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Unitying Machine Learning and Physics Models
through a Mesoscopic Field Approach

Xiaobin Wang® & April Wang®

Absiracl- We present a path-integral methods field solution
that merges machine learning with microscopic physics
models for mesoscopic phenomena. This interpretable
multiscale algorithm treats physical and machine learning field
solutions as equivalent, enabling seamless integration of
microscopic physics intomachine learning algorithms for
mesoscopic pattern learning and generation. Our approach
incorporates microscopic physics mechanisms as hidden
fields and represents their interactions with mesoscopic fields
through auxiliary fields. Rather than imposing statistical
assumptions on hidden nodes and learning weight statistics
from data, our method derives a hidden fields formalism
based on physics interaction mechanisms and determines
connecting weights through action functional minimization and
neural operators machine learning.Combining the strengths of
both physicsmodeling and machine learning techniques,our
method achieves strong performance in learning and
generating mesoscopic patterns from limited data. It can
capture physics interactions occurring at different
scales,allowing forexirapolation when dealing with patterns
with different interacting parameters and pattern evolution
dynamics. We demonstrate our solution through a concrete
case of two interacting species with microscopic chain
structures, widely used for polymer material and biomolecular
simulation. Our mesoscopicfield approach unifying machine
learning and physics modelscan be readily usedin various
areas of material science, biology, and social dynamics.

[. INTRODUCTION

esoscopic phenomena arise at intermediate
Msoales across disciplines like  physics,

chemistry, biology, and materials science
[1112]13][4]1[5]16][71[8][9], where structured patterns
emerge from the interactions of many microscopic
parts. While these interactions are fundamentally rooted
in the laws of nature, the concept of mesoscopic
organization extends far beyond the boundaries of the
natural sciences. In fact, the same principles can be
applied to understand and model complex systems
within society-such as political opinions, financial
markets, and collective social behavior [10]{11][12].

This universal applicability arises because
mesoscopic frameworks focus on how localized
interactions among individual components can give rise
to observable, large-scale patterns, regardless of
whether those components are atoms, organisms, or
people. Thus, emergent phenomena like traffic

Author o Donaldson Company, 1400 W 94" Street, Bloomington, MN
55431, USA. e-mail: wangfamaimar@gmail.com

Author o: Northwestern University, 633 Clark Street, Evanston, IL 60208,
USA.

congestion, shifts in political opinion, and market
crashes are governed by collective dynamics analogous
to those found in physical and biological systems. The
mesoscopic approach provides a powerful lens to
reveal hidden connections and unify our understanding
of complex systems across both the natural and societal
realms.

A mesoscopic model should learn mesoscopic
patterns directly from mesoscopic data, be capable of
prediction, remain interpretable, and align with
microscopic physical interactions. This is challenging
due to the range of scales involved, nonlinear
interactions, and direct observational data existing only
at a mesoscopic scale. Machine learning algorithms
with mesoscopic data usually do not explicitly consider
microscopic physics processes, resulting in unreliable
pattern generation with limited data and unpredictable
outcomes as interacting parameters change, and
dynamics evolve.

This paper introduces a mesoscopic field
solution that combines microscopic physical models
with machine learning techniques [13]. Recent years
have seen significant research achievements at the
intersection of machine learning and physics. Machine
learning and Al can contribute to advancements in
physics (refer to review article [14] and cited
references), just as applying physics principles can
generate novel machine learning algorithms and Al
paradigms (refer to review article [15] and cited
references). For practical applications, combining
physics models and machine learning approaches is
effective in addressing challenges related to physics
model uncertainties, data limitation and computational
scalability (ref to example references [16][17][18][19]).
Our contribution [13] is to treat data-driven machine
learning solutions and principle-based physics model
solutions as fundamentally equivalent through a field
theory approach.

