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international competitiveness. To ensure the successful implementation of CCMS, there have been calls 
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whether STEM majors who arguably represent the strongest candidates for the teaching force have the 
depth of content understanding in order to teach mathematical topics at the rigorous level that CCMS 
expects, and whether future mathematics teachers need the opportunities to learn rigorously the K-12 
mathematical topics they are expected to teach down the road. Our paper addresses the knowledge gap 
in these two areas through investigating the understanding of the concept of slope among a group STEM 
majors who were enrolled in an undergraduate experimental teacher preparation program. We found that 
even among these students, there are holes in their conceptual understanding of slope and of the 
connection between linear equation and its graph. These weaknesses could pose challenges for their 
preparedness to teach the slope concept consistent with the rigor that CCMS calls for. Taking courses 
that specifically address the K-12 math topics is helpful. We discuss implications of these findings for the 
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Pre-Service Stem Majors' Understanding of 
Slope According to Common Core Mathematics 

Standards: An Exploratory Study
Xiaoxia A. Newton α & Rebecca C. Poon σ

Abstract- Common Core Mathematics Standards (CCMS) is a 
major effort at revamping the U.S. K-12 mathematics 
education in order to improve American students’ 
mathematical performance and international competitiveness. 
To ensure the successful implementation of CCMS, there have 
been calls for both recruiting from those with the strongest 
quantitative backgrounds (e.g., STEM majors) and offering 
rigorous mathematics training in teacher preparation. Missing 
from the literature are questions of whether STEM majors who 
arguably represent the strongest candidates for the teaching 
force have the depth of content understanding in order to 
teach mathematical topics at the rigorous level that CCMS 
expects, and whether future mathematics teachers need the 
opportunities to learn rigorously the K-12 mathematical topics 
they are expected to teach down the road. Our paper 
addresses the knowledge gap in these two areas through 
investigating the understanding of the concept of slope among 
a group STEM majors who were enrolled in an undergraduate 
experimental teacher preparation program. We found that 
even among these students, there are holes in their 
conceptual understanding of slope and of the connection 
between linear equation and its graph. These weaknesses 
could pose challenges for their preparedness to teach the 
slope concept consistent with the rigor that CCMS calls for. 
Taking courses that specifically address the K-12 math topics 
is helpful. We discuss implications of these findings for the
content preparation of mathematics teachers.
Keywords: common core mathematics standards, stem 
majors, content preparation, slope concept.

I. Introduction

mproving American students’ opportunities to learn 
and performance in mathematics and science has 
been of major concern for several decades. Despite 

waves of reform, student mathematical performance in 
the U.S. remains lackluster in international comparisons 
(Loveless, 2013; OECD, 2014). Common Core 
Mathematics Standards (CCMS), characterized by its 
focus, coherence, and rigor, are believed by many to 
have potential for improving students’ mathematical 
learning, if well implemented (Schmidt & Houang, 2012).
The success of CCMS on student learning in part 
depends on teachers who are capable of teaching 
CCMS. Consequently, there have been calls for both 
recruiting from those with the strongest quantitative 
backgrounds (e.g., STEM majors) and offering rigorous 

Author α : e-mail: xiaoxia_newton@uml.edu

mathematics training in teacher preparation (Schmidt, 
Houang, & Cogan, 2011). 

Despite such calls, existing literature is void in 
two areas. First, to the best of our knowledge, there has 
been no empirical evidence on whether these STEM 
majors who arguably represent the strongest candidates 
for the teaching force have the depth of content 
understanding in order to teach mathematical topics at 
the rigorous level that CCMS expects. Secondly, it is not 
clear from the existing literature what counts as rigorous 
mathematics training. Should rigorous training in 
mathematics mean more advanced college 
mathematics courses (e.g., taking more upper division 
math courses)? Or should rigorous training mean future 
mathematics teachers need the opportunities to learn 
rigorously the K-12 mathematical topics they are 
expected to teach down the road? 

Our paper is an attempt to address the 
knowledge gap in these two areas through investigating 
the understanding of the concept of slope among a 
group STEM majors who were enrolled in an 
undergraduate experimental teacher preparation 
program. Though we could have chosen any topic, 
slope concept provides an ideal platform for 
investigating the question of whether teacher candidates 
are adequately prepared to teach mathematics at the 
level of rigor that is required by CCMS for the following 
reasons. First, slope of a line features prominently in 
algebra and is a foundational concept in functions. 
Despite its importance, research has well documented 
the difficulties both students and teachers (pre- and in-
service) have in terms of understanding the concept of 
slope (Stump, 2001a, 2001b; Teuscher & Reys, 2010; 
Zaslavsky, Sela, & Leron, 2002). Secondly, this difficulty 
will likely increase with the adoption of Common Core 
Mathematics Standards (CCMS), because CCMS 
approaches the concept of slope in significantly different 
ways. 

To begin with, CCMS makes the distinction 
between the slope of a line and the slope of two chosen 
points on the line. In contrast, most existing textbooks 
conflate the two. Furthermore, CCMS emphasizes 
reasoning and proof. Therefore, CCMS requires that 
students be able to prove that slope of a line can be 
defined by any two distinctive points on the line. The 
proof invokes the concept of similar triangles and 
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therefore, according to CCMS, students will be exposed 
to the concept of similar triangles before learning the 
concept of slope. This also means that students are 
expected to have a much stronger grasp of the 
connection between linear equations and their graphs 
than expected in the past. This logical sequence of 
topics and the emphasis on the connection between 
equations and graphs are absent in the current 
curriculum and textbooks (Wu, 2014). Given the 
significant departure of CCMS from the old ways of 
teaching and learning of slope, the question naturally 
arises: How prepared are pre-service teachers in terms 
of their own understanding of slope according to 
CCMS?

We focused on STEM majors who were part of 
the undergraduate mathematics and science teacher 
preparation program at one of the research universities 
in the west coast of the United States. Focusing on 
STEM majors provides an opportunity to assess content 
understanding among those who arguably possess the 
strongest mathematical and quantitative backgrounds. 
There have been sustained efforts at recruiting 
undergraduate STEM majors into teaching through 
programs such as 100k10 in New York, UTeach in 
Texas, and UTeach replication sites across the country. 
The undergraduate teacher preparation program we 
focused on offers a unique opportunity to examine the 
mathematical understanding of prospective teachers, 
because the mathematics department offers a three-
course sequence coursework focusing on grades 6 
through 12 mathematics topics for mathematics majors 
who intend to pursue teaching as a career. The content 
of these courses aligns well with the CCMS. 
Consequently, we ask the question: Is there any 
qualitative difference in the understanding of slope 
concept between those who took the course versus 
those who did not?

