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this problem as 'standard' and unequivocally answers with a simple fixed-point number. I 
describe how I have encouraged my students to challenge the certainty of this assertion by 
identifying ambiguities unexplained in the story; in the process I strive to stimulate individuals’ 
Thinking, Fast and Slow, to use the title of Kahneman's book, arguing that his 'slow thinking' is a 
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Slow Thinking & Deep Learning; Tversky & 
Kahneman’s Cabs 

Mike Bedwell 

Abstract- This note describes my experience in encouraging 
the 'deep learning' that has long been advocated in the 
pedagogic literature. My students have typically studied 
statistics only as part of another discipline, such as 
economics, business or law. So while they have mostly been 
aged 17 or over, my approach has necessarily presumed only 
elementary mathematics and thus should be adaptable to 
younger people.  

My main example is a problem story constructed by 
Amos Tversky in the 1970s to evaluate human beings’ 
intuitions about statistical inference, and which in 2012 was 
revisited in a best-seller by his colleague, the Nobel prize-
winner Daniel Kahneman. In his book he describes this 
problem as 'standard' and unequivocally answers with a 
simple fixed-point number.  I describe how I have encouraged 
my students to challenge the certainty of this assertion by 
identifying ambiguities unexplained  in the story; in the process 
I strive to stimulate individuals’ Thinking, Fast and Slow, to use 
the title of  Kahneman's book, arguing that his 'slow thinking' is 
a prerequisite of deep learning. 

While Kahneman more fully describes the problem as 
one of 'Bayesian inference’, his story can be de-constructed  
without  reference to the work of Thomas Bayes. However, the 
bitterest conflicts in the statistical academic community 
continue to arise from the Bayes-frequentist controversy; this 
we cannot expect our students to resolve, but we owe it them 
to explain its causes. So my article includes as an appendix a 
‘Bayes Icebreaker’ where I show an analogy between the cab 
story and an exercise previously described in Teaching 
Statistics.  
Keywords: deep learning, slow thinking, cab problem, 
Bayesianism. 

I. Introduction 
uch of my recent teaching has been to a                  
17+ age group of Ukrainian students, eager to 
understand western education. They often want 

to to take direct advantage of it, their first step being to 
prepare for such computer-implemented tests as the 
TOEFL, GRE and GMAT.  The principle of 'deep learning' 
is often novel to these young people; even though born 
well after the break-up of the USSR, they have usually 
been taught in schools and universities where the 
culture has remained one of rote-learning, corruption 
and nepotism.  

The internet has progressively become my 
major tool in helping these students; the others have 
included two best-selling paperbacks that are cheap to 
buy but which have proved  priceless  in  enlightenment, 
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to me as much as my students. For these two books 

have provoked me to ruminate on my own  Thinking, 
Fast and Slow, the title

 
of one of them (Kahneman, 

2012). One clear conclusion I have come to is that deep 
learning

 
can and should be inculcated in much younger 

people, and that as teachers of statistics we are well 
placed to take the lead.. I will argue that the level of 
mathematics needed is within the grasp of even primary 
school children anywhere in the world.

 
II.

 
Discussion of the

 
Pedagogy

 As might be  crudely explained, the ‘slow 
thinking' of Kahneman's title corresponds roughly to the 
popular adages 'count to ten before replying' or ‘engage 
brain before opening mouth’, and I have interpreted it as 
a prerequisite for the ‘deep learning’ that the pedagogic 
literature has long advocated. Below is a problem from 
Kahneman's book which I have regularly posed to my 
students to stimulate such thinking, and which he and 
his co-worker Amos Tversky had developed in their 
research some years earlier:

 ‘A cab was involved in a hit-and-run accident at night.
 Two Cab companies, the Green and the Blue, operate in 

the city.
 You are given the following data:

 •

 
85% of the cabs in the city are Green and 15% are 
Blue.

 •

 

A witness identified the cab as Blue. The court 
tested the reliability of the witness under the 
circumstances that existed on the night of the 
accident and concluded that the witness had 
correctly identified each one of the two colors 80% 
of the time and failed 20% of the time.

 
What is the probability that the cab involved in 

the accident was Blue rather than Green? 

 
(Tversky and Kahneman, 1980, in Kahneman, 2012, pp166, 
167) 

 
Whenever possible, it has been my practice to 

have this problem printed out, double-spaced and with 
wide margins to allow ample room for annotations. For 
younger students I would imagine it necessary to have 
some discussion of the meaning of' 'percent' and 
'probability', although in the UK, most children will have 
acquired some  familiarity with these

 

words; only too 
early in their lives they are exposed both to TV lottery 

M 
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shows in the home and to state-imposed, statistically-
processed testing at school. 

