
© 2020. Andreas Febrian & Oenardi Lawanto. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Students’ Understanding of an Object-Oriented Design Task -
A Case Study

 By Andreas Febrian & Oenardi Lawanto

Abstract- Students must understand a problem accurately to solve it correctly. Unfortunately, numerous
studies reported that students only have a partial understanding of the information presented in the
problem description, including in computer science. This study

assesses students' task and revised-task

interpretations when working on an object-oriented design problem. Multiple qualitative case study
research was used in this study. Two male

and two female senior computer science students at Utah

State University, USA, volunteered as participants. They were asked to solve five programming problems
while thinking aloud, complete surveys, and answer several interview questions. The study found that the
participants were able to identify most of the essential information after the initial reading of the problem
description. They strategically ignore detailed information that may affect their design decisions and
update it throughout their problem-solving enterprise.

Keywords:

cognition, problem-solving, programming, self-regulation, self-regulated learning, task

interpretation, task revision.

GJHSS-G Classification: FOR Code: 130399

StudentsUnderstandingofanObjectOrientedDesignTaskACaseStudy

 Strictly as per the compliance and regulations of:

Global Journal of HUMAN-SOCIAL SCIENCE: G
Linguistics & Education
Volume 20 Issue 1 Version 1.0 Year 2020
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-460x & Print ISSN: 0975-587X

1

Students’ Understanding of an Object-Oriented
Design Task - A Case Study

Andreas Febrian α & Oenardi Lawanto σ

Abstract- Students must understand a problem accurately to
solve it correctly. Unfortunately, numerous studies reported
that students only have a partial understanding of the
information presented in the problem description, including in
computer science. This study

assesses students' task and
revised-task interpretations when working on an object-
oriented design problem. Multiple qualitative case study
research was used in this study. Two male1

I.

Introduction

and two female
senior computer science students at Utah State University,
USA, volunteered as participants. They were asked to solve
five programming problems while thinking aloud, complete
surveys, and answer several interview questions. The study
found that the participants were able to identify most of the
essential information after the initial reading of the problem
description. They strategically ignore detailed information that
may affect their design decisions and update it throughout
their problem-solving enterprise.

Index terms:

cognition, problem-solving, programming,
self-regulation, self-regulated learning, task interpretation,
task revision.

t was a typical day in a programming lab session;
students were working on their task under the
observation of several teaching assistants. Several

students concentrated on solving the lab problem, some
were discussing the best approach to solve it, and some
others were waiting for the answer from their peers.
Interestingly, some students did not even bother to open
and read the lab instruction, regardless of suggestion
and encouragement from the assistants. While the
motivation for their persistence may vary, reading and
rereading a problem is a crucial step to understand and
solve it

[1]–[5].

To accurately understanding a problem is not

an easy task.

Several studies reported that students are
rarely able to interpret a problem correctly [2], [3], [6]–
[8].Some studies also reported that students’ submitted
solutions reveal their incomplete understanding of the

 1This paragraph of the first footnote will contain the date on which you
submitted your paper for review. It will also contain support
information, including sponsor and financial support acknowledgment.
For exam ple, “This work was supported in part by the U.S. Depart-
ment of Commerce under Grant BS123456.”

 This material is based, in part, upon work supported by the National
Science Foundation under Grant No. 1148806. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

given tasks [2], [8], [9].Although limited in number,
similar phenomena also have been reported in the
discipline of computer science (CS).Some CS students
were reported incapable of accurately inferring the
expected program’s behaviors based on a given design
brief [10]. Other study reported that CS students tend to
ignore some assessment criteria while working on their
tasks, which then negatively impact their grades[11].

In this study, we aim to describe the
approaches used by senior CS students in
understanding an object-oriented (OO) design problem;
i.e., their initial task interpretation and the changes. Self-
regulated learning (SRL) framework is used to
distinguish their cognitive and metacognitive activities
during the problem-solving endeavor. The description
and analysis results may help instructors to understand
better, and encourage students to enhance their
strategies in comprehending a design problem. The
description may also help students to be more aware of
their self-regulation so that they can improve it.

II. Research Questions

As mentioned earlier, this study aims to
describe senior CS students’ approaches to
understanding an OO design problem. In more specific,
this study intends to assess (1) students’ initial explicit
and implicit task understanding, (2) how their initial
understanding changes during the problem-solving
activity, and (3) identify factors that influence those
changes.

III. Relevant Literature

Since this study uses SRL as a framework in
analyzing the data, the literature will discuss task
understanding (or task interpretation) within the SRL.
Additionally, this section also discusses known literature
on self-regulation in CS to help readers familiar with
existing research in that area.

a) Task Interpretation in Self-Regulated Learning
Students deliberately self-regulate when

working on a task [12], [13]. Such activity involves the
interplay of interpreting a given task, developing a plan,
and executing, monitoring, and adjusting the plan to
complete the task [4], [5], [13]–[16]. Fig. 1 and Table I
presents the relationship and definition of each SRL
activity, respectively. It is clear from Fig. 1 that task
interpretation, which refers to understanding the task

I

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

43

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Author α: B.S. and M.S. degrees in Computer Science.
e-mail: andreas.febrian@gmail.com

and associated process to complete it [17], is the
starting point of any SRL activities. Thus, misinterpreting
a task may negatively affect follow-up planning,
enacting, monitoring, and adjusting activities [18].

