Leptochloa Fusca Cultivation for Utilization of Salt-Affected Soil and Water Resources in the Cholistan Desert

By Farooq Ahmad

University of the Punjab, New Campus, Lahore, Pakistan

Abstract - In the Cholistan Desert, 0.44 million ha are salt-affected low lying and clayey in nature locally known as 'dhars', where rainwater as well as saline groundwater could be utilized for growing salt grasses like *Leptochloa fusca* as forage during summer. *L. fusca* is a promising candidate grass for economic utilization and better management of sodic, high pH, saline soil and water resources of the Cholistan Desert. *L. fusca* is known to be a versatile, halophytic, primary colonizer, easily propagatable, perennial, nutritive and palatable forage plant species. The grass has the good biomass producing potential and can grow equally well both under upland and submerged saline soil environment.

Keywords: Cholistan, *Leptochloa fusca*, saline irrigation, salt-affected, soil reclamation.

GJHSS-B Classification: FOR Code: 090509, 961499
Leptochloa Fusca Cultivation for Utilization of Salt-Affected Soil and Water Resources in the Cholistan Desert

Farooq Ahmad

Abstract - In the Cholistan Desert, 0.44 million ha are salt-affected low lying and clayey in nature locally known as 'dhars', where rainwater as well as saline groundwater could be utilized for growing salt grasses like Leptochloa fusca as forage during summer. L. fusca is a promising candidate grass for economic utilization and better management of sodic, high pH, saline soil and water resources of the Cholistan Desert. L. fusca is known to be a versatile, halophytic, primary colonizer, easily propagatable, perennial, nutritious and palatable forage plant species. The grass has the good biomass producing potential and can grow equally well both under upland and submerged saline soil environment.

Keywords : Cholistan, Leptochloa fusca, saline irrigation, salt-affected, soil reclamation.

1. Introduction

The Cholistan Desert (Figure 1) lies within the southeast quadrant of Punjab province between 27° 42' and 29° 45' North latitude and 69° 52' and 73° 05' East longitude (FAO/ADB, 1993; Arshad et al., 1995; Jowkar et al., 1996; Ahmad, 1998; 1999a; 1999b; 1999c; 2003; Ahmad et al., 2004; Ahmad, 2005a; 2005b; Ahmad et al., 2005; Ahmad, 2007a; 2007b; Ahmad and Farooq, 2007; Ahmad, 2010; 2011; 2012a; 2012b; 2013) and covers an area of 2,580,000 ha (Ahmad, 2002; 2010), out of which 1.13 million ha comprising stable as well as non-stable sand dunes, 0.95 and 0.06 million ha consist of sandy and loamy soils respectively, while 0.44 million ha are clayey in nature locally known as 'dhars'. About 17% of the Cholistan Desert consist of such 'dhars' (Table 1) having flat and hard surface with salt incrustation and surrounded by sand dunes. Dhars are shallow to moderately deep, poorly drained with low vegetation, calcareous and having saline sodic fine to medium textured clayey soils. Except Haloxylon recurvum, other plant species can’t survive due to salinity, compaction of soil and complete inundation during rainy season. The ponded rainwater in 'dhars' stagnates for a period until the water evaporates (Khan et al., 1990; Ahmad, 2010). It is judicious to utilize the land using ground saline and surface rainwater resources for growing palatable grasses. Biological approach for economic utilization of salt-affected soil is feasible and is the only viable method when the soil is sodic and sweet water is not available for irrigation (Abdullah, 1985; Ahmad, 2010).

Leptochloa fusca is high tolerant to saline and sodic conditions even irrigated by saline groundwater or ponded rainwater. After the successful cultivation of L. fusca in the Cholistan Desert, other palatable grasses like para grass (Brachiaria mutica), Rhodes grass (Chloris gayana), Bermuda grass (Cynodon dactylon) and Sporobolus grass species can be tested (Abdullah et al., 1990; Ahmad, 2010). The cultivation of salt tolerant grasses would not only provide much needed palatable forage for livestock but also improve the physical properties of the soil due to biological activity of grass roots.