Unlike other methods, we do not utilize different
machine learning structures to represent physics or
embed physics into machine learning models such as
neural networks. Instead, machine learning architectures
and physics models are represented by the same field
theoretical entity. For the mesoscopic system field
solution, as illustrated in this manuscript, microscopic
physics and interactions with mesoscopic fields are the
same as hidden nodes and connecting weights
between layers in machine learning architecture. This
enables a unified framework that explicitly includes
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microscale physics interactions for mesoscopic spatial
(and time) varying data, which would otherwise require
additional network  structure or embedding
schema. Seamlessly integrating microscopic physics
models into mesoscopic machine learning algorithms
achieves strong performance in learning and generating
mesoscopic patterns from limited data. Instead of
imposing statistical assumptions on hidden nodes and
learning weight statistics from data-driven approaches,
our method derives the hidden fields formalism based
on physics interaction mechanisms and determines the
connecting weights by combining physics principle with
machine learning techniques. It also provides predictive
capability when dealing with changing, interacting
parameters and pattern evolution dynamics.

We study generic mesoscopic patterns formed
by interacting species, each with distinct microstructures
and internal interactions. The species' components,
called particles, occupy specific spatial positions. Let
ri,u denote the spatial location of the th particle in
species i. The Hamilton of the interacting system can be
written as:

H(T) = Zi Zu,a Ui (Ti.wri.cr) + Zi Zj Zu,a Vi,j (ri.wn.a) (1)

where U;(1;,,7:, ) is the internal interaction energy of
particles and of the same species i, V;; (1,7 ,) is the
interaction energy between particle y of speciesi and
particle o of species |.

Mesoscopic spatial patterns are observed as
the collective behavior of interacting particles. For
example, the mesoscopic pattern density function can
be written as:

P(r) =i Yo 6(r —Tia) @)

where r is the spatial location of the mesoscopic pattern
and § is the Dirac delta function. The density function,
aggregated from numerous particles, is a mesoscopic
field function. For mesoscopic machine learning and
physics models, all observations are described by the
mesoscopic field function. Information about the
mesoscopic field function ¢(r) can be obtained from:

< Flp] >= [ Dlp]P[@]F[¢] 3)

where F[¢] is a functional of the mesoscopic field ¢(r), P
is the probability density functional for the mesoscopic
field ¢(r), and D is the probability measure. In principle,
F[¢] can be any functional of the field ¢(r) (i.e. ¢(r) for
mean and ¢(r)? for variance, etc.) in order to obtain all
the statistical information of the system.

For a physics model, the probability density
functional P[] of the field is based on physical
thermodynamic principles and mesoscopic system
dynamics:
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Plp] = e P40}z, (4)

where Al@] is the action functional of the mesoscopic
system, B=1/kBT is the temperature effect and ZA=De-
BA[@] is the normalization factor, also known as the
system’s partition function. For physics models, the
action functional A[e] is derived from the microscopic
interaction Hamiltonian (1).

For a machine learning, data-driven approach,
let there be a set ofobserved mesoscopic data points ¢;
at spatial location r;, i =1..,N. We want to find a
machine learning field solution ¢(r)that best fits the
observed data points. The field solution is drawn from a
probability density that matches the machine learning
fitting criterion. We will choose a statistical sample
according to the fitting criterion:

Plp] = e~ 101/z; ()

where E(@) is a field functional associated with the
machine learning fitting algorithm, a is a parameter for
uncertainty, and Z¢ is the normalization factor. It is
important to note that in machine learning, the set of N
data points may consist of batches containing identical
observations; this is commonly needed for deep
learning algorithms and statistical ensemble methods.

