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Slow Thinking & Deep Learning; Tversky &
Kahneman'’s Cabs

Mike Bedwell

Abstract- This note describes my experience in encouraging
the 'deep learning' that has long been advocated in the
pedagogic literature. My students have typically studied
statistics only as part of another discipline, such as
economics, business or law. So while they have mostly been
aged 17 or over, my approach has necessarily presumed only
elementary mathematics and thus should be adaptable to
younger people.

My main example is a problem story constructed by
Amos Tversky in the 1970s to evaluate human beings’
intuitions about statistical inference, and which in 2012 was
revisited in a best-seller by his colleague, the Nobel prize-
winner Daniel Kahneman. In his book he describes this
problem as 'standard’ and unequivocally answers with a
simple fixed-point number. | describe how | have encouraged
my students to challenge the certainty of this assertion by
identifying ambiguities unexplained in the story; in the process
| strive to stimulate individuals’ 7hinking, Fast and Slow, to use
the title of Kahneman's book, arguing that his 'slow thinking' is
a prerequisite of deep learning.

While Kahneman more fully describes the problem as
one of 'Bayesian inference’, his story can be de-constructed
without reference to the work of Thomas Bayes. However, the
bitterest conflicts in the statistical academic community
continue to arise from the Bayes-frequentist controversy; this
we cannot expect our students to resolve, but we owe it them
to explain its causes. So my article includes as an appendix a
‘Bayes Icebreaker’ where | show an analogy between the cab
story and an exercise previously described in T7eaching
Statistics.

Keywords: deep learning, slow thinking, cab problem,
Bayesianism.

[ INTRODUCTION

uch of my recent teaching has been to a
I\/l 17+ age group of Ukrainian students, eager to

understand western education. They often want
to to take direct advantage of it, their first step being to
prepare for such computer-implemented tests as the
TOEFL, GRE and GMAT. The principle of 'deep learning'
is often novel to these young people; even though born
well after the break-up of the USSR, they have usually
been taught in schools and universities where the
culture has remained one of rote-learning, corruption
and nepotism.

The internet has progressively become my
major tool in helping these students; the others have
included two best-selling paperbacks that are cheap to
buy but which have proved priceless in enlightenment,
to me as much as my students. For these two books
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have provoked me to ruminate on my own Thinking,
Fast and Slow, the title of one of them (Kahneman,
2012). One clear conclusion | have come to is that deep
learning can and should be inculcated in much younger
people, and that as teachers of statistics we are well
placed to take the lead.. | will argue that the level of
mathematics needed is within the grasp of even primary
school children anywhere in the world.

I1. DISCUSSION OF THE PEDAGOGY

As might be crudely explained, the ‘slow
thinking' of Kahneman's title corresponds roughly to the
popular adages 'count to ten before replying' or ‘engage
brain before opening mouth’, and | have interpreted it as
a prerequisite for the ‘deep learning’ that the pedagogic
literature has long advocated. Below is a problem from
Kahneman's book which | have regularly posed to my
students to stimulate such thinking, and which he and
his co-worker Amos Tversky had developed in their
research some years earlier:

‘A cab was involved in a hit-and-run accident at night.

Two Cab companies, the Green and the Blue, operate in
the city.

You are given the following data:

e 85% of the cabs in the city are Green and 15% are
Blue.

o A witness identified the cab as Blue. The court
tested the reliability of the witness under the
circumstances that existed on the night of the
accident and concluded that the witness had
correctly identified each one of the two colors 80%
of the time and failed 20% of the time.

What is the probability that the cab involved in
the accident was Blue rather than Green?

(Tversky and Kahneman, 1980, in Kahneman, 2012, pp166,

167)

Whenever possible, it has been my practice to
have this problem printed out, double-spaced and with
wide margins to allow ample room for annotations. For
younger students | would imagine it necessary to have
some discussion of the meaning of ‘'percent' and
‘probability’, although in the UK, most children will have
acquired some familiarity with these words; only too
early in their lives they are exposed both to TV lottery
shows in the home and to state-imposed, statistically-
processed testing at school.

