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derive the elastic field within and around an ellipsoidal inclusion 
embedded in a matrix. Since breast tumor can be regarded as 
an elastic inclusion with different elastic properties from those of 
surrounding matrix when the deformation is small, we applied 
Eshelby’s solution to predict the stress and strain fields in the   
breast containing a suspicious lesion. The results were used to 
investigate the effectiveness of strain ratio (SR) from 
elastography in representing modulus ratio (MR) that may be 
the meaningful indicator of the malignancy of the lesion. This 
study showed that SR significantly underestimates MR and is 
varied with the shape and the modulus of the lesion. Based on 
the results from Eshelby’s solution and finite element analysis 
(FEA), we proposed a surface regression model as a polynomial 
function that can predict the MR of the lesion to the matrix. The 
model has been applied to gelatin-based phantoms and clinical 
ultrasound images of human breasts containing different types of 
lesions. The results suggest the potential of the proposed method 
to improve the diagnostic performance of breast cancer using 
elastography. 
Keywords: eshelby’s solution, elastography, breast 
cancer, mechanical properties, strain ratio, modulus 
ratio. 

I. Introduction 

ecently, breast elastography has emerged as a 
new screening modality for breast cancers.1-3 

Elastography uses palpation principle to detect 
and classify pathological lesions using elastic properties 
of tissues.4 Because pathological lesions are normally 
stiffer than benign tissues, the strain in the lesion is less 
than the surrounding tissue under compression.5 Strains 
are calculated using the time-gradient of radiofrequency 
(RF) echo signals6 or displacement-gradient of B-mode 
images,7 obtained before and after a slight compression 
of the tissue. Resulting strains are displayed as a color-
coded image, called elastogram as a map of tissue 
elasticity. 

Elastography can be further classified into   
strain (or quasi-static) elastography6 and shear wave             
(or transient) elastography, 8, 9 according to tissue 
compression method. In strain elastography, tissue is 
deformed by applying slight axial compression using a 
conventional transducer, or alternatively deformation can  
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be produced  by respiratory movements. The profile of 
tissue deformation is converted to a strain map from 
which elastogram is derived.6 In shear wave elastogra- 
phy, elastograms are obtained based on the 
combination of a radiation force induced in a tissue by 
an ultrasonic beam and an ultrafast imaging sequence 
capable of catching in real time the propagation of the 
resulting shear waves.8, 9 The local shear wave velocity is 
recovered, enabling the production of a two-dimensional 
map of shear elasticity.10 

There have been various efforts to utilize 
elastography for the diagnosis of breast cancer. It oh et 
al.11 proposed a five-point elasticity scoring system       
on the basis of overall pattern, similar to BIRADS   
(Breast Imaging Reporting and Data System) criteria2 for 
ultrasound (US) and mammogram. It is also known that 
the size of the tumor determined by elastogram is 
significantly larger than that in sonogram, only when the 
tumors are carcinomas.6 However, most commonly 
accepted diagnostic measure is strain ratio (SR), 6, 12, 13 
which is the ratio of the compressive strain in 
surrounding tissue to that of a suspicious lesion (also 
called “observed con- trast”14 or “strain contrast”15). 
Thomas et al. performed a clinical study to evaluate the 
performance of SR in differentiating benign and 
malignant breast lesions.12 They reported that SR     
cutoff value of 2.45 allowed significant differentiation               
(p < 0.001) of malignant (5.1 ± 4.2) and benign         
(1.6 ± 1.0) lesions. Zhi et al. conducted a similar study 
to compare the diagnostic performance of SR with that 
of five-point elasticity scoring system.13 They concluded 
that SR-based elastography could provide a more 
reliable diagnostic tool, and the cutoff SR of               
3.05 resulted in significant differentiation (p < 0.00001) 
between malignant (8.38 ± 7.65)  and benign           
(1.83 ± 1.22) lesions. 

The use of SR as a diagnostic measure is 
based on the assumption that SR is directly related to 
modulus ratio (MR: the ratio of the elastic moduli of the 
inclusion and of the surrounding tissue; also called “true 
contrast”14 or “modulus contrast”15), which is considered 
as a true indicator of the malignancy of lesion. However, 
only a handful of studies are found in the literature that 
mechanically measured the elastic moduli of breast 
tissues. Most frequently referred one was conducted by 
Krouskop et al.16 which reported that elastic modulus of 
invasive carcinoma was 5 and 25 times higher than that 
of normal tissue at the compression levels of 5% and 
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20%, respectively. Sarvazyan et al.17 also reported that 
fibroadenomas are typically four times stiffer than 
normal tissue, whereas cancers can be as much as 
seven times stiffer. More recently, Samani et al.18 

measured the elasticity of breast normal tissues and 
tumors and reported that breast cancers exhibited 6 to 
13 fold increased stiffness compared with normal tissue. 

There also have been attempts to infer MR from 
the measured SR, using either a simplified or continuum 
mechanical model, via inverse reconstruction schemes. 
Raghavan and Yagle19 proposed a direct inversion 
scheme for recovering shear modulus by deriving a 
linear system of elasticity equations for the plane–strain 
condition. The weakness of their approach is that hydro- 
static pressure on the boundary must be known to solve 
the equations. Skovoroda et al.20 used an analytical 
method to eliminate the pressure term from the 
equations. Later on, Skovoroda et al.5 regarded the 
inverse problem as an integral rather than a differential 
form to make the technique less susceptible to 
measurement noise. Sumi et al.21, 22 proposed a direct 
inversion scheme by solving the inverse problem for the 
plane–stress case, and Le Floc’h et al. 23 extended the 
concept to the plane–strain case. Barbone and Oberai 24 

derived the reconstruction formulae for some special 
elastic inverse problems, including 2D and 3D, and 
compressible and incompressible materials. There also 
have been attempts to view the inverse problem as a 
parameter optimization problem, where the goal is to 
find the shear modulus that minimizes the error between 
measured strain field and those computed by        
solving the direct problem.25 For this iterative inversion 
approach, Hessian-based optimization method, 26-28 

gradient-based optimization method, 25,29 and gradient-
free optimization method 30-32 were used. 