II. Research Design and Methods

The purpose of this paper is to assess the available evidence and published arguments and to provide a constructive working synthesis of evidence about Leptochloa fusca in the literature. L. fusca is a promising grass for economic utilization and better management of sodic, high pH, saline soil and saline water resources of the Cholistan Desert. The plants respond to salinity stress in part by modulating gene expression, which ultimately leads to the restoration of cellular homeostasis, detoxification of toxins and recovery of growth (Ashraf and Harris, 2004). Salinity in soil or water is one of the major stresses and, especially in arid and semi-arid regions, can severely limit crop production (Shannon, 1997; Mansour, 2000; Ashraf and Harris, 2004; Ashraf and Foolad, 2005; Ashraf and Foolad, 2007). Several physiological responses to salinity that differ qualitatively or quantitatively between salt tolerant and sensitive species (Ashraf and Harris, 2004), and that are candidate indicators, it has not yet proved possible to find any sensitive criterion that could reliably be used by breeders to improve salt tolerance of plants (Kumar et al., 1994; Ashraf and Harris, 2004; Hamdia and Shaddad, 2010). Although the groundwater is saline but it can be used for saline agriculture to grow salt tolerant trees, vegetables, crops and fodder grasses in non-saline-non-sodic coarse textured soils with minimum adverse effects due to rapid leaching of salts.
beyond the root zone and flushing of salts from root zone by rains (Abdullah et al., 1990; Ahmad, 2010).

![Location map of the Cholistan Desert](image)

Figure 1: Location map of the Cholistan Desert

Table 1: Soil Types

<table>
<thead>
<tr>
<th>Soil Types</th>
<th>Extent (Ha)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand dunes</td>
<td>1,133,900</td>
<td>44.0</td>
</tr>
<tr>
<td>Sandy soils</td>
<td>945,500</td>
<td>37.0</td>
</tr>
<tr>
<td>Loamy soils</td>
<td>58,700</td>
<td>2.0</td>
</tr>
<tr>
<td>Saline sodic clayey soils (Dhars)</td>
<td>441,900</td>
<td>17.0</td>
</tr>
<tr>
<td>Total</td>
<td>2,580,000</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: PADMU - Pakistan Desertification Monitoring Unit (1986).

III. Growth Characteristics of *Leptochloa Fusca*

Leptochloa fusca is also known as *Diplachne fusca*, widely spread in salt affected regions of Pakistan. This forage plant is locally known as “Kallar grass” (salt grass). Being a grass of sub-tropical climate, the plant follows the photosynthetic CO₂ fixation process of C₄-NAD-malic enzyme metabolism (Gate, 1972; Zafar and Malik, 1984; Ahmad, 2010). It is native of saline soil which gives clear indication of its halophytic character; the plant is perennial or biennial in nature (Rao and Arshad, 1991; Arshad and Rao, 1993). It has been regarded as good quality forage especially in salt-affected and waterlogged areas where other superior forage species may not grow successfully.

Leptochloa fusca can be easily propagated and established through seed, stem cutting, root stumps or rhizomes. The grass can grow to a height of 1 to 1.5 meter with a high leaf production rate and can be grazed directly or cut for stall-feeding. This fodder appears highly palatable to sheep, goats, buffaloes and cattle alike and no toxic effects of this grass during long-term consumption have been diagnosed. Moreover, it is similar to other conventional fodder regarding its nutritional status and 3-4 cutting within 3 months may be easily harvested, producing 20-40 tons of green fodder per ha per year or 5-10 tons per ha per cutting in salt-affected soils (Sandhu et al., 1981; Qureshi et al., 1982; Sandhu, 1993; Ahmad, 2010). The grass grows well during the hot season from March to September with peak yields during rainy season i.e. July and August in Pakistan, indicating a strongly thermophilic character. The development of extensive and dense fibrous root system has been observed even in highly sodic soils (Joshi et al., 1981; Ahmad, 2010). The penetration of roots in such soils can enhance hydraulic conductivity, microbial activity, organic matter and ultimately leaching of salts. Joshi (1981) noted a decline of *L. fusca* growth due to decrease of soil sodicity, while Haq and Khan (1971) observed that *L. fusca* has a general tendency to decrease ECₑ (electrolyte conductivity), SAR (sodium adsorption ratio), pH (soluble ions) and even ESP (exchangeable sodium percentage) of artificially salinized soils. Malik (1986) confirmed the utility of *L. fusca* not only as a primary colonizer of salt-affected
lands but also as ameliorative plant for the soil (Ahmad, 2010).

