Managerial Aspects Analysis of Bandarban Tourism Spots of Bangladesh: The Quality Managements of Present and Future

By Fahmida Zaman, Rownuk Jahan & Md. Sarwar Kamal

Faculty of Business Administration, BGC Trust University, Bangladesh

Abstract - Bangladesh is a land of beauty. The natural beauty of Bangladesh is very charming and marvelous. All around the Bangladesh it is full of beauty. But lack of Management and proper maintenance are the two biggest problems in getting benefits to enjoy the wonderful scenarios of Bangladesh. In the age of information superhighway, the tourists and mass people are able to connect any part of the world. Now-a-days tourism has become a very effective and dynamic sector both in the world economy and particular in the developing countries. As such tourism sector can play positive contribution towards enhancing Gross Domestic Product (GDP) of a country. Here we have verified the probable outcome of the various tourist spots of Bandarban by comparing with the data set of past, presents and future. After collection data set as well opinions of the local people and then applied the methodology as Multiple Regression and Chi Square test. Here we have noticed that it is very much possible to make improvements on the national revenue using the proper managements of the tourism projects. Besides we also check the results using the methods of the Analysis of Variance (ANOVA) to make the loss of the current stages of the managements and mismanagements.

Keywords : multiple regressions, ANOVA, gross domestic product, chi square test.

GJMBR-A Classification : FOR Code: J59, L83
Managerial Aspects Analysis of Bandarban Tourism Spots of Bangladesh: The Quality Managements of Present and Future

Fahmida Zaman, Rownuk Jahan & Md. Sarwar Kamal

Abstract - Bangladesh is a land of beauty. The natural beauty of Bangladesh is very charming and marvelous. All around the Bangladesh it is full of beauty. But lack of Management and proper maintenance are the two biggest problems in getting benefits to enjoy the wonderful scenarios of Bangladesh. In the age of information superhighway, the tourists and mass people are able to connect any part of the world. Now-a-days tourism has become a very effective and dynamic sector both in the world economy and particular in the developing countries. As such tourism sector can play positive contribution towards enhancing Gross Domestic Product (GDP) of a country. Here we have verified the probable outcome of the various tourist spots of Bandarban by comparing with the data set of past, presents and future. After collection data set as well opinions of the local people and then applied the methodology as Multiple Regression and Chi Square test. Here we have noticed that it is very much possible to make improvements on the national revenue using the proper managements of the tourism projects. Besides we also check the results using the methods of the Analysis of Variance (ANOVA) to make the loss of the current stages of the managements and mismanagements.

Keywords: multiple regressions, ANOVA, gross domestic product, chi square test.

I. Introduction

The impact of worldwide tourism in resulting economic benefits has long been recognized in many developing countries [1], [2]. The governmental sectors may have been reluctant in the past to contribute towards tourism development, but now-a-days the situation has changed and, over the years, public sectors have perspectives on tourism have not only evolved to include wider involvement, but have also large area from the narrow focus on economic benefits to encompass environmental and societal concerns. All around the world it is seems to advice that developing countries look upon tourism consumption as manna from heaven that can provide a solution to all their foreign exchange hardness [3]. Despite the improvement in tourism industry still there are huge gap and needs to make proper care, however, instances when these facilities are not accessible to local residents, particularly if tourism development involves the creation of tourism enclaves. In the last two decades in particular tourism has developed, especially in developing countries by their integrated tourism planning [4, 5, 6]. The specific research objectives of this study are:

a) To identify development trends in Bangladesh tourism.

b) To evaluate the effectiveness of tourism management at Bandarban in Bangladesh.

c) To analyze issues in tourism prospect in the case of past and future management change.

II. Concept of Tourism in Developing Countries

To define developing countries we can say that it is nothing but ‘the third world’, ‘underdeveloped countries’, ‘developing countries’, ‘poor countries’, the South' and 'less-developed countries (LDC’s)' are mostly used interchangeably [7]. On the top of that developing Countries should utilizes its asset to make proper development towards prosperity. Here we have noticed that they have lots of scopes to make outstanding development. According to the United Nations and World Bank, developing countries are those which has having per capita income of less US$ 2200. Bangladesh is growing developing country and it has great opportunity to make development in the field of tourism industry. In this case the government should take proper survey to identify the locations that have lucrative positions to increase the facilities for the tourist from home and abroad.