Fig.1: Categories of various self-regulation
activities.

When interpreting a task, one must consider the
explicit and implicit aspects of it. Explicit task
interpretation refers to students' understanding of the
information presented in the problem description [8],
such as written goals, requirements, and constraints.
Implicit task interpretation refers to extrapolated
information base on the given description [8], for
example, relevant concepts and experience to solve the
problem. These definitions imply that explicit and implicit
task interpretation is distinguishable based on the
manner of that specific understanding being acquired
(i.e., by identifying or extrapolating).

Unfortunately, interpreting a task is not easy.
Two studies reported that students could only correctly
identify 63% - 77% of valuable information presented in
Thermodynamics course problems [3], [7]. The
accuracy of implicit task understanding is even more
unsatisfactory, such that they could only extrapolate
37% - 49% of the essential information [3], [7]. Similar
findings have been reported in engineering design [8]
and electronics lab [2]. Consequently, this
misinterpretation impedes their problem-solving
performance [19]–[21].

Fortunately, several studies [2], [3], [8], [19],
[21], [22] suggested that students enhance their task
understanding throughout their problem-solving
enterprise. Theoretically, these refinements occur due to
continuous monitoring and adjusting activities [23].
Thus, insufficient and inefficient monitoring and
adjustment activities may lead to a meager solution.
Since SRL is contextual, having sufficient relevant
domain knowledge is necessary for efficient monitoring
and adjustment activities [4], [8], [19], [24]. Moreover,
one has to be willing to adopt new interpretations or
strategies when it is necessary to do so.

b) Self-Regulation in Computer Programming
Although still limited in number, SRL research in

CS is not new. Some scholars believe that it may ease
the curve of learning programming and increase
student’s retention rate [25]. In this section, the reported

cognitive and meta cognitive characteristics of CS
students found in the literature are discussed.

Most CS students prefer to learn new materials
sequentially through visual representation, and then
reflect on their progress [26]. Most of them are
comfortable and competent in dealing with detailed
information[26],which strengthens their ability to solve
complex problems (e.g., developing software systems).
Their reflective nature allows them to be appreciative of
each task, which, in turn, influences them to be more
self-regulated and deliver better outputs [27].

A study reported that students use numerous
SRL strategies instinctively when trying to understand a
task, design a solution, and debug a program[28].
Engaging in self-regulation activities may improve their
performance [27], [29].One study reported that students
are sometimes unable to accurately address all the
requirements and constraints of a problem [11], which
suggested that instinctive self-regulation may not be
sufficient in the long run. Students need to be more
conscious of using it. Two studies suggested that
deepening students’ familiarity with various
programming concepts and principles (i.e., contexts or
knowledge) may increase their SRL quality[11], [19].

Related to object-oriented (OO) design, a study
reported that students are using typically suggested
strategies in interpreting an OO design problem, which
is by identifying the nouns and verbs found in the task
description [9]. Although this report seems expected,
this finding is important because it describes students '
approaches in design, not just a belief. Based on their
understanding, students then decompose the problem
and design the solution. Interestingly, students consider
problem decomposition as a skill that hard to master
[11]. Students tend to have incomplete and incorrect
knowledge about OO design [9], which, plausibly,
impair their decomposition skills. While some students
may be aware of their weaknesses and strive to address
it, others chose to ignore it. The last group of students
tends to feel discouraged when facing a challenge[9]
and, thus, have a negative learning experience.

IV. Research Design

In this section, the research design and its
justification were explicated, which include data

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

44

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

Table I: The Definition of Each Self-Regulation Activity

Strategic Action Definition

Task
Interpretation

Students' understanding of the task
and associated process to complete
it [17]

Planning
Strategies

Selecting strategies to complete the
task [5]

Enacting
Strategies

Students’ cognitive activities
employed while completing the task
[54]

collection and analysis methods, and the design
problem.

a) Data Collection Method
Multiple, in-depth qualitative data were

collected from the participants, which aligned with best
practices of qualitative study[30] and conducting SRL
research [5], [31], [32]. Multiple data points allowed the
researchers to appraise the perception and activities of
the participants accurately.

Five programming problems, five problem-
space maps, initial task interpretation survey, and
interview question templates, were developed, pilot
tested, and used. The programming problems consisted
of two practice, one OO, one break, and one algorithm
tasks. All except one were related to imperative
programming paradigms. The problem-space maps
described all correct and possible explicit and implicit
task interpretation of each problem. This technique was
adopted from expert-novice research about trouble
shooting [33]. The initial task interpretation survey was
used to assess the participants’ initial understanding of
the task. Table II presents the survey questions and the
associated aspect of task interpretation. The interview
question templates were used to formulating
confirmatory questions based on the researchers’
observation.

