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Agglomerative Hierarchical Clustering: An 
Introduction to Essentials. (1) Proximity 

Coefficients and Creation of a Vector-Distance 
Matrix and (2) Construction of the Hierarchical 

Tree and a Selection of Methods 

Refat Aljumily 

Abstract- The article is on a particular type of cluster analysis, 
agglomerative hierarchical analysis, and is a series of four 
main parts. The first part deals with proximity coefficients and 
the creation of a vector-distance matrix. The second part deals 
with the construction of the hierarchical tree and introduces a 
selection of clustering methods. The third deals with a variety 
of ways to transform data prior to agglomerative cluster 
analysis. The fourth deals with deals with measures and 
methods of cluster validity. The fifth and final part deals with 
hypothesis generation. The present article covers the first and 
second partsonly. It explains how agglomerative cluster 
analysis works by implementing it in a data matrix step by 
step. Different types of agglomerative hierarchical clustering 
methods are applied on purposely-made data matrix so 
different types of cluster structures are made from that same 
dataset. The last three parts will be covered in the next 
publication(s).There are many articles, tutorials, and books on 
this subject. The article has two main objectives: (1) to keep 
the discussion short and easy to understand by (hopefully) 
any reader and (2) to develop the motivation for using 
agglomerative hierarchical clustering to analyse any high-
dimensional data of interest with respect to some research 
question. 
Keywords: proximity, metric space, vector space, (non) 
euclidean space, symmetric matrix, agglomeration, 
centroid, sum of squares, median. 

I. Introduction 

gglomerative Hierarchical Cluster Analysis, 
abbreviated (AHCA), is a particular type of cluster 
analysis and is a useful multivariate exploratory 

technique that has found application in different 
research fields such as data mining, social sciences, 
biology, information retrieval, statistics, pattern 
recognition, ecology and psychology. Agglomerative 
Hierarchical Cluster Analysis is not a single method but 
rather a family of different but related computational 
methods that make no a priori assumptions about the 
structure  of  data.  Agglomerative  Hierarchical  Analysis  
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methods try to discover structured interrelationships 
among data vectors that might be interesting in relation 
to a research purpose. More specifically, all the 
methods of the family try to identify and graphical 
display of structure in data when data is too large either 
in terms of the number of variables or of the number of 
objects described, or both, for it to be readily 
interpretable by direct inspection. Agglomerative 
Hierarchical Analysis methods generate hierarchically 
ordered clusters and represent proximity structure 
among objects in high-dimensional space not as a 
spatial cluster but as a constituency tree or dendrogram. 
All the methods work by grouping a set of objects in the 
domain of interest into distinct clusters according to how 
relatively similar/dissimilar those objects are in terms of 
the variables that describe them. Each object is 
described by a set of variables. Any two objects will be 
more or less similar/dissimilar on the basis of some 
definition of proximity between them.  

This article is in four main parts. The first part 
gives a general description of agglomerative hierarchical 
cluster analysis and proposes an interpretation of the 
result related to it. The second part first provides some 
relevant mathematical concepts that will be used in 
agglomerative hierarchical clustering: cluster, metric 
space, vector space, and proximity matrix, and then 
goes into the detail of how proximity among pairs of 
vectors is measured and how a cluster tree is built. The 
third part shows twelve different varieties of 
agglomerative hierarchical analysis and applies them to 
a data matrix M. The final part concludes the discussion.  

a) Agglomerative Hierarchical Cluster Analysis (AHCA) 
and interpretation  

AHCA is known as a bottom-up or alternatively 
left to right approach. This approach is the more often 
used and also better covered in the relevant textbooks, 
e.g., [1], [2], and [3]. This is probably because AHCA 
provides more information than the other methods in 
that they not only identify the main clusters, but also 
their constituency relations relative to one another as 

A 
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well as their internal structures. The result of the 
utilization of AHCA is shown by a diagram called a 
‘constituency tree’ or ‘dendrogram’, which groups 
together related data vectors based on the relativities of 

proximity among all pairs of data vectors. Figure/1shows 
the result from the application of AHCA to eight data 
vectors.   
 

 

 
 

a b 

Figure 1 : (a) Vertical view of bottom-up tree and (b) horizontal view of left to right tree of five data items 

Figure/1shows the cluster structure of eight 
data vectors as a hierarchical dendrogram. To interpret 
the dendrogram correctly one has to understand how it 
is constructed, so a short intuitive account is given here; 
technical details are given later in the course of the 
discussion. The dendrogram in this figure can be viewed 
in different ways, that is, either vertically (a) or 
horizontally (b). In it the letters at the leaves are labels 
for the vectors in the dataset: “A” is the first vector, “B” 
the second, and so on. These labels are agglomerated 
into clusters in a sequence of steps. AHCA treats each 
data vector as a single cluster on its own and then 
sequentially agglomerate pairs of clusters until all 
clusters have been agglomerated into a single larger 
cluster that contain all data vectors. The links included in 
the hierarchy represent the constituency structure for the 
entire dataset: vector “A” and vector “B” constitute a 
cluster (A B), vector “C” and vector “D” constitute a 
cluster (C D), which itself combines with vector “E” so 
constitutes a cluster ((C D) E) that are combined 
together with (A B) to form an even higher-level cluster 
((A B) ((C D) E)), and so on. The lengths or heights of 
the links represent degrees of closeness: the shorter the 
link, the more similar the clusters. This is reflected in the 
cluster tree by the relative lengths of these links by the 
constituency structure of the proximity relations among, 
for example, vectors (A B)and vectors (F H) or vector 
(G). The longest (vertical/horizontal) lines at the top or 
right of the dendrogram separate the vectors into three 
main groups. The dendrogram represents vector 
proximity in n-dimensional space. For example, vector 
“F” and vector “H” are very close in the data space, and 
this pair is close to vector “G”. 

 
II.

 

Space

 

Concepts 

a)

 

Cluster Definitions

 

From cluster analysis viewpoint, the power of 
human eye or brain can recognize structures that are 
contained in data by perceiving any clusters

 

in it, 
despite the fact that the clusters may vary somewhat in 
different viewpoints, in many different sizes and shapes 
or even when they are interpreted or understood. To 
accept such a view we have to understand what a 
cluster is. Indeed, humans can detect patterns or 
connections in any surrounding environment and can 
distinguish between them, and clusters are a kind of 
pattern.

 

In a countryside position, for example, we can 
see clusters of trees, or farm buildings, of sheep. In any 
clear night we can see in the sky clusters of stars. And, 
closer to current interests, anyone looking at a data plot 
immediately sees any clusters that might be present. 
Looking at the data plotted in the two-dimensional 
space below, on the basis of our innate pattern 
recognition capability and without recourse to any 
obvious definition of the cluster, we can see that in 
figure/2a there is a random cloud of points with no clear 
structure emerging behind the data, and that in figure/2b

 

there are some local areas of concentrations of points, 
but these are not explicitly defined. By contrast, we can 
clearly see that in figures/2c and 2d there is a clear 
structure: figure/2c shows three clusters of equal size, 
whereas figure/2d shows two clusters of unequal size, 
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the smaller of which is in the upper-left part of the plot 
and the larger one in the lower part. 

© 2016   Global Journals Inc.  (US)



 
 

 
 

 
 a b 

  c d 

Figure 2

 

: A random scatter of points in two dimensions

The term cluster, however, does not have a 
precise definition, but there are some working definitions 
of what a cluster is that are commonly used. Three of 
them are given by [4] and [5]. They are:

 •

 

“A cluster is a set of entities which are alike, and 
entities from different clusters are not alike”;

 •

 

“A cluster is an aggregation of points in the test 
space such that the distance between any two 
points in the cluster is less than the distance 
between any point in the cluster and any point not in 
it”;

 •

 

“Clusters may be described as connected regions 
of multi-dimensional space containing a relatively 
high density of points, separated from other such 
regions by a region containing a relatively low 
density of points”.