III. Geographical Conditions of Bangladesh

The geographical location of Bangladesh is very optimistic and its position in the world map is very important. It located between 20°34c to 26°38c north latitude and 88°01c to 92°42c east longitude, with an area of 147,570 square km and a population of 140 million. It is positioned on the west, north, and east by the important country India, on the southeast by Myanmar, and the Bay of Bengal to the south. It is true that Bangladesh is a small country; the country is full of natural beauty as well as being rich in culture and heritage. The peripheral of natural positions for waters of Bangladesh extend 12 nautical miles, and the important economic zone of the Bangladesh is 200 nautical miles.

Authors: a) σ: Lecturer, Faculty of Business Administration BGC Trust University Bangladesh. E-mails: fahmida.bgctub@gmail.com, rownukbgc@gmail.com, sarwar.saubdcoxbar@gmail.com
There is a wide natural beauty of marshy jungle coastline on the Bay of Bengal popularly known as the Sundarbans which is one of the largest mangrove forests in the world, the home and only rear area of the Royal Bengal Tiger. Bangladesh is located in the Ganges delta which is densely populated and it is formed by the confluence of the Ganges Padma, Jomuna and Meghna rivers and their tributaries as they flow down from the Himalayas, creating the largest riverine delta in the world. To the south is a highly irregular deltaic coastline of about 700 km, fissured by many rivers and streams flowing into the Bay of Bengal.

IV. The Bandarban

This is gift of God and it is wonderful area surrounding with hills, lakes, rivers and natural beauty. All around the districts is full of natural beauty. We have visited few marvelous places of Bandarban and notice that it unpolished natural beauty. If government makes some planes for polishing, it will become very elegant place for outing for all people all over the world. It is a very popular destination for recreation, leisure, business and learning as well as religious purpose visit and this district is the heaven of natural beauty with full of green trees. The spectacular scenic beauty and the nerve racking experience of travelling along the road has attracted the imagination of thousands of travelers from home and abroad. The figure 1 below shows some beauty of this district.

In a word we can say that this district is a daughter of hill and outstanding opportunities to move here and there with great joy and happiness. These places still not overcrowded and pollution free. The sweet sceneries of meeting of air, clouds, hills, rivers, people of different ethnic communities, their lifestyle, their rich, diverse heritage is really original and natural. The figure 2 is an example of above statements.
Table 1: The data set about the problems and crisis of the Bandarban district tourist spots

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Name</th>
<th>Age</th>
<th>Area</th>
<th>Problems</th>
</tr>
</thead>
</table>
| 1 | Tang Sang Mong | 39+ | Bandarban Sadar | 1. Communication
2. Food
3. Instant Medical support, Doctors, Nurse and medicines.
4. Risk at night outing. |
| 2 | Bishu Moduba | 45 | Bandarban Sadar | 1. Food
2. Risk of security at night
3. Adequate hotel facilities. |
| 3 | Rasid Mia | 23 | Boga Lake | 1. Variation on Food
2. Standard Restaurant.
3. Medical support
4. Proper transport facilities.
5. Security |
| 4 | Songula Medua | 34 | Boga Lake | 1. Proper transport facilities.
2. Security |
| 5 | Tepaeanrae Mosuial| 45 | Nilachal | 1. Communication
2. Food
3. Instant Medical support, Doctors, Nurse and medicines.
4. Risk at night outing. |
| 6 | Hhos usk kand | 32 | Nilachal | 1. Communication
2. Instant Medical support, Doctors, Nurse and medicines.
3. Risk at night outing. |
| 7 | Nithyuan Chakma | | Golden Temple | Proper transport facilities.
2. Security |
| 8 | Kinsuk Dhar | | Nilgiri | 1. Proper transport facilities.
2. Security
3. Instant Medical support, Doctors, Nurse and medicines.
4. Risk at night outing. |
| 9 | Chanktg Bidual | | Meghlay | 1. Proper transport facilities.
2. Security
3. Instant Medical support, Doctors, Nurse and medicines.
4. Risk at night outing. |
| 10 | Mokjama Mkaak | | Shangu River | 1. Instant Medical support, Doctors, Nurse and medicines.
2. Risk at night outing. |