During the data collection, the participants
followed a specific protocol when solving each
programming problem, and were audio- and video-
recorded. The participants observed the following
protocol in sequence: (a) reading the problem
description aloud, (b) completing initial task
interpretation survey while thinking aloud, (c) continue
solving the problem while thinking aloud, and (d)
answering the interview questions. The programming
problems were given in the order written in the previous
paragraph. No time limit was set for each problem. The
practice problems were used to help the participants
familiar with the data collection protocol and address
any thinking aloud issues, if any.

To accurately capture the initial task
interpretation, the participants were prohibited from
rereading the problem description when completing the
survey (i.e., step (a)). The problem-space maps were
used to track the participants’ thought processes when
solving the problem (i.e., step (c)). The interview was
semi-structured to ensure its alignment with the
research goal yet still providing flexibility in pursuing
particular points of interest that emerged during the
problem-solving process.

b)

Object-Oriented Design Problem

The OO problem is about designing a digital
version of a classic board game,

which commonly
known as the Monopoly. Unlike the original, this game
would be set in Middle-Ages. Given a set of

requirements and constraints (see Table III), the
participants

should

design a game base so that the rest
of the team members could move forward

smoothly.
They are expected to deliver a class diagram. Also, they
are allowed to ignore animation and play-testing parts
and add their creativity beyond the given requirements
and constraints.

The participants are expected to declare and
manage at least one function, five issues, and 4 to 41
variables when solving this problem. It also contains

some missing or unspecified information (i.e., implicit
task interpretation) and has multiple solutions; all are
typical characteristics of a design problem [34]–[36].

Consequently, the participants are not expected to
comprehend the problem in one read. Based on the
revised Bloom’s Taxonomy [37], this problem

belonged
to the creation category, where the participants were
expected to make a product for a specific purpose.

c)

Data Analysis Method

Recorded video/audio files, initial task
interpretation survey responses, design solutions,
design notes (if any), observed thought processes (i.e.,
problem-space maps), and interview responses were
collected from each participant. All recorded
video/audio files were transcribed using the verbatim
technique, such that the transcriptions recorded all
articulated words and shutters [38]. Three additional
notations were introduced in the transcriptions to clarify
relevant contexts, including square bracket (“[]”), dash
(“-”), and capitalizing the first letter for describing the
participants’ actions, correcting statements, and
clarifying programming concepts, respectively. For
example, “Since not having a particular idea on [how to
describe] two to four players [in the class diagram], [I
am] drawing that in here [design note].”

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

45

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

Table II: Initial Task Interpretation Survey

Layer Question

Explicit What is the primary goal of this problem?
Explicit &
Implicit

In relation to the program that you will
design, what are the requirements and
constraints that you need to consider?

Implicit What are the programming concepts
related to this problem?

Implicit What are your previous experiences related
to this problem?

Implicit In relation to the program that you will
design, what are the steps (e.g., tasks) that
you need to take?

 The qualitative coding process consisted of two
phases. In the first phase, both experts individually
coded the transcriptions based on the definition
provided in Table I.

After

they finished, the coding

results were then combined. Some disagreements

were

expected since the experts worked independently. In the
second phase, the experts met face-to-face to discuss
and resolve all coding

disagreements. All collected data

were used to ensure correct interpretations of the
participants’ statements.

Through this process, the

experts were able to reach a perfect agreement, with a
Kappa score of 1.00 for each transcription, and
produced 875 codes.

 To answer the first research question, the initial
task interpretation survey responses and the associated
recorded video/audio files

were used. These data

sources were also triangulated

against recorded
problem-solving approaches and interview responses.
This step was necessary since the participants might

forget reporting all relevant thought processes when
answering the survey.

To answer the second research question, the
answer to the first research question and the coded-
transcriptions were used. All problem-solving activities
that could not be associated with the initial task
interpretation were categorized as adjustment of
participants’ task understanding. These adjusted
interpretations were then triangulated against recorded
interview responses.

To answer the third research question, the list of
task interpretation adjustments, coded-transcriptions,
and interview responses were used. All statements in
the coded-transcription that were associated with the
changes were marked. The factors that influence the
marked changes were then identified and triangulated
against the interview responses.

V. The Participants

Four CS students from Utah State University
(USU), USA, were recruited and consented as
participants. All were in their senior year, familiar with
imperative and OO programming paradigms, and had
the necessary skills to solve the design problems. In the

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

46

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

After the transcribing process completed, the
OO-related transcriptions were qualitatively coded by
two experts, which were an information technologist and
one of the researchers. All experts had experience in
developing OO applications. The expert-researcher also
had a bachelor’s and master’s degrees in CS.

Table III: Object-Oriented Problem Requirements and Constraints

No. Requirements and Constraints

1 The game is meant to be played by either two,
three, or four players.

2 Each player chooses to play as any one of the
following characters: King, Warrior, Merchant, or
Thief. Each character has unique special abilities
and starts with different items and different
amounts of money.

3 The game board will consist of 30 spaces where
players can land, arranged in a circle. On some
spaces, there are buildings that can be bought and
sold. On other spaces, there are shops where
players can buy items. In addition, some spaces
have specific instructions that players must follow
when they land there.

4 In the original board game, movement is
determined by rolling dice, so you must develop an
equivalent virtual method of determining the
number of spaces each player moves on his or her
turn.