As one of the efforts to relate MR and SR, Kallel 
et al.14 used a classical analytic solution of the elasticity 
equations for an infinite medium subjected to a uniaxial 
compression to derive a closed form relationship 
between SR and MR. For incompressible materials         
(ν = 0.5), they derived the following relationship: 

MR =2 SR -1.                              (1) 

Biligen and Insana33
 

also derived an 

approximate expression for extremely hard inclusion and 
incompressible materials: 

MR = 2.5 SR.                               (2)
 

Note that the above derivations are limited to 
2D with simple inclusion shapes such as sphere or 
cylinder, although malignant tumors are known to have 
irregular or ellipsoidal shapes.34 Therefore, it is essential 
to derive more general solutions that can relate SR and 
MR for 3D shapes of inclusions. 

Finite element models were also used to 
estimate the

 
elastic behavior in various types of lesions 

and surrounding tissues. Kallel et al.14 investigated the 
effect of lesion boundary conditions, depth, and 
modulus contrast on axial strain field by finite element 
analysis (FEA), assuming planestrain condition and 
linear elastic materials. Biligen and Insana33 performed 
the FEA on an axisymmetric model with a spherical 
inclusion and concluded that the size of the 
compressor, location of an inclusion relative to the 
compressor, and type of compression (uniform stress 
vs. uniform displacement) alter the strain and stress 
distributions. Recently, Celi et al.15 performed the FEA 
study using simple axisymmetric and more realistic 
anthropomorphic models. They concluded that simple 
axisymmetric model has many similarities with the 
anthropomorphic one and is suitable for elastosono- 
graphy simulations. 

From the point of solid mechanics, breast tumor 
can be regarded as an elastic inclusion that has 
different elastic properties from those of the surrounding 
matrix. Although human tissues show highly nonlinear 
stress–strain behavior,35 they can be regarded as linear 
elastic in the small strain region.7 In particular, the 
practice for elastography applies only a small amount of 
axial compression (typically on the order of 2%         
strain36) to avoid decorrelation errors4; therefore, the 
assumptions of linear elastic inclusion and matrix are 
reasonable. Based on linear elasticity, Eshelby37 derived 
the elastic field inside the elliptic inclusion using the 
biharmonic potential and Green’s tensor. His solution 
yielded a surprising result that the stress (and strain) 
within an ellipsoidal inclusion embedded within a matrix 
subjected to a remote load is homogeneous. In the 
subsequent paper, 38 he derived that the elastic field 
outside an ellipsoidal inclusion is given in a form that 
involves only the harmonic potential of an ellipsoid and 
can be reduced to a form suitable for numerical 
calculation of the stress. 

We applied Eshelby’s solution to the elastic 
medium containing an ellipsoidal inclusion to determine 
the elastic fields within and outside the inclusion. 
Although similar analyses can be pursued by FEA, 
Eshelby’s solution requires much less time and effort 
than FEA, once the method is established. Also, in 
general, well-posed analytical approach can yield exact 
solutions without the issues of meshing effect and/or 
convergence problem, compared with the approximate 
solutions from numerical approaches. Compared to 
inverse methods, Eshelby’s solution is much less 
susceptible to measurement noises and mathematically 
simpler, and hence requires much less computation. 
However, current solution is still limited to relatively 
simple 3D shapes (spheroids). 

The results from Eshelby’s solution were verified 
with FEA simulations using axisymmetric models. Based 
on the results, the relationship between SR and the 
shape of the inclusion and MR was derived as a simple 
analytical relationship by using a surface regression 
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model, and the relationship was verified using gelatin-
based phantoms. The model was further applied to the 
elastograms of human breasts with different types of 
lesions, and the results were statistically analyzed to 
compare the performance of SR and MR in breast 

cancer screening. This paper concludes that the 
proposed method adopting MR as an indicator has the 
potential to better diagnose the malignant tumor than 
the conventional SR. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:
 
Four steps of a virtual experiment to construct Eshelby’s solution: (a) a linear elastic solid

 
with volume V 

and surface S (matrix). An inclusion V0 with surface S0 is embedded into the matrix; (b)
 
remove the inclusion from 

the matrix; (c) apply surface traction T to S0 to make the inclusion return to
 
its original shape; (d) put the inclusion 

back to the matrix and remove the traction T.
 

a)
 

Eshelby’s Solution
 

Eshelby37,38

 
proposed a general method to 

derive the local strain and stress fields which can be 
induced by remote loading applied to an elastic infinite 
matrix V0

 
(phase 0) containing an ellipsoidal 

inhomogeneous inclusion V1

 
(phase 1; Figure 1a). 

Remote loading implies that stress is uniformly 
distributed over the matrix without causing local 
distortions or strain concentrations. He

 
solved

 
this

 

problem
 
elegantly

 
by

 
the

 
superposition

 
principle

 
and

 
the

 

Green’s
 

function,
 

through the four steps of a virtual 
experiment:

 

 

  
            

      

 
 

  

  
 

  
          

 

Steps
 
1
 
to

 
4
 
can

 
be

 
mathematically

 
derived

 
in

 

terms
 

of
 

the
 

Green’s
 

function
 

of
 

the
 

elastic
 

body.
           

