑓𝑓𝜌𝜌�(𝑟𝑟)−𝛽𝛽 ∑ ∑ 𝑈𝑈𝑘𝑘 (𝑟𝑟𝑘𝑘 .𝜇𝜇 ,𝑟𝑟𝑘𝑘 .𝜎𝜎 )𝜇𝜇 ,𝜎𝜎𝑘𝑘 = ∏ ∫𝑑𝑑𝑟𝑟𝑘𝑘 𝑒𝑒−𝑖𝑖 ∑ 𝑓𝑓�𝑟𝑟𝑘𝑘 ,𝜇𝜇 �𝜇𝜇 −𝛽𝛽 ∑ 𝑈𝑈𝑘𝑘 (𝑟𝑟𝑘𝑘 .𝜇𝜇 ,𝑟𝑟𝑘𝑘 .𝜎𝜎 )𝜇𝜇 ,𝜎𝜎
𝑘𝑘

(12)𝑍𝑍 = ∫𝐷𝐷[𝜌𝜌]∫𝐷𝐷[𝑓𝑓] 𝑒𝑒𝑖𝑖 ∫𝑑𝑑𝑟𝑟𝑓𝑓 (𝑟𝑟)𝜌𝜌−𝛽𝛽 ∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′ 𝜌𝜌(𝑟𝑟)𝑉𝑉�𝑟𝑟 ,𝑟𝑟′ �𝜌𝜌�𝑟𝑟′ �𝑍𝑍𝑚𝑚 (𝑓𝑓)

(13)𝑍𝑍𝑚𝑚 = ∏ ∫𝑑𝑑𝑟𝑟𝑘𝑘 𝑒𝑒−𝑖𝑖 ∑ 𝑓𝑓�𝑟𝑟𝑘𝑘 ,𝜇𝜇 �𝜇𝜇 −𝛽𝛽 ∑ 𝑈𝑈𝑘𝑘 (𝑟𝑟𝑘𝑘 .𝜇𝜇 ,𝑟𝑟𝑘𝑘 .𝜎𝜎 )𝜇𝜇 ,𝜎𝜎
𝑘𝑘

  (14)𝑍𝑍𝑚𝑚0(𝑓𝑓) = ∫𝑑𝑑𝑟𝑟 𝑒𝑒−𝑖𝑖 ∑ 𝑓𝑓�𝑟𝑟𝜇𝜇 �𝜇𝜇 −𝛽𝛽 ∑ 𝑈𝑈0�𝑟𝑟𝜇𝜇 ,𝑟𝑟𝜎𝜎 �𝜇𝜇 ,𝜎𝜎

(15)𝛽𝛽[𝜌𝜌 ,𝑓𝑓]
𝛽𝛽

= 𝑖𝑖 ∫ 𝑑𝑑𝑟𝑟𝑓𝑓(𝑟𝑟)𝜌𝜌(𝑟𝑟) − ∫𝑑𝑑𝑟𝑟 ∫𝑑𝑑𝑟𝑟′𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) + 𝑙𝑙𝑛𝑛 𝑍𝑍𝑚𝑚 (𝑓𝑓)

(16)𝛼𝛼[𝜑𝜑] = −∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′𝜑𝜑(𝑟𝑟)𝐽𝐽(𝑟𝑟, 𝑟𝑟′)𝜑𝜑(𝑟𝑟′) − ∫𝑑𝑑𝑟𝑟𝑑𝑑(𝑟𝑟)𝜑𝜑(r)

∫𝐷𝐷[𝜌𝜌]𝛿𝛿(𝜌𝜌 −
𝜌𝜌�(𝑟𝑟))=1

Inserting (9) into (8), we obtain:

It is important to note that Equations (12) and 
(13) haveeffectively separatedthe mesoscopic field of 
each species from itsmicroscopic internal degrees of 
freedom. For a system withnidentical species,  𝑍𝑍𝑚𝑚 (𝑓𝑓) =
(𝑍𝑍𝑚𝑚0(𝑓𝑓))𝑛𝑛 , and



for the generation of more complex statistical properties. 
Alternatively, deep learning approaches utilizing 
multilayer interactions are widely adopted in machine 
learning. In the following, we will use the restricted 
Boltzmann machine [25], which is the most prevalent 

form of layered Boltzmann machine, as an illustrative 
example. 