5 On their turn, each player must move, and they can
choose to do any of the following: buy the building
on the space they are on, sell any building they
own, spend money to improve buildings they own,
or use one of their character’s special abilities.

6 Items give special benefits to the player. Items
include the following: Sword, Potion, Horse, or
others. The effects of the item will be different for
each character type.

7 There are three different kinds of buildings: Castle,
F d I Th b ildi h diff

fourth year, USU CS students have typically completed
the introduction to programming, algorithm and data
structure, software engineering, event-driven
programming, and internship courses. At the end of the
research, each participant received a personalized
report of his or her task interpretation strategies and
suggestions for improvement and a $40 gift card.
Participants responded positively towards the reports
and suggestions.

All participants were Caucasians with GPAs of
3.10 to 3.96 on a 4-point scale. Sorted based on their
GPAs, they were Jake, Anne, LStew, and Rusty. The
male participants also familiar with logic programming
and had spent approximately 4980 hours developing
their programming skills.

The female participants had spent about 2050
hours of programming. Similar to most female CS
students [39]–[44], they had struggled with CS
stereotypes, where CS students are viewed as overtly
“focused on CS, asocial, competitive, and male” (p.30)
[40]. They also suffered from comparing themselves
against their peers. L Stew said, “I have to ignore my
colleagues and classmates programming ‘successes’
as that comparison game tends to reduce my self-
esteem a lot and negatively impact my problem-solving
and programming capabilities.” She also said, “I nearly
failed a class because I did not believe I was capable of
succeeding in it.” Fortunately, both participants were
able to overcome that challenge and were almost
finished with the degree requirements.

VI. Findings

All participants started with incomplete task
understanding, which was expected, as explained
earlier. Fortunately, all participants were also aware of it
and tried to update their task understanding.
Unfortunately, although their final task interpretation was
better compared to the initial, it was still incomplete.
There are two possible reasons for this result. First, the
participants were overwhelmed with the detail of their
design. Second, the participants were drawing
knowledge from irrelevant experience. Rusty, for
example, was using the entity-relationship instead of the
class diagram.

In this section, participants’ initial and revised-
task interpretation, and factors that influenced the
changes were discussed.

a)

Initial Explicit and Implicit Task Interpretation

Five questions were asked to assess the initial
understanding of the participants (see Table II). All
participants were able to determine the problem goal
correctly. Anne, for example, defined the goal as
“develop[ing a] class diagram from given constraints.” L

Stew and Rusty also included design best practices and
their interest

in the problem goal. Rusty, for example,

said the problem goal was “create[ing] a logic layer
inside of our program that can function completely
without interaction from the graphical user interface or
user.”Rusty knew that the decoupling of logic and user
interface is part of software design best practices, and
would

like to observe it during the design process.

No participants had a complete initial
understanding of the requirements and constraints,
which required explicit and implicit task interpretation.
This result was expected, considering the number of
requirements and constraints. However, all participants
understood that they needed to complete each item
listed in Table III. They also understood that the problem
implicitly required them to organize potential classes “in
a logical way” since the classes will “interact in a
specific way.” Anne, LStew, and Rusty also added that
exercising creativity, as directed in the problem, would
affect their class design.

In designing the classes, LStew further added
that she needed to “avoid common object-oriented
programming pitfalls by reducing coupling, reducing
interdependencies, and avoiding the diamond of
death.”Plausibly, this implicit understanding was
informed by her interests and experience in OO-design
best practices.

All participants considered OO design
principles and UML diagram notations as relevant
concepts. Rusty and LStew also added that design
practices in writing a class diagram and software
usability as essential knowledge and skills.

Thus, all

participants were able to identify relevant concepts to
complete the problem correctly.

In order to solve the problem, all participants
determined that they need to (1) reread the problem
description; (2) identify potential classes; (3) draw the
class; (4) establish the classes’ relationship; and

(5)

refine the class diagram as necessary. Interestingly,
while the male participants concentrated on rereading
the problem description on their first step, the females
also concerned with identifying and rewriting the
requirements and constraints in their own words.
Additionally, Rusty and LStew added that they needed
to monitor their progress and address creativity issues
throughout their problem-solving enterprise.

b)

Revising the Initial Task Understanding

The participants executed their problem-solving
steps carefully. LStew, for example, started by rereading
the problem description and developed a list of
requirements. She continued by solving the identified
requirements that were related to items, characters,
special abilities, player actions, spaces, buildings,
players, games, and turn. Sometimes, after completing
one of the requirements, she adjusted her design. For
example, after designing the action-related classes, she
revised the item and character classes. LStew also
enhanced her design by making it as logical and as

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

47

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

clear as possible so people could easily understand
how the classes work together.