 
The first definition of a cluster is a very general 

one and is best described as a similarity-based cluster 
definition. It assumes that objects are similar

 

to each 

other

 

within the same cluster and dissimilar

 

to objects 
in

 

different clusters. The second introduces the distance 
view of similarity and is best described as a distance-
based cluster definition. It assumes that the similarity or 
dissimilarity between data vectors can be measured on 
the basis of the distance between them. The third 
definition of a cluster introduces density view of similarity 
and is best described as a density-based cluster 
definition. It assumes that each cluster is representing a 
given region that has its own demand distribution which 
symbolizes the data vectors enclosed by that region. 
This definition is more often used when the clusters are 
irregular or intertwined, and when noise and outliers are 
present [6]. 
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Considering these three working definitions, we 
can see that even if the clusters consist of entities, 
points, or regions, the data vectors within each cluster 
are more similar in some respects than are other data 
vectors outside the clusters. A cluster is therefore a 
collection of data vectors which are similar between 



 
 

 
 

plotted (left) with its corresponding clusters (right)

 

on a 
two-dimensional scatter plot. 

 

  

a b 

  

c d 

Figure 3 :

 

A scatter of points (left) and its clusters (right) in two dimensions

 
In Figure/3a-b, the data vectors are clustered 

into three clear clusters labeled (cluster1, cluster2, 
cluster3) and in Figure (3c-d), the data vectors are 
clustered into five clear clusters labeled (cluster1, 
cluster2, cluster3, cluster4, cluster5) on the basis of 
some definition of proximity. If anyone is going to 
attempt an AHCA on data, then he/she should address 
the issue of what proximity coefficient to use at an early 
stage. 

 
b)

 

Proximity coefficient 

 
Cluster analysis, by definition, is a process of 

identifying those data vectors that are similar and of 
establishing a hierarchical classification relationship 
among them on the basis of some index of proximity.

 
What we mean by “on the basis of some index of 
proximity” is to calculate how data vectors plotted as 
points in multidimensional space are “close to” or “far 
away from” each other. To do so, we need to know the 

relative proximity between any two data vectors in 
different clusters.

 

A proximity coefficient is either a similarity or 
distance coefficient between every pair of data vectors 
in the space. The term proximity is more commonly 
used to refer to either one of these two coefficients. The 
term of proximity always suggest the question: proximity 
with respect to what? Most clustering procedures use 
pairwise measures of proximity. Two data vectors are 
close when their distance is small or their similarity is 
large. The choice of proximity coefficient is a crucial 
problem in cluster analysis

 

[4]. The choice of which 
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them and are dissimilar to the data vectors belonging to 
other clusters. Figure/3 shows a sample data vectors 

proximity measure to use in the first place is largely a 
matter of the type of data collected. All clustering 
information must be built up from the basic data types in 
the space. The type(s) of data collected in a given study 
determine the type of clustering analysis used. Most of 
the clustering algorithms can be applied to only certain 
kinds of data and some particular measures of 

© 2016   Global Journals Inc.  (US)



 
 

distance/similarity. As Everitt et al.

 

[2]

 

points out different 
proximity coefficients can and do lead to different cluster 
solutions, and as such it would be extremely useful to be 
able to select a proximity coefficient that is in some 
sense optimal. No reliable selection procedure exists, 
however. The choice of coefficient in any given 

application is governed by the nature of the data and by 
the clustering algorithms that will use it. There are many 
different types of data that one can collect. The following 
is a diagram showing some types of data that can be 
expressed either in terms of numbers or a natural 
language description.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 :

 

Types of data

 

For details of each of the data types see, for 
example, [7], [8], and [9].

 

However, proximity between pairs of data 
vectors can be measured in terms of their correlation, of 
their similarity coefficient, of the angle between them, or 
of distance in Euclidean space [2]. With data in which all 
the variables are categorical, measures of similarity are 
most generally used. The most commonly used 
similarity coefficient, at least for binary data is the 
Jaccard similarity coefficient and is calculated as: 
Sij=a/(a+b+c). To illustrate, Table/1 gives a matrix of 
binary variables of dimension 6 x 8. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Continuous (e.g. an 
effectively infinite 
number of values)

 

 

Ordinal               
(e.g. 

satisfaction, 
happiness, 

comfort, etc.)

 

Nominal    
(e.g. hair 
colour, 
gender, 
labels, 
etc.)

 

Multiple 
variables with 

variouss 

Binary 
(e.g. 
two 

values 

0 or 1) 

Discrete               
(e.g. a finite 
number of 

values)

 

 

Mixed

 

Numerical  

 

Categorical

  

Data Types

 

Interval        
(e.g. salary, 

height, length, 
etc.)

 
Ratio

 

(e.g. 
population 

growth, etc.)
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Table 1 : A 6 x 8 data matrix 

Variables 

x1   x2    x3   x4    x5   x6   x7   x8 

 

Vectors

 
 Where each row vector is a student and the 
column vectors are binary tags or states of some 
student response, e.g. answer to test questions. The 
state (1) means a variable is present indicating a correct 
answer in the data vectors and (0) means it is absent 
indicating an incorrect answer. This data

 
can be 

summed and placed in a contingency table in the form 
of the count of the number of the variables in each 
vector. The first two column data vectors (A) and (B) are 
worked out

 
and the coefficient of matches among them 

are shown in Table/2. 
 

Table 2 : A 2 x2 contingency table for the first two 
vectors in Table (1)

 

 
 

Vector A 

Vector B 
 1 0 

1 a=2 b=1 
0 c=1 d=4 

In this table, the rows represent the presence or 
absence of a set of X variables for a single student               
{x1, x2,……x8} for the first two row data vectors in 
Table/1. Cell a includes the count of the number of the              
X variables for which the two vectors both have the 
variable present. Cell b represents the number of 
variables the number of variables for which the first has 
the variables present and the second does no, and cell 
c includes the number of variables for which the second 
student has the variable present and the first student 
does not. Finally, cell d includes the count of the number 
of the X variables for which neither student has the 
variable present.  

Now we compute the similarity coefficients 
between the students based on the coefficient of 
matches by using Jaccard similarity coefficient. The 
equation used to calculate the similarity between data 
vector A and B is the following: 

 SAB=a/(a+b+c)= 2/4= 0.500.
 Applying this equation to the other row data vectors:

 SAC=a/(a+b+c)= 3/6= 0.500
 SAD=a/(a+b+c)= 1/6=0.167
 SEF=a/(a+b+c)= 2/5=0.400
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  

  
 V

ol
um

e 
X
V
I 
 I
ss
ue

 I
II 

 V
er
sio

n 
I 

  
  
 

28

  
 

( G
)

G
lo
ba

l 
Jo

ur
na

l 
of
 H

um
an

 S
oc

ia
l 
Sc

ie
nc

e 
 

-

Ye
ar

20
16

Agglomerative Hierarchical Clustering: An Introduction to Essentials. (1) Proximity Coefficients and 
Creation of a Vector-Distance Matrix and (2) Construction of the Hierarchical

Tree and a Selection of Methods

© 2016   Global Journals Inc.  (US)



 
 

A            B
    

C 
   

D 
    

E 
    

F 
A         0.000
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0.0000
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0.000

 

Figure 5 :
 
Jaccard Similarity Coefficient

 
matrix for the six data vectors in the data matrix shown in Table /1

 

Jaccard Similarity Coefficient
 
equates similarity 

with the three types of matches (a, b, c) only, excluding 
the coefficient of match ‘d’. It, however, indicates 
maximum similarity when the two data vectors have 
identical values, in which case b=c=0 and SAB=1.0. This 
coefficient also indicates maximum dissimilarity when 
there are no 1-1 matches, in which case a=0 and 
SAB=0.0. The basic idea of similarity coefficient is to give 

relative similarity between data vectors. Two data 
vectors are similar, relative to the cluster membership, if 
their profiles across variables are “close” or they share 
“many” characteristics in common, relative to those 
which other pairs share in common. For the Jaccard 
similarity coefficient

 
matrix, we obtain the following 

hierarchical tree: 
 

 

Figure 6 :

 

AHCA using Jaccard Similarity Coefficient

 

It can be seen that the data vectors (D) and (E) 
are mathematically most similar (or closest) to each 
other since they have identical matching coefficients (b 
and c = 0) and the similarity coefficient between them 
has the value of 1.0. Data vectors (A) and (B) are also 
similar since they share similar coefficient of matches. It 
can also be seen that the data vector (F) is very different 
from the others. (Note that because only simple data 
matrix have been used there are only two data vectors 
representing the two most similar cases that are closer 
to each other than any other pair in the data matrix). 