[I. MESOSCOPIC FIELD PHYSICS MODEL AND
MACHINE LEARNING APPROACH

The mesoscopic field action functional can be
derived from the microscopic interacting Hamiltonian
(1). By employing the mesoscopic density p(r) defined
in (2), equation (1) can be expressed as follows:

H(T) = Zk ZH,G Uk (rk.u'rk.a) + fdrfdrlﬁ(T)V(r,rl)ﬁ(r') (6)

where p(r) is the mesoscopic density function of (2)
and V(r,r)is the interaction energy representing
interactions between species as defined in (1). The
thermodynamical partition function of the interacting
particles is:

Z,=[dreP1® (7)

Expressions (6) and (7) encompass both
particle variables and field variables. In pursuit of
constructing a field theory, we employ a mathematical
transformation [20], originally known as Hubbard-
Stratonovich transformation [21], to reformulate the
particle-based approach into a field-based
representation. Firstly, we rewrite the partition function in
(7) as follows:
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Z = [dr [D[p]8(p — p(r)) e # Tk Zuo UkCuria)=F [dr far' p@Var e (8)

where we have insertedthe identity [D[p]s(p -
p(r)=1 We also dropthe subscript p from the partition
function Z,. Secondly, we introduce an auxiliary field
f (r)viaaFourier transformation of the delta function:

8(p = p() = [ DIF()]et S drf M=) )

Inserting (9) into (8), we obtain:

7= [dr[Dlp][DIf]e) f @XC-PNTp B VkCriprio)=f [ dr [dr oIV rIp(r)

Using mesoscopic density definition (2) and
dr =[], dr,,, we can express the portion of the partition
function that describes the interaction between the

fdr e UP=BEk Zuo Uk ko) = I, fdrk e i Zu Fiep)—B Zuo Uk Ty o)

Partition function (10) can now be written as:

Z = [D[p] [ DIf] et/ drf o= fdr far p@V(rr)e( )z (f)

where Z,, (f) is the partition function for internal degree
of freedom of the species:
Zy =T, [ dry e 2 F0ha) = T VeCicpics) (13)
It is important to note that Equations (12) and
(13) haveeffectively separatedthe mesoscopic field of

each species from itsmicroscopic internal degrees of
freedom. For a system withnidentical species, Z,,(f) =

(Zmo(F))", and

Zmo(f) = fdr e~ Zu f(ru)=B Zu.o Uo(ruirs) (14)
where Z,,o(f)is the partition function of a single
species. If there are n species of different kinds, the

B

Thermodynamic  information  about  the
mesoscopic field can be obtained through (3)(4) with
action functional (15).

Unlike physics-based models, machine learning
approaches driven by mesoscopic data patterns do not
explicitly represent microscopic interactions. Instead,
these methods can be seen as energy-based models
[22][23] that assign lower energies to likely data pattern
configurations and higher energies to unlikely ones,
though their energy functions are not derived from
physics. For instance, the Boltzmann machine [24] is a
foundational energy-based algorithm used for pattern
learning and generation. The basic Boltzmann machine
has energy functional:

Alp.f1 _ ifdrfMp@) — [dr [dr o)V, )pE) + nZ, (f)

Introduction of the auxiliary field variable f(r) is
important for mesoscopic field theory. We will now show
that auxiliary fields separate microscopic species
degrees of freedom from mesoscopic fields and serve
as connections between macroscopic degrees of
freedom and mesoscopic fields.

(10)

auxiliary field and species' internal degrees of freedom
as:

(11)

(12)

partition function ispartitionedaccording to species
Zi (0 =0..5):Zp = Zmo)" (Zin )™ . Zps)™,  with
ny +n, + -+ n, = n. Equation (12) highlights the key
benefit of the auxiliary fields approach: it separates
mesoscopic field and microscopic species degrees of
freedom, decouples species interactions so that same-
kind species contribute independently to the partition
function, and explicitly formulates the coupling
betweenthe mesoscopic field and microscopic species
through the auxiliary fields.

