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Abstract-

 

Greenhouse gas (GHG) emissions in agricultural 
production represent a global environmental challenge, and it 
is necessary to understand the factors that influence them to 
develop sustainable practices. The general objective of this 
research is to investigate some of the factors that probably 
influence GHG emissions and reductions in agricultural 
production in the MATOPIBA region of Brazil between 2006 
and 2017. A hybrid methodology was used, and the first stage 
used linear models (decomposition into principal components) 
and non-linear models (artificial neural networks) to determine 
the relationships that should exist between the dependent 
variable (GHG emissions) and 11 variables. The data was 
obtained from the 2006 and 2017 Brazilian Agricultural 
Census, MapBiomas, SEEG, and NOAA. The results showed 
that of the 373 municipalities that make up MATOPIBA, only 
100 did not see an increase in GHG emissions between 2006 
and 2017. The principal component decomposition method 
reduced the 11 initial variables into 3 orthogonal and 
unobserved variables. In one of the unobserved variables, 4 of 
the five variables that are supposed to cause a reduction in 
GHG emissions were brought together.  The 5 variables 
thought to have caused an increase in GHG emissions were 
condensed into 5. 

 

Keywords:

 

brazilian agriculture,

 

EMBRAPA,

 

change in 
land use, cerrado biome, evolution of

 

GHG

 

emissions.  

I.

 

Introduction

 

razilian agriculture is recognized worldwide for its 
prominence in the global market, especially in 
producing grains and foods such as soybeans, 

corn, cotton, orange juice, cocoa, coffee, sugar, and 
meat (FAOSTAT, 2020). In recent years, the expansion of 
soybean cultivation in Brazil has intensified, 
consolidating the country as one of the world's leading 
exporters. This growth is due to the advance of new 
agricultural frontiers such as the MATOPIBA region, 
which covers parts of the frontiers of the states of 
Maranhão, Tocantins, Piauí, and Bahia, located 
predominantly in the Cerrado biome (Santos & Naval, 
2022). 

 

Since the creation of the Brazilian Agricultural 
Research Corporation (EMBRAPA) in 1973, the 
knowledge generated by this institution has been 
fundamental in developing and adapting technologies 
for the tropical conditions of this type of production, 
especially in the Cerrado. This has boosted the 
development of the country's agricultural sector. These 
innovations have established Brazil as one of the largest 
global food producers and exporters (Nehring, 2016; 
Souza et al., 2020; EMBRAPA, 2024).  

However, despite the economic growth driven 
by the agricultural sector, this is one of the activities 
responsible for greenhouse gas (GHG) emissions, due 
to the use of fossil fuelbased fertilizers, the burning of 
biomass, the high density of cattle per unit area, and the 
use of heavy agricultural machinery, which also uses this 
type of fuel in its energy matrix (Liu et al., 2017). 
According to the Food and Agriculture Organization of 
the United Nations (FAO), the agricultural sector may be 
responsible for up to 21% of the world's GHG emissions 
(FAO, 2016).  

The increase in the greenhouse effect can be 
exacerbated by the rising levels of carbon dioxide (CO2) 
in the atmosphere (Myhre et al., 2013), which is 
attributed to various causes. Agricultural production can 
contribute to this process through the actions described 
in the previous paragraph. However, paradoxically, 
plants play a crucial role in reducing these emissions 
through the biochemical phenomenon known as 
photosynthesis. During photosynthesis, plants capture 
CO2, solar energy, water, and nutrients from the soil, 
transforming them into organic matter and releasing 
oxygen as a byproduct. Because of this phenomenon, 
CO2 is often known as the gas of life. It can therefore be 
inferred that deforestation may be one of the primary 
causes of the reduced capacity to capture CO2, which 
is ultimately released by various sources (Felício, 2014).   

Thus, one of the primary sources of CO2 
emissions is the burning of fossil fuels (Forster et al., 
2007). Additionally, land use changes can alter the flow 
of carbon dioxide (CO2), methane (CH4), and nitrous 
oxide (N2O)- greenhouse gases that result from 
modifications to biogeochemical processes (Forster et 
al., 2007; Houghton et al., 2012; Kirschbaum et al., 
2012; Kim & Kirschbaum, 2015).  

Worldwide, it is estimated that approximately 
420 million hectares of forest have been cleared since 
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1990. More than half (54%) of the world's forests are 
concentrated in just five countries: Russia, Brazil, 
Canada, the United States, and China. Meanwhile, 
agricultural land areas expanded by 6% between 2000 
and 2021, contributing to a growth of 38% in permanent 
crops and 12% in temporary crops (FAO, 2020).  

