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Diffusion MRI of Human Brain: Key Points and 
Innovations

Alessandro Arrigo MD α, Alessandro Calamuneri PhD σ & Enricomaria Mormina MD ρ 

Abstract-  MRI-based investigations represent, to date, very 
powerful approaches for the study of the brain. One set of 
tools, provided by diffusion MRI, allows the non-invasive 
analysis of structural aspects of gray and white matter, by 
analyzing how water molecules diffuse within the brain. 
Although number of clinical studies employing diffusion MRI 
has grown in last years, some aspects still result poorly known 
or poorly understood by unfamiliar researchers and clinicians, 
due to their technical complexity. The main goal of the present 
work is to resume the main landmarks of diffusion MRI 
investigation and to show the current state as well as future 
perspectives of related methodologies. 
Keywords: magnetic resonance imaging, diffusion-
weighted imaging, diffusion models, diffusion tensor 
imaging, constrained spherical deconvolution, tracto-
graphy. 

I. Introduction 

iffusion MRI (dMRI) represents nowadays a 
powerful tool for the non-invasive investigation of 
the brain. It allows to perform both qualitative and 

quantitative evaluation of brain features as well as of its 
alterations, with particular regards to white matter ones. 
All diffusion-based techniques are dedicated to the 
analysis of signals provided by the diffusion process of 
water molecules within brain tissues. Goal of this 
manuscript is two-fold: firstly, we want to provide a 
summary of the state of the art for researchers unfamiliar 
with dMRI models and related techniques; secondly, we 
want to address some of future perspectives in the field. 

II. Diffusion Models 

Diffusion models consist in a set of algorithms 
attempting to estimate how water molecules diffuse 
within each voxel (imaging unit). The mostly known 
model is diffusion tensor, which is the basis of Diffusion 
Tensor Imaging (DTI) (Basser et al., 2000); however a 
cohort of other models which overperform DTI have 
been developed over the years, such as Q-ball imaging 
(QBI) (Tuch, 2004), Diffusion Spectrum Imaging 
(Wedeen et al., 2008), Constrained Spherical 
Deconvolution  (CSD)
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compartments models (see for instance Panagiotaki et 
al., 2012). All above mentioned techniques return back a 
geometrical object (e.g. the tensor for DTI) which 
encodes diffusion process for each analyzed voxel; the 
sensitivity as well as the type of information which can 
be extracted from such objects vary according to the 
algorithm/model used. Based on these objects, 
qualitative and quantitative analyses can be performed. 

a) Qualitative analysis 
One of the most explored applications of 

diffusion MRI is tractography (Soares et al., 2013), i.e. 
the reconstruction of the path followed by a given white 
matter bundle. This can be achieved by means of both 
deterministic (one direction assigned for each voxel) 
and probabilistic (the most probable path obtained after 
a given number of attempts) tractographic algorithms 
(Soares et al., 2013; Behrens et al., 2007). Tractography 
reconstruction outcomes strongly rely on the underlying 
diffusion model used In this context, several issues can 
affect the reliability of tractographic results, e.g. the 
presence of voxels with multiple fiber directions 
(Farquharson et al., 2013). DTI cannot handle multiple 
fiber directions, as it can only provide a unique diffusion 
direction. This is the reason why other more advanced 
approaches outperform DTI based tractography, like 
CSD (Tournier et al., 2008; Farquharson et al., 2013). An 
exemplificative case showing how tractographic output 
can be different according to the model used, namely 
DTI and CSD, is shown in Figure 1, where corticospinal 
tract and optic radiations were reconstructed with both 
methods.  
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Figure 1 : Tractography of left corticospinal tract (A) and left optic radiations (B). Reconstructions of these two 
eloquent white matter bundles were obtained by means of probabilistic CSD model (red) and DTI one (blue), which 
were overlapped in order to show qualitative differences. On the right side, the schematic representation of 
anatomical features of these bundles, as well as their end points in the cortex, are shown. 