The Zm(f) term in partition function (12) can be
written as Z,,(f)). According to the definition of the
partition function and action functional in (4), the action
functional of the mesoscopic field can be obtained as:

(15)

E[p] = = [dr [dr' o], )eC) = [drb@)e®)  (16)
where J(r,r")is the connection weight and b(r) is the
bias vector for the mesoscopic field. These weights and
bias vectors are trained by mesoscopic data pattern
samples, and there are no microscopic interactions.
When generating mesoscopic patterns, the
representational power of the basic Boltzmann machine
(16) is inherently limited by the quadrature coupling of
mesoscopic fields through connecting weights. As a
result, the probability distribution generated for the
mesoscopic field is constrained to a Gaussian function.
To overcome this limitation, higher-order interaction
terms can be incorporated into equation (16), allowing
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for the generation of more complex statistical properties.
Alternatively, deep learning approaches utilizing
multilayer interactions are widely adopted in machine
learning. In the following, we will use the restricted
Boltzmann machine [25], which is the most prevalent

Elp,h] = = [drb() ¢(r) = [ dr [ dr' ()W (r,r)h(r) = G[h(r)]

where h(r) is the hidden layer and W(r,r") is the
connection between the visible and hidden layers. The
hidden layer statistics are described by the functional
G[h] with an assumed mathematical format. Notice that
the restricted Boltzmann machine (17) removes
connections between fields in the visible layer. This
modification increases machine learning algorithm
training efficiency [26]. We will show below that this
does not impact on the model's representational
capacity. Comparing (17) to the action functional of the
physics model (15), the layered restricted Boltzmann
machine  incorporates  coupling  between  the

form of layered Boltzmann machine, as an illustrative
example.

The restricted Boltzmann machine adds a
hidden layer to the energy function:

(17)

mesoscopic fields (visible layer) and microscopic fields
(hidden). However, it does not address the mechanisms
of microscopic interactions directly. Statistics of the
hidden layer fields are assumed via functional G[h], and
connection weights are obtained via training from data.
To understand the impact of hidden layer fields
on visible layer fields, we analyze the marginalized
energy of visible layer fields [27]. The marginalized
energy of the visible layer fields is obtained by
integrating out the hidden layer fields in equation (17):

Elp] = —In | D[h]e~Fle™

— —ln“f D[h] (efdrb Mo @)+[ar fdrrqo(r)W(r,rl)h(r')+G[h])

— —fdrb(r)(p(r) _ lnfD[h] eG[h] . efdrfdr'(p(r)W(r,r’)h(rl)

Notice that e¢["! describes the hidden layer field
distribution without interaction with visible layer fields.
This term's functional form G[h] presumed, not
determined by physical mechanisms or empirical data.

We can write second term of (18) in a discrete form:

Elp] = —In[%; dh; eClhi . X 2 #iWiiti (19)
where index i, | refers to lattice spatial locations. Now we
can use a cumulant generating function formula for the
distribution e¢[*l to study interactions between hidden
nodes and visible nodes. The associated cumulant
generating function of G(h;)is

K(©) = In[[ dh, eC®eth] = 3, kM5 (20)
where the nth cumulant is kl.(”) =d"K(t)/dt"|;=.
Applying equation (20) simplifies (19) to:

3 oW
Elgl = =%, % k" =1

=% % ki(l) Wi @; + X 2 ki(z) Wi Wi @; @y (21)
Equation (21) indicates that integrating out the
hidden fields yields an effective Hamiltonian for the
visible fields, which may include interactions of arbitrarily
high order among the visible variables. The strengths of
these interactions are weighed by the cumulant function

© 2025 Global Journals

(18)

associated with the hidden fields. This is the key to the
representational capability of the restricted Boltzmann
machine. For a restricted Boltzmann machine learning,
the connection weights W; are learned from
mesoscopic data patterns. The arbitrarily high-order
interactions between visible nodes can in principle
represent complex statistics of mesoscopic patterns.
Another observation of equation (21) is that there is no
need to explicitly include interactions between visible
nodes for a restricted Boltzmann machine. Interactions
among visible nodes are produced by marginalizing
over hidden nodes that have connections to the visible
nodes.

