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Agglomerative Hierarchical Clustering: An 
Introduction to Essentials. (3) Standardization, 

Normalization, and Dimensionality Reduction of 
a Data Matrix 

Refat Aljumily 

Abstract- In a previous tutorial article I looked at a proximity 
coefficient and, in the light of that proximity created a vector-
distance matrix and used it to construct a hierarchical tree 
using different hierarchical clustering methods which will be 
the basis for exploratory multivariate analysis. The present 
article deals with three topics: (i) standardization for variable 
scales variation, (ii) normalization for sample length variation, 
and (iii) dimensionality reduction or minimization of data 
space. These techniques reflect the author’s academic 
background and particular area of interest and are, by 
necessity, not a particular purpose and are  straightforwardly 
applicable to other kinds of data, and thus to a wide range of 
analysis in Linguistics. My treatment of these techniques is, 
necessarily, introductory and brief. I hope that this article will 
provide practitioners with an introductory overview of these 
techniques used for cluster analysis of electronic corpora of 
linguistic data. The assumption is that the data is in the form of 
an m x n matrix D in which, may require to transform it in 
various ways prior to cluster analyzing it. Standardized data 
matrix enables practitioners to measure the variation between 
n-variables and to cluster the cases they describe in common 
scales and values, regardless of their original scales and 
values. Normalized data matrix enables practitioners to 
eliminate the effect of variation in length among n-samples 
and to cluster them as if they were all (about) the same length, 
regardless of their original length. Dimensionality-reduced 
space data matrix enables practitioners to select and/or 
extract n-most interesting variables relevant to the research 
question and to visualize an existing pattern, regardless of the 
original space. A worked example is given to illustrate the 
effect each transformation technique has on a given data 
matrix. These transformation techniques have their own 
strengths and weakness but are beyond the scope of my 
objectives in this article.  
Keywords: corpus, vector, matrix, standardization, 
coefficient of variation, normalization, dimensionality 
reduction. 

I. Introduction 

anguage corpus typically consists of more or less 
numerous texts each of which is described in 
terms of the selected linguistic features, technically 

known as   variables.   If   it   is   to   be   analyzed  using  
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clustering methods, the selected variables need to be 

mathematically represented. A widely used way of doing 
this is vector space representation. Where vector space 
representation is used, each text is described by a 
vector, and the language corpus is consequently a set 
of vectors. Such a set of vectors is conveniently 
represented as a matrix in which the rows are the texts 
and the columns the linguistic features (variables). Thus, 
language corpus consisting of m texts each of which is 
described by n

 
variables is represented by an m

 
x n

 matrix D in which Di

 

(for
 
i
 
= 1...m) is the i'th text, Dj

 
(for j

 = 1..n) is the j'th variable, and Dij

 
the value of variable j

 for text i.
 

Once the language corpus has been 
constructed in a matrix, it is important to consider the 
issues relevant to cluster analysis of texts.

 
Three

 
types 

of issues are considered: (i) variable scales variation,    
(ii) text length variation, and (iii) variables selection/

 extraction. This article proposes ways to remove the 
effect of each of these issues: (i) normalization for 
variation in text length, (ii) standardization for variation in 
variable scales, and (iii) dimensionality reduction. These 
techniques can be used, if it is necessary, to transform a 
given data matrix prior to analyzing it. 

 
II.

 
Transformation

 
Techniques

 
a)

 
Variation of variable scales

 Almost any linguistic feature in a corpus such 
as word-forms, sentences, grammatical sequences, 
parts of speech, or any other easy to count features, can 
be measured. We use measurements to examine these 
linguistic features mathematically. In general, when

 
we 

measure a linguistic feature, we define or interpret its 
properties in relation to special scales

 
or units of 

measurement, then recording its happenings. That 
measurement constitutes the values of the linguistic 
features, for example: function words usage= 3000, 
average word-length=3, number of punctuation 
marks=500, diversity of words in a text 10%, and so on. 
Measurement is fundamental in the creation of language 
data because it makes a link between a particular 
linguistic feature in mind and an activity that originates 
from an individual, and thus allows the results of cluster 

L 
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analysis to generate a hypothesis about a language or 
language user. Measurement is only possible in terms of 



 
 

some scale. Scales are systems designed to tell us how 
much of a measurable characteristic a given variable 
has. Scales have different types of numerical units and 
ranges (scales of measurements) appropriate to them 
which carry different amounts of information in any given 
application. The variables selected for describing 
linguistic features involving cluster analysis may require 
measurement on different scalars. If variables are 
measured on different scales, variables with large values 
contribute more to the distance measure than variables 
with small values. 