This paper is structured as follows. We first 
provide an overview of how slope is typically 
conceptualized in previous research, state content 
standards, and textbooks, highlighting the problematic 
aspects of how slope is typically conceptualized and 
contrasting this with how CCMS intends to overcome 
these problems. We then review the literature on 
characteristics of mathematical understanding as a 
basis on which to build a framework for examining the 
mathematical content understanding of slope according 
to the CCMS. After this, we describe various aspects of 
the inquiry methods. Following this, we present our 
findings and discuss their implications for mathematics 
teachers' content training in order to teach K-12 
mathematics topics that meet the expectations of 
CCMS.

II. Conceptualization of Slope: 
Pre-Common Core Vs. Common Core

a) Previous Research, State Standards, and Textbooks 
The conceptualization of slope in various 

research studies shares some similarities. Common 
definitions of slope include geometric ratio, algebraic 
ratio, physical property, functional property, parametric 
coefficient, trigonometric conception, calculus 
conception, and real world representations (Moore-
Russo, Conner, & Rugg, 2011; Stump, 1999). While 
comprehensive, these definitions can potentially pose 
difficulties for the purpose of teaching and learning 
because not only is the list long, but it is not clear from 
existing literature how these different categories are 
related to one another (i.e., mathematical coherence), 
for what purposes (i.e., purposefulness), and under 
what context to use which definition (i.e., 
connectedness).

State standards and textbooks (e.g., Burger et 
al., 2007; Collins et al., 1998; Larson et al., 2004a, 
2004b), on the other hand, tend to define slope in terms 
of the ratio, in particular, what is considered as 
geometric ratio in terms of “rise over run” (Stanton & 
Moore-Russo, 2012). This definition is problematic. To 
begin with, the focus on “rise over run” orient learners’ 
attention on the algorithm for calculation instead of 
conceptual understanding of what slope is. Secondly, 
the definition conflates the slope calculated using two 
points on the line with the slope of the line. In other 
words, if we were to take two different points, how do we 
know the ratio will be the same? Further, are we 
confident that two pairs of points (i.e., four points) are 
enough to say that any two points will give the same 
ratio since there are infinite numbers of points on the 
line? Finally, the definition assumes teachers and 
students will know why the ratio (of vertical change per 
unit of horizontal change) is always the same without 
given an explanation. These problems make it difficult 
for the intended users (i.e., teachers and students) to 
make sense of what slope is. The likely consequence of 
over-relying on the formulaic definition of slope is that 
learners will know the formula without understanding 
what the formula means or why it works. As Walter and 
Gerson (2007) observed that:

“In virtually every classroom in the U.S., students are 
taught the phrase ‘rise over run’ as a mnemonic for 
the algorithm for calculating slope ‘change in y, over 
the change in x,’ for an arbitrary pair of points in a 
coordinate plane. The result of this instrumental 
device is an instrumental understanding (Skemp, 
1976/[2006]) of slope as a fraction, with the change 
in y as the numerator and the change in x as the 
denominator. Students with this understanding are 
poorly equipped to make the cognitive leap which 
seems necessary in order to move from local 



 
 

 

 
 

 
 

  

 

 

 

 

  

 
 

   
   

 

 

  
  

  
 V

ol
um

e 
X
V
  

Is
su

e 
V
II 

 V
er
sio

n 
I 

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

© 2015   Global Journals Inc.  (US)

-

  
  
 

29

Ye
ar

20
15

  
 

( H
)

Pre-Service Stem Majors' Understanding of Slope According to Common Core Mathematics Standards: An 
Exploratory Study

  

calculation-based understanding to global 
understanding of the quotient’s meaning for the way 
a line is positioned in the plane or to make 
connections with the idea of rate of change.” (p.
204). 

Consistent with Walter and Gerson’s 
observations, studies have shown that students have 
difficulties identifying slope of a line from its graph 
(Postelnicu & Greens, 2012), computing slope of a line, 
or relating slope to the measure of steepness 
(Postelnicu, 2011; Postelnicu & Greens, 2012; Stump, 
2001b). These difficulties point to the importance of 
helping students understand why taking any two points 
on the line will give the same answer and that how the 
slope being the same along the graph controls its 
shape. The implication is that in order to have a firm 
understanding of slope, one must understand explicitly 
the connection between linear equation and its graph. 
Indeed the concept of slope brings forth the need to 
connect the algebraic aspect of linear equation and the 
geometric aspect of its graph.

b) CCMS Approach to Slope
To remedy how slope has been treated in 

previous state standards and textbooks, CCMS presents 
a coherent learning progression on the topic. CCMS 
provides 8th graders with an intuitive approach to 
congruence and similarity by getting them comfortable 
with the angel-angle criterion for similar triangles. 
Following this, CCMS requires that 8th graders use 
similar triangles to explain why the slope of a non-
vertical line can be calculated using any two distinctive 
points on the line. Teaching similarity to help students 
make sense of the concept of slope equips them with a 
powerful tool to solve all sorts of linear equation 
problems without having to resort to memorizing 
different forms of linear equations (two-point, point-
slope, slope-intercept, and standard), because now 
students are provided with the explicit knowledge and 
understanding that slope can be calculated using any 
two points on the line that suit one’s purpose (for 
examples, see Newton & Poon, 2015).

Furthermore, CCMS’ approach to slope 
connects the algebra of the linear equation and the 
geometry of the slope. This interconnectedness helps 
students see how slope being the same all along the 
graph controls its shape (Wu, 2010b, 2014, 
forthcoming). Finally, understanding similarity helps 
students to build a foundation for learning high school 
geometry. And a solid understanding of slope is 
foundational for studying other advanced topics 
involving slope such as functions. CCMS’s effort at 
maintaining grade-to-grade mathematical continuity and 
coherence represents a significant departure from old 
curriculum that is characterized as “a mile wide but an 
inch deep” (Schmidt et al., 2001). The rationale for 

CCMS’ effort at promoting and emphasizing content 
understanding is best captured by the following 
paragraph:

“Students who lack understanding of a topic may rely 
on procedures too heavily. Without a flexible base 
from which to work, they may be less likely to 
consider analogous problems, represent problems 
coherently, justify conclusions, apply the 
mathematics to practical situations, use technology 
mindfully to work with the mathematics, explain the 
mathematics accurately to other students, step back 
for an overview, or deviate from a known procedure 
to find a shortcut. In short, a lack of understanding 
effectively prevents a student from engaging in the 
mathematical practices” (CCMS).

c) Our Scenario Question
Consistent with the emphasis of CCMS, we 

used the following scenario question to investigate pre-
service STEM majors’ understanding of the concept of 
slope and the connection between linear equation and 
its graph:

How would you help eighth graders understand 
that the slope of a non-vertical line can be calculated 
using any two distinct points on the line (e.g., the slope 
of the line below can be calculated with points P1 and P2

or points P3 and P4)?