The above analysis permits further comparison
between the restricted Boltzmann machine and field
solutions in physics models. In physics models, the
statistics of hidden fields are not predetermined; rather,
they are obtained from microscopic physics models,
with formalisms derived from the underlying microscopic
interaction mechanisms. The interactions among visible
fields are similarly based on physical interactions. The
connection weights between visible and hidden fields
are auxiliary fields, and their statistics are determined by
sampling the action functional. At leading order, the
auxiliary field is obtained as a self-consistent solution
that optimizes the action functional.
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[1I. MEsoscoriC FIELD SOLUTION
INTEGRATING MACHINE LEARNING WITH
PHYSICS MODELS
We propose a mesoscopic field solution that
integrates machine learning solutions with physics

models. As demonstrated in [13], the field theory
approach ftreats physics-based and data-driven

Alp, f1 =i [ drf(r)p(r) = [ dr [ dr' p@)V (r,r)p(r) + In Z, (f)

where p(r) is the mesoscopic patterns field solution
and, V(r,r') is the mesoscopic field connecting
weights, LnZ,, (f) is the action functional of the hidden
fields and f(r) is the connecting weights between
visible fields and hidden fields. The machine learning
solution according to (22) corresponds to fields
sampling from a probability density P[¢] = e PAlr-f1/7,
as explained in (5).

Unlike traditional machine learning that relies on
assuming a statistical formalism of hidden nodes and
learning connecting weights from the observed
mesoscopic pattern data, we specify a formalism of
LnZ, in (22) based upon microscopic interacting
mechanisms (1). Now the connecting weights has the
physics meaning of auxiliary fields describing the
interaction between microscopic scale particle fields to
mesoscopic fields. Machine learning solution for
connecting weights can be obtained based upon
physics principles. Here we propose action functional
minimization to obtain the connecting weights self-
consistently. Minimization of the action functional (22)
gives-

P =05 f(r) =i [dr'V(r,r)pl)

SA[p.f1 _ _168Zn()
o 07 PO= 5w (23)
Notice that second equation of (23) is a
functional mapping between auxiliary fields and

mesoscopic fields via a microscopic interacting physics
mechanism. Its solution only depends upon the
microscopic partition function (13), and no observational
data is involved. For complex physics systems, the
second equation of (23) may be computationally

Zn(f) = (f dry - [ dry e~ if rD—katri—r2)?/2 ... e—if(TN)—kB(TN—1—TN)2/2)n

Each chain has Nparticles, starting with Ny
particles of species A for the first part of the chain and
ending with Ny particles of species B for the second
part of the chain. Ny + Ny = Nand, k, and kg are the
coefficients for nearest-neighbor harmonic interaction of
species Aand species B. The action functional of the
system is:

machine learning solutions as fundamentally equivalent.
In the previous section, we compared the physics model
with the traditional machine learning algorithm. The
physics model uses action functional (15) and the
layered machine learning model uses an energy
functional (17). Here, we propose a machine learning
mesoscopic field solution based on the action
functional:

(22)

intensive for an iterative solution. The machine learning
neural operator technique [28][29] offers an effective
approach to address this challenge. For our algorithm,
which incorporates specific microscopic interactions, it
is feasible to construct a neural operator that maps
between the auxiliary field and the mesoscopic field.
This step can be implemented as a backend operation
without incorporating observational data; instead, the
neural operator is trained using model-simulated data.

The mesoscopic field solution with action
functional (22) integrates physics-based principles with
data-driven machine learning. If a microscopic physics
model is absent, the connecting weights in (22) can be
learned directly from data, like traditional layered
Boltzmann machines. The system and hidden fields may
also be split into physics and data-driven components,
with their connecting weights optimized via the self-
consistent solution of (23) and contrast divergence
minimization [20]. Where microscopic interactions are
well understood, data-driven components represent
uncertainty or noise; where they are not, physics-based
components act as constraints or regularizers for the
data-driven approach.