 
Given an m x n data matrix M in which the m 

rows represent the m objects to be clustered, the n 
columns represent the n variables, and the entry at Mij

 (for i = 1..m, j = 1..n) represents a numerical measure 
of object i in terms of variable j, a clustering method has

 no idea what the values in the data matrix mean and 
calculates the degrees of similarity: variables that are 
measured in large values will have a greater influence on 
the degrees of similarity between the objects than those 
variables measured in smaller values, and, therefore, will 
affect the reliability of the cluster analysis.

 
To see this, 

take a look at the following data matrix which describes 
nine students (A, B, C, D, E, F, G, H, I) in terms of their 
use of three linguistic features in the academic 

 
           

papers, one of which represents the total number of 
contractions, another one function word/content word 
ratio,

 
and a third function words frequency.  

 
Table 1 :

 
A data matrix with different variable scales

 
Students

 
Number of contractions

 
FW/CW (percentage)

 
FW (frequency)

 A
 

187
 

40
 

27000
 B 185

 
35

 
25000
 C

 
184

 
33

 
26000
 D

 
170

 
29

 
23500
 E

 
166

 
25

 
22000
 F

 
164

 
26

 
21000
 G

 
160

 
60

 
15000
 H

 
150

 
53

 
10000
 I

 
159

 
61

 
14500
 

 
In Table/1the first column variable represents 

the total number of contractions, the second FW/CW 
ratio in percentage, and the third FW in frequency. A 
hierarchical cluster analysis of the matrix rows using 
Squared Euclidean distance gives the following 
dendrogram:  

 

Figure 1 : Hierarchical clustering of 9 students based on 
different linguistic features measured on different scales 

In Table/1 the largest values are those in the 
function words column, and the corresponding 
agglomerative clustering dendrogram in Figure/1

 

classifies the students into three main clusters (27000-
26000), (23000-21000), and (10000-14500) by function 
words. In other words, the clustering analysis didn't find 
any significant clusters; there is a clear and very strong 
tendency to cluster by scale of measurement. The 

essence of the problem now is that we need a clustering 
structure that reveals the proximities among the vectors 
independent of the variation in scaling.However, there 
are many standardization methods as a technique for 
removing the effect variation in scaling among data and 
making each variable receives equal contribution in the 
cluster analysis. Some of these methods are: 
• Standard or Z-score standardization method.  
• Standardization method based on variable mean.  
• Standardization method based on variable sum. 
• Cosine standardization method. 

• Max standardization method. 

• Range standardization method.  

One of the reasons for this diversity is that 
different standardization methods are required for 
different purposes; for clustering or for other purposes. 
No one single standardization method will be suitable 
for all applications. Some methods can be extremely 
useful even if they are mathematically limited. Other 
methods bring different benefits, although some bring 
disadvantages as well. To be suitable for cluster 
analysis, however, a method must preserve differences 
in variability among variables, thereby giving a true 
account of the intrinsic cluster structure of the 
unstandardized data matrix. The emphasis is the degree 
to which a method preserves the pre-standardization 
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intrinsic variabilities of variables in post standardization 

© 2016   Global Journals Inc.  (US)



 
 

absolute magnitudes of variability.
 

By the intrinsic 
variability, we mean the amount of variability in the 
values of a variable expressed independently of the 
scale of those values and measured in statistics by the 
coefficient of variation, which is defined with respect to a 
variable v as the ratio of v's standard deviation to its 
mean, and by the absolute magnitude of variability we 
mean the amount of variation in the values of a variable 
expressed in terms of the scale of those values, and is 
measured by the standard deviation. 

 A standardization method based
 

on variable 
means does this in the sense that it has the effect of 
preserving intrinsic variability in the values of a variable, 
and it does that in the following way:

 
individual 

numerical column vectors of unstandardized data matrix 
can be standardized in relation to their mean, where the 
value of a given numerical column vector V in the 

unstandardized matrix must be divided by the mean µV 
of column vectors: 
Vi  std  =  Vi / µV 
Where: 

• Vi std is a standardized column vector in a data 
matrix, for i= 1…number of rows in matrix or, 
equivalently, the number of text files in a corpus. 