The restricted Boltzmann machine adds a 
hidden layer to the energy function: 
 
 

  

where h(r)  is the hidden layer and 𝑊𝑊(𝑟𝑟, 𝑟𝑟′)
 

is the 
connection between the visible and hidden layers. The 
hidden layer statistics are described by the functional    
G[h] with an assumed mathematical format. Notice that 
the restricted Boltzmann machine (17) removes 
connections between fields in the visible layer. This 
modification increases machine learning algorithm 
training efficiency [26]. We will show below that this 
does not impact on the model's representational 
capacity. Comparing (17) to the action functional of the 
physics model (15), the layered restricted Boltzmann 
machine incorporates coupling between the 

mesoscopic fields (visible layer) and microscopic fields 
(hidden). However, it does not address the mechanisms 
of microscopic interactions directly. Statistics of the 
hidden layer fields are assumed via functional G[h], and 
connection weights are obtained via training from data.  

       To understand the impact of hidden layer fields 
on visible layer fields, we analyze the marginalized 
energy of visible layer fields [27]. The marginalized 
energy of the visible layer fields is obtained by 
integrating out the hidden layer fields in equation (17):  

 
 

 

 

 
Notice that

 

𝑒𝑒𝐺𝐺[ℎ]

 

describes the hidden layer field 
distribution without interaction with visible layer fields. 
This term's functional form

 

𝐺𝐺[ℎ]
 

presumed, not 
determined by physical mechanisms or empirical data.

 We can write second term of (18) in a discrete form:

 

 
where index i, j refers to lattice spatial locations. Now we 
can use a cumulant generating function formula for the 
distribution 𝑒𝑒𝐺𝐺[ℎ𝑖𝑖 ]

 

to study interactions between hidden 
nodes and visible nodes. The associated cumulant 
generating function of 𝐺𝐺(ℎ𝑖𝑖)is

 

 
where

 

the nth cumulant is 𝑘𝑘𝑖𝑖
(𝑛𝑛) = 𝑑𝑑𝑛𝑛𝐾𝐾(𝑡𝑡)/𝑑𝑑𝑡𝑡𝑛𝑛 |𝑡𝑡=0. 

Applying equation (20) simplifies (19) to:

 
 

 

 
 

Equation (21) indicates that integrating out the 
hidden fields yields an effective Hamiltonian for the 
visible fields, which may include interactions of arbitrarily 
high order among the visible variables. The strengths of 
these interactions are weighed by the cumulant function 

associated with the hidden fields. This is the key to the 
representational capability of the restricted Boltzmann

 

machine. For a restricted Boltzmann machine learning, 
the connection weights 𝑊𝑊𝑗𝑗𝑗𝑗

 

are learned from 
mesoscopic data patterns. The arbitrarily high-order 
interactions between visible nodes can in principle 
represent complex statistics of mesoscopic patterns. 
Another observation of equation (21) is that there is no 
need to explicitly include interactions between visible 
nodes for a restricted Boltzmann machine. Interactions 
among visible nodes are produced by marginalizing 
over hidden nodes that have connections to the visible 
nodes.     