The strain and stress inside the inclusion can be 
expressed as:

 

  
                         (3)

 

        
                (4)

 

 
  

 

 
 

                             (5) 
 

Eshelby S tensor is a function solely of the 
ellipsoid dimensions and the Poisson’s ratio of the 
matrix.40

 
Explicit expressions for the components of S for 

various shapes of ellipsoid have been given by Mura,40
 

and in more general form by Ju and Sun.39,41
 

In 
Equations (3) and (4), the eigenstrain ε** can be 
derived as:

 

(6)
 

where εt

 

is the prescribed eigenstrain, and the fourth-
order mismatch tensors A and B are defined as:

 

  
(7)
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εε εε εε= + ∗∗0 S : ,

σσ σσ εε= + ⋅ −[ ] ∗∗0 0C S I : ,

σσ εε0 0C= : .0

εε εε εε∗∗ −= +( ) −( )S A : B :
1 t 0 ,

A C C C B C C C1 0 1 0 1 0 1 1= −



 ⋅ = −



 ⋅

− −
, .

• Step 1: Remove the inclusion from the matrix 
(Figure 1b). Then the inclusion is strained due to 
loss of constraint from the matrix (eigenstrain ε**).

• Step 2: Apply the surface traction T to S0 in order to
make the inclusion return to its original shape 
(Figure 1c). The elastic strain of the inclusion should 
exactly cancel the eigenstrain.

• Step 3: Put the inclusion back to the matrix. The 
same force T is applied to the inclusion surface S0

(Figure 1d). There is no change in the strain fields in 
either the inclusion or the matrix from Step 2.

• Step 4: Now remove the traction T. This makes the 
problem return the original inclusion problem in 
Figure 1(a). The change from Step 3 to Step 4 is 
equivalent to applying a can- celing body force 
F = −T to the inclusion surface S0 of the elastic 
body.
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where ε0 is the remote strain, ε** the eigenstrain, σ0     
the remote stress, C0 the stiffness tensor of the matrix, 
and I the identity tensor.39 If the entire medium is    
loaded by the specified remote stress tensor σ0, then 
the corresponding strain ε0 is derived by Hooke’s law:



 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure

 

2:

 

(a)

 

Geometry

 

of

 

an

 

ellipsoidal

 

inclusion

 

embedded

 

in

 

a

 

matrix

 

and

 

(b)

 

an

 

axisymmetric FEA

 

model

 

(dotted

 

area

 

in

 

(a)).

 

Remote

 

stress

 

σ0

 

is

 

applied

 

to

 

the

 

top,

 

and

 

left

 

and

 

bottom

 

edges

 

are constrained

 

in

 

the

 

x-

 

and

 

z-directions,

 

respectively.

 

In

 

(a),

 

position

 

of

 

coordinate

 

system

 

is

 

arbitrary. FEA = finite element

 

analysis.
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For the external field, that is, points outside of 
the inclusion, stress and strain varies with position as 
follows:

           (8) 

           (9)

where x is a position vector, G(x) another fourth-order 
tensor which is a function of the ellipsoid geometry, 
Poisson’s ratio of the matrix and the coordinate 
position.38,40 The explicit expressions for all components 
of G(x) are provided by Ju and Sun.39,41

These mathematical solutions were coded into 
MATLAB functions (see the appendix) to calculate the 
elastic fields inside the inclusion and in the matrix. Key 
inputs of the code are elastic modulus E, Poisson’s ratio 
ν, remote stress σ0, and the size of the inclusion. 
Prescribed eigenstrain εt is also an input, but merely 0 
for the current applications. From those inputs, the code 
calculates eigenstrain ε**, Eshelby tensor S to finally 
produce the strain ε(x) and stress σ(x) fields, in the 
matrix and inclusion, respectively, as key outputs.

II. Materials and Method

a) FEA Simulation
FEA simulations were performed to verify the 

results from Eshelby’s solution using a commercial FEA
code (Abaqus 6.10). Assuming inclusions in spheroidal
shapes (ellipsoid of revolution), simulations were 
performed using axisymmetric models as depicted       
in Figure 2. Note that for axisymmetric models, 
axisymmetric FEA simulation is identical to 3D FEA.

The size and shape of the spheroidal inclusion 
is defined by the axes a, b, and c in x-, y-, and z-
directions, respectively, as shown in Figure 2(a). The 
shape of the matrix is described by a cylindrical volume 
with height 2Z and diameter 2W. The matrix and 
inclusion are each homogeneous with isotropic elastic 
properties that are described by the elastic modulus E0

and E1, and Poisson’s ratio ν0 and ν1, respectively. The 
interface between matrix and inclusion is assumed to be 
perfectly bonded. An 8-node quadratic axisymmetric 
quadrilateral element with reduced integration (CAX8R in 
Abaqus 6.10) was used, and the linear elastic 
deformation was assumed. In the elastography 
simulation, a static compressive force (remote stress σ0 

in Figure 2b) was applied to the top surface of the 
cylinder, while left and bottom edges are constrained in 
the x- and z-directions, respectively.

b) Displacement-Gradient Elastography (DGE)
Digital image cross-correlation method 

was applied to B-mode US images to determine the 
displacement field developed by the compression.42 To 
suppress the decorrelation errors in large deformation, 
dynamic referencing scheme43,44 was used. Strains were 
calculated using displace- ment gradients as:

               (10)

and the roughness of strain field was reduced 
by applying smoothing algorithm.45 Graphical 
representation of the resulting strain map is called DGE 
elastogram.

c) Gelatin Phantoms

εε εε εεx G x : x0( ) = + ( ) ∈∗∗ , ,V 0

σσ σσ εεx C G x : x0 0( ) = + ⋅ ( ) ∈∗∗ , ,V 0

ε εx
x

y
yu

x

u

y
=
∂
∂

=
∂
∂

, ,

Gelatin-based phantoms were designed to
contain an inclusion with higher stiffness than the
surrounding matrix, mimicking a carcinoma in a normal 
breast tissue.46 Inclusions and matrixes were made with 
the same constituents to have the similar echogenicity, 
that is, 1 wt% agarose (J.T. Baker), 2 wt% glutaraldehyde
(Sigma-Aldrich), 5 wt% n-propanol (Fisher-Scientific),
gela- tin (Fluka; 20 wt% for inclusion and 5 wt% for 
matrices), and distilled water (the remaining wt%). The 
procedure to fabricate the phantoms is illustrated in 
Figure 3.42



 

 

 
Figure 3: Schematics of phantom fabrication procedure and US imaging setup: (a) 5% gelatin solution was poured into the 
mold in half; (b) the solid inclusion containing 20% gelatin was placed on the solution; (c) gelatin solution was poured to 
fill the rest of the mold, and the mold was kept at room temperature for 48 hr for gelation; (d) for US imaging, the phantom 
was compressed while the US probe acquired US images. US = ultrasound. 

Fabricated gelatin phantoms were US imaged 
using a commercial US scanner (Accuvix XQ, Medison, 
South Korea), while it was being compressed up to 10% 
strain at the loading rate of 100 µm/s. During 
compression, US images were taken with the US probe 
(L6-12IS, 6-12MHz) placed in the direction perpendicular 
to the axis of cylindrical inclusion (Figure 3d). 

Stress–strain relationships of gelatin inclusion 
and matrix were determined by conducting separate 
compression tests on cylindrical samples with aspect 
ratio of 1 (height and diameter 4 cm each) that were 
additionally made at each formula. Each sample was 
loaded up to the engineering strain of 10% at 100 µm/s 
loading rate using TA material testing machine       
(Stable Micro Systems, England) with a 50 N load cell. 

d) Clinical Applications 
Small-scale clinical study was performed on 45 

volunteer patients with different BIRADS lesions in their 
breasts. Patients underwent breast US imaging with Philips 
IU22 XMTRAIX US system in the Grand River Hospital 
(Kitchener, Ontario, Canada). US images were taken by a 
US technologist by applying a slight compression to the 
breast with a US probe (L17-5). DGE elastograms were 
produced by applying DGE method to US images. After 
imaging, all of the lesions were examined histologically 
with biopsy, but results had been kept until the end of 
analyses for nonbiased assessment. 

 

III. Results and Discussion 

a) Spherical Inclusion 
Eshelby’s solution was applied to a numerical 

phantom where a spherical inclusion (E1 = 50 kPa) was 
embedded in the matrix (E0 = 10 kPa) (MR = 5) and 
remote stress (σ0 = 1 kPa) was applied in z (axial) 
direction. Remote strain in the matrix was 0.1                 
(ε0 = σ0/E0). Poisson’s ratios of both inclusion and matrix 
were assumed to be 0.45. Figure 4(a) and (b) show the 
3D plots of axial stress (σz) and strain (εz) fields, and 
Figure 4(c) and (d) present axial stress and strain 

distributions in the x–z quarter-plane, respectively.              
As predicted by Eshelby,4 stress and strain within the 
inclusion are uniform at 1.605 kPa and 0.0366, 
respectively. However, stress and strain varies 
significantly across the matrix. Highly concentrated 
stress and strain zones are formed right above the 
inclusion in the axial (z) direction, whereas significantly 
low stress and strain are observed right beside the 
inclusion in the lateral (x) direction. In the matrix far from 
the inclusion, stress field can be divided into two regions 
by the borderline inclined at about 45° (Figure 4c). 
Above the line, the stress is higher (1010~1250 Pa) than 
the applied stress, while lower (940~995 Pa) below the 
line. Meanwhile, strain field in the matrix (Figure 4d) can 
be divided into three regions: upper region with the strain 
higher than the remote strain (0.13~0.11), upper-right 
region with lower strain (0.092~0.099), and lateral 
region with the strain almost the same as the remote 
strain (0.1~0.103). 

The effects of MR on strain fields were 
investigated by varying the modulus of spherical inclusion. 
Figure 5(a) and (b) show the strain field of phantoms 
containing an inclusion with MR = 2 and MR = 10 at 0.1 
remote strain, respectively. Strain inside the inclusion 
decreases with the increase of MR (0.0696 at MR = 2; 
0.0204 at MR = 10); however, far-field strain distribution in 
the matrix is not affected much by the change of MR. 
Particularly, the shape and the strain levels in the lateral 
regions are almost identical regardless of the change in 
inclusion modulus. 
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Figure 4: Axial stress and axial strain fields in the numerical phantom containing a spherical inclusion determined by 

Eshelby solution: (a) 3D axial stress, (b) 3D axial strain, (c) 2D axial stress, (d) 2D axial strain.