 

The similarity coefficients depend on the 
selected agglomerative clustering method for 
constructing the hierarchical tree and thus may differ for 
different methods or different similarity coefficients. Look 
at the following dendrograms generated by different 
hierarchical clustering methods

 

using the Jaccard 
similarity coefficient:
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we obtain the following similarity matrix:



 
 

  
a. Single b. Mean Proximity 

  
c. Density search, smoothed kth nearest neighbour d. Kth nearest neighbour 

Figure 7 :
 
AHCA four agglomerative hierarchical methods using Jaccard Similarity Coefficient applied to the matrix in 

Figure 5 

More is said about all of these methods in due 
course; the important thing to realize at this stage is that 
Jaccard Similarity Coefficient was tried with Ward, 
Median, Centroid, and Sum of Squares, but the 
application showed that these methods are not defined 
for similarity coefficients. To work on it, however, 
similarity coefficient would have to be converted to 
dissimilarity by subtracting every value from the 
maximum similarity by using one of the standard 
conversion methods: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖
 = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 − 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖
 

(Note when you subtract from the maximum we invert the 
scale so that previously small values are large. Another 
way to invert the scale is to multiply the similarity values 
by minus one, creating dissimilarity values).

 

The possible similarity coefficients of pairwise 
similarity are many, and these, together with their 
equations and properties, are available in, for example, 
[2], [3], and [10].

 
 

Table 3 : various similarity coefficients 

Similarity Coefficient Equation 

Matching coefficient Sij=(a+d)/(a+b+c+d) 
Jaccard coefficient (Jaccard 1908) Sij=a/(a+b+c) 

Rogers and Tanimoto (1960) Sij=(a+d)/[a+2(b+c)+d] 
Sneath and Sokal (1973) Sij=a/[a+2(b+c)] 

Gower and Legendre (1986 A) Sij=(a+d)/[a+1/2(b+c)+d] 
Gower and Legendre (1986 B) Sij=a/[a+1/2(b+c)] 

Yule coefficient Sij=ad-bc/ad+bc 
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Hamann coefficient Sij=(a+d)-(b+c)/(a+d)+(b+c) 
Sorenson coefficient Sij=2a/2a+b+c 
Rusell and Rao coefficient Sij=a/a+b+c+d 

 
However, when all the selected variables are 

numerical (continuous or discrete), distance between all 
pairs of data vectors is commonly computed by using a 
suitable distance coefficient. A distance coefficient is a 
measure which defines a distance between vectors of a 
set of data and it is typically termed metric space if it 
achieves the metric (triangular) inequality. Ideally, every 
distance measure should be a metric if the following 
conditions are satisfied: 
d(x,y) ≥0  this condition defines a positive -definite 
function, saying that distance can’t be negative.  
d(x,y)=0 if x=y: this condition says, as above, that 
distances are always positive except where the data 
vectors are identical in which case the distance is 
necessarily 0. 
d(x,y)=d(y,x): this condition says that the distance from x 
to y is the same as the distance from y to x, i.e. the 
distance is symmetric.  
d(x,z)≤d(x,y)+d(y,z): this condition is called the triangle 
inequality which says that for any triangle, the sum of the 
lengths of any two sides must be greater than or equal 
to the length of the remaining side. The triangle 

inequality can only be an equality if the remaining side 
lies exactly on the line connecting the two sides.

 

In mathematics, a metric space
 

is a set
 

for 
which distances

 
between all data vectors in the set are 

defined. These distances, taken together, are called a 
metric

 
on the set. A distance coefficient is said to have 

the Euclidean property or to be Euclidean if it always 
produces distance matrices that are fully embedded in a 
Euclidean space (i.e. points in space). If a distance 
matrix is Euclidean then it is also metric but the 
converse does not follow. Non-Euclidean distances are 
of different kinds: some still satisfy the metric inequality 
but have no Euclidean representation

 
(e.g. City block 

distance), while others are not (e.g. Bray-Curtis 
distance). The application of these distance measures in 
agglomerative clustering still makes very good sense as 
a distance measure between different objects. 
Discussions on non-Euclidean distances and their 
applications can be found in, e.g. [11] and [12].

 

However, choices for some of these distance 
coefficients are given in the following table that 
summarizes their equations and properties: 

 

Table 4 : Distance coefficients 

Distance coefficient Description 
Squared Euclidean 

Distance 
This measures the distance d between two data vectors i and j, and is expressed as: 

dij
2= S

k

𝑊𝑊𝑑𝑑𝑖𝑖𝑖𝑖  (𝑥𝑥𝑑𝑑𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖  )  2

𝑆𝑆𝑖𝑖   𝑤𝑤𝑑𝑑𝑖𝑖𝑖𝑖
 

where: Xik
 is the value of variable k in data vector i, and Wijkis a weight of 1 or 0 depending 

upon whether or not the comparison is valid for the kth; if differential variable weights are 
specified. It is the weight of the kth variable, or 0 if the comparison is not valid.   

Euclidean Distance This measures the distance dij
 which is obtained by taking the Square root of Squared 

Euclidean Distance dij
2 as calculated above.  

Euclidean Sum of 
Squares 

The Euclidean Sum of Squares (ESS) EP for cluster P is expressed  by:  

Ep= Siepci Sj
𝑊𝑊𝑖𝑖 (𝑥𝑥𝑑𝑑𝑖𝑖 −𝑑𝑑𝑚𝑚 𝑖𝑖 )

2

𝑆𝑆𝑖𝑖   𝑤𝑤𝑖𝑖
 

Where: Xij
 is the value of variable j in data vector i within cluster P 

Ci is an optional differential weight for data vector i 

Wjis an optional differential weight for variable j 

mpjis the mean of variable j for cluster P 

The total ESS for all clusters P is thus E=SpEp
 and the increase in the Euclidean Sum of 

Squares Ip Eq
 at the union of two clusters p and q is:  

IpEq = Ep Eq-Ep-Eq 

 
City Block Distance City Block Distance, or the Manhatten metric distance, is the Sum of the distances on each 

variable and is expressed as: 

© 2016   Global Journals Inc.  (US)
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https://en.wikipedia.org/wiki/Mathematics�
https://en.wikipedia.org/wiki/Set_(mathematics)�
https://en.wikipedia.org/wiki/Distances�
https://en.wikipedia.org/wiki/Metric_(mathematics)�
http://numerics.mathdotnet.com/Distance.html#Euclidean-Distance�
http://numerics.mathdotnet.com/Distance.html#Euclidean-Distance�
http://numerics.mathdotnet.com/Distance.html#Euclidean-Distance�


 
 

dij= SK
𝑊𝑊𝑑𝑑𝑖𝑖𝑖𝑖 �𝑥𝑥𝑑𝑑𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖 �

𝑆𝑆𝑖𝑖    𝑤𝑤𝑑𝑑𝑖𝑖𝑖𝑖

 

Product-Moment 
Correlation 

Pearson's correlation coefficient gives the correlation coefficient distance between vectors 
A and B, and is expressed as: 

𝑆𝑆𝑑𝑑 ,𝑖𝑖 =  � (𝐶𝐶𝑖𝑖 ,𝑑𝑑 − C
𝑑𝑑
)(𝐶𝐶𝑖𝑖 ,𝑖𝑖 − C

𝑖𝑖
)

𝑁𝑁

𝐾𝐾 −1

�� (Ck,i- C
i
)2 � (Ck,j- C

j
)2

N

K -1

N

K -1

�  

 
 

These distances are closely related, and if all 
the variables are measured on the same scale or have 
been transformed or standardized, there is no particular 
reason to prefer one over another. But if all the variables 
are measured on the different scale or if the data 
comprise different variables, then it is important to select 
the most appropriate proximity coefficient prior to 
clustering. Detailed discussion on distances in vector 
space can be found in, e.g., [13] and [14].  

c) Vector space  
The central concept in agglomerative 

hierarchical clustering is data vectors in n-dimensional 
vector space. To understand how hierarchical clustering 
works, it is necessary to have a firm grasp of this 
concept. For the present purpose, the distance measure 
that is most commonly used, most straightforward to 
apply, and practically simple to understand, will be 

sufficient. This is the Euclidean distance, or straight-line 
distance, and almost everyone is familiar with, i.e. can 
be measured with a ruler. 