Characteristics Exemplify Content Understanding 
According to CCMS

Several characteristics of content 
understanding central to teaching are common 
emphasis in the seminar work by leading scholars in 
education and mathematics community. These 
characteristics tend to cluster around coherence (e.g., 
connectedness among mathematical concepts), 
reasoning (e.g., using definitions as a basis for logical 
reasoning), and purposefulness and/or key ideas (e.g., 
mindful of why to study a concept and how the concept 
might be related to prior or later topics). These central 
characteristics are the basis of our framework for 
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examining our study participants’ content understanding 
of the slope concept according to CCMS. This section 
reviews the key ideas proposed by prior researchers 
and shows how they informed the conception of our 
framework.

d) Education and Mathematics Scholars’ Work on 
Content Understanding

In his 1985 presidential address at the annual 
meeting of the American Educational Research 
Association, Lee Shulman (1986) described content as 
“the missing paradigm” in research on teaching and 
proposed “pedagogical content knowledge” (PCK) as 
one of the several types of knowledge teachers need in 
order to teach. Since then, scholars have attempted to 
elaborate what PCK may entail and link it to student 
learning (e.g., Ball, 1990; Ball, Hill, & Bass, 2005; Ball, 
Hoover, & Phelps, 2008; Baumert et al., 2010; 
Schoenfeld & Kilpatrick, 2008).

One theoretical framework of proficiency in 
teaching mathematics came from Schoenfeld and 
Kilpatrick (2008). Schoenfeld and Kilpatrick (2008) argue 
that proficient teachers’ knowledge of school 
mathematics is both broad and deep. The breadth 
focuses on teachers’ ability to have multiple ways of 
conceptualizing the content, represent the content in 
various ways, understand key mathematical ideas, and 
make connections among mathematical topics. The 
depth, on the other hand, refers to teachers’ 
understanding of how the mathematical ideas grow 
conceptually from one grade to another.

The characteristics of content understanding 
outlined in Schoenfeld and Kilpatrick’s framework are 
similar to the ideas rooted in a series of work by 
Deborah Ball and her colleagues (Ball, 1990; Ball, Hill, & 
Bass, 2005; Ball, Hoover, & Phelps, 2008) and to those 
outlined in the book of Liping Ma (1999) on “profound 
understanding of fundamental mathematics (PUFM)”.  
Ball and her colleagues call the kind of content 
understanding described by Schoenfeld and Kilpatrick, 
“mathematical content knowledge for teaching” (Ball, 
Hill, & Bass, 2005; Ball, Hoover, & Phelps, 2008). In her 
earlier work, Ball (1990) proposed four dimensions of 
subject matter knowledge for teaching that mathematics 
teachers need to have, including: (1) possessing correct 
knowledge of concepts and procedures; (2) 
understanding the underlying principles and meanings;
(3) knowing the connections among mathematical 
ideas, and (4) understanding the nature of mathematical 
knowledge and mathematics as a field (e.g., being able 
to determine what counts as an “answer” in 
mathematics? What establishes the validity of an 
answer? etc.).  

In the work that followed, Ball and her 
colleagues (Ball, Hill, & Bass, 2005) defined 
“mathematical content knowledge for teaching” as 
being composed of two key elements: “common” 

knowledge of mathematics that any well-educated adult 
should have and mathematical knowledge that is 
“specialized” to the work of teaching and that only 
teachers need know.” (p. 22). The notion that there is 
content knowledge unique to teaching was further 
expanded in their most recent work. Ball and her 
colleagues (Ball, Thames, & Phelps, 2008) proposed a 
sub-domain of “pure” content knowledge unique to the 
work of teaching, called specialized content knowledge. 
Specialized content knowledge is needed by teachers 
for specific tasks of teaching (e.g., responding to 
students’ why questions), which in principle seems 
similar to Liping Ma’s proposed concept of “profound 
understanding of fundamental mathematics” (PUFM) 
(1999). 

Ma proposed the concept of PUFM in her much 
celebrated work on teachers’ understanding of four 
standard topics in elementary school mathematics 
between a group of Chinese and American teachers. Ma 
specified four properties of understanding that 
characterize PUFM, namely, basic ideas, 
connectedness, multiple representations, and 
longitudinal coherence. Shulman (1999) calls these four 
properties of understanding “a powerful framework for 
grasping the mathematical content necessary to 
understand and instruct the thinking of schoolchildren” 
(p. xi).

The characteristics of content understanding 
outlined by education scholars are in-sync with the ones 
proposed by Wu. Wu is one of the few mathematicians 
who have devoted decades of effort at delineating 
mathematical content knowledge that teachers need to 
have in order to teach at K-12 level (Wu, 2010b, 2011b, 
forthcoming). Wu proposed five basic characteristics 
capturing the essence of mathematics that is important 
for K-12 mathematics teaching (2010a, 2011a, 2011b):

• Precision: Mathematical statements are clear and 
unambiguous. At any moment, it is clear what is
known and what is not known.

• Definitions: They are the bedrock of the 
mathematical structure. They are the platform that 
supports reasoning. No definitions, no 
mathematics.

• Reasoning: The lifeblood of mathematics. The 
engine that drives problem solving. Its absence is 
the root cause of teaching and learning by rote.

• Coherence: Mathematics is a tapestry in which all 
the concepts and skills are interwoven. It is all of a 
piece.

• Purposefulness: Mathematics is goal-oriented, and 
every concept or skill is there for a purpose. 
Mathematics is not just fun and games.
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e) Our Framework of Mathematical Content 
Understanding

Integrating the emphasis of CCMS on reasoning 
and understanding, the key ideas proposed by 
education researchers (e.g., Ball, Hoover, & Phelps, 
2008; Ma, 1999; Schoenfeld & Kilpatrick, 2008), and 
Wu’s five characteristics of mathematics (Wu, 2010a, 
2011a, 2011b), we propose three characteristics that 
exemplify the mathematical content understanding. Our 
framework of mathematical content understanding is 

centrally concerned with delineating characteristics of 
knowledge that demonstrate a relational understanding 
of a mathematical topic (i.e., knowing what to do and 
why) (Wu, 2011e), as opposed to an instrumental 
understanding which Skemp (1976) regarded as 
knowing the “rules without reasons”. Table 1 lists the 
three characteristics, what each characteristic means, 
and prior scholars’ work that contributed to our 
conception of each characteristic.