When rereading the problem description, the
participants were frequently observed as if interpreting it
for the first time. These activities were coded as
monitoring of task interpretation. Some of these
activities triggered them to adjust their task
interpretation. Jake, Anne, Rusty, and LStew were
observed investing 37.50%, 50.38%, 31.12%, and
36.47% of their engagement for interpreting the task,
respectively, including for monitoring and adjustment.
Rusty said during the interview, “The general
understanding did not really change because I knew
that I was going to be creating this class diagram, but
as far as the design decisions, it changed a lot.”

c) Factors that Influence the Task Interpretation
Revisions

As mentioned by Rusty, most of the revised-
task interpretations were somehow related to design
decisions, such as classes and their behaviors. When
addressing each requirement and constraint, the
participants need to consider the best mechanism to
incorporate it into their existing design. Such need
encourages them to reread the problem description as if
they encountered it for the first time. This finding aligned
with various reports that argued students were required
to employ vast cognitive skills and work with different
abstraction levels during a programming design
activity[45], [46].

All participants except Anne were observed
updating their task understanding when addressing
creativity requirements. For example, after rereading the
third requirement (see Table III), LStew said, "What kind
of special instructions could you have if it was a castle
versus an inn? I suppose-or a castle versus a fortress?
Oh, nothing comes up. Well, a castle can have a king in
it, right? … Okay, so if you are a king and you land on a
castle owned by someone else, you get a discount on
your rent." The above illustration showed how LStew's
interpretation of "specific instruction" evolved as she
infused her creativity into the design.

Unlike the other participants, Anne did not
attempt to put creativity into her design. Using the third
requirement as an example, Anne addressed it by just
creating a class called Instructions that would be used
by the Space class. At the beginning of solving the
problem, Anne commented, "No one will hire me for my
creativity," suggesting she was not confident of that
particular skill.

VII. Discussion, Conclusion, and
Implication

The analysis results suggested that the
participants were competent in identifying the problem
goal, requirements, constraints, relevant concepts,
relevant experience, and steps to solve an OO design

problem. It is important to note that they were able to
identify most of it after the initial reading of the problem.
However, due to the problem's extensiveness, they were
unable to determine all detailed requirements and
constraints.

During the design, they displayed some
attributes of expert problem-solvers (see [47], [48]),
such as considering possible concerns from various
stakeholders. Their awareness of the problem
complexity and prior experience in solving OO design
problems also inspire a positive behavior; in such, it
drove them to be cautious in interpreting the
requirements. Thus, it might be beneficial to train
students to identify problem characteristics and its
complexity as early as possible. Two educational theory
may help in this issue, which are Jonassen's problem
types [34]–[36] and Bloom’s Taxonomy to define the
problem characteristics.

The analysis results suggested that the
participants had a relatively similar approach in solving
an OO design problem with extensive requirements and
constraints. This approach included rereading the
problem description, identifying requirements,
identifying classes, determining the classes'
relationships, and refining the class diagram. This
finding aligned with various arguments that students
developed metacognitive knowledge about the tasks
based on their problem-solving experience[1], [49],
[50]. Since these metacognitive knowledge influence
students' problem-solving approach[1],it might be
beneficial for the instructors to check and ensure that
students could acquire that knowledge correctly.

There was self-regulation different between
male and female, in such that both female participants
listed the requirements and constraints using their own
words. However, since all participants unable to identify
the requirements and constraints completely, it is
impossible to comments more on this difference.

The findings suggested that the participants'
interest and experience influenced their initial and
revised-task interpretations. Similarly, when addressing
creativity requirements, they also exploited their interest
and experience. One study argues that creativity is
primarily related to the design process[51]. Thus, Anne's
discomfort about her creative side might be induced by
a lack of exposure to a variety of products, and chances
to express her creativity. These issues could be fixed by
exposing students to various creative software products
and encouraging them to tap into their creative side in
several programming assignments.

The analysis suggested that task interpretation
skills might be deteriorated due to being overwhelmed
and drawing from irrelevant experience. This findings
also suggested that the participants' incorrect
assumption of educational tasks might affect their self-
regulation. Students need to be aware of this potential
danger in their education.

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

48

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

VIII. Conclusion

This study shows that the participants, senior
CS students, are capable of drawing explicit and implicit
information from an OO-design problem. Most of this
information is identified during their initial task
interpretation. It is important to note that various
contexts influence their task interpretation skills; this is
coherent with SRL theory [4], [5], [8], [13], [52] and
other existing research [19], [21]. This study shows how
participants' perception of the problem (e.g., domain
and complexity) and their experience, interest, and self-
efficacy influences their task interpretation (and self-
regulation in general). Thus, it is also essential to help
students more aware of such contextual information
when solving a problem.

This study also shows that participants' task
understanding evolves during their problem-solving
endeavor. In terms of solving an OO-design problem,
revised-task interpretations are mostly related to design
decisions, such as considering the interplay among
classes. These senior students also display expert like
behaviors where they try to interpolate possible
concerns from various stakeholders. All participants also
have developed a similar problem-solving approach to
OO-design problems. A slight difference exists between
males' and females' approach, where the females prefer
to develop a list of known requirements and constraints.

IX. Limitations

This qualitative multiple case study was not
designed to produce generalizable results but rather to
capture as much variety of students’ task interpretation
while solving OO-design problems as much as possible.
With such a goal, having four participants was adequate
for a qualitative case study research [30]. When
interpreting the findings, remember that the participants’
diversity in this study was limited to their sex. There was
a limitation regarding the problem types, such that the
research tasks were limited to OO and imperative
paradigms. Finally, one study argues that although
thinking aloud is commonly used in educational studies,
it might also affect students’ self-regulation [53] and
then influence the research results. Unfortunately, there
is no known approach to overcome it.