In 2021, Brazil had 66 million hectares of arable 
land, with a 20% increase in agricultural areas due to the 
expansion of temporary crops (FAO, 2023). It is, 
therefore, necessary to evaluate more rigorously how 
land is utilized as the main production factor in 
agriculture and its relationship with greenhouse gas 
emissions, given that it is directly related to changes in 
soil organic carbon stocks. This, in turn, is important for 

determining soil quality, natural fertility, agricultural 
productivity, and the fixation of atmospheric carbon 
dioxide (CO₂) (Kumar et al., 2022). In addition, the use of 
fire related to land use change can also reduce soil 
organic carbon stocks (Van der Werf et al., 2006; Van 
der Werf et al., 2010; Kim & Kirschbaum, 2015).   

In recent decades, since its implementation in 
the 1980s, the MATOPIBA agricultural frontier, which 
includes parts of the states of Maranhão (135 of its 217 
municipalities), Tocantins (all 139 municipalities), Piauí 
(33 of its 224 municipalities), and Bahia (30 of its 417 
municipalities on the frontier) (Figure 1), has emerged 
as one of the main regions for the expansion of grain 
production, especially soybeans.       

Figure 1:

 

Location Map of the MATOPIBA Region

 

Source: Developed by the author. 
 

According to data from IBGE's Municipal 
Agricultural Production (PAM), in 2023 the 337 
municipalities of MATOPIBA recorded a 9.6% increase in 
cultivated area compared to the previous year. 
Consequently, production reached 18,943,144 tons, an 
increase of 11.2%, with an average yield of 3,581.94 
kg/ha, representing a growth of 1.44% compared to 
2022.  

 

In addition, between 2013 and 2017, the GDP of 
agriculture in MATOPIBA reached R$17.1 billion, with an 
average annual growth rate of 7.7% (Souza, Magalhães 
& Castro, 2022). However, this economic growth has 
also had environmental impacts. Between 2010 and 
2013, the MATOPIBA region was responsible for 45% of 
forest carbon emissions resulting from agricultural 
expansion in the Cerrado, with Maranhão making one of 

the largest contributions (14.42%) (Noojipady et al., 
2017).  

 

The conversion of native Cerrado areas into 
agricultural land intensifies deforestation (Rausch et al., 
2019). In 2023, according to the Annual Report on 
Deforestation in Brazil, the MATOPIBA region was 
responsible for almost half (47%) of the loss

 

of native 
vegetation in Brazil, with 858,952 hectares deforested, 
representing an increase of 59% over the previous year. 
Of the 50 municipalities with the most deforestation in 
the country, 33 are in the Cerrado, and the 10 with the 
largest deforested areas are in this biome. The state of 
Maranhão led the national ranking, with 331,225 
hectares deforested, an increase of 95.1%. The state of 
Tocantins experienced a 177.9% increase in 
deforestation, with 230,253 hectares cleared, while 
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Bahia deforested 290,606 hectares, representing a 
27.5% increase compared to 2022 (RAD, 2023).  

This change in land use, resulting from the 
conversion of native areas into agricultural land and 
pastures, drives deforestation and promotes the 
frequent use of fire (Reddington et al., 2015; Spera et 
al., 2016). According to data from MapBiomas Fogo, 
between 1985 and 2023, around 199.1 million hectares 
were burned in Brazil, of which 44.6% (equivalent to 88.5 
million hectares) were in the Cerrado biome, while the 
Amazon biome accounted for 19.6% (MapBiomas 
Project, 2023).   

Although fire is a natural element used to clear 
areas where crops or pastures will be planted, it is 
becoming a threat due to its increasing frequency and 
the possibility of it getting out of control in the Cerrado 
due to agricultural expansion and deforestation. The 
Cerrado is responsible for 48% of the country's soybean 
production and approximately a quarter of this 
production area is located in MATOPIBA (Pitta et al., 
2017; Soterroni et al., 2019; Silva et al., 2021; 
MapBiomas Project, 2023).  

Given this scenario, studying the evolution of 
greenhouse gas (GHG) emissions and identifying the 
factors that likely contribute to the reduction or 
expansion of these emissions in the MATOPIBA region 
is essential for guiding public policies and investments 
that promote agriculture with lower or zero GHG 
emissions (Bezerra, 2022).  

Based on the above, this research aims to 
answer the following questions: 1 - How many 

municipalities in MATOPIBA had an increase or 
decrease in GHG emissions between 2006 and 2017? 2 
- Which variables, and in what proportions, probably 
influenced these emissions in this time interval?  

To answer these questions, the general 
objective of this study is to investigate the factors that 
influence GHG emissions and reductions in agricultural 
production in the MATOPIBA region between 2006 and 
2017. Specifically, the study seeks to: a - Ascertain the 
number of municipalities in the MATOPIBA region and, 
by state, identify which had an increase or decrease in 
GHG emissions between 2006 and 2017; b - Analyze 
the interaction between the variables tested in 
determining GHG emissions in this period; c - Evaluate 
how GHG emissions are influenced by the synergies 
between the indicators analyzed.    