Table 1 : Characteristics Exemplify Mathematical Content Understanding

Characteristics Descriptions Link to Other Scholars’ Ideas
Precision -Be explicit about precise definitions (e.g., use 

definitions as a basis for logical reasoning);
-Pay attention to precise statements (e.g., present 
mathematical ideas clearly)

-Wu (2010a, 2011a, 2011b): precision; 
definition; reasoning
-Ball (1990): possessing correct knowledge of 
concepts and procedures; understanding the 
nature of mathematical knowledge and 
mathematics as a field (e.g., what establishes 
the validity of an answer?)

Coherence - Demonstrate interconnectedness of 
mathematical ideas (e.g., show the algebraic and 
geometric representations of a mathematical 
concept and idea, where appropriate);
-Show logical/sequential progression of 
mathematical ideas (e.g., show a deliberate effort 
at scaffolding mathematical ideas from simple to 
complex, specific to general)

-Wu (2010a, 2011a, 2011b): coherence; 
purposefulness
-Ball (1990): knowing the connections among 
mathematical ideas 
-Ma (1999): connectedness; multiple 
representations; longitudinal coherence
-Schoenfeld & Kilpatrick (2008): breadth; depth

Purposefulness - Emphasize key or big mathematical ideas;
- Provide rationale for why key mathematical ideas 
are relevant to the teaching of a particular 
mathematical topic at hand

-Wu (2010a, 2011a, 2011b): purposefulness; 
reasoning
-Ball (1990): understanding the underlying 
principles and meanings
-Ma (1999): basic ideas
-Schoenfeld & Kilpatrick (2008): breadth

As Table 1 indicates, these characteristics of 
content understanding are consistent with and reflect 
the mathematics education community’s call for a 
profound understanding of school mathematics for 
teaching (e.g., Ball, 1990; Ma, 1999; Schoenfeld & 
Kilpatrick, 2008). One point we want to emphasize is 
that we describe some of the relevant knowledge, 
acknowledging that there are various ways to 
conceptualize the content, and more than one way to 
approach the teaching of it (Cochran-Smith & Lytle, 
1999). In addition, we want to point out that the 
characteristics of content understanding in our 
framework emphasize aspects of mathematical 
understanding “most likely to contribute to a teacher’s 
ability to explain important mathematical ideas to 
students” (Shulman, 1999, xi).

III. Methods

a) Research Site and Study Sample
The present paper is based on a broader study 

of pre-service STEM teachers’ content understanding of 
three foundational algebra topics at a west coast 
research university in the United States (Newton & Poon, 
2015). Study participants were recruited from 

undergraduate courses that focus on K-12 mathematics 
and on mathematics teaching and learning. We used a 
series of scenario questions (roughly 3-4 questions per 
topic) like the slope one shown above to probe study 
participants’ content understanding. Of the 46 students 
who responded to the scenario questions, 32 (70%) 
gave active consent to use their responses for research. 
Of these 32 study participants, 5 (16%) were science 
majors, 4 (13%) were engineering majors, 16 (50%) were 
mathematics majors, and 7 (22%) were humanities 
majors; 8 (25%) were transfer students from two-year 
colleges. The 14 students who did not give active 
consent were all STEM (Science, Technology, 
Engineering, and Mathematics) majors, of which 9 
(69%) were mathematics majors. Their score 
distributions did not differ significantly from those of the 
study sample.

b) Data Collection
We collected two rounds of data, in spring 2010 

and spring 2011. At each data collection occasion, one 
of the researchers visited the study participants’ classes. 
The research member explained the purpose of the 
study and distributed the form containing the scenario 
questions. In fall 2010, respondents were given about 
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two weeks to finish the form. Based on the preliminary 
analysis of data collected in fall 2010, we reduced the 
number of scenario questions (without sacrificing the 
opportunity to assess respondents’ understanding of 
key mathematical concepts) and collected additional 
data in spring 2011. At the spring 2011 occasion, 
respondents answered the scenario questions during a 
2-hour class period. Data for this paper came from 
spring 2010 where the slope scenario question was 
asked and included 16 STEM majors (out of 30 total 
respondents) who gave active consent to use their 
responses for research purposes. 

c) Data Analysis
The authors (co-constructers of the scoring 

rubrics) independently coded all students’ responses. 

Initial agreement between the two researchers was close 
to 80%. In cases where there was a disagreement 
(mostly within 1-point difference), we compared the 
rationale for the score in order to reach an agreement 
for the final score. In scoring a respondent’s responses 
to a scenario question, we focus on the quality of the 
reasoning process. Specifically, the quality of the 
reasoning process is judged by the three characteristics 
that exemplify content understanding outlined in Table 1. 
These three criteria are the basis for the scoring rubric 
as shown in Table 2.

Table 2:  Rubrics for Scoring Mathematical Content Understanding

Levels Descriptions
1-little 
understanding

Responses completely lack precision, coherence, and purposefulness.  For instance, responses are 
too vague, irrelevant, incomplete, fragmented, inaccurate, or incorrect.

2-instrumental 
understanding

Responses do not meet the criteria of precision, coherence, and purposefulness.  However, 
responses address the questions and have minimal mathematical errors.  Mathematical 
understanding tends to focus knowledge at the surface, or mechanical level.

3-transitional 
understanding

Responses show some elements of precision, coherence, and purposefulness.  For instance, there 
is evidence of an attempt or effort to emphasize the key mathematical idea, its rationale, the logical 
progression of mathematical concepts, and the connectedness among different mathematical 
concepts, procedures, and ideas.  In addition, responses show an attempt to scaffold mathematical 
ideas for students.

4-relational 
understanding

Responses exemplify precision, coherence, and purposefulness. There is consistent (or substantial) 
evidence of an attempt or effort to emphasize the key mathematical idea, its rationale, the logical 
progression of mathematical concepts, and the connectedness among different mathematical 
concepts, procedures, and ideas.  In addition, responses show attention to how to scaffold 
mathematical ideas to students (e.g., from simple to complex; from specific to general).