IV. Nutritional Requirements

It has been observed that 3-4 cuttings of this grass could be easily taken without the addition of nitrogen (N) fertilizer in salt-affected and less fertile soils. Malik (1980) demonstrated a high activity of nitrogen, which indicates strong associative symbiotic relationship of N2-fixing bacterium (Bacillus gram negative) in the rhizosphere of L. fusca. Moreover, the nitrogen fixation through the growth of blue green algae and Azolla under flooded conditions may partly contribute to the nitrogen supply and economy of the specie. It was also observed that L. fusca contribute more stable organic matter fraction due to its slow decomposition as compared to succulent plant species like Sesbania aculeata. Kumar (1980) reported an abrupt increase in the yield of L. fusca from 24-26 tons per ha per year without N application to 41-46 tons per ha per year, when only 40 kg N per ha was applied in a sodic soil. Abdullah (1985) showed a definite ameliorative effect of phosphorus (P) on the growth of L. fusca under saline environment (Hanson and Scott, 1980; Agboma et al., 1997a; Agboma et al., 1997b; Díaz-Zorita et al., 2001). The application of P at the rate of 50 kg per ha gave significantly higher fresh and dry matter yield at ECe 10 dS m–1 than all other treatments, which was followed by 75 and 25 kg P per ha at ECe 20 dS m–1. The synergistic P x salinity effect was obvious at the highest P level of 75 kg per ha. Thus, the specie is responded favourably to P application at all salinity levels studied i.e. ECe 3.5 to 30 dS m–1, indicating higher P requirements. In general, the specie is capable to accumulate trace elements (Zn, Cu, Fe, Mn) in a sufficient amount to meet the dietary requirements of the livestock under saline soil conditions (Abdullah et al., 1990; Ahmad, 2010).

V. Role in Soil Reclamation

Leptochloa fusca behaved as a typical crypnoeu-halophyte having both accumulating and excreting properties (Abdullah, 1986; Abdullah et al., 1990; Ahmad, 2010). The efficient salt excretion from the shoot makes it a useful plant to deplete excessive salt from the root-zone and to provide the better root-environment for the growth of other plants. The extensive and fibrous roots of grass can open soil, increase air exchange, organic matter and hydraulic conductivity, decrease rhizosphere pH, stimulate biological activities, dissolve native CaCO3, enhance leaching of salts, lower the water table of waterlogged soils, release plant nutrients and the shoot foliage can increase organic matter, humus and soil mulching, decrease surface evaporation and improve physical properties of soil with the passage of time (Haq and Khan, 1971; Joshi et al., 1981; Abdullah et al., 1986; Malik et al., 1986; Akhtar et al., 1988; Ahmad, 2010).

VI. Use of Ground Saline Water for Irrigation

Dense saline-sodic soils of the Cholistan Desert (Baig et al., 1975) can be used for growing such palatable grasses, which is salt tolerant and capable of surviving in soils having poor properties (Baig et al., 1980). The sandy and loamy soil that is about 1 million ha can be brought under agriculture using underground saline water and harvested rainwater. Experiments showed that under certain conditions plant could not only survive but also even vast area of land could be irrigated with water of such high concentration. Moderately saline irrigation water stimulates vegetation, assists the benevolent bacteria of the soil and improves yield and quality (Akram et al., 1995). Further, use of brackish water reduces soil evaporation, transpiration of plants and increases resistance to drought (Abdullah et al., 1990; Ahmad et al., 1992; Ahmad, 2010). The solution of the adverse effect is suggested (CHIDS, 1991):

- Identification and selection of species and varieties tolerant of high salinity,
- The use of brackish water of such a degree of salinity only as is compatible with help of such species and with the nature of the soil,
- The selection of irrigation with such water in areas in which soils permeable, well drained and rich in calcium and the hydrates of iron and aluminium.