II. Material and Methods 

a) Database and Construction of Indicators  
The research uses secondary data extracted 

from the 2006 and 2017 Agricultural Censuses, 
MapBiomas, NOAA (National Oceanic and Atmospheric 
Administration), and SEEG (System of Estimates of 
Greenhouse Gas Emissions and Removals), from which 
information was obtained on the variables that are 
supposed to affect greenhouse gas emissions in the 
municipalities of the MATOPIBA region over these 11 
years. The variables and data sources used are shown 
in Table 1.  

Table 1: Variables that, by Hypothesis, Affect Greenhouse Gas (GHG) Emissions Positively (+) or Negatively (-) 
between 2006 and 2017 in MATOPIBA in this Research 

Variables  
Hypothesis of the 
relation between 

Yi and Xij 
Definition Sources 

Yi
 GHG 

Emissions (GHG2017/GHG2006) Emissions 
Greenhouse Gas 
Emissions - SEEG 

(OC, 2022). 

Xi1
 (-) (Municipal average annual rainfall2017) / (Municipal 

average annual rainfall2006) NOAA (2022) 

Xi2
 (-) 

 

(Vegetation cover) [(Crop areas + forest areas) / (total 
establishment area 2017)] / [(Crop areas + forest areas)/ 

(total establishment area 2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi3
 (-) 

[(Agricultural production value2017) / (Harvested 
agricultural area2017)] / [(Agricultural production 
value2006) / (Harvested agricultural area2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi4
 (-) 

[(Livestock production value2017) / (Pasture area2017)]/ 
[(Livestock production value2006) / (Pasture area2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi5
 (-) [(Recovered areas2017) / (Deforested areas2017)]/ 

[(Recovered areas2006) / (Deforested areas2006)] 
MapBiomas 
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Xi6 (+) 
[(Cattle quantity2017) / (pasture areas 2017)] / [(Cattle 

quantity2006) / (pasture areas 2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi7 (+) 
[(Total tractors and machinery2017) / (total establishment 
area2017)] / [(Total tractors and machinery2006) / (total 

establishment area2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi8 (+) 

[(Expenditure on agricultural pesticides2017) / (total area 
of municipal establishments 2017)] / [(Expenditure on 
agricultural pesticides2006) / (total area of municipal 

establishments 2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi9 (+) 
[(Industrial sector GDP2017) / (Total municipal GDP2017)] / 
[(Industrial sector GDP2006) / (Total municipal GDP2006)] 

Agricultural 
Censuses of 2006 
and 2017 / IBGE 

Xi10 (+) CV rainfall 2017/ CV rainfall 2006 NOAA (2022) 
Xi11 (+) (Burn scars areas 2017 / Burn scars areas 2006) MapBiomas 

Source: Compiled based on data from SEEG, MapBiomas, Agricultural Census (2006 and 2017), IBGE, and NOAA (2022).  

The methodological approaches adopted to 
achieve the objectives of this research begin with the 
development of the indicators used. To assess changes 
in greenhouse gas (GHG) emissions between 2006 and 
2017, in addition to the impact of the variables 
presented in Table 1 on these emissions, the indicators 
are constructed as follows: the relationship between the 
values observed in 2017 (final year) and those in 2006 
(initial year) is estimated for both GHG emissions and 
the explanatory variables.  

This makes it possible to identify whether each 
variable increased or decreased over the period 
analyzed. In municipalities where the ratio between 
GEE2017 and GEE2006 is greater than 1, there has 
been an increase in emissions; if it is less than 1, there 
has been a reduction. The same process is applied to 
the explanatory or independent variables (Table 1).  

b) Methodology Adopted to Assess the First Research 
Objective 

To achieve the first objective of the research, we 
estimated the total number of municipalities where the 
ratios of GHG emissions in 2017 were higher than those 
observed in 2006. In these instances, the ratios are 
represented as Yi2017/Yi2006. Additionally, we 
measured the relationships between the variables 
believed to have influenced GHG emissions between 
2006 and 2017, denoted as Xij2017/Xij2006.  

c) Methodology for Achieving the Second Objective  
To estimate the synergy between the variables 

that are thought to have influenced GHG emissions, 
Factor Analysis (FA) was used, using the principal 
component decomposition technique.  

Before using the principal component 
decomposition model, it was decided to transform all 
the variables into indices. The indices range from 1 to 
100. In the case of the dependent variable, the ratio of 
GHG emissions between 2006 and 2017, the following 
procedure was adopted. The municipalities were ranked 

in descending order by the ratio of GHG emissions 
between 2006 and 2017. Therefore, the higher the value 
of this ratio, the higher the GHG emissions between 
2006 and 2017. For this reason, the highest emissions 
value was assigned the index=100. The other values 
were adjusted proportionally using a simple, 
straightforward rule of three. Thus, in the municipality 
where the GHG emissions index = 100, there was the 
highest emission of this gas between 2006 and 2017. In 
those municipalities where the GHG index is close to 1, 
this means that there was the greatest reduction in these 
emissions.  