A Euclidean vector space is a geometrical 
interpretation of a vector in which the dimensionality n of 
the vector defines an n-dimensional space, the 
sequence of numerical values comprising the vector 
specifies coordinates in the space, and the vector itself 
is a point at the specified Cartesian coordinates [1], 
[15], [16], and [17]. For example, a vector v = (2, 4) 
defines a two-dimensional space and its two 
components are coordinates in that space; a vector                
v = (2,4,6) defines a 3-dimensional space, and its 
values in the specified coordinate system place it at the 
corresponding position in the space; and so on to any 
dimensionality. This is shown graphically in Figure/8: 

Figure 8 : 2 and 3-dimensional vector spaces

 

 
 
 
 
 
 
 
 
 
 
 
 Any number m

 
of vectors can exist in an                     

n-dimensional vector
 
space, where m

 
corresponds to 

the number of rows in any given matrix M, and n
 corresponds to the number of columns.

 d)
 

Distance in vector space
 In what follows, the generic term “proximity” is 

used to refer to the distance relations between and 
among pairs of vectors. This may be understood in the 
following ways.

 To speak of a vector as a straight line, we see 
that if we draw a straight line from the origin (0,0) to the 
position of any point in the space of the axes (X,Y), the 
distance between the origin to that point is known as the 
length of a vector and can be measured as in Figure/9.

 
 
 
 
 

 

 
  A B 

. (2,4) .(2,4, 6)
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Figure 9 : A Vector in space 

If we draw two straight lines from the origin (0,0) 
to the position of point A and B then we know that there 
are two vectors in the space and their lengths can be 
measured and compared. Two straight lines (vectors) 
are called equivalent (equal) if they have the same 
length, and unequal if they have different length. Thus 
the figure/10 shows that the length of vector A is greater 
than the length of B. 

 

Figure 10 : Vector length 

Because each vector is understood as a 
straight line determined by 2 points in the coordinate 
system, we may find the position of any vector if its 
coordinates are known (i.e. the position of vectors with 
reference to those two lines is known when we know 
their distances from the axes). Thus, in the figure/10 the 
position of the vector A is (0.2, 0.8) and vector (B) is 
(0.4,0.3). 

Based on geometrical notions, we may state 
that the basic elements of vector space are length and 
angle. These can be used to determine the distance 
relations between and among vectors, and thus their 
cluster structure. To illustrate this, when two straight lines 
(or vectors) meet at a point in a space, there is an angle 
θ

 

between them, as shown in the Figure/11 below. 

 
 

 

Figure 11 : The angle between vectors

 

After the length and angle are identified, the 
distance between two vectors can be measured and 
relative distances between pairs of vectors compared, 
so that distance

 

(AC) in figure/12 is greater than 
distance (AB); this is the basis for several types of 
clustering method.

 

 

Figure 12 :

 

Vector distances

 

The distance between any two vectors in a 
space

 

is determined by the size of the angle between 
the straight lines meeting at the main point or origin of 
the space’s coordinate system, and on the lengths of 
those lines. Suppose A and B to be any two vectors 
having identical lengths and separated by an angle θ

 

(figure/13):
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Figure 13 

If the angle is fixed and the lengths of the vectors are not the same, then the distance between the two 
vectors A and B increases (figures/14a and 14b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 

If the lengths of the vectors are the same but 
the degree of the angle is increased, the distance 
between the vectors increases (figure/15a), and if the 

degree of the angel is decreased, the distance is also 
decreased (figure/15b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15
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𝒅𝒅𝒅𝒅, 𝒋𝒋 = �(𝒅𝒅𝒊𝒊 − 𝒋𝒋𝒊𝒊)𝟐𝟐 + �(𝒅𝒅𝟐𝟐 − 𝒋𝒋𝟐𝟐)𝟐𝟐 + �(𝒅𝒅𝒊𝒊 − 𝒋𝒋𝒊𝒊)𝟐𝟐 
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e) Distance in vector space
Most agglomerative hierarchical clustering 

methods however rely on the concept of distance 
among data vectors in n-dimensional space (data is 
represented in the form vectors of real numbers). Data 
vectors are grouped into similar or dissimilar clusters 
based on the information found in them: data vectors 
are considered similar if they are closer together and 

dissimilar if they are further apart in n-dimensional 
space. An intuition for how the measure of the distance 
between vectors in a vector space is best gained by 
working through a simple numerical example. Very often 
we use the equation for the Euclidean distance to 
quantify the distance in vector space. Consider the 
following triangle:  

Figure 16 : Intuitive example

Here, the distance between the two points at 
the vertices of the triangle is:

𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥(𝐀𝐀) = �(𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝑩𝑩)𝟐𝟐 + �(𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 (𝑪𝑪)𝟐𝟐

The origin of this equation is in the Pythagorean 
Theorem. Pythagoras’ theorem says that if we square 
the two shorter sides in a right-angled  triangle  and  add 

them together, we get the same as when you square the 
longest side (the hypotenuse). In the triangle in 
Figure/16, (B) and (C) are the two shorter sides and (A) 
is the hypotenuse, so if we square (B) and (C) and add 
them together B2+C2 we get the same as if we square A 
(A²). Therefore, B² + C²  =  A². Consider two points in 
2- dimensional space:

Figure 17 : Pythagoras’ theorem applied to distances in two-dimensional space

The horizontal line (i.e. distance) goes from              
V1 at (1, 1) to V2 at (4,5), so it is obvious that its 
length│X1-X2│is (4-1)=3 units. The vertical line or 
distance goes from V2 at (4,5) to (1,1), so again its 
length │Y1-Y2│is obvious = 4 units. With this in mind, 
we get a right-angled triangle with lengths 3 and 4. By 
the Pythagorean theorem, the square of the hypotenuse 
is (hypotenuse)2= 32+42= 25, which gives the length of 
the hypotenuse as 25, same as the distance between 
the two vectors V1 and V2 according to the distance 
equation above. Thus the Euclidean distance between 

them is 𝑑𝑑𝑑𝑑1,𝑑𝑑2 = �(4 − 1)2 + �(5 − 1)2=5.

Various other distance measures are also 
possible as discussed above, but they needn't concern 
us here. Euclidean distance is the simplest and most 
widely used of the various distance measures. 
Euclidean distance is also best provided for in software 
implementations, and so is used here.

However, this quantification applies to any 
dimensionality n. That is, Euclidean distance applying 
Pythagoras’ theorem can also be generalized or 
extended to measure the distance between any number 
of data vectors in any number of dimensions.



 
 

Look at the figure/18which shows 9 data 
vectors forming four triangles in 3-dimensional space, 
where each triangle is in its own space.

 

 

Figure 18 : 4 triangles in 3-dimensional space based on Pythagoras’ theorem
 

More triangles can be found based on the 
distance measurements among the 9 data vectors but in 
this figure we limit the calculation to four triangles and 
the dimensionalities to three.

 

f)
 

Distance matrix and agglomerative clustering 
 

Because the above quantification of distance in 
vector space applies to any dimensionality, and not just 
to the 2 and 3-dimensional spaces that can be 
visualized, it can be used to define clusters

 
in data of 

any dimensionality. This is what agglomerative 
hierarchical clustering does, and it does so in two steps: 

 

i.
 
Construction of a distance matrix 

 

When all the distances between all possible 
pairs of data vectors are measured, they are gathered 
and entered in a distance matrix which looks like the 
Table 5:

 

Table 5 :

 

Distance matrix based on Euclidean distance 
between 4 data vectors

 

 

V1

 

V2

 

V3

 

V4

 

V1

 

0

 

2.828

 

3.162

 

5.99

 

V2

 

2.828

 

0

 

1.414

 

3.162

 

V3

 

3.162

 

1.414

 

0

 

2
 

V4

 

5.099

 

3.162

 

2

 

0
 

Looking at the distance matrix shows that all of 
the entries on the main diagonal are zero because the 
distance from a data vector to itself is zero and

 

that the 
stored values in the triangle below the diagonal are 
mirror-images of the stored ones in the triangle above. 
The distance matrix is an n x n symmetrical, with rows 
and columns, on either side since the distance between 
V1 and V2 is identical to the distance between V2 and 
V1: the distance between any pair of vectors is the same 
in either direction. 