 

Figure 5: Strain fields in the numerical phantom containing a spherical inclusion embedded in the matrix under 0.1 remote 
strain: (a) MR = 2 and (b) MR = 10. MR = modulus ratio. 

b) FEA Simulation 
The results from Eshelby’s solution were 

compared with those from FEA simulations using the same 
materials properties and boundary conditions. Axial     
stress and strain fields from FEA (Figure 6a and b) show 
excellent agreements with those from Eshelby’s solution           
(Figure 4c and d). Results from FEA also confirm that the 
stress and strain levels inside the inclusion are almost 
uniform at 1.605 kPa and 0.0363, consistent with Eshelby’s 
solution. 

The variations of axial stress and strain from 
Eshelby’s solution and FEA are plotted together along axial 
(z) and lateral (x) directions in Figure 6(c) and (d), 

respectively. It is notable that influences of the inclusion on 
both stress and strain persist much farther along axial 
direction than along lateral direction. Particularly the strain 
level converges on remote strain at a distance of about 
1.5a (a: inclusion radius) in lateral direction, whereas it is 
still varying even at a distance of 3a in axial direction 
(Figure 6d). 

In estimating the SR from elastogram, ideally 
matrix strain should be measured at an infinite distance 
from the inclusion. However, due to limited field of view of 
elastogram, measurements at the distance farther than 
twice the size of inclusion are usually unavailable. Among 
the three remote regions in the matrix (Figure 4d and b), 
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the strain in the lateral region is relatively uniform (less than 
3% deviation) and almost equal to remote strain (Figure 
6d); thus, this region can be regarded as the best domain 
to measure the matrix strain. The strain plots in Figure 6(d) 
also indicate that the measurement should be made farther 
than a half-radius distance away from the inclusion to avoid 
the effect of inclusion. 

c) MR versus SR—Spherical Inclusion 

Results from Eshelby’s solution and FEA clearly 
indicate that the stress inside the inclusion is more than 

50% higher than the remote stress (1.605 kPa vs. 1 kPa in 
Figure 6c); furthermore, the strain is almost 80% higher 
than that directly obtained from Hooke’s law (0.0366 vs. 
0.02 in Figure 6d). As a result, SR value estimated from 
elastogram is much lower than the actual MR value       
(2.78 vs. 5.0). This type of discrepancy has been identified 
as the fundamental limitation of elastography31; thus, it was 
further investigated with Eshelby’s solution to better 
understand the transfer characteristic of SR with respect    
to MR. 

 

 

Figure 6:
 
FEA simulation results: axial stress (a) and axial strain (b) distributions in the numerical phantom containing 

a spherical inclusion. The plots of axial stress (c) and axial strain (d) along axial (y) and lateral (x) directions from the 
inclusion center (inclusion radius = 1). Inclusion is five times stiffer than the matrix (E1/E0

 
= 5). Solid lines and 

triangles are predicted by Eshelby’s solution and FEA, respectively. FEA = finite element analysis.
 

For the wide range of MR from −20 dB to 20 
dB, SR was predicted with Eshelby’s solution, as 
presented in Figure 7(a). It is notable that the SR curve 
is highly dependent on the MR that is proportional to 
inclusion modulus when matrix modulus is unchanged. 
For hard inclusions (MR > 0 dB), the curve follows the 
ideal curve with a relatively constant gap; however, for 
soft inclusions (MR < 0 dB), it shows significant 
deviation from the ideal curve.

 

Contrast-transfer efficiency (CTE) is sometimes 
expressed using the ratio of the observed contrast (SR) 
from the elastogram to the true contrast (MR) of the 
materials in decibels as31:

 

 
(11)

 

CTE was predicted with Eshelby’s solution, as 
plotted in Figure 7(b). CTE reaches the maximum when 
MR = 0 dB, that is, the inclusion and the matrix have the 
same modulus. The efficiency degrades rapidly as the 
inclusion becomes harder or softer.

 

In the medical practice using elastography, 
critical MR range for the diagnosis of the malignancy of 
the lesion is usually less than 2016; thus, the variation of 
SR for the MR range from 0.1 to 20 is plotted on a linear 
scale in Figure 7(c). The relationship between SR and 
MR is perfectly linear in this range, similar to the first-
order relationship proposed by Kallel et al.14 SR      
(solid line) is less than a half of MR (dotted line) in most 
of the tested region, except for small MR (<1.28). The 
relationship is expressed as a first-order linear equation 
in Figure 7(c). Note that this relationship is valid only for 
spherical inclusion.

 
 
 
 
 
 
 
 
 

Application of Eshelby’s Solution to Elastography for Diagnosis of Breast Cancer

G
lo
ba

l 
Jo

ur
na

l 
of
 
M

ed
ic
al
 R

es
ea

rc
h 

 

7

Y
e
a
r

20
19

  
 

(
DDDD
)

D

© 2019   Global Journals

η( ) ( ) ( ) .dB SR dB MR dB= −

V
ol
um

e 
X
IX

  
Is
su

e 
I 
V
er
sio

n 
I



 

 

 
Figure 7: (a) Transfer characteristic curve of elastography predicted by Eshelby’s solution (solid line) versus ideal 
curve (dotted line) on a log scale. (b) Contrast-transfer efficiency curve on a log scale. (c) SR versus MR on a linear 
scale. Dotted line is an ideal curve. SR = strain ratio; MR = modulus ratio. 
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d) Ellipsoidal Inclusion
It is known that benign and malignant lesions 

could differ significantly in shape. An adenoma (benign 
glandular lesion) has a more regular (close to spherical) 
shape whereas an adenocarcenoma (malignant 
glandular tumor) has an irregular or ellipsoidal shape.17

The effect of ellipticity of an inclusion on SR was 
investigated by Eshelby’s solution using the phantoms
containing prolate (a = b = 0.2, c = 1, where a, b, and 
c are the x, y, and z axis, respectively; Figure 8a) and 
oblate (a = b = 1, c = 0.2; Figure 8c) spheroids. 
Although strain fields within the matrix can be divided
into three regions and the strain level in each region is
close to that around spherical inclusion (Figure 8b      
and d), the strains within the spheroidal inclusions are 
significantly different from those in the spherical

inclusion. For example, the strain inside the prolate
inclusion (0.0683 in Figure 8b) is much higher than that 
inside the oblate inclusion (0.0396 in Figure 8d). As a 
result, SR value varies significantly depending on the 
ellipticity of the inclusion.