About the 11 independent variables used to 
cause GHG emissions, the following criteria were 
adopted. All 5 variables whose hypothesis in this study 
establishes that they should cause a reduction in GHG 
emissions between 2006 and 2017 (GHG2017/2006 ≤1) 
were ranked in ascending order. The lowest value (worst 
case) is assigned an index of 100. The remaining values 
are adjusted proportionally using a simple inverse rule of 
three. These variables are marked with a (-) sign in Table 
1 indicating that, by hypothesis, they cause a reduction 
in GHG emissions.  

The other 6 independent variables which, by 
hypothesis, should cause an increase in GHG emissions 
(GHG2017/2006) were ranked in descending order.  The 
highest value of these variables (worst case) was 
assigned an index of 100. The other values are adjusted 
proportionally using a simple, direct rule of three. These 
variables are marked with a (+) sign in Table 1 
indicating that, by hypothesis, they cause an increase in 
GHG emissions.  

i. Summary of the Factor Analysis Model as it Applies 
to the Study  

  A summary of the factor analysis method 
applied in this study is presented below. In general, the 
factor analysis model can be expressed as follows:  
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                          (1)
 

In equation (1),  X = (X1, X2, ..., Xp)T
 is a 

transposed vector of observable variables, while f = (f1, 
f2, ... , fr )T

 represents a transposed vector consisting of r 
latent (r < p) factors that are not directly observable. 
The matrix a of coefficients has dimension (p x r) of fixed 
coefficients, known as factor loadings; and e = (e1, e2, 
..., er)T

 is a transposed vector of random terms. It is 
generally assumed that E(e) = E(f) = 0. 

At the outset, the estimated factor loadings may 
not be definitive; however, the factor analysis method 
enables the rotation of this initial structure for enhanced 
interpretation. In this study, varimax orthogonal rotation 
was used, which has the advantage of making the 
factors independent (Dillon & Goldstein, 1984; Johnson 
& Wichern, 1988; Basilevsky, 1994; Fávero et al., 2017).  

To construct the index, the factor scores are 
estimated after the orthogonal rotation of the initial 
structure. The factor score positions each observation in 
the space of common factors. Thus, for each factor fi, 
the i-th factor score that can be extracted is defined by 
Fi, and can be expressed as:  

 
 

Where b1, b2, ..., bp are regression coefficients; 
Xi1, Xi2, ..., Xip are “p” observable variables.  

 

                                                                                                      
(3) 

In equations (2) and (3), the factor scores are 
influenced by the magnitude and units of the X 
variables. To avoid this problem, the X variables are 
normalized, resulting in:  

                                                                                  
(4) 

Where mxi is the mean of Xi, and Sxi is its 
standard deviation. Thus, equation (4) can be modified 
to:  

                                                                                                            
(5) 

In equation (5), the vector "b" replaces "B", since 
the variables are already normalized. Pre-multiplying 
both sides of the equation by (1/n)ZT, where n is the 
number of observations and ZT is the transposed matrix 
of Z, gives us:  

                                                                                          (6)  

The expression (1/n) ZTZ corresponds to the 
correlation matrix of the X variables, called R. The matrix 
(1/n) ZTF represents the correlation between the factor 
scores and the factors themselves, called L. The 
equation is redefined as:  

                                        (7) 

If R is a non-singular matrix, verified by the 
Bartlett test, the analysis can proceed. Thus, the 
hypothesis that the matrix of correlations between the 
variables is not an identity matrix must be rejected, with 
at least a 5% error level (Fávero, 2017).  

If R is non-singular, multiply both sides of 
equation (7) by the inverse matrix of R (R1), resulting in:  

                                                          

For the estimated model to be statistically valid, 
it is essential to conduct the Kaiser-MeyerOlkin (KMO) 
test, which should yield a value greater than 0.5. 
Additionally, the total variance explained by the 
orthogonal factors must exceed 50% (Hair et al., 2005; 
Maroco, 2003; Fávero, 2017).  

After determining the "b" vector (as shown in 
equation 8), the compositions of each estimated factor 
are identified based on the magnitudes of the factor 
loadings. The factors, which are a reduction of the 
original variables (k < n), can be redefined and 
renamed according to the magnitudes of the factor 
loadings that each variable presents in each component 
factor.  

The principal component decomposition 
process permits the generation of factor scores. These 
factor scores, represented by FE, are normalized 
variables with a mean of zero and a standard deviation 
of one. Positive and negative values gravitate around 
this zero mean FE. These factor scores can be 
converted into partial indices associated with each 
municipality (Ii) using equation (9). These partial indices 
can be supplemented, depending on the variables 
grouped in the composition of each factor score that 
generated it.  