 

ii.

 

Construction of a hierarchical tree based on the 
distance matrix

 

Agglomerative hierarchal cluster analysis uses 
the quantified notion of distance described above, and 
the distance table more particularly, to find clusters in 
data. Numerous ways of doing this has been 
developed, most of them are variations on a theme; for 
present purposes the theme goes like this.

 

•

 

For a data set containing m vectors, we start by 
defining m clusters, one for each vector. 

 

•

 

Using as many steps as necessary, at each step we 
combine the two clusters with the smallest distance 
between them into a new, composite (sub)

 

cluster. 

 

To understand this, consider the following data 
that consists of 14 two-dimensional points

 

shown in 
Table 6.

 

Table 6 : a 14 x 8 data matrix
 1

 2
 3
 4
 5
 6
 7
 

4

 

1.10

 

1.09

 

1.79

 

0.99

 

1.14

 

3.25

 4

 

1.20

 

1.08

 

1.61

 

0.99

 

1.15

 

3.24

 4

 

1.19

 

1.07

 

1.62

 

1.15

 

1.23

 

3.27

 4

 

1.18

 

1.06

 

1.61

 

1.98

 

1.16

 

3.22

 4

 

1.16

 

1.04

 

1.64

 

0.96

 

1.17

 

1.21

 0.94

 

0.43

 

0.38

 

2.00

 

0.97

 

1.06

 

0.80

 0.96

 

0.47

 

0.43

 

1.44

 

0.97

 

1.10

 

0.87
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8
9

0.94 0.47 0.43 1.79 0.95 1.10 0.88
0.94 0.92 0.84 1.77 0.98 1.14 0.93
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10

 
11

 
12

 13

 14

 

       
       

0.98

 

0.79

 

0.76

 

1.47

 

0.96

 

1.12

 

0.13

 
0.99

 

0.49

 

0.47

 

0.01

 

0.99

 

1.13

 

0.08

 
2.00

 

3.50

 

3.49

 

3.02

 

0.83

 

1.13

 

4.14

 
2.02

 

3.40

 

3.72

 

3.16

 

0.97

 

1.19

 

4.18

 
2.04

 

3.52

 

3.52

 

3.24

 

0.93

 

1.12

 

4.25

 
 
The x y coordinates of the points and the plots are

 

shown in Figure/19:

 

Case 
 

X  
 

Y  
 1

 
2.0

 
1.5

 2
 

1.1
 

1.2
 3

 
1.5

 
1.3

 4
 

2.4
 

1.5
 5

 
2.5

 
1.3

 6
 

3.0
 

1.5
 7

 
4.0

 
1.7

 8
 

3.02
 

1.4
 9

 
4.6

 
1.6

 10
 

4.7
 

1.9
 11

 
5.0

 
1.8

 12
 

5.1
 

1.5
 13

 
5.2

 
1.4

 14
 

5.3
 

1.4
 

 

 a
 

B 

Figure 19 : The xy coordinates of the 14 data vectors (right) of data matrix in Table/6 (left)
 

We calculate the Euclidean distance between all 
pairs of vectors as shown in Figure/17 above and 
construct the distance matrix for the 14 vectors. 

Figure/20 below is the one that we looked at above in 
Table/6 and it is repeated here for clarity of the indicated 
area between point 3 and 1.  

 

Figure 20 : The plot of the 14 data points
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For this data matrix, we abstract the following distance matrix:   

Table 7 : A distance matrix for the 14 data vectors 

 1 2 3 4 5 6 7 8 9 10  11  12  13  14  
1 0.000 0.006 0.010 0.146 0.599 2.339 2.266 2.259 2.120  2.738  3.291  2.550  2.696  2.673  

2 0.006 0.000 0.005 0.140 0.589 2.366 2.264 2.275 2.123  2.726  3.212  2.560  2.717  2.694  

3 0.010 0.005 0.000 0.100 0.612 2.389 2.287 2.299 2.146  2.758  3.245  2.575  2.723  2.703  

4 0.146 0.140 0.100 0.000 0.726 2.490 2.388 2.405 2.250  2.853  3.326  2.778  2.896  2.884  

5 0.599 0.589 0.612 0.726 0.000 1.520 1.464 1.478 1.356  1.505  1.967  3.712  3.893  3.910  

6 2.339 2.366 2.389 2.490 1.520 0.000 1.464 1.478 1.356  1.505  1.967  3.712  3.893  3.910  

7 2.266 2.264 2.287 2.388 1.464 0.046 0.000 0.018 0.069  0.109  0.382  4.691  4.922  4.955  

8 2.259 2.275 2.299 2.405 1.478 0.008 0.018 0.000 0.054  0.125  0.545  4.546  4.764  4.789  

9 2.120 2.123 2.146 2.250 1.356 0.075 0.069 0.054 0.000  0.108  0.592  3.813  4.015  4.048  

10 2.738 2.726 2.758 2.853 1.505 0.144 0.109 0.125 0.108  0.000  0.330  4.905  5.131  5.186  

11 3.291 3.212 3.245 3.326 1.967 0.643 0.382 0.545 0.592  0.330  0.000  6.396  6.690  6.773  

12 2.550 2.560 2.575 2.778 3.712 4.634 4.691 4.546 3.813  4.905  6.396  0.000  0.015  0.011  

13 2.696 2.717 2.723 2.896 3.893 4.847 4.922 4.764 4.015  5.131  6.690  0.015  0.000  0.010  

14 2.673 2.694 2.703 2.884 3.910 4.866 4.955 4.789 4.048  5.186  6.773  0.011  0.010  0.000  

In what follows a 6 x 6 subset of the original 14 
x14 distance matrix constructed in Table/7will be used. 
This makes it possible to show the whole process of 
constructing a hierarchical tree step by step rather than 
just a fragment, thereby baking the discussion clearer. 
The procedure is based on the principal that a set of 
data vectors has a cluster structure if it can be divided 
into two or more groups in which the members of any 
given group are close to one another in the data space, 
and far from members of other cluster in the space. At 
each step in tree construction, therefore, one looks for 
the clusters that are closest to one another and 
amalgamates them into a super ordinate cluster, and 

this continues until all the data vectors have been 
assigned to one of the clusters. The following discussion 
will demonstrate this. 

 

Initially, each row vector of the data matrix is 
taken to be a cluster on its own; i.e., clusters here and 
henceforth are shown in brackets. The distance matrix is 
now searched to find the smallest distance between 
these data vectors. This is the distance between vector 
3 and vector 2 in Table 8: 0.005, shown shaded                     
in Figure/21a. These are combined into a first 
agglomerated cluster (2, 3) by drawing the tree, as 
below, and then transforming the distance matrix to 
incorporate the first cluster.

 
 

 

1 2 3 4 5 6 
1 0.000

      

2 0.006

 

0.000

     

3 0.010

 

0.005

 

0.000

    

4 0.146

 

0.140

 

0.100

 

0.000

   

5 0.599

 

0.589

 

0.612

 

0.726

 

0.000

  

6 2.339

 

2.366

 

2.389

 

2.490

 

1.520

 

0.000

 

a.

 

Initial distance matrix reproduced from Table (8) with smallest distance highlighted

 

Cluster 1

 

Cluster 2

 

Agglomerated 
distance

 

(2)

 

(3)

 

0.005

 
 

 

 
 

b. Table of agglomeration

 

c. Graphical representation of (c)

 

Figure 21

 

Transformation of the distance matrix takes a bit 
of understanding, so it is described in detail. 

 

•

 

The table in figure

 

21 a is transformed into the one 
in figure 21b.