Using this rubric, responses to the scenario 
question were scored on a scale of 1 to 4 (blank 
responses were categorized as missing data and no 
one in the sample scored 4). Quantitatively, we 
examined the frequency distributions of scores for each 
of the questions by college major. For the qualitative 
content analysis, we first describe several key patterns 
that reveal students’ understanding of slope. We then 
compare the quality of reasoning between the observed 
students’ responses and the level-4 response 
(described below) based on the three criteria described 
above. In addition, we compare the quality of the 
responses between those who took the three-course 
sequence coursework focusing on grades 6 through 12 
mathematics topics versus those who did not.

d) A Sample Response Exhibiting Deep Understanding 
of Slope

A response representing deep understanding of 
slope (i.e., level-4 response) begins with the definition of 
the slope of a line:

The key mathematical idea underlying this 
question is that the slope of a line can be calculated 
using any two points on the line (i.e., independence of 

any two distinct points on the line).  So how can we help 
students learn this key idea?  Before I use 
as shown in the picture, I would first review with students 
how the slope of a line is defined: given a line and 
assuming it slants upward (as the picture shows), let’s 
take a point P on the line, go 1 unit horizontally to point R, 
then go upward (or vertically) and let the vertical line from 
R intersect the given line at point Q.  Then the definition 
of slope is the length of segment QR (i.e., |QR|).  
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Here the respondent is laying a foundation for 
what comes next by precisely defining the slope of a line 
and showing this on the graph. Note how the 
respondent expands the definition and stretches 
students’ thinking by posing the next question:

But how are we certain that this vertical length 
|QR| is the same for any point P we choose on the line?  
In other words: if we take another point P’ on the line, go 
1 unit horizontally to point R’ and then go upward to 
intersect the line at point Q’, how do we know that |QR| 
= |Q’R’|)?  

To answer this question, students need to
invoke their knowledge of similar triangle.  This is an 
important step towards defining the slope precisely and 
completely, as the respondent points out:
I would expect the following explanation from students: 

(corresponding angles on parallel lines) and |PR| = 
|P’R’| = 1, so by the angle-angle-side criterion, 

and, thus, |QR| = |Q’R’|.  
Therefore, the slope is independent of the point P and it 
makes sense to talk about the slope of the line.

With the definition complete, the respondent 
adds complexity by posing the following question: “Can 
we find another, more flexible way of finding the slope of 
a line, without having to measure 1 unit horizontally from 
a point on the line and then the vertical distance up?”
This step builds on the previous step of defining the 
slope of the line but uses similar ideas (i.e., similar 
triangle), as shown below:

To answer this question, let’s do the following: 
let P, Q, R be as before (i.e., P is any point on the line 
used to define the slope of the line) and now suppose 
we take any other point on the line, call it S.  From S, 
draw a vertical line and let it meet the horizontal line PR at 
point T. 

So now look at the two triangles, ∆PQR and 
∆PST.  What can we say about them?  Hopefully students 
would recognize that they are similar triangles; if not, I’d 
tell them but ask them to prove (explain) why the 
triangles are similar (by the angle-angle criterion: right 
angles formed by perpendicular lines and corresponding 
angles on parallel lines).  

After establishing the fact that , 
I would then ask: what can we say about the relationship 
between the sides of the triangles?  One of the things I 
would expect students to mention would be:

Then I would guide them to manipulate the 
above equation into the following:
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At this point, I would ask students what they 
observe. Hopefully they would recognize that, since 
|PR|=1, the left side of the equation is equal to line 
segment |QR|, which is the slope of the line.  In other 
words:

Of course, the respondent is very purposeful 
about why they are doing this exercise:
From this exercise, I would hope students reached the 
following conclusions:

1. The slope of the line can be calculated using 
points P (the point we used to define the slope) 
and S (any other point on the line).

2. We can calculate the slope of a line by dividing 
the length of the vertical line segment by the 
length of the horizontal line segment of .  
Because we had shown earlier that the point P 

used to define the slope is arbitrary (i.e., can be any 
point on the line) and we had defined S to be another 
arbitrary point on the line, then the conclusions above 
can be generalized into the following:

1. The slope of the line can be calculated using 
any two distinct points, P and S, on the line.

2. We can calculate the slope of a line by dividing 
the length of the vertical line segment by the 
length of the horizontal line segment of .  
This purposefulness brings mathematical 

closure to students and we see how the respondent is 
very deliberate in scaffolding key ideas throughout the 
process. Having shown the underlying key ideas, the 
respondent then goes back to the original question (i.e., 
using P1, P2, P3, and P4) and has students work out the 
proof on their own:

To reinforce these main ideas, I would have 
students work in groups or pairs to prove (using similar 
triangle properties) that the slope of the line calculated 
by (in the original graph above) is the same as the 
slope calculated by .  Once they finish working in 
groups, I’d have a whole-class discussion and ask 
students to show how they did the proof.  Below is an 
example of what I’d expect:

Draw in the horizontal and vertical lines through 
points and let them intersect at points Q 
and R as shown below:

We claim that the two triangles formed, ∆P1P2Q
and ∆ P3P4R, are similar.  The reason is: 
|∠P1QP2|=|∠P3RP4| because both equal 90° and
|∠P1P2Q|=|∠P3P4R| because they are corresponding 
angles on parallel lines.  Then, by the angle-angle 
criterion, ∆P1P2Q ~ ∆ P3P4R.  By the key triangle similarity 

theorem, we can then say , and by 

multiplying both sides of the equation by and 

, we get .  That means the slope 

calculated by is the same as the slope calculated 
by .  Therefore, the slope can be calculated by any 
two distinct points on the line.

Looking at this level-4 response overall, we see 
that the respondent is mindful of the purpose of each 
activity, focuses on the key ideas and scaffolds these 
key ideas in a coherent way, starting with the definition, 
using it as a basis for subsequent logical reasoning, and 
leading students from simple ideas to more complex 
ones, from specific examples to general cases.
To what extent do the sampled students in our study 
exhibit such understanding? What does their current 
understanding of slope look like? We address these 
questions in the following sections.

IV. Findings

We first present some quantitative data to show 
the distribution of students’ rating scores. We then 
describe the patterns emerged in their responses to 
demonstrate the characteristics of their understanding 
of slope.
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a) Frequency Distribution of Students’ Scores
Table 3 displays the frequency distribution of 

students’ scores.