With my maturer students, I immediately get 
them into groups and then walk round amongst them, 

mailto:Michael_Bedwell@hotmail.com�


 
eliciting and answering questions.  I encourage those 
engrossed in any electronic device to find the problem 
on Google, especially when I suspect them to be 
indulging in some sort of private communication. 
Elsewhere (Bedwell, 2009) I have argued that 
technology in the classroom serves only to disrupt the 
all-too-precious time we can spend in face-to-face 
discussion with our students. I expect mine to behave 
accordingly.

 

III.

 

Discussion

 

of the Problem 

My approach is to put to each group the 
following questions:- 

a)

 

What is your answer to Tversky's problem?

 

Lack of motivation is common among the 
students I have known in Ukraine, where I have mostly 
taught in private universities; these have their admission 
policy determined less by students' academic interest 
than by the income of their parents. As a statistical 
aside, I have found this problem diminishes with class 
size; the greater the number of students, the higher the 
probability of there being among them enthusiasts with 
whom the others learn to compete. Nonetheless, I have 
to be prepared to deal with such answers as 'Dunno', or 
the Slavic equivalent; after indeed mentally biting my 
tongue in the effort to 'think slowly', I try as a prompt 
asking ' Do you mean you don't have enough 
information to decide – or that

 

“it all depends” ? '. 

 

Less discouragingly, other students will ask ' 
what formula should we use?'.  I parry this by writing on 

the whiteboard such numerical answers as I have 
gleaned from the rest of the class, all of whom I direct to 
the next question.

 
b)

 

How do you imagine the detail of the test undergone 
by the witness?

 
I am aware that I should allow time for the 

students to develop their own scenarios, but to date 
have lacked the patience to do other than steer them to 
the following of my own contrivance: 15 of the city’s Blue 
cabs and 85 of the Green were paraded in random 
order before the witness. She was envisaged as calling 
out in turn the colour she judged the cabs to be, so that 
each could be labeled with either a ‘B’ or a ‘G’ sticker, 
before being directed to one corner of a rectangular 
parking area. This has space for 10 cabs in each row 
and each column, 100 in all. To facilitate discussion of 
the diagram I’d sketch on the whiteboard, we imagined 
the park to be oriented on the cardinal directions so, for 
example, Blue cabs wrongly identified as Green ended 
up in the NW corner. My students have then had little 
difficulty in using the quantitative information in Tversky's 
story to calculate that number as 20% * 15% * 100 = 3, 
as shown Fig 1(a), before similarly confirming the 
numbers shown in the other three corners. The precision 
with which the reliability was specified in the problem, 
and the simplicity of the subsequent arithmetic once 
inspired a student to speculate that 'this was probably 
the scenario the experimenters had in mind'.  I return to 
this comment in discussing the next question.
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Outcomes from original problem

    

Outcomes from another feasible scenario

  
                    
  

Figure 1 :

 

Final disposition of Cabs in the Car-Park
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Many years living in a student hall of residence 
have made me only too aware of the fire alarm dilemma: 
the more sensitive the setting of the detector, the 
smaller the risk of  it failing to warn of a real emergency, 

but the greater the incidence of false alarms. By 
analogy, the witness will generally prove better at 
detecting one colour than the other, so a perfectly 
feasible result of the test could be the values in Fig. 1(b). 



Some students have objected that here the numerical 
values do not give a simple, whole-number value for the 
reliability, as was the case in the original problem. I 
address this by asking; ‘are the reliability values in either 
case experimental data, or are they the calculated 
outcomes from such data?’ They then appreciate that 
the reliability value of 80% in the original problem can 
only have been calculated from the results from the 
‘test’, even if its construction

 

in Tversky's imagination 
had been different from our own. I have found no need 
to introduce here any new terminology such as 'Type I 
'and 'Type II' errors.

 

I am further exploring a boundary case, not 
shown diagrammatically, which has a third set of test 
results; my the aim is to explicate one of the common 
fallacies reported by Falk and Greebaum (1995, 

                

pp. 81-82), namely that of applying to problems of 
inference arguments that are valid only in deductive 
logic. In this scenario we suppose the witness’s 
reliability to increase to 100% when identifying Blue, but 
to remain less than 100% when

 

identifying Green. We 
can express this as two conditional statements:

 

•

 

“If the witness says ‘green’, the cab is certainly

 

Green”. But if the test organizers know the cab to be 
Blue, then they deduce that the witness is

 

certainly

 

wrong. 