Pakistan Council of Research in Water Resources (PCRWR) has planted Eucalyptus, Acacia, Parkinsona, Zizyphus (Beri), Tamarix, Prosopis, Asparagus, Date palm, Pomegranate, Jojoba and Iple (Leucaena leucocephala). The saline water of concentration TSS (total soluble salts) 2800 ppm (part per million) and SAR (sodium adsorption ratio) 14 was being used for irrigation (Dalton et al., 1997) along with harvested rainwater (Figure 2, 3, 4 and 5) to flush the salts at certain interval (Abdullah et al., 1990; Ahmad, 2010). The calcium sulphate fertilizer was also used to neutral the adverse effects of sodium salts. The growth of some of them is given in table 2, 3 and 4.
Table 2: Biomass of Fodder Grasses/Ha Grown at Dingarh, Cholistan Desert Using Saline Water

<table>
<thead>
<tr>
<th>Fodder grass</th>
<th>Biomass Fresh (kg)</th>
<th>Biomass Dry (kg)</th>
<th>Carrying capacity per year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Camel</td>
</tr>
<tr>
<td>Cenchrus ciliaris</td>
<td>16811</td>
<td>15012</td>
<td>2</td>
</tr>
<tr>
<td>Panicum antidotale</td>
<td>22191</td>
<td>12407</td>
<td>1</td>
</tr>
<tr>
<td>Lasius sindicus</td>
<td>25217</td>
<td>18247</td>
<td>2</td>
</tr>
<tr>
<td>Napier Bajra</td>
<td>43710</td>
<td>38780</td>
<td>4</td>
</tr>
<tr>
<td>Leptochloa fusca</td>
<td>13449</td>
<td>11445</td>
<td>1</td>
</tr>
</tbody>
</table>

Forage requirement (Dry matter per day):
1 sheep = 2.5 kg
1 goat = 3.0 kg
1 camel = 25.0 kg
1 cattle = 12.5 kg

Source: PADMU – Pakistan Desertification Monitoring Unit (1986).

Table 3: Biomass Potential of Some Salt Tolerant Forages

<table>
<thead>
<tr>
<th>Species</th>
<th>Green matter (kg/plant)</th>
<th>Dry matter (kg/plant)</th>
<th>Green matter yield (tons/ha)</th>
<th>Dry matter yield (tons/ha)</th>
<th>Plants/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atriplex amnicola 949</td>
<td>4.31</td>
<td>1.99</td>
<td>2.7</td>
<td>1.24</td>
<td>625</td>
</tr>
<tr>
<td>Atriplex amnicola 971</td>
<td>5.37</td>
<td>2.39</td>
<td>3.4</td>
<td>1.49</td>
<td>625</td>
</tr>
<tr>
<td>Atriplex amnicola 573</td>
<td>6.73</td>
<td>3.43</td>
<td>4.2</td>
<td>2.14</td>
<td>625</td>
</tr>
<tr>
<td>Atriplex amnicola × Atriplex nummularia</td>
<td>5.13</td>
<td>2.15</td>
<td>3.2</td>
<td>1.34</td>
<td>625</td>
</tr>
<tr>
<td>Atriplex buburyana 1205 (Carnavan)</td>
<td>3.11</td>
<td>1.6</td>
<td>7.8</td>
<td>4.0</td>
<td>2500</td>
</tr>
<tr>
<td>Atriplex buburyana 1200 (Leonora)</td>
<td>2.0</td>
<td>1.2</td>
<td>5.0</td>
<td>3.0</td>
<td>2500</td>
</tr>
<tr>
<td>Atriplex cinerea 524</td>
<td>5.0</td>
<td>2.35</td>
<td>3.1</td>
<td>1.46</td>
<td>625</td>
</tr>
<tr>
<td>Atriplex lentiformis</td>
<td>5.45</td>
<td>3.19</td>
<td>3.4</td>
<td>2.0</td>
<td>625</td>
</tr>
<tr>
<td>Mairanea aphyllea 1062</td>
<td>2.53</td>
<td>1.2</td>
<td>6.3</td>
<td>3.0</td>
<td>2500</td>
</tr>
</tbody>
</table>

Source: PADMU – Pakistan Desertification Monitoring Unit (1986).