This paper only focuses on the participants’ SR
while working on OO design problem. The other unit of
analysis is discussed in [21].

References Références Referencias

1.

D. L. Butler and S. C. Cartier, “Promoting Effective
Task Interpretation as an Important Work Habit: A
Key to Successful Teaching and Learning,” Teach.
Coll. Rec., vol. 106, no. 9, pp. 1729–1758, 2004.

2.

P. Rivera-Reyes, O. Lawanto, and M. L. Pate,
“Students’ Task Interpretation and Conceptual

Understanding in an Electronics Laboratory,” IEEE
Trans. Educ., vol. 60, no. 4, pp. 265–272, Nov.
2017, doi: 10.1109/TE.2017.2689723.

3. O. Lawanto, A. Minichiello, J. Uziak, and A. Febrian,
“Students’ Task Understanding during Engineering
Problem Solving in an Introductory Thermodynamics
Course,” Int. Educ. Stud., vol. 11, no. 7, p. 43, Jun.
2018, doi: 10.5539/ies.v11n7p43.

4. D. L. Butler and P. H. Winne, “Feedback and Self-
Regulated Learning: A Theoretical Synthesis,” Rev.
Educ. Res., vol. 65, no. 3, pp. 245–281, Jan. 1995,
doi: 10.3102/00346543065003245.

5. D. L. Butler and S. C. Cartier, “Multiple
Complementary Methods for Understanding Self-
Regulated Learning as Situated in Context,” in
American Educational Research Association,
Annual Meeting, 2005, pp. 11–15.

6. O. Lawanto and G. Stewardson, “Students’ interest
and expectancy for success while engaged in
analysis- and creative design activities,” Int. J.
Technol. Des. Educ., vol. 23, no. 2, pp. 213–227,
May 2013, doi: 10.1007/s10798-011-9175-3.

7. O. Lawanto, A. Minichiello, J. Uziak, and A. Febrian,
“Task Affect and Task Understanding in Engineering
Problem-Solving,” J. Technol. Educ., 2018.

8. A. F. Hadwin, M. Oshige, M. Miller, and P. Wild,
“Examining Student and Instructor Task Perceptions
in a Complex Engineering Design Task,” in The
Sixth International Conference on Innovation and
Practices in Engineering Design and Engineering
Education, 2009.

9. M. Havenga, “The Role of Metacognitive Skills in
Solving Object-Oriented Programming Problems: a
Case Study,” TD J. Transdiscipl. Res. South. Africa,
vol. 11, no. 1, pp. 133–147, 2015.

10. J. Peng, M. Wang, and D. Sampson, “Visualizing the
Complex Process for Deep Learning with an
Authentic Programming Project,” Educ. Technol.
Soc., vol. 20, no. 4, pp. 275–287, 2017.

11. K. Falkner, R. Vivian, and N. J. G. Falkner,
“Identifying computer science self-regulated
learning strategies,” in Proceedings of the 2014
conference on Innovation & technology in computer
science education - ITiCSE ’14, 2014, pp. 291–296,
doi: 10.1145/2591708.2591715.

12. B. J. Zimmerman, “Investigating Self-Regulation and
Motivation: Historical Background, Methodological
Developments, and Future Prospects,” Am. Educ.
Res. J., vol. 45, no. 1, pp. 166–183, Mar. 2008, doi:
10.3102/0002831207312909.

13. D. L. Butler, L. Schnellert, and N. E. Perry,
Developing Self-Regulating Learners. Toronto, ON,
Canada: Pearson Education Inc., 2017.

14. S. C. Cartier and D. L. Butler, “Elaboration and
validation of questionnaires and plan for analysis,”
in Annual Conference of the Canadian Society for
The Study of Education, 2004.

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

49

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

15. D. L. Butler and S. C. Cartier, “Learning in varying
activities: An explanatory framework and a new
evaluation tool founded on a model of self-regulated
learning,” in Annual Conference of the Canadian
Society for The Study of Education, 2004.

16. D. L. Butler, L. Schnellert, and K. MacNeil,
“Collaborative inquiry and distributed agency in
educational change: A case study of a multi-level
community of inquiry,” J. Educ. Chang., vol. 16, no.
1, pp. 1–26, Feb. 2015, doi: 10.1007/s10833-014-
9227-z.

17. D. L. Butler, “Metacognition and Learning
Disabilities,” in Learning About Learning Disabilities,
2nd ed., B. Y. L. Wong, Ed. Toronto: Academic
Press, 1998, pp. 277–307.

18. D. L. Butler, “Promoting Strategic Learning by
Postsecondary Students with Learning Disabilities,”
J. Learn. Disabil., vol. 28, no. 3, pp. 170–190, Mar.
1995, doi: 10.1177/002221949502800306.

19. O. Lawanto and A. Febrian, “Investigating the
Influence of Context on Students’ Self-Regulation
during the Capstone Design Course (Accepted),”
Int. J. Eng. Educ., 2018.