V. Methodology

We collect the visitors’ data set various hotels, motels, cottages and Banglu of various locations of the tourist spots. We collect the information during both the peak and off peak seasons. The peak seasons generally mean the winter seasons in Bangladesh. The remaining part of the year is called the off peak seasons. During peak seasons on average 2000-3000 tourist visits from various parts of the country and abroad. Bu the ratio from abroad is very poor. According to the governments rule, each tourist contributes about 30 taka VAT every day. So if 3000 thousands tourist visit per day the governments earn around one lack taka per day and it become three millions per month. Here we have analyzed these measurements using Multiple regression, Chi-square test and Analysis of Variance (ANOVA). Here we have first check the relationship with presents and future data set under proper managements using Multiple Regressions. Then we have checked the relationship with Chi-Square Test and ANOVA. In this research, we significantly noticed that, the scientific and well-established managements by the governmental body will increase the huge revenue every year. On the other hand, during the off peak seasons, the tourist rate is very poor and it is near about one hundred or less. We also check the comments, opinions of the visitors during both the sessions. The analysis using ANOVA and Chi-Square Test gives us clear result that if the improvement is possible under the light of management and reduces the problems.

VI. Multiple Regression

Multiple Regression is a statistical technique that allows us to measures the relationship between various variables of the real world irrespective of business, public, objects or supernatural aspects. It
reflects the resultant outcomes of various events as well as incidents. An example might help. Suppose we were interested in predicting how much a tourist enjoys their outing at Nilgiry tourism spot. To assess the facts we have consider the variable set such as food facility, communication support, instant medical services, proper law and order, security, hotel facility, parking, restaurants, Coffey shops and other modern facilities. If we collected data on all of these variables, perhaps by surveying a few hundred members of the public, we would be able to see how many and which of these variables gave rise to the most accurate prediction of job satisfaction. We might find that enjoyment and outing satisfaction is most accurately predicted by type of food, Instant Medical services, security, and hotel facilities with the other variables not helping us to measure the tourist satisfaction. The general equation for regression analysis is as equation 1 below:

\[Y = a + bX \]
\[Y = \text{A predicted value of } Y \text{ (which is a dependent variable).} \]
\[a = \text{the value of } Y \text{ when } X \text{ is equal to zero. This is also called the “Y Intercept”.} \]
\[b = \text{the change in } Y \text{ for each 1 increment change in } X. \]

The value of \(r \) is ranged from 0 to +1. As the result of \(R \) is tends to 1 means that the relationship between various facts are very strong. On the other hand the value tends to 0 indicates that there are very poor relationships between various facts. In that case there should be more care should impose. For Nilgiry we have imposed the multiple regression analysis equation as cited equation 2 mentioned above with proper calculation of \(b_1 \) and \(b_2 \). The values of \(r \) will come from the equation above of \(r \) which is the basic liner equation for coefficient correlation for the variable \(X \) and \(Y \).

\[
Y = a_1 + b_{1X1} + b_{2X2} + \ldots + b_{nXn}.
\]

\(a_1 = \text{The Y, intercept.} \)
\(b_{1X1} = \text{ The change of } Y \text{ for each 1 increments change in } X_1. \)

\[
b_1 = \left(\frac{r_{y,x1} - r_{y,x2}r_{x1,x2}}{1 - (r_{x1,x2})^2} \right) \left(\frac{SD_y}{SD_{x1}} \right)
\]

\[
b_2 = \left(\frac{r_{y,x2} - r_{y,x1}r_{x1,x2}}{1 - (r_{x1,x2})^2} \right) \left(\frac{SD_y}{SD_{x2}} \right)
\]

\(SD_y = \text{Standard deviation of dependent variable.} \)

\(SD_{x1} = \text{ Standard deviation for independent variable } X_1. \)

The table above shows the traditional situation at Nilgiry tourist spot during peak and off peak sessions. Here we have imposed the equations of \(R \) and \(r \) mentioned above. Then we have solved the values of \(b_1 \) and \(b_2 \).
Table 3: Well managerial aspect at Nilgiry