 

The above analysis permits further comparison 
between the restricted Boltzmann machine and field 
solutions in physics models. In physics models, the 
statistics of hidden fields are not predetermined; rather, 
they are obtained from microscopic physics models, 
with formalisms derived from the underlying microscopic 
interaction mechanisms. The interactions among visible 
fields are similarly based on physical interactions. The 
connection weights between visible and hidden fields 
are auxiliary fields, and their statistics are determined by 
sampling the action functional. At leading order, the 
auxiliary field is obtained as a self-consistent solution 
that optimizes the action functional.
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(17)𝛼𝛼[𝜑𝜑, ℎ] = −∫𝑑𝑑𝑟𝑟𝑑𝑑(𝑟𝑟)𝜑𝜑(𝑟𝑟) − ∫𝑑𝑑𝑟𝑟 ∫𝑑𝑑𝑟𝑟′𝜑𝜑(𝑟𝑟)𝑊𝑊(𝑟𝑟, 𝑟𝑟′)ℎ(𝑟𝑟′) − 𝐺𝐺[ℎ(𝑟𝑟)]

(18)

𝛼𝛼[𝜑𝜑] = −𝑙𝑙𝑛𝑛 ∫𝐷𝐷[ℎ]𝑒𝑒−𝛼𝛼[𝜑𝜑 ,ℎ]

= −ln⁡∫𝐷𝐷[ℎ] (𝑒𝑒∫𝑑𝑑𝑟𝑟𝑑𝑑 (𝑟𝑟)𝜑𝜑(𝑟𝑟)+∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′ 𝜑𝜑(𝑟𝑟)𝑊𝑊�𝑟𝑟 ,𝑟𝑟′ �ℎ�𝑟𝑟′ �+𝐺𝐺[ℎ])

= −∫𝑑𝑑𝑟𝑟𝑑𝑑(𝑟𝑟)𝜑𝜑(𝑟𝑟) − 𝑙𝑙𝑛𝑛 ∫𝐷𝐷[ℎ] 𝑒𝑒𝐺𝐺[ℎ] ∙ 𝑒𝑒∫ 𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′ 𝜑𝜑(𝑟𝑟)𝑊𝑊�𝑟𝑟 ,𝑟𝑟′ �ℎ�𝑟𝑟′ �

(19)𝛼𝛼[𝜑𝜑] = −𝑙𝑙𝑛𝑛∫∑ 𝑑𝑑ℎ𝑖𝑖𝑖𝑖 𝑒𝑒𝐺𝐺[ℎ𝑖𝑖] ∙ 𝑒𝑒∑ ∑ 𝜑𝜑𝑗𝑗𝑊𝑊𝑗𝑗𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑗𝑗

  
(20)𝐾𝐾𝑖𝑖(𝑡𝑡) = ln�∫ 𝑑𝑑ℎ𝑖𝑖 𝑒𝑒𝐺𝐺(ℎ𝑖𝑖)𝑒𝑒𝑡𝑡ℎ𝑖𝑖 � = ∑ 𝑘𝑘𝑖𝑖

(𝑛𝑛)
𝑛𝑛

𝑡𝑡𝑛𝑛

𝑛𝑛 !

(21)

𝛼𝛼[𝜑𝜑] = −∑ ∑ 𝑘𝑘𝑖𝑖
(𝑛𝑛)

𝑛𝑛
(∑ 𝜑𝜑𝑗𝑗𝑊𝑊𝑗𝑗𝑖𝑖𝑗𝑗 )𝑛𝑛

𝑛𝑛 !𝑖𝑖

= ∑ ∑ 𝑘𝑘𝑖𝑖
(1)

𝑖𝑖 𝑊𝑊𝑗𝑗𝑖𝑖𝑗𝑗 𝜑𝜑𝑗𝑗 + ∑ ∑ 𝑘𝑘𝑖𝑖
(2)

𝑖𝑖 𝑊𝑊𝑗𝑗𝑖𝑖𝑊𝑊𝑘𝑘𝑖𝑖𝑗𝑗𝑘𝑘 𝜑𝜑𝑗𝑗𝜑𝜑𝑘𝑘



III. Mesoscopic Field Solution 
Integrating Machine Learning with 

Physics Models 

We propose a mesoscopic field solution that 
integrates machine learning solutions with physics 
models. As demonstrated in [13], the field theory 
approach treats physics-based and data-driven 