• Vi is an unnormalized document vector, for i as 
above. 

• µV is the column vector mean, or scalar, measured 
by the total number of values in each column vector.  

To illustrate this, the first three students 
described by the total number of contractions, FW/CW 
ratio (in percentage), and FW (in frequency), in the data 
matrix of Table/1 are recalculated.  

Table 2 : MEAN

-

standardization of the matrix in Table/1 

students Contraction FW/CW FW Contraction FW/CW FW 
A 187 40 27000 1.01 1.11 1.03 
B 185 35 25000 1 0.97 0.96 
C 184 33 26000 0.99 0.91 1 

Std 1.247 2.943 816.496 0.084 0.022 0.028 
CV 0.006 0.081 0.0314 0.084 0.022 0.028 

 a. unSTD matrix of Table (1) b. Mean STD matrix of Table (1) 
 

In Table/2, it is clear that MEAN-standardization 
has made the variation magnitudes comparable and 
also has preserved the coefficients of variation of the 
unstandardized variables. This is because division by a 
scalar, here the column vector mean, is a linear 
operation that alters the scale while preserving the 
shape of the original value distribution. It is also clear 
that the standard deviations of contractions, FW/CW 
ratio, and FW in Table 1b are identical to the 
corresponding coefficients of variation. This is because, 
for any data vector (here representing persons), it is 
always the case that its coefficient of variation is 
identical to the standard deviation of the MEAN-
standardized version of vector. After standardizing the 
variables for the remaining persons as above, the 
application of a hierarchical method on the standardized 
data matrix in Table 1b shows sufficiently accurate 
clustering; the hierarchical tree in Figure/2 differs 
substantially, and it clusters the nine students according 
to the relative magnitude of values in the matrix 
columns, i.e. regardless of the variation in the variable 
scales.  
 

 

 

 

Figure 2 : Hierarchical clustering of the standardized 
data matrix in Table/1 

For more on this technique see, for example, 
[Moisl, 2015; Chu, Holliday, and Willett 2009; 
Gnanandesikan, Tsao, and Kettenring 1995; Milligan 
and Cooper 1988].  

b) Normalization for variation in sample length 
A corpus is a collection of texts collected with a 

particular linguistic research project. Very often, it 
happens that a corpus contains texts of varying sizes; 
many of them can be disparate in length and not at all 
identical with each other. If the disparity varies greatly 
from text to text, a critical issue arises that must be taken 
into account: the data abstracted from the corpus              

© 2016   Global Journals Inc.  (US)
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for cluster analysis will give distorted results and 



 
 

consequently it becomes difficult to accurately indicate 
much in terms of similarities, or differences, between the 
texts. To see the effect of length variation on clustering 
performance, an agglomerative hierarchical analysis of a 
corpus consisting of some varying-length texts is carried 
out and the result is shown in Figure/3:

 

 
Figure 3 : Clustering based on the text lengths                   

(prior to length normalization) 

In this figure, there is a progression from the 
shortest texts at the top of the tree to the longest at the 
bottom and this means that there is a clear and very 
strong tendency to cluster by length. This can easily be 
seen from the number to the right of each of the text 
names which represents the number of words in the 
text. The reason for this is that, in the present example, 
the data abstracted from a corpus is based on 
frequency; each vector contains frequencies of lexical 
types for one of the texts, and a set of vectors are stored 
as the rows of the data matrix. In this sense, variations in 
the row vector lengths are simply a result of variations           
in magnitudes of lexical frequencies stored on the                 
data matrix row vectors. To understand this, assume 
counting the number of occurrences of some lexical 
type j in a corpus containing two texts, A and B. Assume 
that j occurs 10 times equally across those two texts. 
After entering the lexical frequencies into data matrix row 
vectors, the interpretation would obviously suggest that 
on the basis of their usage of j, the two texts A and B are 
identical and that j apparently fails to discriminate 
between text A from text B. If, however, one knows that 
text A is 5000 words long and text B 500 words long, this 
is no longer the case. It is clear that, although both texts 

have the same frequency of occurrences of j, its 
significance level in them is significantly different from 
each other. The lexical type j

 
is relatively infrequent in 

text A and relatively frequent in text B and therefore this 
difference can be used to differentiate between those 
texts. If we assume again that the text B is 50000 words 
long instead of 500, based on its observed frequency in 
500 words, then there would have been 1000 
occurrences of

 
j. In short, the longer a text, the more 

likely in general a given word with a specific probability 
of occurrence is to occur in it, and, if it occurs, the 
higher the frequency of occurrence is in general likely to 
be. These different text lengths, called variations in 
lengths, are inherent in all texts in collections and result 
in variations in the frequencies stored in

 
the data matrix. 