<table>
<thead>
<tr>
<th>User Perceptions: Days</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visitors Impact</td>
<td>0.97</td>
<td>0.92</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>0.90</td>
<td>0.91</td>
<td>0.93</td>
<td>0.95</td>
<td>0.98</td>
<td>0.92</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Well Management(X₁)</td>
<td>1234</td>
<td>2344</td>
<td>4540</td>
<td>5545</td>
<td>6743</td>
<td>9846</td>
<td>5648</td>
<td>7823</td>
<td>8940</td>
<td>9910</td>
<td>8941</td>
<td>9945</td>
<td>5558</td>
<td>6779</td>
</tr>
<tr>
<td>Proper steps government(X₂)</td>
<td>2354</td>
<td>3355</td>
<td>3460</td>
<td>3432</td>
<td>6833</td>
<td>6843</td>
<td>5650</td>
<td>6730</td>
<td>9845</td>
<td>9921</td>
<td>9845</td>
<td>9848</td>
<td>5568</td>
<td>6780</td>
</tr>
</tbody>
</table>

From table 3 we see that the multiple regressions impact on the basis of proper management aspect, there are incredible changes in tourist impact at Nilgiry.

Here we have noticed that the resultant outcomes of the well managerial shows exponential better results than that of traditional system. Using the equation of simple regressions we got the followings calculations. The simple relation of \(r = 0.880 \).

\[
b_1 = \left(\frac{0.880 \cdot 0.947 - 0.937}{1 - 0.937} \right) \frac{36,116.693}{2.236}
\]

\[
b_1 = \left(\frac{0.134}{0.063} \right) \frac{36,116.693}{2.236}
\]

\[
b_1 = (2.127)(16,152.367)
\]

\[
b_1 = 34,356.085
\]

Similarly for the parameter \(b_2 \).

\[
b_2 = (0.772 - 0.852 \cdot 0.937) \frac{36,116.693}{13.164}
\]

\[
b_2 = (0.108 \cdot 0.06) \frac{36,116.693}{13.164}
\]

\[
b_2 = (-1.333)(2743.396)
\]

\[
b_2 = -3,657.213
\]

VII. Chi-Square Test

In order to measure the proper impact and prospects of well managerial hopes in Bandarban we also verified the visitor flows to this awesome tourist place using the Chi-Square Test. Here we collect data set at current situation as observed data set with desired tourist impact as expected data set of the test. We know that this test is very useful in the purpose of comparisons with observed and expected data level. Here, we have the same situations and this is a key to compare the conditions.

The chi-square test is applied to investigate whether there is a well and significant difference between the expected outcomes and the observed result in one or more categories.

a) Chi-Square Test Requirements

- Numerical data set.
- Various levels of comparison.
- Independent and random observations.
- Adequate sample data set size (at least 10).
- Simple and complex random sample.
- Data in frequency form and style.
- All observations must be used.

b) Expected Frequencies

We can find the outcomes of expected values of Chi-Square test in three different ways. Such as:

- We can hypothesize that all the data set has equal values and impact on the experiments. For example, we might expect that half of the tourist of 200 at Nilgiry will be identified as women and half as men. We figure the expected frequency by dividing the number in the sample by the number of categories. In this example, where there are 200 tourist visitors and two categories, male and female, we divide our sample size of 200 by 2, the number of categories, to get 100 (expected frequencies) in each category.

- We can also identify the expected frequencies according to the prior idea. Let’s use the Nilgiry tourist spot example again, but this time pretend we have prior knowledge of the frequencies of men and women in each category from last year’s entering class, when 70% of the tourist visitors were men and 30% were women. This year you might expect that 70% of the total would be men and 30% would be women. You find the expected frequencies by multiplying the sample size by each of the hypothesized population proportions. If the tourist visitor total were 200, you would expect 140 to be men (70% x 200) and 60 to be women (40% x 200).

To measure the variation of current condition and well management scenario we have collect the data set of five marvelous beautiful area of Bandarban district as follows:
Now according to the null hypothesis, we can find out that there is no significant difference between the expected and observed frequencies but based on other formula states they are different. The level of marginal difference is set at .05. The chi-square formula used on these data is

\[X^2 = \frac{(O - E)^2}{E} \]

Where
- \(O \) is the Observed result.
- \(E \) is the Expected outcomes.
- \(df \) is the "degree of freedom" (n-1).
- \(X^2 \) is Chi Square.