In the previous section, we compared the physics model 
with the traditional machine learning algorithm. The 
physics model uses action functional (15) and the 
layered machine learning model uses an energy 
functional (17). Here, we propose a machine learning 
mesoscopic field solution based

 
on the action 

functional:  
 

  

 
where 𝜌𝜌(𝑟𝑟)

 
is the mesoscopic patterns field solution 

and,
 
𝑉𝑉(𝑟𝑟, 𝑟𝑟′)

 
is

 
the mesoscopic field connecting 

weights, 𝐿𝐿𝐿𝐿𝑍𝑍𝑚𝑚 (𝑓𝑓)
 
is the action functional of the hidden 

fields and 𝑓𝑓(𝑟𝑟)
 

is the connecting weights between 
visible fields and hidden fields. The machine learning

 solution according to (22) corresponds to fields
 sampling from a probability density

 
𝑃𝑃[𝜑𝜑] = 𝑒𝑒−𝛽𝛽𝛽𝛽 [𝜌𝜌 ,𝑓𝑓]/𝑍𝑍𝐴𝐴

 as explained in (5).
 Unlike traditional machine learning that relies on 

assuming a statistical formalism of hidden nodes and 
learning connecting weights from the observed 
mesoscopic pattern data, we specify a formalism of   
𝐿𝐿𝐿𝐿𝑍𝑍𝑚𝑚

 
in (22) based upon microscopic interacting 

mechanisms (1).  Now the connecting weights has the 
physics meaning of auxiliary fields describing the 
interaction between microscopic scale particle fields to 
mesoscopic fields.  Machine learning solution for 
connecting weights can be obtained based upon 
physics principles. Here we propose action functional 
minimization to obtain the connecting weights self-
consistently.  Minimization of the action functional (22) 
gives-  

 
 

 
 
 Notice that second equation of (23) is a 
functional mapping between auxiliary fields and 
mesoscopic fields via a microscopic interacting physics 
mechanism. Its solution only depends upon the 
microscopic partition function (13), and no observational 
data is involved. For complex physics systems, the 
second equation of (23) may be computationally 

neural operator technique [28][29] offers an effective 
approach to address this challenge. For our algorithm, 
which incorporates specific microscopic interactions, it 
is feasible to construct a neural operator that maps 
between the auxiliary field and the mesoscopic field. 
This step can be implemented as a backend operation 
without incorporating observational data; instead, the 
neural operator is trained using model-simulated data. 

The mesoscopic field solution with action 
functional (22) integrates physics-based principles with 
data-driven machine learning. If a microscopic physics 
model is absent, the connecting weights in (22) can be 
learned directly from data, like traditional layered 
Boltzmann machines. The system and hidden fields may 
also be split into physics and data-driven components, 
with their connecting weights optimized via the self-
consistent solution of (23) and contrast divergence 
minimization [20]. Where microscopic interactions are 
well understood, data-driven components represent 
uncertainty or noise; where they are not, physics-based 
components act as constraints or regularizers for the 
data-driven approach. 

We demonstrated our solution through 
mesoscopic patterns generated by two interacting 
species A and B. Particles from the two species are 
bonded by a chain structure with harmonic interactions. 
The chain structure with a harmonic bond is a basic 
model for macromolecules and is widely used for 
polymer science and biomolecular simulation [30]. Here, 
we assume the interaction between the two different 
species is constant and the spatial density is conserved 
𝜌𝜌𝐴𝐴(𝑟𝑟) + 𝜌𝜌𝐵𝐵(𝑟𝑟) = 𝜌𝜌0. The partition function of the 
microscopic model is: 
     

  
 

     
    

 

 
  