Table 3:  Frequency Distribution of Study Participants’ Scores

Levels of Content Understanding Percentage
1: little understanding 65%
2: instrumental understanding 12%
3: transitional understanding 23%
4: relational understanding 0%

As shown in Table 3, close to two-thirds of the 
students scored 1 whereas the rest scored 2 or 3 and 
none scored 4. This means that the majority of the 
students’ understanding of slope was inaccurate, 
fragmented, and incomplete, lacking precision, 
coherence, and purposefulness (i.e., scoring 1). Those 
who scored 3 took Mathematics of the Secondary 
School Curriculum, a 3-semester course sequence 
designed to teach grades 6-12 content to math majors 
interested in pursuing teaching as a career. Content 
analysis of students’ responses revealed several key 
patterns with regards to their understanding of slope. 
We describe these patterns and discuss insights 
derived from them in the following sections.

b) Defining Slope Formulaically as Consistent with the 
K-12 Textbooks (Rise over Run)

As mentioned in the previous section, the 
frequency distribution of students’ responses shows that 
only a handful of students scored at the level 3 while the 
rest at levels 1 and 2 and no one at level 4 (the highest 
level). Regardless of their scoring levels, all of the 
students in the study sample exhibit one qualitative 
characteristic in their responses which is to define slope 
formulaically in one way or another, consistent with how 
slope is defined in the K-12 textbooks (i.e., rise over run) 
as shown in the following example:

Students’ responses such as this example show 
how deeply entrenched students' K-12 learning is. It 
signals the tendency of these STEM majors to resort to 
what they have learned as K-12 students to teach the 
concept as they were taught themselves. 

Further examinations of some students’ 
responses reveal a bit of ambiguity on their part as to 
what rise over run really means. For instance, one 
student said slope is “how much a graph goes in the x-
axis and how far a graph goes on the y-axis”; another 
student stated, “I would explain that the slope is the 
change between two points. This “rise” of the “run” that 
happens to get from one point to another”; and a third 
student described, “The slope of a line is just the ratio of 
the change in the y-values to the change in x values”. It 
is not clear what it means for a graph to go both in x-
axis and y-axis. And it is not accurate to say slope 
moves point A to point B (how and where) or slope is 

change in the y-values to the change in x-values (which 
y's and x's). The inaccuracy in these responses 
suggests that students are not making a connection 
between a linear equation and its graph (i.e., the graph 
of a linear equation is a collection of all points of ordered 
pairs (x, y) that satisfy the linear equation). To some 
extent, this finding is not surprising, since the graph of a 
linear equation is not defined for them when they first 
learned the topic as K-12 students. Without connecting 
a linear equation with its graph, students will not be able 
to see the connections between: (1) how slope of a line 
is defined (using their language, how much 'rise' given 
1-unit 'run' in the Cartesian plane), (2) the formula used 
to calculate the slope using two distinctive points on the 
line, and (3) why the calculation does not depend on 
which two distinctive points one uses (i.e., they will 
always give the same answer).
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c) Taking What Needs to Be Proven as Given (i.e., 
Circular Reasoning)

The scenario asked for the proof that the slope 
of the line can be calculated using any two distinctive 

points on the line. The majority of the responses (scores 
1 and 2) took what needs to be proven as given as 
shown in this typical example: 

The reasoning process goes that since the 
slope is constant, the formula using the two pairs of 
points shown to calculate slope will be the same. Slight 

variation to this sample response is that some students 
referenced m, as demonstrated in this example: 

As shown in the above example, the student 
reasoned that using P1 and P2 will give slope m1 and 
using P3 and P4 will give slope m2. Since the four points 
are on the same line, m1 must be equal to m2. But what 
the question is asking for is why the slope is the same 

and why ANY two distinctive points will give the same 
answer.

Some students conflate demonstrating with a 
few examples with proofing, as shown in this example: 

It is a good pedagogical practice to use 
exploration and draw tentative hypothesis based on a 
few examples. But it is not good to equate 
demonstrating with a few examples with what proof 
means. How do we know that all points beyond the few 

examples will work in the same way? This is the focus 
question that we expect K-12 students to be able to 
show through proof. Consequently we expect future 
mathematics teachers to be able to do the proof 
themselves as well.
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d) When Similar Triangle Is Mentioned, How Was It 
Used and For What Purpose?

A few students mentioned similar triangle in 
their responses but were vague about why the concept 
of similar triangle is relevant in this context. For instance, 
one student mentioned that, “first I would make sure 
students understand the concept of similarity of 
triangles and then from this non-vertical line, construct a 
relationship of slopes and triangles, and that the idea of 
slopes is basically an idea that follows from similar 
triangles and the ratios of their hypotenuse”. It was not 
clear what this student meant by “constructing a 
relationship of slopes and triangles”. On the other hand, 
the term “slopes” suggests there are more than one 

slopes (of the non-vertical line). Also it is incorrect to say 
that, “slopes…are ratios of their hypotenuse”. Examples 
like this call into question whether students really know 
why similar triangle concept is the key to understanding 
the independence of points when calculating the slope 
of a line using two distinctive points on the line. 
Furthermore, the responses showed inaccuracy (ratio of 
their hypotenuse).

A few students explained why similar triangles 
are relevant, but even these students relied on 
slope=m=rise over run, showing on the graph which 
line segment is rise and which is run, and then jumping 
directly to rise/run (line segment) is the same due to 
similar triangles, as demonstrated by this example. 

There were some inaccuracy here because 
similar triangles only tell us |P4B|/|P2A|=|P3B|/|P1A|. 
There were interim steps that are needed in order to go 
from |P4B|/|P2A|=|P3B|/|P1A| to 
|P4B|/|P3B|=|P2A|/|P1A| (which happens to be the 
slope or ‘rise/run” as the student wrote). It seems the 
student knew what the final answer would be but did not 
show the process of how one could get to the final 
answer. 

In addition to inaccurately articulating the ratios 
of which pairs of lines were equivalent to each other, 
other inaccuracies included locating the position of a 
point incorrectly in the Cartesian plane using the two 
coordinates (i.e., x-coordinate and y-coordinate) or 
calculating the length of a segment of a line using the 

coordinates. In the following example, parallel and 
perpendicular lines from the points given (i.e., P1, P2, P3,

and P4) were drawn to form two right triangles; however, 
the points at which the lines intersect were wrongly 
defined.
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In the above graph, the position of points V and 
R defined by x and y coordinates should be V(X4, Y3) 
and R(X2, Y1) respectively, and not V(X3, Y4) and R(X1, Y2) 
as the student stated. And the length of the line segment 
|P1R| should be |X1|-|X2| and not X2- X1 straight out 
according to this student (a few others did the same). It 
seems students who did this were trying to get at the 
slope formula (m= Y2- Y1/ X2- X1). But the reasoning for 
why |X1|-|X2| is equivalent to X2- X1 is missing. This 
calls into question whether students really understood 
the connection between linear equation and its graph 
and other mathematical concepts such as absolute 
values.

e) How Did Those Scored 3’s Compare to Those 
Scored 1’s or 2’s?