Table 4: Survival Percentage and Canopy Cover of Some Plants Grown in the Cholistan Desert

<table>
<thead>
<tr>
<th>Name of Tree / Shrub / Bush</th>
<th>Age (months)</th>
<th>Survival (%)</th>
<th>Height (cm)</th>
<th>Canopy Cover (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Mean</td>
</tr>
<tr>
<td>Eucalyptus (C. camdulensis)</td>
<td>24</td>
<td>76</td>
<td>90</td>
<td>156</td>
</tr>
<tr>
<td>Tamarix</td>
<td>24</td>
<td>48</td>
<td>59</td>
<td>106</td>
</tr>
<tr>
<td>Acacia</td>
<td>24</td>
<td>67</td>
<td>66</td>
<td>125</td>
</tr>
<tr>
<td>Beri (Zizyphus)</td>
<td>24</td>
<td>43</td>
<td>55</td>
<td>118</td>
</tr>
<tr>
<td>Jojoba (Simmondsia chinensis)</td>
<td>18</td>
<td>76</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Atriplex halimus (Local)</td>
<td>11</td>
<td>65</td>
<td>--</td>
<td>77</td>
</tr>
<tr>
<td>Atriplex amnicola 573</td>
<td>11</td>
<td>40</td>
<td>--</td>
<td>48</td>
</tr>
<tr>
<td>Atriplex amnicola 197</td>
<td>11</td>
<td>80</td>
<td>--</td>
<td>74</td>
</tr>
<tr>
<td>Atriplex amnicola 223</td>
<td>11</td>
<td>25</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td>Atriplex buburyana 1041</td>
<td>11</td>
<td>60</td>
<td>--</td>
<td>51</td>
</tr>
<tr>
<td>Atriplex buburyana 1036</td>
<td>11</td>
<td>70</td>
<td>--</td>
<td>66</td>
</tr>
<tr>
<td>Atriplex cinerea</td>
<td>11</td>
<td>40</td>
<td>--</td>
<td>28</td>
</tr>
<tr>
<td>Atriplex lentiformis</td>
<td>11</td>
<td>60</td>
<td>--</td>
<td>76</td>
</tr>
<tr>
<td>Atriplex commercial</td>
<td>11</td>
<td>25</td>
<td>--</td>
<td>44</td>
</tr>
<tr>
<td>Mairanea aphyllea</td>
<td>11</td>
<td>85</td>
<td>--</td>
<td>35</td>
</tr>
</tbody>
</table>

Source: PADMU - Pakistan Desertification Monitoring Unit (1986).
The germination capacity of different varieties of tomato, ladyfinger (bhindi), spinach (palak), cowpea and zucchini (tori) at different levels ECₑ 3 to 18 mmho/cm was studied in sand culture (Akbar et al., 1996; Akbar, 2002; PADMU, 1986; Ahmad, 2010). The germination was delayed and decreased with the increase in salinity. Significant vegetables were found to fall in the order of salt tolerance: Spinach > Zucchini > Cowpea > Tomato > Ladyfinger (Abdullah et al., 1988; Abdullah et al., 1990; Abdullah et al., 1991; Ahmad, 2010). List of some salt tolerant grasses and forages cultivated in the Cholistan Desert using saline water is given in table 5.
VII. Conclusions

The growth factors such as easy propagation, high spreading rate, colonizing ability, vigorous growth, yield, palatability, nutritional value, long term survival and high adaptability to environmental stress make *L. fusca* an excellent and versatile specie that can be cultivated using brackish water and salt-affected land of the Cholistan Desert for economic exploitation. *L. fusca* develop succulence, which dilute the level of salt in the plant and stores water for use during dry period. The specie has great promise for the economic utilization of sodic, high pH, waterlogged and saline soils. Similarly, high saline-sodic water can be used for successful cultivation of *L. fusca*.

VIII. Acknowledgements

The author wishes to thank Dr. Mohammad Arshad (*Late*), Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Pakistan for providing technical assistance during the field study of the Cholistan Desert and valuable comments on a draft-version of this paper.

References Références Referencias

The author submitted the text of the paper to Revista Sociedade & Natureza, Instituto de Geografia, Universidade Federal de Uberlândia, Brazil for publication. The Revista Sociedade & Natureza is not on the list of approved journals of Higher Education Commission, Pakistan. The author obtained N.O.C. from the editor Revista Sociedade & Natureza, Prof. Dr. Silvio Carlos Rodrigues and re-submitted the revised and modified text along with the N.O.C. to the Editor-in-Chief Dr. Vivek Dubey, Global Journals Inc., USA for re-publication.