 

where 𝜌⃗𝜌 = (𝜌𝜌𝐴𝐴 ,𝜌𝜌𝐵𝐵), 𝑓𝑓 = (𝑓𝑓𝐴𝐴 , 𝑓𝑓𝐵𝐵), and𝜒𝜒

 

is the interacting 
constant between the two species.  
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(22)𝛽𝛽[𝜌𝜌, 𝑓𝑓] = 𝑖𝑖 ∫ 𝑑𝑑𝑟𝑟𝑓𝑓(𝑟𝑟)𝜌𝜌(𝑟𝑟) − ∫𝑑𝑑𝑟𝑟 ∫𝑑𝑑𝑟𝑟′𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) + 𝑙𝑙𝑛𝑛 𝑍𝑍𝑚𝑚 (𝑓𝑓)

(23)

𝛿𝛿𝛽𝛽 [𝜌𝜌 ,𝑓𝑓]
𝛿𝛿𝜌𝜌

= 0 → 𝑓𝑓(𝑟𝑟) = 𝑖𝑖 ∫ 𝑑𝑑𝑟𝑟′ 𝑉𝑉(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′)

𝛿𝛿𝛽𝛽 [𝜌𝜌 ,𝑓𝑓]
𝛿𝛿𝑓𝑓

= 0 → 𝜌𝜌(𝑟𝑟) = 1
𝑍𝑍𝑚𝑚

𝛿𝛿𝑍𝑍𝑚𝑚 (𝑓𝑓)
𝛿𝛿𝑓𝑓 (𝑓𝑓)

(24)           𝑍𝑍𝑚𝑚 (𝑓𝑓) = �∫ 𝑑𝑑𝑟𝑟1 ∙∙∙ ∫ 𝑑𝑑𝑟𝑟𝑁𝑁 𝑒𝑒−𝑖𝑖𝑓𝑓(𝑟𝑟1)−𝑘𝑘𝛽𝛽 (𝑟𝑟1−𝑟𝑟2)2/2 ∙∙∙ 𝑒𝑒−𝑖𝑖𝑓𝑓(𝑟𝑟𝑁𝑁 )−𝑘𝑘𝐵𝐵(𝑟𝑟𝑁𝑁−1−𝑟𝑟𝑁𝑁 )2/2�
𝑛𝑛

(25)𝛽𝛽�𝜌⃗𝜌, 𝑓𝑓(𝑟𝑟)� = 𝑖𝑖 ∫ 𝑑𝑑𝑟𝑟𝑓𝑓(𝑟𝑟) ∙ 𝜌⃗𝜌 − ∫𝑑𝑑𝑟𝑟 ∫ 𝑑𝑑𝑟𝑟′𝜌𝜌𝛽𝛽(𝑟𝑟)𝜒𝜒𝜌𝜌𝐵𝐵(𝑟𝑟′) + 𝑙𝑙𝑛𝑛𝑍𝑍𝑚𝑚

intensive for an iterative solution. The machine learning 

Each chain has 𝑁𝑁particles, starting with 𝑁𝑁𝛽𝛽
particles of species 𝛽𝛽 for the first part of the chain and 
ending with 𝑁𝑁𝐵𝐵 particles of species 𝐵𝐵 for the second 
part of the chain. 𝑁𝑁𝛽𝛽 + 𝑁𝑁𝛽𝛽 = 𝑁𝑁and, 𝑘𝑘𝛽𝛽 and 𝑘𝑘𝐵𝐵 are the 
coefficients for nearest-neighbor harmonic interaction of 
species 𝛽𝛽and species 𝐵𝐵. The action functional of the 
system is:

machine learning solutions as fundamentally equivalent. 