The variation may be large or very small, but it is always 
present. For the cluster analysis to be accurate and 
reliable, weighting to compensate for variation in text 
length is therefore necessary to remove this effect. The 
common way to

 
do so is to adjust the data matrix so 

that not just frequency but its significance relative to text 
length can be represented and thus incorporated               
into subsequent analysis. There are a number of 
normalization methods that are theoretically motivated, 
for example:

 
•
 

cosine normalization
 

•
 

probability normalization
 

•
 

normalization by mean term frequency within 
document

 
• normalization by maximum term frequency within 

document 
• normalization by mean document length across 

collection 
• normalization by maximum document length across 

collection. 
but, the one most easy to understand is normalization 
by the mean document length across collection, and the 
reminder of discussion will concentrate on that. In this 
method, to adjust the lengths of each row vector of an m 
× n data matrix of lexical types frequencies, the 
frequency count for a given lexical type in a given text 
must be multiplied by the mean length of all texts then 
divided by the total number of frequency counts 
occurring in that text. The effect of this process: 
decreasing the values in the vectors that represent long 
texts, increasing them in vectors that represent short 
ones, and, for texts that are near or at the mean, to 
change the corresponding vectors little or not at all.  
This can be expressed as: 

𝑋𝑋′ 𝑖𝑖 = 𝑥𝑥𝑖𝑖
µ

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑖𝑖
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where X here in relation to mean length of texts in a 
corpus:

© 2016   Global Journals Inc.  (US)



 
 

 
•

 

X’i is the normalized frequency of i’ th lexical type in 
a row vector, for i=1…….n.  

•

 

Xi is unnormalized frequency of i’ th lexical type in a 
row vector. 

 •
 

µ is the mean length of vectors across all texts (T). 
This obtained by dividing the sum of frequencies of 
matrix row vectors (T) by that of the number of texts 
n, for i=1…..n: 

µ(T) =
∑ 𝑖𝑖 = 1 …𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑇𝑇𝑖𝑖

𝑙𝑙𝑇𝑇𝑖𝑖  

• Length (i) is the sum of frequencies of any row 
vector (i). 

For example, let M below be a matrix having 3 
texts (a, b, c) with unnormalized values of four lexical 
types as shown below: 

 V1       V2      V3       V4
 

 
the

 
a you

 
I 

txt.a (length= 500)
 

12
 

15
 

3 53
 txt.b (length=1500)

 
4 36

 
1 36

 txt.c (length=2430)
 

7 80
 

0 29
 

using the formulas above: 
 •

 
we need to find the mean length across all texts. 
Thus we have 500 +1500+2430 / 3 = 1476

 •
 

in each row vector, the count for a given lexical type 
is multiplied by the mean text length, then divided 
by the total number of frequency counts occurring in 
that row vector. Thus, we obtain:

 
For txt.a we have: 
12×(1476/500)=35.42 
15× (1476/500=44.28 
3×(1476/500)=8.85 
53×(1476/500)=156.45 

 

For txt.b we have: 
4×(1476/1500)= 3.93 
36×(1476/1500)= 35.42 
1×(1476/1500)=0.98 
36×(1476/1500)=35.42 

 

For txt.c we have: 
7×(1476/2430)= 4.25 
80×(1476/2430)=48.59 
0×(1476/2430)=0 
29×(1476/2430)=17.61 

This way the resulting normalized matrix looks like: 
                                              V1       V2        V3         V4 

 the a you I 
txt.a (length= 500) 35.42 44.28 8.85 156.45 
txt.b (length=1500) 3.93 35.42 0.98 35.42 
txt.c (length= 2430) 4.25 48.59 0 17.61 

The effect of the normalization method on the 
data matrix shown in this example above is clear: all the 
values in txt.a have been substantially increased 
because it is significantly shorter than the mean text 

length: length-500 <1476 (the mean). For txt.b,
 

the 
values have been slightly decreased because it is 
slightly longer than the average document length: 
length-1500 >1476. Finally, the values for txt.c have 
been substantially decreased because it is significantly 
longer than the average document length:

 
2430> 1476.