We demonstrated our solution through
mesoscopic patterns generated by two interacting
species A and B. Particles from the two species are
bonded by a chain structure with harmonic interactions.
The chain structure with a harmonic bond is a basic
model for macromolecules and is widely used for
polymer science and biomolecular simulation [30]. Here,
we assume the interaction between the two different
species is constant and the spatial density is conserved
pa(m) + pg(r) = py. The partition function of the
microscopic model is:

(24)

A f] =ifdrf(r)-p— [dr [dr'ps@xps’) +InZ,, (25)

where g = (p4, pp), f = (fu f5), andy is the interacting
constant between the two species.
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We generate mesoscopic patterns by sampling
the system with action functional (25) on a two-
dimensional domain. The spatial lattice spacing is 0.2
and the normalized (via lattice spacing) microscopic
interacting parameters are k, = kz = 2.25. The chain
length is 100 with N, = 70 and Ny = 30. n is chosen to

073
(a)
0.725
x=01

072

20 40 60 80 100120

normalize density p, = 1. Figures 1a, 1b, and 1c show
examples of mesoscopic density p, for different
interacting parameters y. Figures 1c¢ and 1dshow two
different statistical mesoscopic sample patterns for the
same interacting parameter y = 0.4. The density pg is a
complementary of p, due to conserved local density.

& " (b)

0.8
‘;2 g L = 0.4
80 04 Sample 1
100 0.2
120

20 40 &0 80 100120

1
20 e
40
60 e
80 04

100 02

120
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(d)
x=01

Sample 2

Fig. 1: Mesoscopic Density a for Different Interacting Parameters (a) x=0.1, (b) x=0.4, (c) x=1.0, (d) x=0.4. (c)
and (d) are two Different Statistical Samples for the same Interacting Parameter x=0.4

To evaluate a machine learning algorithm's
ability to learn and generate mesoscopic spatial
patterns, we begin with training the algorithm with a set
of mesoscopic pattern samples. An out-of-sample
pattern is then selected, and noise is added to corrupt
the original pattern. The trained algorithm is tested on its
performance in recovering the original pattern from the
noisy version as well as its ability to generate new
patterns  with  similar  statistical properties. This
assessment uses the scenario above of two interacting
species within a domain size of 6.4.

In traditional Boltzmann machine learning,
connection weights between visible and hidden nodes
must be trained on large, statistically similar samples.
Figure 2a displays the original mesoscopic pattern
generated from two interacting species, while Figure 2b
shows a noisy version. Recovering the original pattern
requires training with many statistical samples; Figure 2c
illustrates a successful recovery using 80 training
samples with the same statistics. In contrast, Figure 2d
demonstrates that a restricted Boltzmann machine
trained with only 10 samples cannot effectively restore
the original pattern from noisy data.

© 2025 Global Journals
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(a)

15 20

Fig. 2: Restricted Boltzmann machine learning and pattern recovery. (a) Original mesoscopic pattern. (b)
Mesoscopic pattern with added noise (c) Recovery of original pattern for a restricted Boltzmann machine trained
with 80 samples of the same statistics (d) Recovered pattern for a restricted Boltzmann machine trained with 10

samples of the same statistics

For the field solution that integrates machine
learning with physics models, we first construct a
machine learning neural operator that maps between
auxiliary fields (or connection weights) and mesoscopic
fields (visible nodes). Figure 3 provides two examples
comparing the neural operator predicted mappings with

Input density

Auxiliaryfield
ground truth

the ground truth. This neural operator is trained solely by
1 8Zn(f)
Zm 6f(f)
and the microscopic partition function (24), without
using any mesoscopic data.

the simulated data from the formula p(r) =

Auxiliaryfield
neural operator prediction

Example 1

Example 2

Fig. 3: Neural Operator Functional Mapping between Auxiliary Fields and Mesoscopic Fields

With the established neural operator mapping
between mesoscopic fields and auxiliary fields, field
functional (25) enables the recovery of the original
mesoscopic pattern from a noisy input. In the context of
machine learning integrated with physical models,

typically only one or two original mesoscopic patterns
are needed to infer the interaction parameters of
actional functional (25). Figure 4 presents an example
illustrating the reconstruction of a mesoscopic pattern
from a noisy mesoscopic pattern utilizing a field-based
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approach that combines machine learning with physical
models.