b) Quantitative analysis 
From each diffusion model a number of useful 

features can be extracted in a given voxel. Those 
features can be used to quantify WM and perform 
investigation both in normal and pathological conditions. 
It is important to clarify that nature and validity of 
features extracted depend on a number of factors, e.g. 
quality of scans used. Here we want however to keep 
focus on what different diffusion model can offer. If 
based on tensor model, quantitative analysis can 
provide information regarding how much anisotropic is 
the signal within a voxel, through a number of 
parameters among which fractional anisotropy (FA) and 
mean diffusivity (MD) are the most used (Soares et al., 
2013). Those measures have been considered indirect 
measures of axonal integrity (Alexander et al., 2007; 
Soares et al., 2013). Due to the ability of other models to 
better reconstruct WM bundles, it was suggested to 
sample tensor features on voxels reached by 
tractographic reconstructions obtained by other 
methods, like CSD (Mormina et al., 2014; Arrigo et al., 
2014; Mormina et al., 2015; Arrigo et al., 2015; Arrigo et 
al., 2016). 

FA measures level of anisotropy in the voxel: the 
higher this number, the higher the probability that a 
single predominant fiber direction is appearing in that 
voxel. It has to be noticed however that (Jeurissen et al., 
2013), if we were to compare FA values obtained by 
averaging within voxels sampled by means ofCSD-
based tractographic reconstruction with the same 
average performed on the basis of DTI tractography, we 
would observe a FA reduction. This happens because, 
with CSD, voxels with multiple dominant fiber directions 
are involved; as result, water diffusion anisotropy is 
spread across different directions, and tensor model is 
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able to fit an overall anisotropy decreasing. Due to the 

huge number of voxels showing this behavior in WM 
(Jeurissen et al, 2013), new features were developed to 
the better describe diffusion models. As an example, 
based on CSD, Apparent Fiber Density (AFD) (Raffelt et 
al., 2012), was developed to measure contribute of each 
dominant direction. Figure 2 illustrates the situation.



 

Figure 2 : Tractography of the left corticospinal tract obtained by means of DTI and CSD models. Some 
exemplificative voxels showed differences regarding calculation of diffusion signals, if using tensor model or CSD, in 
the following cases: monodirectional (a), multidirectional (b) and crossing fibers (c) voxels. The presence of (b) and 
(c) affects tensor model, thus causing poor qualitative reconstruction. Moreover, also quantitative analysis is 
affected, since only voxels with a well-represented principal direction are considered. 

III. Limitations, Validations and Future 

Perspectives 

Diffusion MRI results, particularly tractography, 
are often criticized due to a number of limitations 
potentially affecting outputs. Moving beyond the intrinsic 
limitation represented by the impossibility to discriminate 
directionality of afferent or efferent signal transmission 
(Parker et al. 2013; Chung et al. 2011), as previously 
described, tractographic output strongly depends on the 
algorithm used for diffusion signal modelling 
(Farquharson et al., 2013).Several inaccuracies caused 
by possible artefactual effects as well as false positive 
tracts should be also taken into account (Jones and 
Cercignani, 2010). Furthermore, since tractography 
represents the reconstruction of white matter paths 
provided by a mathematical computation (deterministic 
or probabilistic), it is often criticized by declaring that 
dissection is preferable due to its ability to definitely 
assess the real existence of a given connection. 
However, a number of studies have validated DTI 
tractographic output through histological investigations 
(Seehaus et al., 2013; Gao et al., 2013; Seehaus et al., 
2015). The adoption of more advanced algorithms have 
allowed a better detection of white matter bundles; 
those techniques have obtained histological validations 

as well (Dirby et al., 2007; Azadbakht et al., 2015). 
Recently, in vivo neurite orientation dispersion and 
density imaging (NODDI) (Zhang et al., 2012) was 
proposed: this technique allows a multi-compartmental 
analysis of the brain, i.e. separately considering glial, 

axonal and extracellular components, thus restituting a 
detailed profile of brain microstructure. Although 
technical requirement are not easily reachable, this 
represents a promising investigative technique for a 
deeper study of the brain both in healthy and 
pathological conditions. 

Interesting future perspectives will be to make 
more feasible these innovative approaches for clinical 
settings as well as to integrate them with other 
investigative techniques, such as electrophysiology and 
transcranial magnetic stimulation.

 

IV.
 

Conclusion
 

In this paper the main key points of diffusion 
MRI investigations

 
have been neatly described. We 

wanted to provide a brief and simplified description of 
the complex methodological aspects, in order to offer 
necessary pills for better understanding diffusion-based 
studies. 
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