          (9) 

In equation (9), FEi is the i-th normalized factor 
score, FEMN is the minimum value of the factor score, 
and FEMX is the maximum value. In this manner, the Ii 
indices will range between zero and one, and they will 
be utilized in this study to identify the expected results 
for the second objective.  

The relationship between GHG emissions and 
the partial indices (I1; I2, ..., Ip) can be described by the 
following equation:  

 
(10) 
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X = af + e                                                                                         

Fi = b1Xi1 + b2Xi2 + .. + bpXip; i = 1, 2, .., n; j = 1, 2 .., p
(2)

F (n x q) = X(n x p).B(p x q)

Zij = [(Xi - mxi) / sxi];                                                

Although Fi is not directly observable, it can be 
estimated using existing factor analysis techniques, 
using the matrix of observable variables X. Thus, 
equation (2) can be rewritten in a more compact form 
using matrix notation: 

F(n x q) = Z(n x p).b(p x q) 

(1/n)ZTF = (1/n)ZTZb.

L = R.b

b  = R- .L .    (8)

Ii = (FEi –FEMN)/(FEMX – FEMN

GHGi = f(I1; I2, ..., Ip)

)
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This equation summarizes how the indices 
derived from the factor scores explain the variation in 
GHG emissions in the different municipalities.  

ii. Methodology Adopted to Achieve the Third 
Objective  

To achieve the third objective of this research, 
the Artificial Neural Networks (ANN) model was used to 
investigate how GHG emissions are influenced by the 
synergy of partial indices (I₁, I₂, ..., Iₚ). ANNs are part of 
computational artificial intelligence. One of the main 
areas of application of ANNs is in the prediction of 
multivariate statistical data that is both nonlinear and 
non-parametric (Sharda & Patil, 1992; Lee et al., 2017).  

Zhang et al (1998) report that one of the 
procedures of computational artificial intelligence 
normally used to predict time series is the training of 
ANNs, based on the architecture and learning of the 
human brain. In this way, according to Zhang et al 
(1998), ANNs work like the human brain, seeking to 
recognize regularities and patterns in data, being able to 
learn from experience, and make generalizations based 
on previously accumulated knowledge. ANNs are non-
linear models, unlike traditional forecasting models such 
as Box & Jenkins (1976) and Pankratz (1983), which 
assume that the series studied are generated by linear 
processes.   

When designing an ANN model, we can 
envision it as a network of artificial 'neurons' organized 
into layers. The variables used to predict (inputs) a 
dependent variable (output) form the lower layer, while 
the predicted variables form the upper layer.  The ANN 
model also allows for the possibility of intermediate 
layers, generally known as hidden layers (Sharda & Patil, 
1992).  

Designed to represent how the human brain 
processes information, ANNs are computer algorithms 
that add knowledge by detecting patterns and 
correlations and can be trained through experience. 
They consist of hundreds of artificial neurons (or nodes) 
interconnected in hierarchical layers. Each neuron has a 
specific output function and the connection between 
each two nodes has a weight, constituting its artificial 
neural network memory. It is through these weights that 
the power of neural computations is reflected, i.e. the 
degree of influence that one cell exerts on another.   

Built to simulate the biological function of a 
neuron, each node has weighted inputs, a transfer 
function, and an output. Feedforward neural networks 
linearly transmit information, from the input layer to the 
output layer, and are among the most popular types 
used in various applications (Figure 1) (Agatonovic-
Kustrin; Beresford, 2000; Gómez, Fernández & Peñuela, 
2021).  

In this research, the process begins with data 
entry, in which the explanatory variables correspond to 
the partial indices generated by factor analysis, and the 

dependent variable is represented by GHG emissions 
(Yi). The data was randomly divided into two sets: 70% 
was used to train the model and 30% was reserved for 
the test set (Liu &Cocea, 2017; Dao et al., 2020). The 
output of a neuron can be written mathematically:    

              (12)
 

Where n is the weighted sum of the input 
signals plus an adjustment term (bias), defined as: n =             

                         (13)  

Where Xi₁, Xi₂, ..., Xiₚ are the neuron's input 
signals (partial indices generated by factor analysis); w₁, 
w₂, ..., wₚ are the weights associated with each input, 
determining the importance of each signal in the 
process; "b" is the bias term, used to adjust the flexibility 
of the model; and f (*) is the activation function, 
responsible for the non-linearity of the model, enabling 
the network to learn complex relationships between the 
data.   

The model's performance was assessed using 
quantitative metrics, including the Root Mean Square 
Error (RMSE), the Mean Absolute Error (MAE), and the 
Mean Absolute Percentage Error (MAPE). The lower the 
estimated values for these measurements, the better the 
adjustments. The RMSE is calculated by the root mean 
square difference between the predicted and observed 
values, shown in Equation 14. It provides an overview of 
the model's accuracy. The lower the RMSE, the more 
accurate the model. The Mean Absolute Error (MAE), as 
measured by equation (15), is also a metric used for 
evaluating models. Finally, the Mean Absolute 
Percentage Error (MAPE), as measured by equation 
(16), expresses errors as a percentage, making it easier 
to interpret the observed values (Pham et al., 2018; 
Elsaraiti, 2024). Using several metrics is advantageous 
for obtaining a broader view of the model's performance 
from different perspectives (Tripathy & Prusty, 2021).  