We generate mesoscopic patterns by sampling 
the system with action functional (25) on a two-
dimensional domain. The spatial lattice spacing is 0.2 
and the normalized (via lattice spacing) microscopic 
interacting parameters are 𝑘𝑘𝐴𝐴 =  𝑘𝑘𝐵𝐵 = 2.25. The chain 
length is 100 with 𝑁𝑁𝐴𝐴 = 70 and 𝑁𝑁𝐵𝐵 = 30. 𝑛𝑛 is chosen to 

examples of mesoscopic density 𝜌𝜌𝐴𝐴
 

for different 
interacting parameters 𝜒𝜒. Figures 1c and 1dshow two 
different statistical

 
mesoscopic sample patterns

 
for

 
the 

same interacting parameter 𝜒𝜒 = 0.4. The density 𝜌𝜌𝐵𝐵
 
is a 

complementary of 𝜌𝜌𝐴𝐴
 
due to conserved local density. 

 
 
 

 

 

To evaluate a machine learning algorithm's 
ability to learn and generate mesoscopic spatial 
patterns, we begin with training the algorithm with a set 
of mesoscopic pattern samples. An out-of-sample 
pattern is then selected, and noise is added to corrupt 
the original pattern. The trained algorithm is tested on its 
performance in recovering the original pattern from the 
noisy version as well as its ability to generate new 
patterns with similar statistical properties. This 
assessment uses the scenario above of two interacting 
species within a domain size of 6.4. 

In traditional Boltzmann machine learning, 
connection weights between visible and hidden nodes 
must be trained on large, statistically similar samples. 
Figure 2a displays the original mesoscopic pattern 
generated from two interacting species, while Figure 2b 
shows a noisy version. Recovering the original pattern 
requires training with many statistical samples; Figure 2c 
illustrates a successful recovery using 80 training 
samples with the same statistics. In contrast, Figure 2d 
demonstrates that a restricted Boltzmann machine 
trained with only 10 samples cannot effectively restore 
the original pattern from noisy data. 
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normalize density 𝜌𝜌0 = 1. Figures 1a, 1b, and 1c show 

Fig. 1: Mesoscopic Density a for Different Interacting Parameters  (a) χ=0.1, (b) χ=0.4, (c) χ=1.0, (d) χ=0.4. (c) 
and (d) are two Different Statistical Samples for the same Interacting Parameter χ=0.4



 

 
 

For the field solution that integrates machine 
learning with physics models, we first construct a 
machine learning neural operator that maps between 
auxiliary fields (or connection weights) and mesoscopic 
fields (visible nodes). Figure 3 provides two examples 
comparing the neural operator predicted mappings with 

the ground truth. This neural operator is trained solely by 

the simulated data from the formula 𝜌𝜌(𝑟𝑟) = 1
𝑍𝑍𝑚𝑚

𝛿𝛿𝑍𝑍𝑚𝑚 (𝑓𝑓)
𝛿𝛿𝛿𝛿 (𝑓𝑓)  

and the microscopic partition function (24), without 
using any mesoscopic data. 
 

 

  

With the established neural operator mapping 
between mesoscopic fields and auxiliary fields, field 
functional (25) enables the recovery of the original 
mesoscopic pattern from a noisy input. In the context of 
machine learning integrated with physical models, 

typically only one or two original mesoscopic patterns 
are needed to infer the interaction parameters of 
actional functional (25). Figure 4 presents an example 
illustrating the reconstruction of a mesoscopic pattern 
from a noisy mesoscopic pattern utilizing a field-based 
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Fig. 2: Restricted Boltzmann machine learning and pattern recovery. (a) Original mesoscopic pattern. (b) 
Mesoscopic pattern with added noise (c) Recovery of original pattern for a restricted Boltzmann machine trained 
with 80 samples of the same statistics (d) Recovered pattern for a restricted Boltzmann machine trained with 10 
samples of the same statistics

Fig. 3: Neural Operator Functional Mapping between Auxiliary Fields and Mesoscopic Fields



approach that combines machine learning with physical 
models. 

