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Abstract-

 

This project evaluates the Brownian Motion model’s effectiveness compared to 
historical stock market data. This paper analyzes its potential reasons

 

for inaccuracies across 
time spans, specifically delving into its inability to incorporate major events such as the COVID-
19 pandemic and the 2008 stock market crash. The paper uses the 2008 stock market crash and 
the Great Depression example instead of the COVID-19 pandemic to allow long-term accuracy to 
be tested. A prominent element of this model is the stochastic differential equation, which 
represents the randomness and uniqueness that the price of a derivative depends on. Stochastic 
elements reflect factors that influence the value of a derivative, like time, volatility of the 
underlying asset, interest rates, and other market conditions. The Markov property simplifies this 
complicated figure, meaning that the future value is independent of past prices. The Markov 
property is a “memoryless” feature; the current price is the only factor in future pricing, aligning 
with the effective market hypothesis. Finally, the paper offers insights on enhancements to the 
model, adjusting it to be a more efficient tool for economic forecasting.
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Abstract- This project evaluates the Brownian Motion model’s 
effectiveness compared to historical stock market data. This 
paper analyzes its potential reasons for inaccuracies across 
time spans, specifically delving into its inability to incorporate 
major events such as the COVID-19 pandemic and the 2008 
stock market crash. The paper uses the 2008 stock market 
crash and the Great Depression example instead of the 
COVID-19 pandemic to allow long-term accuracy to be tested. 
A prominent

 

element of this model is the stochastic differential 
equation, which represents the randomness and uniqueness 
that the price of a derivative depends on. Stochastic elements 
reflect factors that influence the value of a derivative, like time, 
volatility of

 

the underlying asset, interest rates, and other 
market conditions. The Markov property simplifies this 
complicated figure, meaning that the future value is 
independent of past prices. The Markov property is a 
“memoryless” feature; the current price is the

 

only factor in 
future pricing, aligning with the effective market hypothesis. 
Finally, the paper offers insights on enhancements to the 
model, adjusting it to be a more efficient tool for economic 
forecasting.

 I.

 

Introduction

 tochastic calculus allows the modeling of random 
systems such as financial markets. “Stochastic 
components” in such models are randomly 

determined, with a random probability distribution that 
may be statistically analyzed but is impossible to predict 
precisely. The basis of this area of mathematics lies in 
continuous but not differentiable functions, requiring a 
theory of integration where integral equations do not 
need defined derivative terms.1

 

Brownian Motion is often 
a component in the stochastic differential equations of 
stochastic

 

calculus, representing the unpredictable 
aspect. Named for Robert Brown, the botanist who 
observed the motion of pollen particles in water in 1827, 
the Brownian motion model imitates prices in a 
continuous-time setting and is independent of past 
movements. It can be considered a limit of a symmetric 
random walk (a sequence of vertices and edges of a 
graph) with small steps in short time intervals.2

                                                
1 "Stochastic Calculus for Financial Mathematics." Frontiers. 
https://www.frontiersin.org/research-topics/49221/stochastic-calculus-
for-financial-mathematics. Accessed 15 September 2023. 
2 Siegrist, Kyle. "18.4: Geometric Brownian Motion." Probability, 
Mathematical Statistics, and Stochastic Processes. LibreTexts, 29 Jan. 
2020, https://stats.libretexts.org/Bookshelves/Probability_Theory/ 
Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegr
ist)/18%3A_Brownian_Motion/18.04%3A_Geometric_Brownian_Motion. 
Accessed 27 September 2023.  

 

In each 

time unit Δt, a step of size Δx is taken to the left or right 
with equal probability. Each step is an independent 
event with a value of either 1 or -1. The step size Δx is 
related to the time interval Δt by Δx = σ√(Δt) where σ 
represents the standard deviation and the position at 
time t, denoted by X(t), is the sum of all steps taken up 
to time t.3

The history of stochastic calculus begins with 
Brownian motion, and its origin can be traced back to 
two men who developed their models independently: L. 
Bachelier, who created a model while deriving the 
dynamics of the Paris stock market, and A. Einstein, 
who created a model of small particles suspended in a 
liquid. In an attempt to model the Paris Bourse market, 
Bachelier used the Central Limit Theorem, which states 
that the sampling distribution of a variable approximates 
a normal distribution as long as it is large enough.