To accomplish the task we now apply the details of the test using the complete procedures of the test. These steps are:
- Directions for setting up Worksheet for Chi Square in a tabular form of the various data sets given. The table 5 below is a worksheet for Chi-Square test for table 4 data sets.

<table>
<thead>
<tr>
<th>Tourist Spot</th>
<th>Observed visitors (O)</th>
<th>Expected visitors (E)</th>
<th>(O-E)</th>
<th>(O-E)^2</th>
<th>((O-E)^2) / E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilachol</td>
<td>123</td>
<td>2345</td>
<td>2222</td>
<td>4937284</td>
<td>1923.23478293838</td>
</tr>
<tr>
<td>Nilgiry</td>
<td>234</td>
<td>1234</td>
<td>1000</td>
<td>1000000</td>
<td>923.550229115263</td>
</tr>
<tr>
<td>Boga lake</td>
<td>173</td>
<td>4532</td>
<td>4359</td>
<td>19000881</td>
<td>4123.550229115263</td>
</tr>
<tr>
<td>Meghlay</td>
<td>256</td>
<td>5674</td>
<td>5418</td>
<td>29354724</td>
<td>5173.550229115263</td>
</tr>
<tr>
<td>Golden Temple</td>
<td>362</td>
<td>7836</td>
<td>7474</td>
<td>55860676</td>
<td>7128.723328228688</td>
</tr>
</tbody>
</table>

\[X^2 = 19272.6087 \]

- Determine The Hypothesis
 - \(H_0 \): The two variables has no preferences are independent.
 - \(H_a \): The two variables have preferences and associated.
- Determine Degrees of Freedom
 \[df = (R-1)(C-1) \]

Degrees of freedom (df) define to the number of values that are independent to change after condition has been placed on the data. For instance, if you have forty numbers with the restriction that their sum has to be 2350, then thirty nice of these numbers can be anything, they are free to vary, but the fortieth number must be restricted.

- Here, the chi value from the table is 19272.6087. The level of significance is P=0.995 and for this the table value is 20000. Here it is clearly visible that, the resultant chi value is accurate for that test and our assumption for the good management is very correct and time oriented.

VIII. ANALYSIS OF VARIANCE (ANOVA)

We can changes the total variance in a study into meaningful way that defines to treatment effects and error. That’s why we call this Analysis of Variance. The general definition of ANOVA is

\[\bar{X}_G = \text{The Grand Mean, taken over all observations.} \]
\[\bar{X}_A = \text{The mean of any level of a visitor satisfaction.} \]
\[\bar{X}_{A_i} = \text{The mean of a certain level (1 in this case) of a treatment.} \]

The ANOVA Model:

\[X_i = \bar{X}_G + (\bar{X}_A - \bar{X}_G) + (X_i - \bar{X}_A) \]

The ANOVA calculations:

Basically ANOVA indicates the sums of squares (squared deviations from the mean) tell the story of variance.Irrespective of problem domain, the simple ANOVA designs have 3 sums of squares.

- Total sum of squares:
 \[SS_{tot} = \sum (X_i - \bar{X}_G)^2 \]

- Between-group sum of squares:
 \[SS_{w} = \sum (X_i - \bar{X}_A)^2 \]

The equation above is the within-group or within-cell sum of squares comes from the distance of the observations to the cell means. This indicates error.
\[SS_h = \sum N_A (\bar{X}_A - \bar{X}_G)^2 \]

\[SS_{TOT} = SS_B + SS_W \]

The equations above are the between-cells or between-groups sum of squares tells of the distance of the cell means from the grand mean.

X. Caffeine on Test Scores

Table 6: The impact of the differences or regular and well established managerial system

<table>
<thead>
<tr>
<th></th>
<th>G1: Control</th>
<th>G2: Mild</th>
<th>G3: Jolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75=79.4</td>
<td>80=84.4</td>
<td>70=74.4</td>
<td></td>
</tr>
<tr>
<td>77=79.2</td>
<td>82=84.2</td>
<td>72=74.2</td>
<td></td>
</tr>
<tr>
<td>79=79.0</td>
<td>84=84.0</td>
<td>74=74.0</td>
<td></td>
</tr>
<tr>
<td>81=79.2</td>
<td>86=84.2</td>
<td>76=74.2</td>
<td></td>
</tr>
<tr>
<td>83=79.4</td>
<td>88=84.4</td>
<td>78=74.4</td>
<td></td>
</tr>
</tbody>
</table>

Means

<table>
<thead>
<tr>
<th></th>
<th>79</th>
<th>84</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDs (N-1)</td>
<td>3.16</td>
<td>3.16</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Consequently to measure the ultimate differences we have calculated the data set as like table 7 below.