 
 

 

Figure 4 :

 

Clustering based on the normalized matrix row values

© 2016   Global Journals Inc.  (US)
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Applying this to the example in Figure/3above, 
an agglomerative hierarchical tree of the normalized 
data matrix row vectors is shown below, where 
clustering by relative magnitude of values in the matrix 
rows is now in evidence.



 
 

In summary, normalization enables us to cluster 
and compare texts with each other irrespective of their 
lengths and failure to normalize for variation in text 
length can produce fundamentally erroneous cluster 
analytical results. Nevertheless, the process of 
normalizing data matrix column or row vectors itself has 
some unresolved problems and these problems are not 
discussed here. More on document length normalization 
can be found in, e.g., [Moisl, 2015; Priddy and Keller, 
2005; Belew, 2000; Singhal et al., 1995 and 1996].  

c) Dimensionality reduction 
Dimensionality is a major issue for data analysis 

in any given application. Where the aim is to generate a 
matrix M in which the rows are the data points, the 
column variables are lexical types, and the value at any 
given matrix location Mij is the frequency of lexical type j 
in i, dimensionality has a particular relevance to the 
application of cluster analysis. In dealing with high-
dimensional data, however, having too much is rarely a 
problem. Quite the opposite --the usual situation with 
high-dimensional data is that there is far too little. High-
dimensional spaces are inherently sparse, and, to 
achieve adequate definition of the data manifold, the 
amount of data required very rapidly becomes 
intractably large; this phenomenon was described as 
the 'curse of dimensionality' by Bellman [1961]. The 
solution is that data dimensionality should be kept as 
low as possible consistent with the need to describe the 
particular research project adequately. Dimensionality 
reduction is the process of reducing the number of 
redundant variables under consideration, and can be 
divided into two major types: variable selection and 
variable extraction.  

i. Variable selection methods 
Variable selection methods try to identify a 

subset of the more important user-defined variables and 
to remove the remainder from the analysis (given             
some definition of importance) without losing too much 
information, thereby achieving dimensionality reduction. 
Given that variable selection methods aim to select a 
subset of the more important variables, a well-defined 
criterion of importance is fundamental. Two of the most 
often used ones in the literature are variable selection 
based on frequency and variable selection based on 
variance, and these are briefly described below. Others, 
such as variable selection based on term frequency-
inverse document frequency (TF-IDF) and measures of 
nonrandomness, are also available, but these give 
results similar to those based on frequency and 
variance, and the additional complexity associated with 
them is therefore felt not to justify their inclusion; for 
further information on these see [e.g. Moisl, 2015; 
Belew, 2000; Salton & McGill, 1983; Robertson, 2004]. 
 
 

a.

 

Variable selection based on frequency

 

Frequency is the simplest criterion for selecting 
features from a data matrix: those variables which occur 

most often in the research domain — in the present 
domain, words in text — are judged to be the most 
important, and lost which occur least often are taken to 
be least important and can therefore be discarded. With 
respect to clustering, the fundamental idea is that a 
variable should represent something which occurs often 
enough for it to make a significant contribution to the 
clustering of the data vectors. To select variables based 
on frequency, given an m x n frequency data matrix D; 
the value

 

at Dij is the number of times variable j, for 
j=1…n, occurs in text i, for i=1…m. The

 

frequency of 
occurrence of variable j across the entire corpus of texts 
is then:

 

 

Frequencies of for all the columns data matrix D

 

are calculated, sorted the variables in descending order 
of frequency, the most useful variables are selected and 
the less frequent variables are eliminated from D. 
Substantial dimensionality reduction can be achieved by 
applying this criterion to a data matrix D. 

 

b.