With my maturer students, | immediately get
them into groups and then walk round amongst them,
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eliciting and answering questions. | encourage those
engrossed in any electronic device to find the problem
on Google, especially when | suspect them to be
indulging in some sort of private communication.
Elsewhere (Bedwell, 2009) | have argued that
technology in the classroom serves only to disrupt the
all-too-precious time we can spend in face-to-face
discussion with our students. | expect mine to behave
accordingly.

[11. DI1SCUSSION OF THE PROBLEM

My approach is to put to each group the
following questions:-

a) What is your answer to Tversky's problem?

Lack of motivation is common among the
students | have known in Ukraine, where | have mostly
taught in private universities; these have their admission
policy determined less by students' academic interest
than by the income of their parents. As a statistical
aside, | have found this problem diminishes with class
size; the greater the number of students, the higher the
probability of there being among them enthusiasts with
whom the others learn to compete. Nonetheless, | have
to be prepared to deal with such answers as 'Dunno’, or
the Slavic equivalent; after indeed mentally biting my
tongue in the effort to 'think slowly', | try as a prompt
asking ' Do you mean you dont have enough
information to decide — or that “it all depends” 7.

Less discouragingly, other students will ask '
what formula should we use?'. | parry this by writing on

the whiteboard such numerical answers as | have
gleaned from the rest of the class, all of whom | direct to
the next question.

b) How do you imagine the detail of the test undergone
by the witness?

| am aware that | should allow time for the
students to develop their own scenarios, but to date
have lacked the patience to do other than steer them to
the following of my own contrivance: 15 of the city’s Blue
cabs and 85 of the Green were paraded in random
order before the withess. She was envisaged as calling
out in turn the colour she judged the cabs to be, so that
each could be labeled with either a ‘B’ or a ‘G’ sticker,
before being directed to one corner of a rectangular
parking area. This has space for 10 cabs in each row
and each column, 100 in all. To facilitate discussion of
the diagram I'd sketch on the whiteboard, we imagined
the park to be oriented on the cardinal directions so, for
example, Blue cabs wrongly identified as Green ended
up in the NW corner. My students have then had little
difficulty in using the quantitative information in Tversky's
story to calculate that number as 20% * 15% * 100 = 3,
as shown Fig 1(a), before similarly confirming the
numbers shown in the other three corners. The precision
with which the reliability was specified in the problem,
and the simplicity of the subsequent arithmetic once
inspired a student to speculate that 'this was probably
the scenario the experimenters had in mind'. | return to
this comment in discussing the next question.

3 4
68 75
12 11
17 10
Blue Yellow Blue Yellow
(@) (b)
Ou_tcome_s from _origina_l problem Out_comes_ from z_inother_ feasibl_e scen_ario

Figure 1 : Final disposition of Cabs in the Car-Park

Many years living in a student hall of residence
have made me only too aware of the fire alarm dilemma:
the more sensitive the setting of the detector, the
smaller the risk of it failing to warn of a real emergency,
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but the greater the incidence of false alarms. By
analogy, the witness will generally prove better at
detecting one colour than the other, so a perfectly
feasible result of the test could be the values in Fig. 1(b).



Some students have objected that here the numerical
values do not give a simple, whole-number value for the
reliability, as was the case in the original problem. |
address this by asking; ‘are the reliability values in either
case experimental data, or are they the calculated
outcomes from such data? They then appreciate that
the reliability value of 80% in the original problem can
only have been calculated from the results from the

‘test’, even if its construction in Tversky's imagination

had been different from our own. | have found no need

to introduce here any new terminology such as Type |

‘and Type II' errors.