Table 7: The ANOVA calculation indicates that current system is behind of well managerial system as 370 times

XI. Implementation, Experiment and Result

We have implemented the result and data set using programming with Java and calculator. Both the cases we have got the significantly clear outcomes in both the cases regarding the systematic management and current managements. In the long run, it will be very good if the governmental body follow the path of the systematic manner. In multiple regressions, we here see the outcome after properly set the data values. The figure 3 is a difference of traditional and systematic management. The left side of the figure is the outcomes of the well managerial impact on the other hand the figure right (b) is the pictorial effect of the current management.

Figure 3: The regression impact for both managements

The data set for traditional management result is shows the following result.

Figure 4: The impact of the traditional data set
The Chi Square test value also indicate the same effect as we have shown at table 5 above and after fitting the data set into curve we have got the following figures for both current situations and well managerial impact.

Traditional Management data set shows weak relationship

![Figure 5: Current managerial data set at Nilgiry](image)

Consequently for the same place we have measured the data value by considering some better factors for communication, security, food and boarding. There are huge improvements in this case and we have following result for these aspects. The figure 6 below is the best fit outcome in Chi Square test.

![Figure 6: The structured management shows the best fit for the test due to the similar data set](image)

XII. Suggestions

Bandarbon is one of the most beautiful tourist spots in Bangladesh. Here the general and natural beauty is so marvelous that anybody in this world must be attracted. So to get hold of tremendous advantages in the tourism sectors opening up before in the near future, Bangladesh’s tourism fields must begins taking all the preparations from a place where everything should manage easily. Consequently, the governmental body should not ignore the increasing hopes of the domestic market of this industry. As mentioned earlier, the current monitoring and management is very insufficient for handing such a bright field of enjoyments. On the other hand, in this modern era it is not enough that the Bangladesh possesses a potential for becoming a covetable tourist destination. In this respect to turn that possibility into reality, marketing is a also part of proper managements and works as pre condition for well structured managements. The planning ministry and respective ministry can take the support from promotional activities through the internet and other electronic media including TV for proper advertisements. Bangladesh Government should make necessary steps to make Bandarbon district as an attractive tourist place and to encourage the private sector to play pivotal role in the development and diversification of tourist facilities and impact to promote domestic and international tourism in the country. On the contrary we have suggested followings:

- Sufficient banks, available ATM booth, Internet facilities, network facilities should be provided for the tourists.
- Tourist guide should be honest. They should not involve in smuggling, stealing the luggage of the tourists, kidnapping, excessive charging and any other unexpected activities.
- At night there is no environment and facilities for outing in Bandarbon due to security problem and proper lighting facilities in the streets.
- Government should take necessary steps to improve the law and order conditions.
- Tourist guide should have proper training about how to behave with tourist and different types of foreign and local language to conversant with tourist.
- Available hotels and motels should be established for all classes of tourist.
- Food qualities should be improved for all types of tourists.
- Adequate hospitals, sufficient doctors, sufficient medical instruments and sufficient investigation labs should be ensured.
- 24 hours transportation facilities should be provided.
- Proper advertisement should be maintained.

XIII. Conclusion

It is no doubt that Bandarbon is a gift of God and we should only take a perfect management to take the benefits of the nature. If we can hold the benefits using the utilizing the proper management we can not only develop our country but also contribute to the
whole world. The Chi Square test and the Analysis of Variance (ANOVA) help us to verify the impact of the data set in the context of poor managements and structured managements. Besides, Multiple Regressions make the proper relationship of the data sets. The significant outcome of this research is that only well management can help to make prosperity in the field of tourist sectors of Bangladesh. In future we will collect data sets form Rangamati, another beautiful tourist place of Bangladesh and compares with Bandarbon tourist area. To finish this work we have suffered for collecting data due to the mismanagements.

References Références Referencias