 

•

 

“If the witness says ‘blue’, the cab is probably

 

Blue”. 
But if the test organizers know the cab to be Green, 
they should again deduce that the witness is

 

certainly

 

wrong, 

 

However, subjects often conclude in (2) that the 
witness is only probably

 

wrong, in the mistaken belief 
that any conclusion is subject to the same measure of 
doubt as the complement of the conditional statement. 
This is a fallacy which Falk and Greenbaum report as 
prevalent even among professional statisticians.

 

I used to make a practice of pointing out that 
the E-W division of the park (depicted by the line running 
N-S in the diagram) could be marked out before the test, 
which is why the base- rate is often called the ‘Prior’. 
However, I shall henceforth soft-pedal on this, having 
only recently appreciated from the writings of Falk (1989, 
p 178) that a conditioning probability does not 
necessarily have to precede the acquisition of 
experiential evidence.

 

More importantly, I find no difficulty in provoking 
students to question the plausibility of what

 

they are 
trying to imagine; as Falk (1989, p 175) points out, there 
is inevitable ‘ambiguity about the “given” in probability 
story-problems’. Even if ‘the conditions that existed on 
the night of the accident’ can be preserved throughout 
the parade, there

 

is an obvious problem of temporality: 
will the condition of the witness not change, during both 
the interval between the accident and the test, as well as 
in the course of the test itself? Won’t her power of 
discrimination then be either improving with experience, 
or deteriorating through boredom, thus invalidating the 

assumption that her judgments during the test were 
representative of her judgment at the time of the 
accident?

 

c)

 

Why should the witness’s reliability be independent 
of the base rate?

 

To discuss this question, I put two others to the 
students:  
•

 

‘Have you ever been to New York?

 

•

 

What colour are most cabs in New York?

 

Even those who answer ‘No’ to the first question 
universally answer ‘Yellow’ to the second, and the class 
readily grasps that any answer to Tversky's question that 
is based on the numbers in Fig 1(a) must rest on the 
strong assumption that experimental evidence – here 
the witness’s reliability  --

 

is independent of the base 
rate. To drive the point home we replace “Green’ in the 
original story with ‘Yellow’; then, as one student put it, ‘I 
can almost hear the witness asserting in court “yes, of 
course I know that most cabs are yellow, that’s why I’m 
so sure that the cab I saw was different” ’. Yet in his 
book, Kahneman states unequivocally that the ' correct 
answer ' to this ‘standard problem’ is 41%, which from 
Fig. 1(a) we can check as

 

{12/ (12+17)}  x 100%

 

By contrast, most of my students have given 
values close to the witness’s ‘reliability’ score of 80%. 
This is  in common with most of the subjects in Tversky's 
original experiment, whom Kahneman accuses of 'base-
rate neglect' (Kahneman 2012, p88), and hence 
concludes that we human beings are by intuition 
imperfect statisticians. But perhaps Tversky and 
Kahneman are no better than the rest of us?

 

IV.

 

Conclusion

 

I used to invoke Tversky and Kahneman’s Cab 
problem in introducing Bayes’s formula to my class, but 
hope to have shown the story's effectiveness in 
promoting deep learning without mention of 
Bayesianism. This is a highly controversial area that has 
been more thoroughly explicated by others,

 

notably Falk 
(1989, pp180-182); writing well after the first publication 
of the cab problem, she and a colleague (Falk & 
Greenbaum, 1995, p.91) concluded that 'no single 
procedure can be offered to replace that ritual; surely 
not any mechanical recipe'. Their 'ritual' and 'recipe' refer 
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to hypothesis testing, which necessarily subsumes 
Thomas Bayes's theories. Surprisingly, however, the 
authors do award Bayes the accolade of referring to his 
theorem (p78), a term avoided by Kahneman (2012) 
who instead speaks of Bayes's rule (p166) and of 
Bayesian statistics (p154), thinking (p169) and reasoning
(p172).  Teachers, at grade-school level at least, could 
be forgiven for deciding that Bayesianism is a minefield 
where they should fear to tread.