 
                                                                                  (14)

 

          

 

(16) 

III. Results and Discussion 

To enhance the clarity of the presentation and 
discussion of the results, they have been organized 
according to the timeline of the research objectives.  

a) Results Found for the First Objective  

Table 3 and Figure 2 show the absolute and 
relative frequencies of the MATOPIBA municipalities for 

Hybrid Model of Artificial Neural Networks and Principal Component Decomposition for Predicting
Greenhouse Gas Emissions in the Brazilian Region of MATOPIBA

Yi = f(n)                                                                                         

n = ∑ (𝑤𝑗 . 𝑋𝑗)𝑝
𝑖=1 + 𝑏

(15)

RMSE = √1

𝑛
 ∑ ( 𝑣observed − 𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 )2𝑛

𝑖=1

MAE = 1

𝑛
∑ | 𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 |𝑛

𝑖=1     

MAPE = 1

𝑛
∑ |

𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 |𝑛

𝑖=1 * 100
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states that showed an increase or decrease in GHG 
emissions between 2006 and 2017.  

  

Table 3: Absolute and Relative Frequencies of GHG Missions in MATOPIBA Municipalities from 2006 to 2017

     
  

  

  
  

     

     
     

     
    
     Source: Based on the survey results.

 

Figure 2:

 

2017/2006 GHG Ratio for the MATOPIBA Region

 

Source: Based on the survey result.
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and 2006 was less than 1 (GHG < 
1)

and 2006 was greater than 1 
(GHG >1)

Maranhão 50 37 85 63
Tocantins 33 23,7 106 76,3

Piauí 8 24,2 25 75,8
Bahia 9 30 21 70
Total 100 100 237 100

States
Absolute frequencies of 

municipalities where the ratio of 
GHG emissions between 2017 

Relative 
Frequency 

(%)

Absolute frequencies of 
municipalities where the ratio of 
GHG emissions between 2017 

Relative 
Frequency 

(%)
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There was a predominance of municipalities 
with an increase in GHG emissions during the analyzed 
period. Of the 337 municipalities in the MATOPIBA 
region, 237 (approximately 70.3%) experienced an 
increase in emissions, while 100 (29.7%) reported a 
reduction. Among the municipalities in the state of 
Maranhão, 50 out of a total of 135 (37%) experienced a 
reduction in emissions, while 85 (63%) reported an 
increase. In Tocantins, of the 139 municipalities, 33 
(23.7%) registered a decrease in emissions, while 106 
(76.3%) showed an increase. In Piauí, out of 33 

municipalities, only 8 (24.2%) reduced emissions, while 
25 (75.8%) experienced an increase. In the state of 
Bahia, out of a total of 30 municipalities in MATOPIBA, 9 
(30%) reduced emissions, while 21 (70%) showed an 
increase (Table 3).  

b) Results Obtained for the Second Objective   
Table 4 presents the results obtained from the 

principal component decomposition procedure of the 
factor analysis (FA) conducted in this research.  

Table 4: Results Found Showing the Decomposition of the 11 Original Variables into 3 Main Components 

 
        

        
        

        
        
        

        
        

        
        

        
       

 
  

 

  

  
  

  
  
  
 

Sources:  Results found in the search  

 

Observations: Extraction Method: Principal Component 
Analysis; Rotation Method: Varimax with Kaiser 
Normalization. Component Scores.  Rotation converged 
in 4 iterations. 

The evidence presented in Table 4 indicates that 
the adjustment obtained using the principal component 
decomposition (PCD) method was statistically 
significant. The Bartlett test, which yielded a high level of 
significance (p = 0.00), demonstrated that the 
correlation matrix of the independent variables is not an 
identity matrix. The estimated statistic for the Kaiser-
Meyer-Olkin Measure of Sampling Adequacy (KMO) test 
was 0.738, and the total variance explained by the 
adjusted model was approximately 88.232¨%. The 
variances explained by each estimated component after 
Varimax orthogonal rotation were 40.464%, 19.373%, 
and 18.137%, respectively, for components 1, 2, and 3.  
These results indicate that the greatest synergy 
captured by the DCP procedure was in component 1, 

which measures the ratios of: the number of cattle per 
hectare; the number of tractors and machinery; 
spending on pesticides; and industrial GDP about the 
total GDP of the municipalities; and the evolution of burn 
scars in the period studied. All these variables captured 
in this component, as assumed in this research, must 
have positively affected greenhouse gas emissions 
between 2006 and 2017. This synergy, as we have seen, 
is responsible for explaining 40.464% of the total 
explanatory capacity of the model generated (Table 4).  