 

  

 

 

Figure 8: Elastic fields in the phantoms containing spheroidal inclusions: (a) a prolate inclusion (a = b = 0.2, c = 1), 
(b) the strain field around a prolate phantom, (c) an oblate inclusion (a = b = 1, c = 0.2), and (d) the strain field 
around an oblate inclusion. (e) Variation of SR (solid line) versus ideal curve (dotted line) against axial ratio (a/c).    
SR = strain ratio; FEA = finite element analysis. 

Table 1: Strain Ratios for Various Axial Ratio and Modulus Ratios. 

 a/c  
Modulus Ratio 0.5 1 1.333333 2 4 6.666667 10 

1 1 1 1 1 1 1 1 
2 1.548 1.392 1.358 1.34 1.386 1.456 1.514 
4 2.132 1.74 1.66 1.632 1.768 1.976 2.18 
6 2.442 1.896 1.794 1.764 1.956 2.268 2.592 
8 2.632 1.984 1.872 1.84 2.072 2.456 2.872 
10 2.76 2.04 1.92 1.89 2.15 2.58 3.07 

The variation of SR with respect to the axial ratio 

(a/c) is predicted by Eshelby’s solution and plotted 
(circle) in Figure 8(e). For verification purpose, some 
data points were also determined by FEA and plotted on 

the same graph (triangle). Figure 8(e) indicates that SR 

reaches the maxi- mum (2.92) when a/c is 2, and 
decreases with the change of a/c in both directions, 
more rapidly in prolate direction. Note that the maximum 
SR value of 2.92 is still much lower than the actual MR 
(5.0, dotted horizontal line). 
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SRs for various combinations of a/c and MR are 

summarized in Table 1. Because SR varies non- linearly 
against a/c, linear regression models such as Equation 
(1)14 or Equation (2)33 cannot be adopted for ellipsoidal 
inclusions. Instead, we considered a surface regression 
model with two predictor data (SR and a/c) and one 

response data (MR). This was achieved by applying a 
surface-fitting tool in Matlab (R2012b), cftool, to the data 

in Table 1. Using a polynomial regression model, MR 
could be formulated as a coupled polynomial equation 
of the order 4 × 2 as follows: 
 

 

 (12) 

where x = a/c, y = SR, and the coefficients are listed in 
Table 2. Good agreement was obtained between the 

model and the data in Table 1 (R2 = 0.992). Figure 9(a) 

shows the fitted surface from the model to the data in 
3D and Figure 9(b) illustrates the 2D contour plot of the 
same surface. 

  

The polynomial function in Equation (12) was 

applied to gelatin phantoms containing a spherical 
inclusion. MR was estimated first by performing the 

compression tests on 20% (inclusion) and 5% (matrix) 
gelatin cylindrical samples. Representative engineering 
stress–strain curves from the compression tests are 
shown in Figure 10. Loading curves were regarded as 
linear with R2 value 0.9971 and 0.9849, for 20% and     
5% gelatin content samples, respectively. Loading 

modulus was determined to be 51 ± 2 kPa and           
10 ± 1 kPa for each content, respectively. 

 

Table 2: Coefficients of Polynomial Regression Function in Equation (12). 

p00 p10 p01 p20 p11 p02 

−2.439 −0.4783 4.827 0.747 −1.887 −0.2935 

p30 p21 p12 p40 p31 p22 

−0.1538 0.3153 0.166 0.00832 −0.0136 −0.0135 

Figure 9: Surface fitting of a 4 × 2 polynomial function to the data in Table 1: (a) 3D surface plot, and (b) 2D contour 
plot. MR = modulus ratio; SR = strain ratio. 
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e) Surface Regression Model

f) Gelatin-Based Phantoms



 

To estimate the SR, gelatin phantoms were US 
imaged from the side while compressive loading was 
applied to the top (arrows in Figure 11a) and the DGE 
elastograms were generated from the US images. 
Figure 11(b) is the elastogram of a phantom 
compressed at 10% strain. Consistent with Eshelby’s 
solution, strain field within the inclusion is almost uniform 
at 0.036, while the strain significantly varies in the matrix. 
As discussed in the previous section, the measurement 
of matrix strain should be made in the lateral region 

(circled region A) which is distant from the inclusion 
center by more than 1.5 times of the inclusion radius in 
the lateral direction. Region B is also a candidate, but 
the region closer to the probe is generally preferable. 
Measured strain is 0.1 at A; thus, SR is calculated to be 
2.78. By substituting the SR into Equation (12), MR is 
estimated to be 5.60. These results are close to the 
predictions from Eshelby’s solution (SR = 2.73) and 
actual MR (5.1). 

 

 

Figure 10: Engineering stress–strain curves for 20% (solid line) and 5% (dotted) gelatin samples from simple 
compression tests.