Though none of the students in the study 
sample scored 4’s and only about half a dozen students 
scored 3’s, there is distinctive variation in the quality of 
their understanding. Specifically, those who scored 3’s 
all referenced similar triangles where none of the 1’s and 
2’s did. Furthermore, all but one of these study 
participants (i.e., those scoring 3’s) showed the 
reasoning process of why similar triangle is important in 
understanding the independence of points used to 
calculate slope. In contrast, those scoring 1’s and 2’s 
mostly invoked the formula of slope calculation and 
engaged in circular reasoning. In general, attempts to 
emphasize the key mathematical idea, its rationale, the 
logical progression of mathematical concepts, and the 
connectedness among different mathematical concepts, 
procedures, and ideas are fairly consistent among the 
highest scoring respondents (i.e., those scored 3’s) but 
notably absent among the lowest scoring respondents 
(those scored 1’s). In addition, attention to scaffolding 
ideas in a systematic and coherent way is present in 
some responses that scored 3’s but missing in 
responses that scored 1’s or 2’s. Interestingly, 
participants who scored 3’s were the ones that had 

taken the math course sequence that deals with 
mathematical tops at secondary level.
[Note: Even among those who scored 3’s, there was a 
lack of inaccuracy here and there. For instance, miss-
identification of which ratios of pairs of legs were 
equivalent to each other in similar right triangles is 
common. In addition, all of them defined slope 
formulaically.] 

f) What Do We Observe Comparing Students’ 
Responses to the Level-4 Response?

Several key differences emerged when we 
compare these STEM majors’ responses to the level-4 
one. First, all respondents defined slope formulaically as 
rise over run using two points on the line (or symbolically 
as y2-y1/x2-x1). Defining slope in this way in our view 
creates several conceptual difficulties for learners. To 
begin with, how do we know any two points will work? 
Secondly, what does it really mean slope is change in y 
with unit change in x (where in the formula did unit come 
into play)? Thirdly, what is the connection between the 
algebraic expression of slope and its 
graphical/geometric representation? In contrast, the 
level-4 response defines the slope by directly using the 
graph of the linear equation and shows on the graph 
what it means slope is the rise of y over 1-unit x and that 
this definition of slope is independent of the point one 
chooses. Once the definition of slope is complete, the 
response builds on the definition and scaffolds students 
through a purposeful and coherent process to derive the 
key ideas that slope of a line can be calculated using 
any two distinct points, for example P and S, on the line 
and that we can calculate the slope of a line by dividing 
the length of the vertical line segment by the length of the 
horizontal line segment of (see Figure 1). This 
purposefulness brings mathematical closure to 
students.
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Figure 1. Calculating Slope of a Line

Second, a majority of respondents took what 
needs to be proven as given and engaged in circular 
reasoning. In other words, instead of proving that the 
slope of a line can be calculated using any two 
distinctive points on the line, they started with the 
premise that the slope is constant and therefore the 
formula definition of slope using the two pairs of points 
shown on the graph is the same. A few considered 
using a good pedagogical practice of exploration (i.e., 
try a few points and observe); however, they conflated 
demonstration through a few examples with 
mathematical proof. In other words, there are infinite 
numbers of points on a line, how do we know beyond 
the sampled points, the rest will work the same way as 
the sampled ones?

Finally, we observed inaccuracies in terms of 
articulating the ratios of which pairs of lines were 
equivalent to each other in similar triangles, locating the 
position of a point correctly in the Cartesian plane using 
the two coordinates (i.e., x-coordinate and y-
coordinate), or calculating the length of a segment of 
the horizontal (or vertical) line using the coordinates. 
These inaccuracies left us wonder if the difficulties were 
caused by not having the opportunity to learn the 
connection between linear equation and its graph or by 
a lack of understanding of what the meaning of a line is 
(i.e., definition of a line).

These weaknesses in responses showed holes 
in these STEM majors’ conceptual understanding of 
slope and of the connection between linear equation 
and its graph. These students were STEM majors at one 
of the research universities. They represent the strongest 
pool of candidates for future mathematics teachers. 
Even these students struggled with proving that the 
slope of a line can be calculated by using any two 
distinctive points on the line. It is important to emphasize 
that our intention is not to criticize their lack of 
conceptual understanding of slope. Rather our results 
signal how important it is to lay a strong foundation of 
mathematics topics at K-12 level, because that is where 

future mathematics teachers learn topics that they will 
teach one day (given the current mathematics education 
system). We will discuss this issue further in the 
conclusion section.      

V. Summary and Discussion

The concept of slope occupies a significant part 
of the early algebra curriculum and has wide 
applications in real world problems (e.g., studying the 
relationship between supply/demand and price of 
goods in economics) and is foundational for studying 
more advanced mathematical topics such as functions. 
Despite its importance, extensive research has 
documented difficulties both pre-service teacher 
candidates and in-service teachers had encountered in 
terms of understanding the concept of slope. This 
situation is likely to be exacerbated with the 
implementation of CCMS, because the new standards 
approach the slope concept in significantly different 
ways. One question naturally arises is how prepared 
pre-service teachers are in terms of meeting the 
expectation of CCMS. Our study investigates this 
question among a group of undergraduate STEM 
majors who are enrolled in an experimental teacher 
preparation program in one of the research universities. 
Though our study sample is relatively small and 
restricted to undergraduate STEM majors who self-
selected themselves into the Cal Teach courses at one 
research university, key insights derived from studying 
these participants are nonetheless significant. These 
undergraduates represent some of the strongest 
candidates for the teaching force. Studying the nature of 
their mathematical understanding of slope according to 
the CCMS is important in and of itself.

We found that the STEM majors in our study 
sample do not possess the deep understanding of the 
slope concept. Specifically, among the study 
participants, most of them scored 1’s and only a small 
number of participants scored 3.  This suggests that 
even though these STEM majors might be strong in their 
disciplinary knowledge, they do not necessarily have the 
depth of understanding of slope in order to teach at the 
level that is required by the new CCMS.