From the results shown in Table 4, it can also be 
seen that associated with the second component 
generated in the research, whose variance explains 
approximately 29.575% of the total explained variance, 
are four of the five variables that are supposed to cause 
a reduction in greenhouse gas emissions: the 
vegetation cover index; the index that measures the 
productive potential of crops; the index that measures 

    
   

Hybrid Model of Artificial Neural Networks and Principal Component Decomposition for Predicting
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Rotated components Matrix Component Score 
Coefficient Matrix

Variables 1 2 3 1 2 3
Index of rainfall Xi1 0.000 0.009 1.000 -0.001 -0.003 0.500

Index of vegetation cover Xi2 -0.296 0.856 -0.006 0.036 0.281 -0.008
Index of agricultural production value Xi3 -0.225 0.896 0.013 0.061 0.306 0.001
Index of relative livestock value Xi4 -0.035 0.788 0.008 0.098 0.291 -0.001
Index of rlative recovered areas Xi5 -0.264 0.941 0.009 0.056 0.317 -0.001
Index or relative cattle quantity Xi6 0.927 -0.260 -0.009 0.219 0.029 -0.004
Index of_relative_machinefy Xi7 0.947 -0.170 -0.024 0.237 0.066 -0.013
Index of relative expenditure in pesticides Xi8 0.865 -0.258 0.013 0.202 0.021 0.007
Index of_relative_industrial GNP Xi9 0.927 -0.083 -0.001 0.243 0.096 -0.002
Index of relative_cv rainfall Xi10 0.000 0.009 1.000 -0.001 -0.003 0.500

Index of relative Burn scars areas Xi11 0.937 -0.199 0.020 0.230 0.053 0.010
Kaiser-Meyer-Olkin Measure of Sampling Adequacy: 0.738
Bartlett's Test of Sphericity

Approx. Chi-Square 8186,72
7

Degrees of Freedom 55
Significance level. 0.000
Total Variance Explained (%) 88.232
Variance Explained by Component 1 (%) 40.464
Variance Explained by Component 2 (%) 29.575
Variance Explained by Component 3 (%) 18.193
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the productive capacity of animal husbandry and the 
index that measures the recovery of degraded areas.  

For the third component, the greatest synergies 
were between the variables rainfall index, which is 
supposed to reduce GHG emissions, and the index 
measuring rainfall instability, as measured by the 
coefficients of variation, which is supposed to increase 
GHG emissions. These two variables account for 
18.193% of the total explained variance. Based on these 
results, the matrix was generated, which is made up of 3 
factor scores that capture these synergies (Table  4). 

 
c)

 
Results Obtained for the Third Objective 

 As shown above, the third objective of this 
research sought to assess how GHG emissions are 

influenced by the synergies between the indicators 
analyzed. To do this, the GHG emissions ratios between 
2006 and 2017 were transformed into indices. In the 
previous step, when using FA, it was assumed that the 
relationships between the variables were linear. Thus, 
the three estimated factor scores are linearly 
independent. In this step, it is assumed that the 
relationship between the GHG emissions index between 
2006 and 2017 and the independent variables 
transformed into factor scores is non-linear.  The artificial 
neural network (ANN) model is used to perform the test. 
The results are shown in Table 5 and Figure 3. 

Table 5: Estimation results using ANN, with the GHG emissions index as the dependent variable and the FS1, FS2 
and FS3 indices as independent variables 

GHG2017/2006 emissions ≤ 1 GHG2017/2006 emissions >1 
Relative error in the Training period (%) 1.011 Relative error in the Training period (%) 1.002 
Relative error in the Testing period (%) 0.908 Relative error in the Testing period (%) 0.997 

Number of Units in Hidden Layer 
including 1 bias Hiden Layer 3 Number of Units in Hidden Layer 

including 1 bias Hiden Layer 4 

Independent Variable Importance Independent Variable Importance 
Variabels Importance (weights) Variabels Importance (weights) 

FS1 0.276 FS1 0.486 
FS2 0.496 FS2 0.391 
FS3 0.228 FS3 0.123 

Acuracy tests Acuracy tests 
RMSE 3.12 RMSE 10.49 
MAE 2.52 MAE 6.58 

MAPE 13.11 MAPE 21.29 
Sources:  Results found in the search  

The results presented in Table 5 and Figure 3 
show that, in the 100 municipalities where there was a 
reduction in GHG emissions between 2006 and 2017, 
the score of the factor that brings together the four 
variables (FS2) that hypothetically impact this reduction 
had the highest weight (0.496), followed by the score of 
FS2, bringing together the variables that, by hypothesis, 
contributed to the increase in GHG emissions between 
2006 and 2017, with a weight of 0.276. Meanwhile, FS3, 
which brings together the variables associated with 
rainfall and instability, weighted 0.228.  