Figure 11(c) is the elastogram of a phantom 
where a part of the inclusion is dissolved into the matrix, 
mimicking a carcinoma infiltrating into the surrounding 
tissue. In this image, the strain in the right side of the 
inclusion cannot be measured due to the infiltrated 
domain, thus the strain in the left side of inclusion 
(circled region) is measured as a matrix strain (0.11). 
The strain level inside the inclusion is 0.035 and the SR 
is calculated to be 3.05, which are slightly higher than 
that of spherical inclusion. Assuming the axial ratio of 
1.5, MR is estimated to be 5.46 that are consistent with 
the actual MR value. 

Strain field in the matrix can be distorted or 
localized due to inhomogeneous lesions or local 
loadings. Figure 11(d) shows highly concentrated 
compressive deformation above the inclusion, which is 
caused by the locally concentrated loading on top of the 
phantom. Although strain field varies significantly along 
the loading direction, strain along the lateral direction is 
relatively consistent, and the measured strain value is 
almost the same as the applied strain (0.1). Inclusion 
strain is also uniform at 0.035, thus the SR (2.86) is 
almost the same as the other cases, and the MR is 
estimated to be 5.8 for circular inclusion. 

The above results indicate that elastic fields in 
the elastograms of gelatin-based phantoms are well 
predicted by Eshelby’s solution. Furthermore, the 
surface regression model proposed in Equation (12) can 

successfully predict the actual MRs of gelatin phantoms. 
Therefore, the pro- posed method has the potential to 
improve the diagnostic performance of elastography in 
breast cancer screening practice, as described in the 
subsequent sections. 

  
Human breasts are made up of fatty tissue with 

epithelial and stromal tissues and a number of masses 
inside, each of which has different echographic 
properties. Naturally, US and elastogram images 
commonly contain complex and noisy patterns, which 
require particular attention for the understanding and the 
utilization of them. This is particularly true for BIRADS 3 
and 4 lesions that are occasionally misdiagnosed even 
by experienced radiologists. Several case studies are 
presented here for the lesions in different BIRADS 
categories. 
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Figure 11: (a) US image of a gelatin phantom containing a stiff inclusion (E1/E0 = 5.1). Elastograms of gelatin 
phantoms with; (b) circular inclusion compressed up to 10% strain; (c) partially dissolved inclusion mimicking 
infiltrating carcinoma; (d) locally deformed matrix. 

Case 1: BIRADS 4 Lesion—Malignant 

Figure 12(a) are the US image of a BIRADS 4 

lesion where compressive load was applied to the top 
side of the image, and the elastogram produced from 
the dotted rectangular region in the US image. The 

elastogram shows that there is a stiff oblate lesion in the 

center deformed at about −0.008 strain. Matrix strain is 
hard to be estimated, as the lateral strains are not 
consistent along lateral direction, that is, the strain in the 
right side of the inclusion is much higher (−0.06) than 
that in the left side (−0.042). However, another stiff 

lesion can be seen in the right-bottom corner, and the 
tissue between two stiff lesions might be under higher 
local deformation. Therefore, the strain in the left side of 
the inclusion is regarded as the matrix strain, and the SR 
is estimated to be 5.25. Taking the a/c of 2.5, MR is 

estimated to 9.79 from Equation (12). As the estimated 

MR is in the range of cancerous lesions,16 this lesion is 
deemed malignant. Biopsy confirmed that it is an 
invasive mammary carcinoma. 

Case 2: BIRADS 4 Lesion—Malignant 

Figure 12(b) is the US image and the 
elastogram of a BIRADS 4 lesion. The shape of the 
lesion is not identifiable on the US image, but the 

elastogram clearly shows the existence of a large stiff 
lesion in the middle of the image. Highly compressed 

tissue is also observed above the lesion. The inclusion 

strain is about −0.01, whereas the matrix strain is about 

−0.05 in the left and −0.03 in the right sides of the 

lesion, respectively. As the lesion looks connected 

further to the right-side direction in the US image, the 

strain in the left side (−0.05) is taken as a matrix strain. 

By substituting the a/c of 1.6 and SR of 5, MR is 
estimated to be 9.37. Because this value is higher than 
the reported MR for cancer (~7),17 this lesion is 
diagnosed as a malignant tumor. Biopsy indicated that 
this is an invasive ductal carcinoma. 

Case 3: BIRADS 4 Lesion—Benign 

The lesion in Figure 12(c) is highly noticeable in 
US image and was classified as a BIRADS 4 lesion by a 
radiologist, which is usually regarded as malignant. In 
the elastogram, it shows a diagonally spread shape over 

a wide area, and is regarded as an oblate ellipsoid with 

the a/c of 2.2. Inclusion strain is not uniform, ranging 

from −0.052 to −0.03, whereas tissue strain is at about 
−0.05. Therefore, the maximum SR is up to 2.5 and the 
corresponding MR is estimated to be 3.86 from 
Equation (12). As this value is much lower than the 
reported range of MR for cancer, it may not be 
malignant. According to biopsy result, this is a benign 
fibroadenoma. A small lower strain region can be found 

in the left bottom corner. Although not histologically 

examined, this region may be another lesion.  
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Figure 12:
 

US images and elastograms of human breasts containing: (a) an invasive mammary carcinoma     
(BIRADS 4); (b) an invasive ductal carcinoma (BIRADS 4); (c) a fibroadenoma (BIRADS 4); (d) a necrotic 
hemorrhage (BIRADS 5).