 

•

 

Row vectors and column vectors are removed from 
the distance matrix and replaced them with a single 

blank row and column to represent the (2,3) cluster; 
0 is inserted as the distance from (2,3) to itself. 

 

•

 

The minimum distances from (2,3) to the remaining 
data vectors (1), (4), (5), and (6) are inserted

 

into 
the blank cells of the (2,3) row and column. 
Confused?  
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In the original distance matrix, the distance 
between (2) and (1) is 0.006 and between (3) and (1) is 
0.010, shown shaded in figure/22a below. The minimum 
distance here is 0.006, and is inserted into the relevant 
cell representing the minimum distance between (2,3) 
and (1). The distance between (2) and (4) in the original 
distance matrix is 0.140 and between (3) and (4) it is 
0.100. The minimum distance here is 0.100 and it is 
inserted into the relevant cell representing the distance 
between (2,3) and (4). The distance between (2) and (5) 
in the original distance matrix is 0.589 and between (3) 
and (5) it is 0.612.The minimum distance here is 0.589 
and it is inserted into the relevant cell representing the 
distance between (2,3) and (5). The distance between 

(2) and (6) in the original distance matrix is 2.366 and 
between (3) and (6) it is 2.389.The minimum distance 
here is 2.366 and it is inserted into the relevant cell 
representing the distance between (2,3) and (6). 
Emendation of the distance table is now complete, and 
the resulting table is the basis for the next step in the 
construction of tree. Now the distance table is searched 
to find the smallest distance between vectors. This is the 
distance between vectors (2,3) and (1): 0.006. Vectors 
(2, 3) and (1) are now combined into a new subordinate 
cluster ((2,3),1) by drawing the tree as below, and then 
emending the distance table to incorporate the new 
cluster.   

 
 

 
1 2 3 4 5 6 

1 0.000
      2 0.006
 

0.000
     3 0.010

 
0.005

 
0.000

    4 0.146
 

0.140
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0.000
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0.000
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0.000
 

 

 
1 (2,3)

 
4 5 6 

1 0.00
     (2,3)

 
0.006

 
0.00

    4 0.146
 

0.100
 

0.000
   5 0.599

 
0.589

 
0.726

 
0.000

  6 2.339
 

2.366
 

2.490
 

1.520
 

0.000
 

a.
 

Distance matrix from Table (8)
 

b.
 

Transformed version of a.
 

Cluster 1
 

Cluster 2
 

Agglomerated 
distance

 (2)
 

(3)
 

0.005
 ((2),(3))

 
(1)

 
0.006

 
 

 

 
 c. Table of agglomeration

 
d. Graphical representation of (c)

 
 

We must note that the distance matrix has 
shrunk by one row and column. In any process of 
agglomerating clusters, this shrinkage will continue as 
we proceed.  

Emendation of the distance table proceeds as 
step (1) explained above by removing the rows and 
columns and replacing them with single blank row and 
column to represent the new ((2,3)1) sub-cluster. Then 
the minimum distance from ((2,3),1) to the remaining 
data vectors (4), (5), and (6) is inserted into the blank 
cells. From Figure/ 22, the distance between (2,3) and 
(1) is 0.006 and between (4) and (1) is 0.146; the 
minimum distance is 0.006, and it is inserted into the 
relevant cell. The distance (2,3) and (5) 0.589 and 
between (1) and (5) is 0.599; the minimum distance here 
is 0.589, and it is inserted into the relevant cell. The 
distance between (2,3) and (6) is 2.366 and between (1) 
and (6) is 2.339; the minimum here is 2.339, and it is 
inserted into the relevant cell.  
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Figure 22



 
 

 

 1 2 3 4 5 6 
1 0.000      

2 0.006 0.000     

3 0.010 0.005 0.000    

4 0.146 0.140 0.100 0.000   

5 0.599 0.589 0.612 0.726 0.000  

6 2.339 2.366 2.389 2.490 1.520 0.000 

 

 ((2,3),1) 4 5 6 
((2,3),1) 0.000    

4 0.006 0.000   

5 0.589 0.726 0.000 0.000 

6 2.339 2.490 1.520 0.000 

a. Distance matrix from Table (8) b. Transformed version of a. 

Cluster 1 Cluster 2 Agglomerating 
distance 

(2) (3) 0.005 

((2),(3)) (1) 0.006 

(((2),(3)),(1)) (4) 0.006 
 

 

 
 

c. Table of agglomeration d. Graphical representation of (c) 

Figure 23
 

The distance table is searched to find the 
smallest distance between vectors. This is the distance 
between vectors ((2,3),1) and (4): 0.006. Clusters 
((2,3),1) and (4) are now agglomerated into a 
subordinate cluster (((2,3),1),4) as shown in the tree 
above, and then emending the distance matrix to 
incorporate the new cluster. Emendation of the distance 
matrix proceeds as in step 1 and 2. The rows and 
columns (2,3) and (4) are removed from the table and 
replaced them with a single blank row and column to 
represent the new (((2,3,4),1) cluster. The next step is to 
insert into the blank cells the ((2,3),1),4) to the remaining 

clusters (5) and (6). The distance between ((2,3),1) and 
(5) is 0.589 and between  (4) and (5) is 2.726; the 
minimum is 0.589 and it is inserted into the relevant cell.  
The distance between ((2,3),1) and (6) is 2.339 and 
between (4) and (6) is 2.490; the minimum is 2.339 and 
it is inserted into the relevant cell. Here the smallest 
distance is 0.589 and thus clusters ((2,3),1),4) and (5) 
are now agglomerated into a subordinate cluster 
(((2,3),1),4),5) as shown in the tree below. The distance 
matrix is emended to incorporate the new cluster. 
Emendation of the distance table is now complete and 
the resulting matrix is the basis for the final step. 
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(((2,3),1),4)

 
5 6 

(((2,3),1),4)
 

0.000
   

5 0.589
 

0.000
  

6 2.339
 

1.520
 

0.000
 

a.
 

Distance matrix from Table (8)  
 

b.
 

Transformed version of a.
 

Cluster 1
 

Cluster 2
 

Agglomerated 
distance

 

(2)
 

(3)
 

0.005
 

((2),(3))
 

(1)
 

0.006
 

(((2),(3)),(1))
 

(4)
 

0.006
 

(((2),(3)),(1),(4))
 

(5)
 

0.589
 

 

 

c. Table of agglomeration 
 

d. Graphical representation of (c)
 

Figure 24
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The minimum distance from (((2,3),1),4),5) to 
the remaining vector (6) is inserted into the blank cell of 
the (((2,3),1),4),5) column. The distance table generated 
in Figure/21 above is searched to find the smallest 
distance between vectors. There is only one remaining 

vector value. Clusters (((2,3)1,4),5) and (6) are now 
combined into a subordinate cluster (((((2,3),1),4),5),6) 
by drawing the tree and then emending the distance 
table to incorporate the new cluster. 

1 2 3 4 5 6
1 0.000
2 0.006 0.000
3 0.010 0.005 0.000
4 0.146 0.140 0.100 0.000
5 0.599 0.589 0.612 0.726 0.000
6 2.339 2.366 2.389 2.490 1.520 0.000

(((2,3),1),4),5) 6
(((2,3),1),4),5) 0.000

6 2.339 0.000

a. Distance matrix from Table (8)  b. Transformed version of a.

Cluster 1 Cluster 2 Agglomerating 
distance

(2) (3) 0.005
((2),(3)) (1) 0.006

(((2),(3)),(1)) (4) 0.006
(((2),(3)),(1),(4)) (5) 0.589

(((2),(3)),(1),(4),(5)) (6) 0.2339

c. Table of agglomeration d. Graphical representation of (c)

Figure 25

All 6 data vectors have now been incorporated 
into the cluster tree and tree construction stops. 