| am further exploring a boundary case, not
shown diagrammatically, which has a third set of test
results; my the aim is to explicate one of the common
fallacies reported by Falk and Greebaum (1995,
pp. 81-82), namely that of applying to problems of
inference arguments that are valid only in deductive
logic. In this scenario we suppose the witness’s
reliability to increase to 100% when identifying Blue, but
to remain less than 100% when identifying Green. We
can express this as two conditional statements:

o ‘If the witness says ‘green’, the cab is certainly
Green”. But if the test organizers know the cab to be
Blue, then they deduce that the witness is certainly
wrong.

o ‘“If the witness says ‘blue’, the cab is probably Blue”.
But if the test organizers know the cab to be Green,
they should again deduce that the witness is
certainly wrong,

However, subjects often conclude in (2) that the
witness is only probably wrong, in the mistaken belief
that any conclusion is subject to the same measure of
doubt as the complement of the conditional statement.
This is a fallacy which Falk and Greenbaum report as
prevalent even among professional statisticians.

| used to make a practice of pointing out that
the E-W division of the park (depicted by the line running
N-S in the diagram) could be marked out before the test,
which is why the base- rate is often called the ‘Prior’.
However, | shall henceforth soft-pedal on this, having
only recently appreciated from the writings of Falk (1989,
p 178) that a conditioning probability does not
necessarily have to precede the acquisition of
experiential evidence.

More importantly, | find no difficulty in provoking
students to question the plausibility of what they are
trying to imagine; as Falk (1989, p 175) points out, there
is inevitable ‘ambiguity about the “given” in probability
story-problems’. Even if ‘the conditions that existed on
the night of the accident’ can be preserved throughout
the parade, there is an obvious problem of temporality:
will the condition of the witness not change, during both
the interval between the accident and the test, as well as
in the course of the test itself? Won't her power of
discrimination then be either improving with experience,
or deteriorating through boredom, thus invalidating the

assumption that her judgments during the test were
representative of her judgment at the time of the
accident?

c) Why should the witness’s reliability be independent
of the base rate?
To discuss this question, | put two others to the
students:
e ‘Have you ever been to New York?
e What colour are most cabs in New York?

Even those who answer ‘No’ to the first question
universally answer ‘Yellow’ to the second, and the class
readily grasps that any answer to Tversky's question that
is based on the numbers in Fig 1(a) must rest on the
strong assumption that experimental evidence — here
the witness’s reliability -- is independent of the base
rate. To drive the point home we replace “Green’ in the
original story with “Yellow’; then, as one student put it, ‘I
can almost hear the witness asserting in court “yes, of
course | know that most cabs are yellow, that's why I'm
SO sure that the cab | saw was different” ’. Yet in his
book, Kahneman states unequivocally that the ' correct
answer ' to this ‘standard problem’ is 41%, which from
Fig. 1(a) we can check as

{12/ (12+17)} x 100%

By contrast, most of my students have given
values close to the witness’s ‘reliability’ score of 80%.
This is in common with most of the subjects in Tversky's
original experiment, whom Kahneman accuses of 'base-
rate neglect’ (Kahneman 2012, p88), and hence
concludes that we human beings are by intuition
imperfect statisticians. But perhaps Tversky and
Kahneman are no better than the rest of us?

IV. CONCLUSION

| used to invoke Tversky and Kahneman’s Cab
problem in introducing Bayes'’s formula to my class, but
hope to have shown the story's effectiveness in
promoting deep leamning without mention of
Bayesianism. This is a highly controversial area that has
been more thoroughly explicated by others, notably Falk
(1989, pp180-182); writing well after the first publication
of the cab problem, she and a colleague (Fak &
Greenbaum, 1995, p.91) concluded that 'no single
procedure can be offered to replace that ritual; surely
not any mechanical recipe'. Their 'ritual' and 'recipe' refer
to hypothesis testing, which necessarily subsumes
Thomas Bayes's theories. Surprisingly, however, the
authors do award Bayes the accolade of referring to his
theorem (p78), a term avoided by Kahneman (2012)
who instead speaks of Bayes's rule (p166) and of
Bayesian statistics (p154), thinking (p169) and reasoning
(p172). Teachers, at grade-school level at least, could
be forgiven for deciding that Bayesianism is a minefield
where they should fear to tread.