However, the choice is not open to that majority 
of Western teachers who are constrained by syllabuses 



 
 

 

 

which they may aspire to influence, but which 

                         

are nonetheless state-imposed. Moreover, Googling 
‘Conflicts in the Classroom’ will reveal the controversies 
already extant in the classroom throughout all stages of 
education, at least in the Anglosphere. Their causes are 
rooted not in what is taught, but in racism and sexism; 
while it is in this context that  Varmi-Joshi (2007),  for 
instance, has asserted that ‘…teaching controversial 
issues is all-important’,  there is no reason to suppose 
that this should apply to the substance of our teaching 
any less than its conduct.  

 

So

 

feeling it

 

imperative to grasp the nettle of 
Bayesianism with at least my abler students, I

 

direct 
them to another best-selling paperback, The Black Swan, 
by

 

Nicolas Taleb (2008).  Ironically, this is despite his 
making not a single reference to Bayes; rather it is

 

because he draws extensively on

 

Tversky and  
Kahneman’s work while writing dismissively about 
statistics and statisticians in general. 

 

More particularly, among the sins Taleb lays at 
statisticians' door is what he dubs the ‘ludic fallacy’ 
(Taleb, 2008, pp122-123); by this he means that there is 
nothing to be learnt about the untidy, inferential 'real' 
world from games involving dice or other artifacts of 
randomness.  Given that it is precisely the comparison

 

to such artifacts that forms the bedrock of statistical

 

hypothesis testing, it is vital for our students -- indeed, 
for all of Taleb’s readers --

 

to

 

confute this as one of the 
more outrageous of his claims. So once embarked on 
the teaching Bayesianism, I call on the dice-based 
‘Bayes Icebreaker’ developed by Jessop (2010); in the 

 

Though often using statisticians as subjects, in 
his book Kahneman (2012) nowhere describes himself 
as a statistician. But a question he might ask in 
discussing the base-rate bias (pp. 146-150) is 'Are 
statisticians likely to be in the majority of people who 
read either my book or Taleb's?'  The answer is surely 
'no'.   Identifying the intellectual conflicts latent in these 
two books in itself stimulates students' deep learning. 
Indeed, this is a message we teachers can proselytize 
more widely whenever these books are mentioned in 
social conversation. Axiomatically, as best-sellers, they 
often are. 

 

V.

 

ppendix

 

a)

 

Bayes Ice-Breaker 
The table in Fig 2 below is an adaption of the 

table in the 'Ice-breaker' developed by Jessop  (2010). In 
the original. Jessop considers three six-sided dice one 
with the faces inscribed with

 

tossed, the forename 
NATHAN, and two with the name ANTHEA. The problem 
is to calculate the relative diagnostic worth of each of 
the letters A-E-H-T-N when displayed after tossing just 
one of the three dice picked at random:  if for example 
an N appears, the chances of either name are 50:50, 
while an E makes ANTHEA a 100% certainty. This nicely 
illustrates Bayes's formula. To permit a comparison with 
the cab problem, I reduce the evidence to the 
Vowel/Constant dichotomy. The table in Fig 2 thus 
corresponds to Jessop’s Tables 1 and 2, while the 
diagram on the right shows the ‘cab-park’ equivalent of 
his problem, From either the tables or the diagram, we 
readily deduce that the probability of the dice being 
Anthea is 6/ (6+2) = 75% if a vowel is tossed, but only 
6/ (6+4) = 60% in the case of a consonant. 

Constituents of sample Space

                

Evidence

 

Vowel

 

Consonant

 

Sum

        

NATHAN

 

2 4 6 

  

Vowel

    

ANTHEA

 

6 6 12

  

2 

   

6 

 
 

Likelihoods   

         

Evidence

 

Vowel

 

Consonant

 

Base Rates

        

NATHAN

 

2/6

 

4/6

 

1/3

        

ANTHEA

 

6/12

 

6/12

 

2/3

        
     

Consonant

   
  

4

    

6 

 
       
       
       
 

Nathan

 

Anthea

         

Figure 2 :

 

Jessop’s Icebreaker with two Antheas and one Nathan

 

 

Slow Thinking & Deep Learning; Tversky & Kahneman’s Cabs

© 2015   Global Journals Inc.  (US)

  
  

  
 V

ol
um

e 
X
V
  

Is
su

e 
X
II 

 V
er
sio

n 
I 

  
  
 

20

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

s

-

Ye
ar

20
15

VI. Acknowledgements

I am indebted to 
• the students who over the years  have stimulated 

my own deep learning
• the anonymous referee for her/his helpful comments 

on my initial submission of this article, and

• most of all, Professor Ruma Falk of the Hebrew 
University of Jerusalem for her severe but 
constructive criticism of much of my writing on 
statistics.

Appendix I show how this can be related to Tversky's 
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