In addition to recovering the original
mesoscopic pattern from observed noisy data, field
solutions that integrate machine learning with physical
models possess extrapolation capabilities beyond those
of conventional machine learning methods. For
instance, after recovering the true mesoscopic structure
from noisy observations, machine learning with physics
model approaches can generate statistical samples of
mesoscopic patterns under varying mesoscopic field

(2)

interaction strengths; without requiring additional data.
This capability is unattainable with traditional machine
learning frameworks like Boltzmann machines. In the
case of restricted Boltzmann machines, generating
patterns with different mesoscopic field interactions
demands large training data samples for each specific
interaction parameter. The restricted Boltzmann
machine must relearn weight statistics whenever the
underlying mesoscopic pattern distribution changes due
to a change of interaction parameter.

(b) (e

i} ]
oa] |
04

02,

Fig. 4. Learning and pattern recovery of the field solution that integrates machine learning with physics models. (a)
Mesoscopic pattern with added noise (b) Original mesoscopic pattern (c) Recovered mesoscopic pattern from field
solution that integrates machine learning with physics models; two samples are used to infer the interacting

parameter

Our field solution, which integrates machine
learning with physics models, also enables extrapolation
in dynamic evolution. The action functional (22), which is
based on system thermodynamics, serves as the free
energy of mesoscopic fields F~BA.Once the true
mesoscopic structure is recovered from noisy data, our
models can analyze how these pattens evolve-for
example, by following free energy gradients with local
mobility:

L =V [ME VLY (26)

t)

. i SF(pit) .
where M (¢, p) is a local mobility and % is the role of

the local free energy gradient. Traditional machine
learning methods such as Boltzmann machines cannot
perform this type of extrapolation on pattern evolution.
Because these models are data-driven, they need to
relearn weight statistics using large data samples when
mesoscopic  pattern  distributions  change  during
evolution.

IV. CONCLUSION

We use path integral methods to derive a
mesoscopic field solution that unifies machine learning
with physics models. In our solution, machine learning
architecture and physics models are represented as a
unified field entity. Microscopic physics mechanisms are

© 2025 Global Journals

incorporated as machine learning hidden fields and their
interactions with the mesoscopic field through auxiliary
fields are the connecting weights between machine
learning layers. Unlike traditional machine learning
models, such as layered Boltzmann machines, instead
of imposing statistical assumptions on hidden nodes
and learning weight statistics from data, our method
derives the hidden fields formalism based on
microscopic interaction mechanisms and determines
the connecting weights through action functional
minimization principle. To enhance machine learning
efficiency, we apply the functional neural operator
technique to map between auxiliary fields and
mesoscopic fields.

We demonstrate our solution via a case of
mesoscopic patterns generated by two interacting
species bonded by a chain structure. By integrating
principles from physics models with machine learning
methodologies, our  approach  achieves  high
performance in learning and generating mesoscopic
patterns with limited datasets. This technique effectively
captures physical interactions across multiple scales,
thereby enabling reliable extrapolation to patterns with
varying interaction parameters and dynamic evolution of
mesoscopic patterns. The mesoscopic field approach
unifying machine learning and physics models can be
readily used in diversified areas of physics, material
science, biology, and social dynamics. Future research
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may address complex applications with both limited
data and uncertain physical mechanisms, developing
efficient algorithms that merge physic-principle based

solutions,

such as self-consistent action functional

minimization and data-driven solutions, such as contrast
divergence minimization.
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