Among the six variables transformed into 
indices, which were hypothesized to contribute to the 
increase in GHG emissions between 2006 and 2017, 
five were grouped into score factor 1 (SF1), with an 
estimated weight of 0.486. Factor score 2 (FS2) had a 
weight of 0.391 in this definition, while factor score 3 
(FS3) had a weight of 0.123 (see Table 5 and Figure 3).  

These results prove the hypotheses of this 
research, indicating that the variables that were 

supposed to cause a reduction and increase in GHG 
emissions between 2006 and 2017 in Matopiba. It can 
also be seen that the prediction errors in both the 
training and testing phases were quite low. In addition, 
the RMSE, MAE, and MAPE tests also showed very low 
values, thus confirming the accuracy of the adjustments.  
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Figure 3:

 

Relative importance of each factor score in Matopiba municipalities with GHG emissions ≤ and GHG 
emissions > 1

 

 
 

As shown in the evidence presented in Table 5, 
to estimate the weights associated with each of the 
independent (explanatory) variables in the group of 100 
MATOPIBA municipalities where the GHG ratio ≤ 1, the 
ANN model used 3 Units in Hidden Layer, including 1 
Hiden Layer bias. To estimate the importance of the 
explanatory variables in municipalities where the GHG 
ratio > 1, the model used 4 Units in the Hidden Layer, 
including 1 Hiden Layer bias.  In municipalities where 
GHG emissions are less than or equal to 1, the highest 
weight was estimated for variable FS2 (0.480), followed 
by FS3 (0.286), and the lowest weight was associated 
with the independent variable FS1 (0.234). These results 
highlight the significance of all the original variables 
synthesized in FS2, as they are expected to contribute 
to reducing greenhouse gas emissions. Therefore, the 
research hypothesis is confirmed.  

About the estimated weights for the variables 
constructed linearly for the municipalities in which the 
GHG ratios > 1, it can be seen that, as expected, the 
greatest weighting was given to the FS1 combination 
(0.629), which synergistically brings together practically 
all the original variables that are assumed in this 
research to have contributed to the increase in 
greenhouse gas emissions between 2006 and 2017. It 
can be seen that the rainfall ratios, as well as the rainfall 
instability ratios measured by the coefficients of 
variation, both contributed to a reduction and an 
increase in GHG emissions.  

IV. Conclusions 

From the results of the evidence extracted from 
the research, it was shown that of the 327 municipalities 
that are part of the MATOPIBA agricultural frontier 

region, 100 experienced a reduction in GHG emissions 
between 2006 and 2017, the period in which this 
research was carried out. In the remaining 237 
municipalities, GHG emissions increased over the same 
period.  

 We tested 5 variables that were assumed to 
have led to a reduction in GHG emissions in the period 
under investigation and 6 variables that were assumed 
to have led to an increase in emissions. The 
methodological procedures used in this research are 
unprecedented in this type of study, in that it uses two 
models in sequence. This study employed a model that 
assesses linear relationships through factor analysis 
using the principal component decomposition 
technique. In this process, the 11 observed variables 
were reduced to three unobserved variables, referred to 
as factor scores. These factor scores are orthogonal 
and linearly independent.  

In the second methodological stage, the 
relationships were estimated between the dependent 
variable that measures GHG emissions between 2006 
and 2017 and the three-factor scores in which the 11 
original independent variables were synthesized by 
synergy. At this stage, it was assumed that the 
relationships were non-linear. Therefore, artificial neural 
networks (ANN) were employed to evaluate the weights 
that each of the three factor scores contributes to 
explaining the dependent variable.  

It was observed that the assumptions made for 
this research were confirmed. Of the five variables 
hypothesized to contribute to a reduction in GHG 
emissions, four were grouped together in one of the 
factor scores and had the highest weighting in 
explaining greenhouse gas emissions in the MATOPIBA 
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Sources:  Results found in the search 
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municipalities that experienced a decline in GHG 
emissions between 2006 and 2017.  

 On the other hand, of the 6 variables that were 
tested and assumed to have led to an increase in 
greenhouse gas emissions between the two periods, 5 
were brought together in synergy in another factor score 
(unobserved variable generated by the linear procedure) 
and had the highest weighting in the municipalities that 
had an increase in GHG emissions between 2006 and 
2017.  

Thus, the results of this research can indicate 
the paths that should be followed in agricultural 
practices on this agricultural frontier. Furthermore, they 
can guide future studies by identifying which variables 
may contribute to the emission or reduction of GHG 
emissions.  

The overall conclusion of this research is that 
the two questions motivating its execution were 
answered, and the proposed objectives were achieved. 
The municipalities in the MATOPIBA region that 
increased and decreased GHG emissions between 
2006 and 2017 were identified, along with the variables 
and their respective weightings that influenced these 
changes in emissions.  
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