Furthermore, the small number of participants 
who scored 3’s are math majors who were taking 
Mathematics of the Secondary School Curriculum, a 3-
semester course sequence designed to teach grades 6-
12 content to math majors interested in pursuing 
teaching as a career. The principles underlying this 
course sequence reflect and are consistent with 
CCMS’s emphasis on reasoning and conceptual 
understanding. Non-math majors or math majors who 
were not taking Mathematics of the Secondary School 
Curriculum mostly scored 1’s or 1’s and 2’s and none 
scored 3’s. These results signal the importance of 
explicitly teaching future math teachers the content 
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knowledge that they will be teaching to their students 
down the road.

In addition to these quantitative results, 
qualitative analysis of the characteristics of study 
participants’ understanding of slope concept revealed 
holes in their conceptual understanding of slope and of 
the connection between linear equation and its graph. 
These students were STEM majors at one of the 
research universities. Even these students struggled 
with proving that the slope of a line can be calculated by 
using any two distinctive points on the line. 

Taken together, these findings have important 
implications for the content training of future math 
teachers in the era of CCMS in order to increase the 
quality of the teaching force in terms of their content 
preparation. Our focus on STEM majors is significant, 
because they represent the strongest pool of future 
mathematics teachers. In both research and practice, a 
college major in mathematics is used to signal a
candidate’s content knowledge for teaching K-12 
students, assuming that mathematics majors have the 
deep understanding of the K-12 topics to teach well at 
that level. This assumption is manifested to some extent 
in the recent efforts at recruiting undergraduate STEM 
majors into teaching through programs such as 100k10 
in New York, UTeach in Texas, and UTeach replication 
sites across the country.

What has not been brought to the forefront is 
the fact that the content focus of typical college 
mathematics courses serves a different purpose from 
content needed for teaching at the K-12 level (Askey, 
1999; Wu, 2011a). Consequently the most direct 
resource for mathematics teachers, whether math major 
or not, to learn what they are supposed to teach is the 
mathematics they learned as K-12 students as shown in 
our study of their understanding of slope. Interestingly, 
one of the strongest oppositions to states adopting 
CCMS is the push against the federal government 
shoveling down a set of national standards onto local 
states. What these opponents failed to realize is the fact 
that there has been a de facto national mathematics 
curriculum at work, which is regarded as textbook 
school mathematics (TSM) (Wu, 2011c, 2011d; 2014; 
2015). TSM lacks the mathematical rigor, focus, and 
coherence that CCMS calls for. It is therefore reasonable 
to assume that students who went through TSM will not 
be adequately prepared to teach mathematics at the 
level that CCMS calls for, as supported by the findings 
of this study.

Our study is set within a broader investigation of 
STEM majors’ mathematical content understanding of 
three critical early algebra topics (Newton & Poon,
2015). The findings on students’ understanding of slope 
mirror those from the broader study. In closing, we 
would like to discuss the broader implications of our 

Subject matter knowledge plays a central role in 
teaching (Ball, Hill, & Bass, 2005; Buchmann, 1984). In 
both research and practice, a college major in 
mathematics is used to signal a candidate’s content 
knowledge for teaching K-12 students, assuming that 
math majors have the deep understanding of the K-12 
topics to teach well at that level. What has not been 
brought to the forefront is the fact that the content focus 
of typical college mathematics courses serves a 
different purpose from content needed for teaching at 
the K-12 level (Askey, 1999; Wu, 2011a). Though efforts 
at recruiting undergraduate STEM majors to improve the 
quality of the teaching force in mathematics are 
commendable, we need to provide recruits with explicit 
content training of mathematics topics that they are 
expected to teach at the K-12 level. Otherwise, STEM 
majors will resort to the way they were taught as K-12 
students when they become teachers one day.  For 
example, the UC Berkeley Department of Mathematics 
is one of the few that offer courses specifically focusing 
on grades 6-12 content for mathematics majors who are 
interested in pursuing teaching as a career. We need 
policies that promote college mathematics departments’ 
involvement in the training of future mathematics 
teachers.

On the other hand, the fact that even 
mathematics majors who had gone through the course 
sequence in our study sample did not achieve a level-4
score signals the need for a synergistic training between 
content and pedagogy, and how the two (i.e., content 
and pedagogy) can become alive in the context of real 
world teaching and learning. As we emphasized earlier, 
our level-4 response was written to exemplify the three 
characteristics of content understanding and the level of 
standards (i.e., what level-4 could look like) is primarily 
based on normative and theoretical metric. We did, 
however, bring our own extensive teaching or research 
experiences of actual classroom instruction in K-12 
classrooms when writing the level-4 response (e.g., how 
to scaffold ideas from simple to complex; from a 
specific example to a general case, etc. as opposed to 
just demonstrating our own ability to prove). In contrast, 
our study sample has limited exposures to real world K-
12 classroom teaching and learning. The fact that 
programs such as UTeach emphasizes the integration 
of content and pedagogy on the one hand, and the 
integration of university learning and K-12 classroom 
placement on the other hand, points to a promising way 
to train future mathematics teachers. We need empirical 
studies to validate what we conceptualize as a level-4 
response (e.g., do those who scored highest do better 
in terms of classroom practices and student learning 
than those who do not?) and to investigate how content, 
pedagogy, and actual classroom practice come 

studying findings for mathematics teachers’ content 
training.   
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together to impact students’ mathematical learning 
(e.g., studying the relationship between the qualify of 
program implementation and its impact).

Our findings also have implications for using 
teachers’ college mathematics coursework as a proxy 
measure of their content knowledge as many empirical 
studies have done. Empirical studies on the relationship 
between teachers’ college mathematics coursework and 
their students’ mathematical performance have yielded 
mixed results. One possible explanation might be that 
having advanced mathematical knowledge at college 
level does not necessarily equate having deep 
understanding of K-12 content, which is necessary in 
order to translate this deep understanding into effective 
classroom practices in terms of engaging K-12 students 
around substantive mathematics.  Therefore, instead of 
using proxy measures such as college mathematics 
coursework, directly measuring teachers’ understanding 
of K-12 content they teach may help to produce 
consistent results on the relationship between teacher 
mathematical knowledge and students’ achievement.

Finally, our study findings could have potential 
implications for the professional development of in-
service teachers in order to teach CCMS. Since most 
teachers did not have the opportunities to learn the 
content knowledge they need to teach from their college 
mathematics courses, they typically resort to the way 
they were taught as K-12 students (Adams & Krockover, 
1997; Lortie, 1975). To improve the quality of teachers’ 
content understanding according to CCMS, we need in-
service professional development activities that focus 
explicitly on the content knowledge they are teaching 
and at the level of rigor that is required by CCMS.  
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