20. C. R. Saulnier and J. G. Brisson, “Design for Use:
A Case Study of an Authentically Impactful Design
Experience,” Int. J. Eng. Educ., vol. 34, no. 2B, pp.
769–779, 2018.

21. A. Febrian and Lawanto. Oenardi, “Do Computer
Science Students Understand Their Programming
Task?– A Case Study of Solving the Josephus
Variant Problem,” Int. Educ. Stud., vol. 11, no. 12,
2018.

22. Abdillah, T. Nusantara, S. Subanj, H. Susanto, and
A. Abadyo, “The Students Decision Making in
Solving Discount Problem,” Int. Educ. Stud., vol. 9,
no. 7, p. 57, Jun. 2016, doi: 10.5539/ies.v9n7p57.

23. S. Carver and M. F. Scheier, “Origins and functions
of positive and negative affect: A control-process
view,” Psychol. Rev., vol. 97, no. 1, pp. 19–35, 1990,
doi: 10.1037/0033-295X.97.1.19.

24. V. Isomöttönen and V. Tirronen, “Teaching
programming by emphasizing self-direction,” ACM
Trans. Comput. Educ., vol. 13, no. 2, pp. 1–21, Jun.
2013, doi: 10.1145/2483710.2483711.

25. K. Leiviskä and M. Siponen, “Understanding Why IS
Students Drop Out: Toward A Process Theory,” in
ECIS 2013 Proceedings, 2013, pp. 1–11.

26. A. Alharbi, F. Henskens, and M. Hannaford,
“Student-Centered Learning Objects to Support the
Self-Regulated Learning of Computer Science,”
Creat. Educ., vol. 03, no. 06, pp. 773–783, Oct.
2012, doi: 10.4236/ce.2012.326116.

27. S. Bergin, R. Reilly, and D. Traynor, “Examining the
role of self-regulated learning on introductory
programming performance,” in First International
Workshop on Computing Education Research,
2005, pp. 81–86, doi: 10.1145/1089786.1089794.

28. T. M. Shaft, “Helping Programmers Understand
Computer Programs: the Use of Metacognition,”
ACM SIGMIS Database, vol. 26, no. 4, pp. 25–46,
1995.

29. V. Kumar et al., “Effects of self-regulated learning in
programming,” in Fifth IEEE International
Conference on Advanced Learning Technologies
(ICALT’05), 2005, pp. 383–387, doi: 10.1109/ ICALT.
2005.131.

30. J. W. Creswell, Qualitative Inquiry and Research
Design: Choosing Among Five Approaches, 3rd ed.
SAGE Publications, 2012.

31. L. Dinsmore, P. A. Alexander, and S. M. Loughlin,
“Focusing the conceptual lens on metacognition,
self-regulation, and self-regulated learning,” Educ.
Psychol. Rev., vol. 20, no. 4, pp. 391–409, 2008,
doi: 10.1007/s10648-008-9083-6.

32. L. Butler and S. C. Cartier, “Case Studies as a
Methodological Framework for Studying and
Assessing Self-Regulated Learning,” in Handbook
of Self-Regulation of Learning and Performance,
2nd ed., D. H. Schunk and J. Greene, Eds. New
York, New York, USA: Routledge, 2018, pp.
352–369.

33. S. D. Johnson, “Cognitive Analysis of Expert and
Novice Troubleshooting Performance,” Perform.
Improv. Q., vol. 1, no. 3, pp. 38–54, Oct. 2008, doi:
10.1111/j.1937-8327.1988.tb00021.x.

34. H. Jonassen, “Toward a design theory of problem
solving,” Educ. Technol. Res. Dev., vol. 48, no. 4,
pp. 63–85, Dec. 2000, doi: 10.1007/BF02300500.

35. D. H. Jonassen, Learning to Solve Problems: An
Instructional Design Guide. John Wiley & Sons,
2004.

36. D. H. Jonassen, Learning to solve problems:
A handbook for designing problem-solving learning
environments. Routledge, 2010.

37. N. E. Gronlund, E. N. Gronlund, and C. K. Waugh,
Assessment of Student Achievement, 10th ed.
Pearson, 2013.

38. Tigerfish, “Transcription Style Guide.” Tigerfish, San
Francisco, USA, p. 11.

39. K. Falkner, C. Szabo, D. Michell, A. Szorenyi, and S.
Thyer, “Gender Gap in Academia: Perceptions of
Female Computer Science Academics,” in
Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science
Education - ITiCSE ’15, 2015, pp. 111–116, doi:
10.1145/2729094.2742595.

40. C. M. Lewis, R. E. Anderson, and K. Yasuhara, “‘I
Don’t Code All Day’: Fitting in Computer Science
When the Stereotypes Don’t Fit,” in Proceedings of
the 2016 ACM Conference on International
Computing Education Research - ICER ’16, 2016,
pp. 23–32, doi: 10.1145/2960310.2960332.

41. S. Graham and C. Latulipe, “CS girls rock: sparking
interest in computer science and debunking the

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

50

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

stereotypes,” ACM SIGCSE Bull., vol. 35, no. 1, p.
322, Jan. 2003, doi: 10.1145/792548.611998.