Figure 26

In this example, we only obtained distance 
measurements and cluster agglomerations for only 6 
data vectors from the original 14 x 8 data matrix of 

Table/7, because the calculation can become extremely 
long, it is important to emphasize that for a set of 14
data vectors there would be a total of 91 steps including 
the main diagonal zero-values. This can be given in (((2,3),1),4),5),6)

(((2,3),1),4),5),6) 0.000 relationship of the number of possible successive 
agglomerations: n (n-1)/2 where n is the number of data 
vectors. However, the steps explained above are 
repeated on the whole data matrix, and the result is 
shown in Figure/27:

Figure 27 : Agglomerative hierarchical analysis for the 14 data vectors of the data matrix in Table 7 

 2  3  1  4  5  6  8  7  9 10 11 12 13 14
0
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In this figure, the 14 vectors are represented as 
clusters and agglomerated together on the basis of the 
relativities of distance among them and the structure 
presented in a tree-like diagram. In this figure, all the 14 

vectors are agglomerated into three main clusters which 
represent the relativities of distance among them as a 
dendrogram in figure/ 28a and their corresp. 

 

  

a

 

b 

Figure 28 : Three main clusters for the 14 data vectors of the data matrix in Table 7 

Given that the hierarchical clustering tree tells 
us nothing more than what the two-dimensional plot tells 
us, what is gained? In the current case nothing. The real 
power of agglomerative hierarchical cluster analysis 
consists in its independence of vector space 
dimensionality. Put it another way, direct plotting is 
limited to two, three, or fewer dimensions but there is no 
dimensionality limit on agglomerative hierarchical cluster 
analysis. It can determine relative distances in vector 
spaces of any clustering and represent those distance 
relativities as a dendrogram like the one above.   

 

g)

 

Agglomerative Hierarchical Clustering Methods 

 

Many agglomerative clustering methods are 
treated as variations on a single major approach; they 
require the data to be in the form of vectors of real 
numbers and follow the same standard framework: 

Initially, before clustering has begun, each data vector is 
treated as a cluster or group, clustering begins by a 
successive agglomeration of the two closest or nearest 
pair of clusters (i.e. the two data vectors that are 
separated by the smallest distance) to form first cluster. 

 2  3  1  4  5  6  8  7  9 10 11 12 13 14
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The process of agglomerating two data vectors and 
fusing their characteristics is repeated until only one 
cluster remains. Extensive range of agglomerative 
clustering methods exists; though most of them operate 
in a similar way, their calculation is different. Eleven of 
these methods are introduced. They are:

• Single linkage (or nearest neighbor) method
In this method, the distance between two 

clusters A and B is based on the membership (i.e. data 
vectors) in each cluster that are nearest together 
(shortest distance).

Figure 29 : Single clustering

)},(min{),( BbAadBADs ∈∈=
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On this basis, at each step of the clustering 
process, we combine the two data vectors that have the 
smallest single linkage distance.

 
 

•

 

Complete clustering (furthest neighbor) method

 

In this method, the distance between two 
clusters A and B is based on the data vectors in each 
cluster that are furthest apart or furthest neighbors 
(longest distance). 

 
 

 
 

 

Figure 30 :

 

Complete clustering

 

On this basis, at each step of the clustering 
process, we combine the two data vectors that have the 
smallest complete linkage distance.

 

•

 

Average clustering method

 

In this method, also known as the unweighted 
pair-group using average approach conventionally 

abbreviated (UPGMA), the distances between all 
possible data vectors embedded in the two clusters A 
and B are calculated and summed, and the distance 
between cluster A and cluster B is the average of that 
sum. 

 

 

 

 

Figure 30 : (Group) Average clustering method

 

Where Davg(A,B) is the average link distance 
between A and B, d is the distance between a single 
pair of data vectors, m is the cardinality of cluster A, and 
n is the cardinality of cluster B. On this basis, at each 
step of the clustering process, we combine the two

 

data 
vectors that have the smallest average linkage distance. 

 

•

 

Weighted Average clustering method

 

)},(max{),( BbAadBADc ∈∈=

nm

BbAad
BAD njm ji
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∈∈
=
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This method has also been referred to as the 
weighted pair-group using average approach 
conventionally abbreviated (WPGMA). In this method, 
when two clusters A and B are agglomerated, the 
distance D between some other cluster, say, C and the 
newly formed cluster AB is the simple average of DCA

and DCB, thus:

(D) C, AB = ½ {DCA+ DCB}

On this basis, at each step of the clustering 
process, we combine the two data vectors that have the 
smallest weighted average linkage distance.

• Ward’s method or an increase in sum of squares 
clustering method

This method involves the concept of sum-of-
squares error, abbreviated SSE. Given a set D of n
values, the SSE of D is the sum of the squared 
differences between each value in D and the mean of all 
values in D:

2

..1
..1∑

∑
=

=
∈

−∈=
ni

nj j
iD n

Dd
DdSSE

Ward's method calculates the distance between 
clusters A and B as

On this basis, at each step of the clustering 
process, we combine the two data vectors that have the 
smallest increase in the sum of squares.

• Sum of squares clustering method

The distance between two clusters A and B is 
calculated as the sum of the squared distances between 

( ))()(),( BSSEASSEBASSEDWard +−=



 
 

 

 
 

 

 
 

 
 

 

 

 

 

 

 
 

  

sum of the squared distances between the data vectors 
and the centers (or means) of the clusters to which they 
belong. In this respect, it is very similar to Increase in 
Sum of Squares (Ward’s method) above. 

 

Sum of squared distances= 

 

d12 +d22 +……∑ 𝑑𝑑𝑑𝑑2𝑖𝑖
𝑑𝑑=1

 

 

Figure 31 :

 

Sum of Squares clustering

 

•

 

Centroid clustering method

 

This method is also known as the unweighted 
pair-group method using the centroid approach 
(UPGMC). The Centroid method is only calculated in 
terms of squared distances. The squared distance 
between two clusters A and B is calculated as the 

squared distance between the cluster means, or 
centroids. The size or weight of a cluster is not relevant, 
although its spatial distribution is used in the calculation 
of the centroid. This method should, strictly speaking, 
only be used with a matrix of squared distances.  

 

_      _

 

dAB=║XA–XB║2

 
 

 

Figure 32 :

 

Centroid clustering

 

Where XA

 

and XB

 

are the mean vectors for the 
data vectors in A and the data vectors in B respectively. 
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the data vectors of clusters A and B and the centroid of 
the agglomerated cluster. The sum of squares method 
is only calculated for squared distances. For a given set 
of n data vectors, this method seeks to minimize the 

On this basis, at each step of the clustering process, we 
combine the two data vectors that have the smallest 
centroid distance. 
• Median clustering method

Also known as the weighted pair-group 
method using centroid approach (WPGMC). The Median 
method is only calculated in terms of squared distance. 

In this method, the distance between two clusters A and 
B is represented by the squared Euclidean distance 
between the median (mid-point) for the data vectors in 
cluster A and the median for the data vectors in cluster 
B. This gives equal weight to clusters of different sizes, 
unlike the centroid, which is weighted by the number of 
data vectors in each cluster. However, the two data 
vectors with the smallest distance between medians are 
agglomerated at each step. 

𝑑𝑑
𝐴𝐴𝐴𝐴=

𝑑𝑑𝐴𝐴𝐶𝐶+𝑑𝑑𝐴𝐴𝐾𝐾
2 −𝑑𝑑𝐶𝐶𝐾𝐾4

Figure 33 : Median clustering
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•

 

Flexible beta clustering method

 

This method calculates the distance between 
two data vectors on the basis of β

 

which is a supplied by 
the user. By allowing β

 

to vary, clustering results with 
various characteristics can be obtained. However, a 
value of β

 

= -0.25 gives results similar to Ward’s 
method. A detailed account on the mathematical 
properties of this method can be found in, e.g., [18] and 
[19].    

 

•

 

Mean proximity clustering method

 

This method maximizes the average of the 
within-cluster distances or minimizes the average of the 
between-cluster distances, for all cluster comparisons.