  

4

                                                
3 "Chapter 10: Introduction to Stochastic Processes." Introduction to 
Probability Models, University of Minnesota - School of Public Health, 
https://www.biostat.umn.edu/~baolin/teaching/probmods/ipm-
ch10.html. Accessed 8 December 2023. 
4 Chen, James. "Central Limit Theorem." Investopedia, 29 May 2021, 
https://www.investopedia.com/terms/c/central_limit_theorem.asp. 
Accessed 11 December 2023 

 He 
concluded that increments in stock prices should be 
independent (future movements are independent of past 
movements), stationary (statistical properties are 
constant over time), and normally distributed (as Δt 
approaches 0, X(t) becomes a continuous process with 
mean 0 and variance σ2t). He was able to define 
processes related to Brownian motion, such as finding 
the maximum change during a time interval. Bachelier 
was the first to suggest using Brownian motion to model 
stock prices. In creating his model, Einstein assumed 
Bachelier’s finding that Brownian motion was a 
stochastic process with independent increments, 
continuous paths, and stationary Gaussian increments. 
He concluded that the visible random movement of 
particles in water that Robert Brown observed was due 
to water molecules' invisible and random motion. In a 
statistical mechanics approach, he modeled these 
molecules as randomly moving particles that collide with 
suspended particles to cause erratic movements. Most 
importantly, he derived the diffusion equation, which 
relates the mean square displacement of a particle to 
the time interval of observation, which is given by: 
(x2)=2Dt where (x2) is the mean square displacement of 
the particle, D is the diffusion coefficient, and t is the 
time interval. If the kinetic energy of fluids was right, the 
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molecules of water moved at random, and a small 
particle would receive a random number of impacts of 
random strength from random directions in any period 
of time, which would cause the particle to move in the 
same way that Brown first observed.5

Economist Paul Samuelson found Bachelier’s 
thesis in the MIT library and argued that prices must 
have fluctuated randomly in 1965, 65 years after 
Bachelier assumed it. His papers became the basis of 
the efficient market hypothesis and the foundation of 
option pricing theory. Samuelson proposed that 
changes in future prices were uncorrelated across time, 
a generalization of Bachelier’s random walk model, and 
claimed that this postulate could be extended to an 
immediate application to options.

 

6

As for Einstein’s contribution to financial 
modeling, the stock price can be envisioned as a 
particle undergoing Brownian motion. Just as in 
Einstein’s model driven by molecular collisions, a stock 
price moves randomly, caused by various unpredictable 
market factors. Based on his derived diffusion equation, 
the analogous function for stock prices would be 
S2)=σ2t  where (S2) is the variation in stock price, σ2 
quantifies the degree of risk associated with the price, 
and t is the time interval. This equation implies that the 
uncertainty or random movement in stock price 
increases with time. 

  

7

Stock markets, foreign exchange markets, 
commodity markets, and bond markets are all assumed 
to follow Brownian motion, where random amounts alter 
the change of state on the assets. The models used to 
describe this motion are fundamental tools on which 
financial asset pricing and derivatives pricing models 
are based. The assumption that asset prices follow 
Brownian motion is essential to options pricing models. 
Options, which give its holder the right but not the 
obligation to buy or sell a certain amount of a financial 
asset by a certain date for a certain strike price, are 
determined by derivative pricing. Using Brownian motion 
to determine the fair price of an option, these models 

 

                                               
 

5

 

"Chapter 3: Einstein Diffusion Equation." University of Illinois at 
Urbana-Champaign, https://www.ks.uiuc.edu/Services/Class/PHYS49

 

8/LectureNotes/chp3.pdf. Accessed 11 December 2023.

 

6

 

Jarrow, Robert, and Philip Protter. "A Short History of Stochastic 
Integration and Mathematical Finance: The Early Years, 1880-1970." 
Imperial College London, https://www.ma.imperial.ac.uk/~

 

ajacquie/

 

IC_AMDP/IC_AMDP_Docs/Literature/Jarrow_Protter_History_Stochasti
c_Integration.pdf.