 

Variable selection based on variance

 

Variability refers to the amount of variation in the 
values that a variable takes. Any variable x is an 
interpretation of some aspect of the physical world, and 
a value assigned to x is a measurement of the world in 
terms of that interpretation. If x is to describe the ages of 
people, it can take different values for different persons 
or for the same person at different times. Unless all 
people are exactly the same age, or the age of the same 
person is fixed, the values which x takes will vary 
substantially, and can, therefore, contribute to the 
distinction of people from one another, or of the age of 
same person at different times (i.e. the more different 
people groups one tests, the more variation one will see 
in the ages). This possibility of variability in the values 
assigned to variable x gives it its descriptive utility: an 
identical value for x tells that what x stands for in the real 
world does not change, moderate variability in the value 
tells that aspect of the world changes only a little, and 
widely differing values tells that it changes substantially. 
In general, therefore, the possibility of variability in the 
values assigned to variables is necessary to the ability of 
variables to describe objects and thereby to represent 
reality. Clustering of texts or of anything else depends 
on there being variability in their characteristics; identical 
texts having the same stylistic descriptors cannot be 
meaningfully clustered. When the texts to be clustered 
are described by variables, then the

 

variables are only 
useful for the purpose if there is significant variation in 
the values that they take. If, for example, a large number 
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of people were described by their weights or heights, we 
would expect there to be logically substantial variation in 
values for each of them, and any cluster analysis 
method could legitimately be used to cluster them. On 
the other hand, if a large number of people were 

© 2016   Global Journals Inc.  (US)



 
 

described by variables like ‘eyes’, ‘noses’, and ‘legs’, 
there would be almost no or little variation or high 
correlation with other features, since, with very few 
exceptions, everyone has two eyes and a nose, and 
clustering based on these

 

variables would be effectively 
useless. In any clustering application, therefore, one is 
looking for variables with substantial variation in their 
values, and can ignore variables with little or no 
variation. Variables with no or little variation should be 
removed from data matrix as they contain little 
information and complicate cluster analysis by making 
the data higher-dimensionality than it needs to be 
[Moisl, 2015].

 

Mathematically, the degree of variation in the 
values of a variable is described by its variance. The 
variance of a set of variable values is the average 
deviation of those values from their mean. Assume a set 
of n values {x1, x2...xn} assigned to a variable x. The 
mean of these values µ is (x1

 

+ x2

 

+ ... + xn)/n. The 
amount by which any given value xi

 

differs from µ is then 
xi

 

- µ. The mean difference from µ across all values is 
therefore Σi=1..n

 

(xi

 

- µ)/n. This mean difference of variable 
values from their mean almost but not quite 
corresponds to the definition of variance. One more step 
is necessary, and it is technical rather than conceptual. 
Because µ is an average, some of the variable values 
will be greater than µ, and some will be less. 
Consequently, some of the differences (xi

 

- µ) will be 
positive and some negative. When all the (xi

 

- µ) are 
added up, as above, they will cancel each other out. To 
prevent this, the (xi

 

- µ) are squared. The standard 
definition of variance for n values {x1, x2...xn} assigned to 
a variable x, therefore, is:

 

 

To show how a variance is calculated, consider 
the following frequency counts of six variables (the, a, 
she, him, then, him) occurring in the corresponding five 
texts (a, b, c, d, e)  

 
 
 
 
 
 
 
 

For text.a, the mean is 163.33, and the Std is: 

 

155-163.33=(-8.33)2= 69.38

 

158-163.33=(-5.33)2 =28.40

 

192-163.33=(29)2 =841

 

131-163.33=(-32.33)2= 1045

 

167-163.33=(3.67)2 =13.46

 

177-163.33= (13.6)2= 184.96

 

69.38+28.40+841+1045+13.46+184.96= 2182.2

 

(the 
sum of squared of differences or standard deviations).     

 

Thus the variance for text.a is   2182.2/6=363.7

 

Doing the same calculation for the remaining 
texts, we have the following variances 100, 150, 190, 
200 for texts b, c, d, and e respectively. 

 

Given a data matrix M in which the row vectors 
are the texts and the column vectors are lexical type 
variables describing the texts, and also that the aim 

       

is

 

to cluster analyze these texts on the basis   

                      

of the differences among them, the application of 
variance/standard deviation to dimensionality reduction 
is straightforward: calculate and plot the variances of the 
columns and, if any have variability which is low in 
relation to that of the others, remove them on the 
grounds that they contribute little to differentiation of the 
texts, and decide on a threshold selection (the set of 
retained variables from each column of the data matrix).