In addition to recovering the original 
mesoscopic pattern from observed noisy data, field 
solutions that integrate machine learning with physical 
models possess extrapolation capabilities beyond those 
of conventional machine learning methods. For 
instance, after recovering the true mesoscopic structure 
from noisy observations, machine learning with physics 
model approaches can generate statistical samples of 
mesoscopic patterns under varying mesoscopic field 

 

 
 

 

 

 

 

Our field solution, which integrates machine 
learning with physics models, also enables extrapolation 
in dynamic evolution. The action functional (22), which is 
based on system thermodynamics, serves as the free 
energy of mesoscopic fields 𝐹𝐹~𝛽𝛽𝛽𝛽.Once the true 
mesoscopic structure is recovered from noisy data, our 
models can analyze how these patterns evolve-for 
example, by following free energy gradients with local 
mobility: 

 

where 𝑀𝑀(𝑡𝑡,𝜌𝜌) is a local mobility and 
𝛿𝛿𝛿𝛿(𝜌𝜌 ,𝑡𝑡)
𝛿𝛿𝛿𝛿

  is the role of 

the local free energy gradient. Traditional machine 
learning methods such as Boltzmann machines cannot 
perform this type of extrapolation on pattern evolution. 
Because these models are data-driven, they need to 
relearn weight statistics using large data samples when 
mesoscopic pattern distributions change during 
evolution. 

IV. Conclusion 

We use path integral methods to derive a 
mesoscopic field solution that unifies machine learning 
with physics models. In our solution, machine learning 
architecture and physics models are represented as a 
unified field entity. Microscopic physics mechanisms are 

incorporated as machine learning hidden fields and their 
interactions with the mesoscopic field through auxiliary 
fields are the connecting weights between machine 
learning layers. Unlike traditional machine learning 
models, such as layered Boltzmann machines, instead 
of imposing statistical assumptions on hidden nodes 
and learning weight statistics from data, our method 
derives the hidden fields formalism based on 
microscopic interaction mechanisms and determines 
the connecting weights through action functional 
minimization principle. To enhance machine learning 
efficiency, we apply the functional neural operator 
technique to map between auxiliary fields and 
mesoscopic fields. 

We demonstrate our solution via a case of 
mesoscopic patterns generated by two interacting 
species bonded by a chain structure.  By integrating 
principles from physics models with machine learning 
methodologies, our approach achieves high 
performance in learning and generating mesoscopic 
patterns with limited datasets. This technique effectively 
captures physical interactions across multiple scales, 
thereby enabling reliable extrapolation to patterns with 
varying interaction parameters and dynamic evolution of 
mesoscopic patterns. The mesoscopic field approach 
unifying machine learning and physics models can be 
readily used in diversified areas of physics, material 
science, biology, and social dynamics. Future research 
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(26)
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

= ∇ ∙ [𝑀𝑀(𝑡𝑡,𝜌𝜌)∇ 𝛿𝛿𝐹𝐹 (𝜌𝜌 ,𝑡𝑡)
𝛿𝛿𝜌𝜌

]

Fig. 4: Learning and pattern recovery of the field solution that integrates machine learning with physics models. (a) 
Mesoscopic pattern with added noise (b) Original mesoscopic pattern (c) Recovered mesoscopic pattern from field 
solution that integrates machine learning with physics models; two samples are used to infer the interacting 
parameter

interaction strengths; without requiring additional data. 
This capability is unattainable with traditional machine 
learning frameworks like Boltzmann machines. In the 
case of restricted Boltzmann machines, generating 
patterns with different mesoscopic field interactions   
demands large training data samples for each specific 
interaction parameter. The restricted Boltzmann 
machine must relearn weight statistics whenever the 
underlying mesoscopic pattern distribution changes due 
to a change of interaction parameter.



may address complex applications with both limited 
data and uncertain physical mechanisms, developing 
efficient algorithms that merge physic-principle based 
solutions, such as self-consistent action functional 
minimization and data-driven solutions, such as contrast 
divergence minimization. 
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