 

7

 

Ermogenous, Angeliki. "Brownian Motion and Its Applications In The 
Stock Market." Undergraduate Mathematics Day, vol. 1, no. 1, 
University of Dayton, 2006. https://ecommons.udayton.edu/cgi/

 

viewcontent.cgi?article=1010&context=mth_epumd. Accessed 11 
December 2023. 

 
 

can more accurately describe how prices change over 
time. 8

II. Options Pricing and Geometric 
Brownian Motion 

 
In this paper, the Dow Jones Industrial Average 

(DJIA) will be used to discuss Brownian Motion’s 
accuracy in predicting stocks. The DJIA is a stock 
market index measuring the performance of 30 large 
and publicly owned companies. The index is price-
weighted: the components are weighted based on their 
stock prices rather than their market capitalization. The 
DJIA index is relatively measured; its value represents 
the aggregate stock prices of its component 
companies. The units of the index are not specified in 
terms of a specific unit, currency, or percentage. The 
DJIA values indicate the index level at a point in time. 
The index value refers to the combined stock prices of 
the 30 companies in the index, weighted by their prices, 
equated to that numerical value. Changes in the DJIA 
over time reflect the overall performance of the stock 
market as represented by these 30 companies. The 
DJIA can be used to track the overall health and trends 
in the stock market as the companies within it span 
many important industries and commodities.  

Because Brownian motion can take on negative 
values, it is not always suitable for modeling stock 
prices. As a result, we use a non-negative variation 
called Geometric Brownian motion. A stochastic 
process St is said to follow a Geometric Brownian 
motion if it can be defined by S(t) = Soe

X(t), where X(t) = 
σB(t) + µt is Brownian motion with drift and S(0) = S0 > 
0 is the initial value. After taking the natural logarithm, 
the equation becomes X(t) = ln(S(t)/S0) = ln 
(S(t))−ln(S0). ln(S(t)) = ln(S0)+X(t) is normal with mean 
µt + ln(S0), and variance σ2t. The idea of using this 
model is to create a “level playing field” where the 
activity of buying or selling stock offers no arbitrage or 
simultaneously buying and selling the same asset in 
different markets to try to profit off of the tiny differences 
in price between markets, so no one should be able to 
make a profit with certainty.9

It also must satisfy the following stochastic 
differential equation dSt = St(µdt + σdBt) where dSt is 
the change in the stock price, St is the stock price at 
time t,  µ is the percentage drift representing the 

 

                                                
8 Lamberton, Damien, and Bernard Lapeyre. "Brownian Motion and 
Stochastic Differential Equations." Introduction to Stochastic Calculus 
Applied to Finance, 2nd ed., 2007. https://eds.s.ebscohost. 
com/eds/ebookviewer/ebook/bmxlYmtfXzE0OTk0NTRfX0FO0?sid=a4
8a5c70-802c-42c8-806f-cb32f6abeced@redis&vid=2&format=EB& 
lpid=lp_7&rid=0. Accessed 15 September 2023.   
9 "Option Pricing Based on the Generalized Fractional Brownian 
Motion." Journal of Physics: Conference Series, vol. 1180, no. 1, 2019, 
IOP Publishing, https://iopscience.iop.org/article/10.1088/17426596/ 
1180/1/012011. Accessed 11 December 2023. 
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expected return of the stock per unit of time, σ is the 
percentage volatility measuring the standard deviation of 
the stock’s returns, and dBt represents a Brownian 
motion process. Higher volatility increases the option’s 
value since there is a greater chance that the stock price 
will move significantly by the expiration date. This 
equation has an analytic solution: St=S0e

 (µ− σ2/2)t+σdBt for 
an arbitrary initial value S0. The expected price grows 
like a fixed-income security with a continuously 
compounded interest rate. In practice, the compounded 
interest rate is much greater than the real fixed-income 
interest rate so that one would invest in stocks. This 
model is used in options pricing. 10