 

 

Figure 5 :

 

Example of sorted variable variances after 
eliminating low-variance variables from the columns 

data matrix

 

Relative variance can now clearly be seen. The 
high-variance variables are on the left, and lower-
variance ones on the right. The high-variance variables 
have to be kept, since they are the main criteria by 
which the NECTE speakers are distinguished. The flat 
area on the right represents the low-variance variables 
that contribute little or nothing to distinction among 
speakers, and these variables, starting about 175 and 
moving to the right, can be discarded. 
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For discussions that are concerned only with 
variable selection for clustering see, for example, [Dy, 
2008; Dy and Bodley, 2004; Jain, Murty, and Flynn, 
1999].  

d) Variable extraction methods
Variable extraction methods replace the set of 

user-defined variables with a smaller set of variables 
which reduces dimensionality but captures most of the 
variability in the original set. These methods often 



 
 

  

achieve a greater degree of dimensionality reduction, 
but at a cost: the newly-defined variables are generated 
by mathematical procedures, and their meaning relative 
to the research domain is typically difficult to determine 
reliably. There are a wide of variable extraction methods: 

 

•

 

Singular value decomposition (SVD)

 

•

 

Principal Components Analysis (PCA)

 

•

 

Factor Analysis (FA)

 

•

 

Multi-dimensional Scaling (MDS)

 

•

 

Isomap

 

•

 

Self-Organizing Map (SOM)

 

Each one of these methods can be used for 
dimensionality reduction as a feature or variable 
extractor, and to visualize the clusters as a clustering 
method. The literature on these methods is extensive 
and this is just a brief outline that one can follow. A more 
comprehensive account can be found in, for example, 
[Moisl, 2015; Borg and Groenen, 2005; Kohonen, 2001; 
Tenenbaum, de Silva, and Langford, 2000; Gordon, 
1999]. However, it will be useful to look briefly at one of 
these methods, that is, PCA, as a dimensionality 
reduction method, to see how it reduces the data down 
into basic components, removing any unnecessary 
variables. 

 

Principal Components Analysis (PCA)is actually 
a dimensionality reduction method, which aims to 
transform a set of correlated variables into a -- usually 
smaller--

 

set of uncorrelated ones. PCA can also be 
used for clustering if the dimensionality is sufficiently 
reduced. The conceptual basis of PCA is elimination of 
variable redundancy. Specifically, given a matrix of m 
data items described by n variables, principal 
components analysis is a technique for redescribing the 
m items in terms of k variables, where k <n, such that 
most of the variability in the original n variables is 
retained. When k = 2 or k = 3 the m data items can be 
plotted in two or three dimensional space and any 
clusters can thereby be directly perceived. Relative to an 
n-dimensional data set D, the essence of PCA is this:

 

•

 

An n-dimensional orthogonal basis for D is 
constructed,

 

such that each axis is the least-
squares best fit to one of the n

 

directions of variation 
in D.

 

•

 

The axes along which there is relatively little variation 
are eliminated, leaving an m-dimensional basis for 
D, where m<n. 

•

 

The original n-dimensional data D is projected into 
the reduced m-dimensional space, which yields a 
data set D' that is dimensionality-reduced but still 
contains most of the variability in D.

 

III.

 

Conclusion

 

In this article, I discussed three techniques to 
adjust a data

 

matrix before applying cluster analytical 

methods to take account of the variation in scales 
among the variables, the variation in length among the 
texts, and any superfluous variables in it using 
standardization, normalization, and dimensionality 
reduction techniques. A full and detailed consideration 
of each of these techniques addressed in this article 
would require several articles. My treatment of them is, 
necessarily, introductory and brief. Therefore, I urge 
interested computational linguists to follow the more in 
depth sources cited in the references. The application of 
these techniques for cluster analysis with specific 
reference to corpus linguistics is only one of many 
possibilities. The data items/matrix rows might be 
students in a second language learning (L2) survey and 
the variable/matrix columns motivational factors like 
learning experience, attitudes, cultural interest, and so 
on.  n formants in a sociolinguistic or dialectological 
survey and the variables/matrix columns phonetic 
features like voicing, and so on. The lexical frequency 
example was selected because it is generic with respect 
to a wide range of possible applications. 
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