42. L. Irani, “Understanding gender and confidence in
CS course culture,” ACM SIGCSE Bull., vol. 36, no.
1, p. 195, Mar. 2004, doi: 10.1145/1028174.971371.

43. C. N. Outlay, A. J. Platt, and K. Conroy, “Getting IT
Together: A Longitudinal Look at Linking Girls’
Interest in IT Careers to Lessons Taught in Middle
School Camps,” ACM Trans. Comput. Educ., vol.
17, no. 4, pp. 1–17, Aug. 2017, doi: 10.1145/
3068838.

44. J. Wang, S. Hejazi Moghadam, and J. Tiffany-
Morales, “Social Perceptions in Computer Science
and Implications for Diverse Students,” in
Proceedings of the 2017 ACM Conference on
International Computing Education Research - ICER
’17, 2017, pp. 47–55, doi: 10.1145/3105726.
3106175.

45. V. G. Renumol, D. Janakiram, and S. Jayaprakash,
“Identification of Cognitive Processes of Effective
and Ineffective Students During Computer
Programming,” ACM Trans. Comput. Educ., vol. 10,
no. 3, pp. 1–21, Aug. 2010, doi: 10.1145/1821996.
1821998.

46. J. M. Wing, “Computational Thinking and Thinking
About Computing,” Philos. Trans. A. Math. Phys.
Eng. Sci., vol. 366, no. 1881, pp. 3717–25, Oct.
2008, doi: 10.1098/rsta.2008.0118.

47. R. Glaser, “Expert knowledge and processes of
thinking,” in Enhancing thinking skills in the
sciences and mathematics, D. Halpern, Ed.
Hillsdale, NJ, USA: Lawrence Erlbaum Associates,
Inc., 1992, pp. 63–75.

48. R. R. Hoffman, “How can expertise be defined?
Implications of research from cognitive psychology,”
in Exploring Expertise, R. Williams, W. Faulkner, and
J. Fleck, Eds. Edinburgh, Scotland: University of
Edinburgh Press, 1996, pp. 81–100.

49. J. H. Flavell, “Metacognitive Aspects of Problem
Solving,” in The Nature of Intelligence, L. B. Resnick,
Ed. Hillsdale, NJ, USA: Erlbaum, 1976, pp. 21–64.

50. J. H. Flavell, “Metacognition and cognitive
monitoring: A new area of cognitive–developmental
inquiry,” Am. Psychol., vol. 34, no. 10, pp. 906–911,
1979, doi: 10.1037/0003-066x.34.10.906.

51. H. Christiaans and K. Venselaar, “Creativity in
Design Engineering and the Role of Knowledge:
Modelling the Expert,” Int. J. Technol. Des. Educ.,
vol. 15, no. 3, pp. 217–236, Jan. 2005, doi:
10.1007/s10798-004-1904-4.

52. A. Hadwin, “Do your students really understand your
assignments?,” LTC Curr. Optim. Learn. Environ.,
vol. 11, no. 3, pp. 8–9, 2006.

53. M. T. H. Chi, N. De Leeuw, M.-H. Chiu, and C.
Lavancher, “Eliciting Self-Explanations Improves
Understanding,” Cogn. Sci., vol. 18, no. 3, pp. 439–
477, 1994, doi: 10.1207/s15516709cog1803_3.

54. O. Lawanto et al., “Pattern of Task Interpretation and
Self-Regulated Learning Strategies of High School
Students and College Freshmen during an
Engineering Design Project,” J. STEM Educ. Innov.
Res., vol. 14, no. 4, p. 15, 2013.

First A. Author was born in xx in x. X received the B.S.
and M.S. degrees in Computer Science from the X, in X
and the Ph.D. degree in X in X.
[Short bio: interests, academic activities, research
activities, and professional associations]

Second B. Author was born in xx in x. X received the
B.S. and M.S. degrees in Computer Science from the X,
in X and the Ph.D. degree in X in X.
[Short bio: interests, academic activities, research
activities, and professional associations]

 V

ol
um

e
X
X
 I
ss
ue

 I
 V

er
sio

n
I

51

(G
)

G
lo
ba

l
Jo

ur
na

l
of
 H

um
an

 S
oc

ia
l
Sc

ie
nc

e

-

Ye
ar

20
20

© 2020 Global Journals

Students’ Understanding of an Object-Oriented Design Task - A Case Study

	Students’ Understanding of an Object-Oriented Design Task -A Case Study
	Author
	Index terms
	I. Introduction
	II. Research Questions
	III. Relevant Literature
	a) Task Interpretation in Self-Regulated Learning
	b) Self-Regulation in Computer Programming

	IV. Research Design
	a) Data Collection Method
	b) Object-Oriented Design Problem
	c) Data Analysis Method

	V. The Participants
	VI. Findings
	a) Initial Explicit and Implicit Task Interpretation
	b) Revising the Initial Task Understanding
	c) Factors that Influence the Task Interpretation Revisions

	VII. Discussion, Conclusion, and Implication
	VIII. Conclusion
	IX. Limitations
	References Références Referencias