The rights without obligations that options 
provide have financial value, so option holders must 
purchase them and make them assets. They are called 
derivative assets because they derive their value from 
other assets. For an exercise price K and an exercise 
date T, one has the right to buy stocks with price K and 
sell them with ST in the market if ST > K. If not, one has 
no obligation to purchase. This option is called a 
European call option, and we define claim C (payoff at 
time T) by C = (ST − K) + = max (ST − K, 0). So, if ST > 
K, then the option owner will obtain the payoff C at time 
T, while if ST ≤ K, then the owner will not exercise their 
option, and the payoff is 0. At the time of writing the 
option, ST is unknown and therefore raises the problem 
of pricing the option, or how should one price at time t = 
0 an asset worth (ST − K) +  at time T? The primary goal 
is to determine the fair price at t = 0 for a European call 
option, which is only one example of financial derivate. 
The oldest derivative and most natural claim on a stock 
is the forward. If two parties enter into a forward 
contract, the seller agrees to give the other party the 
stock at some set time for some set price. If T denotes 
the expiry date, F denotes the strike price, and the value 
of the stock at time t > 0 is St. The stock must be 
exchanged at time T for $F, so to determine the fair 
value of this contract means to determine the value of 
F.

 

11

III. Markov Property 

  

Geometric Brownian Motion follows the Markov 
property, a memoryless feature that allows the future 
price to be independent of the past prices, given the 
present price. This feature aligns with the efficient 
market hypothesis that all past information is already 

                                               
 

10

 
"Option Pricing." ESE 3030: Stochastic Systems Analysis and 

Simulation, University of Pennsylvania School of Engineering and 
Applied Science, https://ese3030.seas.upenn.edu/stochastic-systems-
analysis-and-simulation/option-pricing/. Accessed 13 December 2023.

 

11

 
Kozdron, Michael J. “Lectures on Stochastic Calculus with 

Applications to Finance.” Statistics 441, University of Regina. 
https://uregina.ca/~kozdron/Teaching/Regina/441Winter09/Notes/441
_book.pdf. Accessed 20 December 2023. 

 
 

reflected in current prices. In the context of Brownian 
Motion, the Markov property simplifies the process's 
modeling. The property allows for the future movements 
of a particle in Brownian motion to rely only on its current 
position, disregarding the path the particle took to get 
there. This simplifies the analysis and modeling of 
Brownian motion because once the current state of a 
particle is known, its history of motion can be ignored, 
as its past does not influence its future.  

The Markov property is defined by the equation 
ℙ(55+5∈5∣ℱ5)=ℙ(55+5∈5∣55 φορ αλλ 5,5∈5 and 
5∈5 .12 The starting point is a probability space  ( Ω, ℱ, 
ℙ), so that  Ω  is the set of outcomes,  ℱ  the 5 -algebra 
(a subset of the set algebras) of events, and ℙ the 
probability measure on  (Ω, ℱ).13

The defining condition states that the 
conditional distribution of 55+5 given ℱ 5 is the same as 
the conditional distribution of 55+5  just given 55. 
Conditional distribution is the probability distribution of a 
random variable.

 The time set  5  is either 
ℕ (discrete time) or [0,∞) (continuous time).  

14

IV. Comparing Brownian Motion Stock 
Index Models 

 It is calculated according to the rules 
of conditional probability after observing another 
random variable. In the equation, s can be thought of as 
present time, so that 5+5  is a time in the future. The 
present state, 55 is known, so the events in the past are 
irrelevant for predicting the future state, 55+5.  

Python and Sublime Text were used to simulate 
Brownian Motion.15,16

                                                
12 Siegrist, K. (2021). Probability, Mathematical Statistics, and 
Stochastic Processes. University of Alabama in Huntsville. 
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_
Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)  
13 Sengupta, A. (2005). Chapter 1 Sigma-Algebras. In Pricing 
derivatives: The financial concepts underlying the mathematics of 
pricing derivatives. essay, McGraw-Hill. 
14 Kuter, K. (2019). MATH 345 - Probability. Saint Mary's College. 
https://stats.libretexts.org/Courses/Saint_Mary's_College_Notre_Dame
/MATH_345__-_Probability_(Kuter)  
15 Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. 
Scotts Valley, CA: CreateSpace. 