However, the choice is not open to that majority
of Western teachers who are constrained by syllabuses
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which they may aspire to influence, but which
are nonetheless state-imposed. Moreover, Googling
‘Conflicts in the Classroom’ will reveal the controversies
already extant in the classroom throughout all stages of
education, at least in the Anglosphere. Their causes are
rooted not in what is taught, but in racism and sexism;
while it is in this context that Varmi-doshi (2007), for
instance, has asserted that ‘...teaching controversial
issues is all-important’, there is no reason to suppose
that this should apply to the substance of our teaching
any less than its conduct.

So feeling it imperative to grasp the nettle of
Bayesianism with at least my abler students, | direct
them to another best-selling paperback, The Black Swan,
by Nicolas Taleb (2008). Ironically, this is despite his
making not a single reference to Bayes; rather it is
because he draws extensively on Tversky and
Kahneman’s work while writing dismissively about
statistics and statisticians in general.

More particularly, among the sins Taleb lays at
statisticians' door is what he dubs the ‘ludic fallacy’
(Taleb, 2008, pp122-123); by this he means that there is
nothing to be learnt about the untidy, inferential 'real
world from games involving dice or other artifacts of
randomness. Given that it is precisely the comparison
to such artifacts that forms the bedrock of statistical
hypothesis testing, it is vital for our students -- indeed,
for all of Taleb’s readers -- to confute this as one of the
more outrageous of his claims. So once embarked on
the teaching Bayesianism, | call on the dice-based
‘Bayes Icebreaker’ developed by Jessop (2010); in the
Appendix | show how this can be related to Tversky's
cab-story.

Though often using statisticians as subjects, in
his book Kahneman (2012) nowhere describes himself
as a statistician. But a question he might ask in
discussing the base-rate bias (pp. 146-150) is 'Are
statisticians likely to be in the majority of people who
read either my book or Taleb's? The answer is surely
'no’.  Identifying the intellectual conflicts latent in these
two books in itself stimulates students' deep learning.
Indeed, this is a message we teachers can proselytize
more widely whenever these books are mentioned in
social conversation. Axiomatically, as best-sellers, they
often are.

V.  APPENDIX

a) Bayes Ice-Breaker

The table in Fig 2 below is an adaption of the
table in the 'Ice-breaker' developed by Jessop (2010). In
the original. Jessop considers three six-sided dice one
with the faces inscribed with tossed, the forename
NATHAN, and two with the name ANTHEA. The problem
is to calculate the relative diagnostic worth of each of
the letters A-E-H-T-N when displayed after tossing just
one of the three dice picked at random: if for example
an N appears, the chances of either name are 50:50,
while an E makes ANTHEA a 100% certainty. This nicely
illustrates Bayes's formula. To permit a comparison with
the cab problem, | reduce the evidence to the
Vowel/Constant dichotomy. The table in Fig 2 thus
corresponds to Jessop’'s Tables 1 and 2, while the
diagram on the right shows the ‘cab-park’ equivalent of
his problem, From either the tables or the diagram, we
readily deduce that the probability of the dice being
Anthea is 6/ (6+2) = 75% if a vowel is tossed, but only
6/ (6+4) = 60% in the case of a consonant.

Constituents of sample Space

Evidence Vowel Consonant Sum

NATHAN 2 4 6 Vowel

ANTHEA 6 6 12 2 6

Likelihoods

Evidence Vowel Consonant Base Rates

NATHAN 2/6 4/6 1/3

ANTHEA 6/12 6/12 2/3

Consonant
4 6
Nathan Anthea
Figure 2 : Jessop’s Icebreaker with two Antheas and one Nathan
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