 

•

 

Density search clustering using nearest- neighbor 
clustering approach

 

This method falls into a class of clustering 
methods particularly designed to seek dense patches, 
regions or areas in the data vectors

 

in a metric space 
depending on the type of the density estimation to be 
used. The density nearest neighbor method uses either 
Kth

 

nearest neighbor density estimates or smoothed Kth

 

nearest neighbor estimates. The density estimation of 
the former is based on a fixed number of values and the 
density estimation for the latter on a large number of 
values K, where k is the contiguous or the nearest 
neighbors to the desired point. The distance between 
two clusters A and B is based on the value specified for 
K; the estimated value of k controls the amount by 
which the data are smoothed or unsmoothed to give the 
density estimate on which the clustering procedure is 
based: when the value of k is non-increased or small, 
the density estimation becomes unsmooth or jagged, 
when the value of k is increased or large, the destiny 
estimate becomes smoother or less bumpy. To be more 
precise, the problem is that all K neighbors must be 
close to the desired point. This may or may not be 
possible.  Theoretically speaking, this is possible when 
infinite number of data vectors is available, in such a 
situation the larger the k value the better is calcification 
(error rate gets closer to the lowest possible error rate 
for a given classification). Because this is not always 
possible in practice due to data vectors are finite, K 
value should be large so that error rate is minimized; too 
small values of K may lead to noisy decision boundaries 
and too large may lead to over-smoothed boundaries. 
That is, K value should be small enough so that only 
nearby data vectors are included.

 

However, whatever 
density estimation it may take, this method consists of 
two main basic steps: initially, a new distance, based on 
density estimates and adjacencies in the data vectors, is 
calculated. This step is obtained by: calculating the Kth

 

nearest neighbor for the data vectors: given two clusters 
A and B, the data vectors XA

 

and XB

 

are said to be 
adjacent (the definition of adjacency depends on the 
method of density estimation), if D* (XA, XB) ≤DK

 

(XA) or 
DK

 

(XB). Where D* is the distance and DK

 

(XA) is the kth 

nearest neighbor distance to data vector (XB). The 
distance D (XA, XB) between the data vectors XA

 

and XB

 

can be obtained as:

 

D(XA, XB)= 0, if XA=XB;

 

= ½ [DK(XA) + Dk(XB)], if D*(XA,XB)≤DK(XA)

 

or D*(XA,XB)≤DK(XB)

 

= 

 

otherwise.

 

Finally, a single linkage clustering method is 
then applied to the resulted distance D* to obtain high-
density clusters [2], [3], [10], [16], [20], and [21]. 
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A detailed account on the mathematical 
properties of these methods can be found in, e.g., [5] 
and [16]. 

Since the calculation both of the values in the 
original distance matrix and of the distances between 
composite clusters are based on linear measurement, 
agglomerative hierarchical clustering is a collection of 
linear cluster analysis methods.

Extensive empirical clustering results, however, 
have shown that, relative to a given data matrix, each 
agglomerative clustering method has a 'signature' in the 
sense that the hierarchical tree it produces tend to have 
specific characteristics [2] and [5].The literature search 
on the application of hierarchical clustering methods 
reports, for example, that Single link famously tends to 
generate 'chained' structures, that is, trees with a strong 
tendency to either left or right branching but not both. It 
also reports that this method has satisfactory 
mathematical properties, which appears to give 
satisfactory results at identifying longated clusters that 
have curvy shapes instead of spherical or elliptical 
shapes, and it is somewhat robust to outliers in the set 
of data. Complete link tends to generate trees with 
extensive recursive embedding of left and right 
branching sub trees; also tends to generate very small 
compact clusters, which means that they have small 
diameter (max. distance between data vectors). In other 
words, group structure, all data vectors in the same 
cluster, will not be taken into account. On the other 
hand, this method is somewhat sensitive to outliers, and 
is suitable for compact but not well-separated clusters. 
Average linkage is intermediate between single and 
complete link; it is intermediate between single and 
complete linkage; it tends to generate small clusters of 
outliers and to find spherical clusters, i.e. ball-shaped 
clusters. Being relatively robust, this method can even 
deal with rather potato-shaped clusters. It is, however, 
more prone to chaining than Ward’s method. Ward's 
method is like complete link, but in addition tends to find 
spherical clusters of roughly equal size. As such, some 
methods are more appropriate than others for data with 
a given density structure. If, for example, the data 
manifold has an elongated structure, single link would 
be best and Ward worst. Alternatively, a manifold with 



 
 

 

 

 

 

 

 

 

 
 

 

tends to generate different clusters with greater or lesser 
tendency to chain depending on different values of k. 
This method tends to overcome the chaining effects if 
k= 2log2n or several values around this value. On the 
other hands, this method is prone to produce noisy 
decisions boundaries. As such some methods are more 
appropriate than others for data with a given density 
structure; some methods work better for certain data 
sets, and other methods work better for other data sets. 
However, if, for example, the data manifold has an 
elongated structure, single or nearest neighbor linkage 
would be best and Ward worst.

 

As might be expected, different agglomerative 
clustering methods can and often do give different 
results for the same dataset. Different clustering 
structures are obtained when we cluster analysed a data 
matrix consisting of 20 data vectors applying the 11 
methods introduced above. 
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well-defined spherical areas of vector density would 
reverse that. Ward's method tends to find spherical 
clusters of roughly equal size. It is sensitive to outliers. 
On the other hand, many researchers report satisfactory 
results with this method (i.e. provides interpretable 
results). Centroids linkage tends not to chain as much 
as single linkage. It is nevertheless subject to reversals. 
Median linkage tends to chain for large set of data and 
is also subject to reversals. However, they are both fairly 
robust to outliers. Flexible beta linkage tends to 
generate 100 % chained clusters if β approaches a 
value of +1. On the other hand, if β approaches zero 
and then becomes negative, this method tends to 
cluster data vectors more intensely. A value of β −0.25 
gives results similar to Ward’s method. Density nearest-
neighbor linkage leads to a very simple approximation of 
the (most desired) smallest possible error rate for a 
given classification and data representation. However, it 

Average Weighted average

Centroid Median
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Kth nearest neighbour K=18 Smoothed K nearest neighbour K=10

Figure 34 : The application of different hierarchical clustering methods on the same data set using squared 
Euclidean distance

Which hierarchical analysis is the best? None of 
these clustering analyses is uniformly the best. In this 
practice it is advisable to try several methods and then 
compare the clustering results to form an overall 
judgment about the final structures of clusters. 

Occasionally, however, observed clustering 
results are very different from those expected. Here is a 
little example to illustrate this. The following 
dendrograms generated from the eleven hierarchical 
clustering methods applied on a small data matrix                 
(i.e. having small measurements).  
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Centroid Median

Ward Sum of squares (similar to ward)

Mean Flexible
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Kth neirset neighbour K=2 Smoothed K nearest neighbour K=2

Figure 35 : the application of eleven hierarchical clustering methods on the same (small) data set using squared 
Euclidean distance

The clustering analyses in this figure show that 
the application of various agglomerative methods on the 
same dataset may not always produce quite different 
results because the clustering results may have 
generated as a result of highly precise data or a small 
data matrix size.

III. Conclusion

When using agglomerative hierarchical analysis 
to form clusters, we need to keep the following in mind:
• Agglomerative hierarchical cluster analysis is a 

multivariate method for finding structures or groups 
called clusters in data in relation to a research of 
interest. The clusters are based on the values of 
several variable measurements that describe data 
vectors. The accuracy of agglomerative hierarchical 
cluster analysis is unquestionable: Data vectors 
(objects, cases, observations) in a specific cluster 
share many characteristics, but are very dissimilar 
to data vectors not belonging to that cluster.

• Prior to analyzing data and applying a clustering 
method, we need to choose the appropriate 
proximity coefficient (i.e. measure of distance/ 
similarity) depending on type of data: interval, 
counts, binary. Distance is a measure of how far 
apart two data vectors are, while similarity measures 
how similar two data vectors are. For data vectors 
that are similar, distance measures are small and 
similarity measures are large.

• Proximity coefficients are stored in a proximity 
matrix. The proximity matrix identifies which cluster 
each data vector belongs to for any specified 
number of clusters.

• Agglomerative hierarchical cluster analysis starts 
with as many clusters as data vectors. Data vectors 
are successively agglomerated into clusters until 
only one data vector remains. The result of this can 
be shown in a dendrogram. The dendrogram is the 

tree-like diagram that can show the data vectors, 
which have been clustered at each agglomeration 
sequence.

• Often, but not always, different agglomerative 
clustering methods for analysing data can yield 
different results. In particular for small data sets, 
different methods might produce similar results.
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