 A random seed value, 42, was 
generated. The specific value doesn't matter; what's 
important is that using the same seed value will produce 
the same sequence of random numbers, making your 
code more predictable and reproducible. When 
prompted with “code for Brownian motion with the value 
of Dow Jones stocks as y-axis and from 2000 to 2015 in 
Python,” and “code for Brownian motion with the value 
of Dow Jones stocks as y-axis and from 1900 to 2000 in 
Python,” ChatGPT-generated code for the simulated 

16 Skinner, J. (2008). Sublime Text. [Software] https://www. 
sublimetext.com/ 
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graphs.17

To create the Brownian Motion function, the line 
def brownian_motion(dt, n_steps) was used to define a 
function named brownian_motion that takes two 
parameters, (1) dt (time step) and (2) n_steps (number 
of steps). t = np.linspace (1900, 2000, n_steps + 1) 
creates an array t representing time from 1900 to 2000 
with n_steps + 1 points. Increments = 
np.random.normal (0, np.sqrt(dt), n_steps)generates 
random increments from a normal distribution with mean 
0 and standard deviation √dt. Bm = np.cumsum 
(increments) calculates the cumulative sum of the 
increments to obtain the Brownian motion values. return 
t, bm: Returns the time array t and the corresponding 
Brownian motion array bm. To set the function's 
parameters, dt=1/252.0 was used to set the days per 
year in which stocks are traded (252 trading days in a 
year). n_years = 2015 - 2000 or n_years = 2000 - 1900 
was used to calculate the number of years. In Figure 1, 

  
  

 

 These codes were edited slightly to produce 
better results and to fix minor errors.   

                                                
17 OpenAI. (2023). GPT-3: Language Models for Cognitive Tasks. Retrieved from [https://chat.openai.com/chat]

 

n_years = 2015 - 2000 was used. In Figure 3, n_years = 
2000 - 1900 was used. Lastly, to generate Brownian 
Motion t, bm = brownian_motion(dt, n_steps)was used 
to call the brownian_motion function to generate time (t) 
and corresponding Brownian motion values (bm) based 
on the specified time step and number of steps. To 
simulate Dow Jones Stock Values, initial_price = 10000 
was used to set the initial index value to 10,000. Then, 
dow_jones = initial_price * np. exp(0.02 * t + 0.1 * 
bm)simulates Dow Jones stock values using the 
geometric Brownian motion equation. To plot geometric 
Brownian Motion plt. figure(figsize=(10, 6)): Creates a 
new figure with a specified size.plt.plot(t, dow_jones, 
label='Dow Jones Index'): Plots the Dow Jones stock 
values against time. plt.title('Brownian Motion with Dow 
Jones Stock Values (1900-2000)')sets the plot's title,  plt. 
label ('Time (Years)')sets the label for the x-axis, plt. label 
('Dow Jones Index')sets the label for the y-axis, 
plt.legend(), adds a legend to the plot, plt.grid(True), 
adds a grid to the plot, and plt. show(), displays the plot. 

Figure 1: Simulated Brownian Motion From 2000-2015 Measuring Dow Jones Industrial Average Index.18

18 Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95. https://doi.org/ 10.1109/MCSE.
2007.55
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Figure 2: Real-life Dow Jones Industrial Average Index From 2000-1015.19

19 Dow Jones - DJIA - 100 Year Historical Chart. (2020). Macrotrends.net. https://www.macrotrends.net/1319/dow-jones-100-year-historical-chart

In comparing the simulated Dow Jones 
Industrial Average (DJIA) index to the real-life index over 
fifteen years, from 2000 to 2015, the overall trends of the 
simulated graph are accurate, but the changes in the 
index from year to year are not. In the simulated chart, 
the index starts at around 10,000, whereas the index in 
2000 was about 20,000. The start value of the simulated 
graph is set to 10,000 as that value cannot be predicted 
or changed by Brownian Motion. Over time, the 
predicted values become more closely related to the 
real-life values without considering any events that 
significantly affect the economy and stock market. In the 
time period from 2000 to 2015, the DJIA index lost nearly 
half its value because of the stock market crash of 2008 
but then made a complete recovery. However, because 
this decrease in the index happened so suddenly and 

the economy was able to recover quickly and 
completely, the trend of the simulated graph is still 
closely related to the actual health of the stock market. 
The simulated value of the DJIA steadily rose, with minor 
depressions, from 2000 to 2015, which aligns with the 
real-life stock market trends, except for the 2008 crash. 
In both the real-life and simulated graphs, during 2015, 
the index was about 25,000, with the simulated value 
slightly higher than the actual index. Overall, Brownian 
Motion on a small time interval is semi-accurate 
compared to the true DJIA index but is not precise 
enough for any factual claims to be made. The trends of 
the graphs mirror each other well, but when observing 
shorter time periods or a specific year, the values differ 
greatly. 

Figure 3: Simulated Brownian Motion from 1900-2000 measuring Dow Jones Industrial Average Index with the y-axis 
being in the thousands.20

20 Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.
2007.55
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Figure 4:
 
Real-life Dow Jones Industrial Average Index From 1900-2000.21

                                                21

 
Dow Jones - DJIA - 100 Year Historical Chart. (2020). Macrotrends.net. https://www.macrotrends.net/1319/dow-jones-100-year-historical-chart

 

 

In comparing the simulated Dow Jones 
Industrial Average (DJIA) index to the real-life index over 
one hundred years, from 1900 to 2000, the overall 
trends of the graphs are very similar. The start value–
randomly generated in the simulated graph–is 
inaccurate, but the simulation quickly balances out as 
time progresses. When analyzing large periods of time, 
especially in the last century, where significant advances 
have been made (including the inception of the internet), 
it makes sense that the simulated graph would be 
inaccurate. While the real-life diagram depicts sharp 
declines and increases, the geometric Brownian Motion 
steadily rises with time, providing incorrect results. Due 
to the nature of Brownian Motion and its properties of 
randomness, sharp peaks and valleys like those 
depicted in the real-life graph are unlikely to be 
represented. Overall, the long-term estimate of the DJIA 
is almost entirely different from the actual graph, 
primarily due to the many events occurring in the 20th 
century. Although this depiction is inaccurate, Brownian 
Motion’s uses are still helpful as a baseline for 
predicting future stock values. In the shorter time period 
of fifteen years, while disregarding the stock market 
crash, the simulated graph is closely related to the 
actual stock values. 

V. Limitations

Although geometric Brownian motion has 
widespread uses, it has many limitations and faces 
criticism for its oversimplification and the many 
assumptions it makes. For instance, GBM assumes 
constant volatility over time, which isn’t true in the real 

market.22 Additionally, actual financial returns often 
exhibit fat tails–greater-than-expected probabilities of 
extreme values–and are not normally distributed. 
Geometric Brownian Motion also does not account for 

VI. Discussion

market crashes or price jumps. While the model 
provides a framework for understanding stock pricing, 
real-world financial markets are influenced by factors 
that are not entirely random, like global pandemics and 
depressions, and can exhibit trends and cycles. 
Therefore, while the Brownian motion model is useful, it 
oversimplifies the complexities of financial markets.

The primary motivation behind these models 
comes from the nature of the stochastic processes. In 
practice, the price changes in the stock market are so 
frequent that a discrete-time model can hardly follow its 
movement. On the other hand, continuous-time models 

Brownian Motion and Its Applications In The Stock Market Angeliki Ermogenous. (2006). https://ecommons.udayton.edu/cgi/view
content.cgi?article=1010&context=mth_epumd

22

such as the ones used in Brownian motion lead to more 
explicit computations, even if they require code for 
simulation. While the Brownian motion model effectively 
captures the randomness of market movements through 
its stochastic components, it also reveals the challenges 
of predicting large-scale economic events. 

This analysis emphasizes the need for 
continuous refinement of financial models to better 
understand and predict market behaviors. Incorporating 
elements into the algorithm that account for sudden, 
significant economic events could greatly enhance the 
model’s accuracy in real-world scenarios, leading to 
more informed investment strategies and better financial 
planning. The balance between mathematical modeling 
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and practical economic realities underscores the 
importance of considering both random and systematic 
factors in economic forecasting. As the global economy 
continues to evolve in complexity, the adaptation and 
improvement of models such as Brownian motion 
become imperative. The ability of models like Brownian 
motion to provide insight into market dynamics directly 
impacts financial decision-making, risk management, 
and policy formation. With the world still grappling with 
the effects of the COVID-19 pandemic, understanding 
how major events disrupt the economy is pivotal in 
navigating current and future economic crises. By 
striving to refine and improve these models, one can 
hope to achieve a more stable and predictable financial 
future.
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