 

Case 4: BIRADS 5 Lesion—Benign
 

The lesion in Figure 12(d) was clearly visible in 
the US image and was classified as BIRADS 5 by a 
radiologist. In the elastogram, inclusion strain is −0.025, 
while the matrix strain is between

 
−0.05 and −0.055. 

Assuming a circular inclusion and adopting the higher 
SR of 2.2 for

 
sensitivity, the

 
MR

 
is

 
estimated

 
to

 
be

 
4.13.

 

Usually
 

BIRADS
 

5
 

lesion
 
is

 
regarded

 
as

 
highly

 
likely

 

malignant; however, the low MR value suggests that this 
lesion should not be malignant. Biopsy confirmed       
that this lesion is a benign fibrosis with a necrotic 
hemorrhage.

 

IV.
 

Data Analysis and Discussion
 

Among
 
the

 
44

 
lesions

 
examined,

 
biopsy

 
results

 

indicated
 
that

 
21

 
were

 
benign

 
and

 
23

 
were

 
malignant, 

as summarized in Table 3. The most common malignant 
tumors were invasive mammary carcinoma and invasive 
ductal carcinoma (n = 9 for both), and the most 
common benign tumor was fibroadenoma (n = 7).      
As shown in Figure 13, the mean SR of malignant 
tumors was 6.26

 
± 2.06,

 
and

 
that

 
for

 
benign

 
entities

 
was

 

1.39
 

±
 

0.80.
 

However,
 

the
 

mean
 

MR
 

of
 

malignant
 

tumors and benign lesions was 12.71 ± 4.33 and      
1.88 ± 1.82,

 
respectively.

 

The significances of the differences in SR and 
MR were tested by applying Tukey’s post hoc test using 
q score determined by the following formula:

 

  
               

(13)
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Table 3:

 

Histologic Diagnoses in 44 Patients with Benign or Malignant Breast Lesions.

 

Benign Lesions (21)

  

Malignant Lesions (23)

  
 

Diagnosis

 

n

  

Diagnosis

 

n

 
 

Fibroadenoma

 

7

  

Mammary carcinoma (invasive, infiltrating)

 

9

 
 

Cyst

 

5

   
 

Fibrocyst

 

1

  

Ductal carcinoma (invasive, infiltrating)

 

9

 
 

Fibro fatty tissue

 

2

   
 

Fibrosis

 

1

  

Ductal carcinoma in situ (DCIS)

 

3

 
 

Benign fibro-epithelial tissue

 

2

  

Neuroendocrine carcinoma

 

1

 
 

Benign lactating adenoma

 

1

  

Metaplastic carcinoma

 

1

 
 

Other benign tissue

 

2

   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 Figure 13:

 
Mean values of SR and MR for benign and malignant cases, respectively. SR = strain ratio; MR = 

modulus ratio.
 Table 4:

 
Relevant Variables for Tukey’s Post Hoc Test.

 

    
 
M1

 
(Mean, Malignant)

 
 
M2

 
(Mean, Benign)

 
 
n (Number of samples)

 

6.261 ± 2.063
 1.390 ± 0.804
 21

 
 

12.712 ± 4.329
 1.882 ± 1.817
 23

 
 
k (Number of groups)

  
2
  

 
df Among groups

  
1
  

 
df Within groups

  
42

  
 
SSwithin

 
(Sum of squares within groups)

 
106.566

  
478.341

 
 
MSwithin

 
(Mean squares within groups)

 
2.537

  
11.389

 
 
q (Tukey’s score)

 
14.014

  
15.389

 
 
qcrit

 
(Critical q score, 95% confidence)

  
2.86

                    SR = strain ratio; MR = modulus ratio.
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where M1 and M2 are the mean value of each group, 
MSw is mean square within, and n is the number per 
each group. The relevant variables are listed in Table 4. 
From the Tukey’s significance/probability table,47 critical 
Tukey’s score (qcrit) corresponding to 95% confidence 
is 2.86. The q score determined for SR and MR are 
14.01 and 15.39, respectively, thus it can be concluded 
that unequal variances exist within the groups, and the 
differences are significant.

This can be further verified with unpaired two-
sample t test.48 For SR, t statistic is calculated to be 
2.35. For the degree of freedom (df) of 43, t value for 
95% confidence level was 2.0181; thus the SRs between 
malignant tumors and benign lesion were significantly 
different (p < 0.05) with a small margin. However, t 

statistic for MR was 11.09; thus, the difference of MRs
between malignant tumors and benign entities were
statistically significant with a much higher confidence 
level (p < 0.00001).

Using the receiver-operating characteristic 
(ROC) curve of SR, the area under the curve (AUC) was 
0.9341, and the best cutoff SR value of 3.1 was obtained 
at the maximum Youden’s index of 0.86957. With this 
cutoff SR, the sensitivity, specificity, and accuracy were 
91.3%, 90.5%, and 90.9%, respectively. For ROC curve 
of MR, AUC was 0.94824, and the best cutoff MR was 
5.67 at the maximum Youden’s index of 0.95238. The 
sensitivity, specificity, and accuracy were 100%, 95.2%, 
and 97.7%, respectively.

Variables SR MR



 

The proposed surface regression model 
considers only two input parameters, a/c and SR, to 
predict MR. Nevertheless the adoption of MR in breast 
cancer screening could significantly improve both 
confidence level and the diagnostic performance, 
compared with SR. In statistical analysis, the mean of 
SR was different by 4.87 between benign and malignant 
lesions, whereas the difference of the mean of MR 
increased up to 10.83. Considering the standard 
deviation (2.06 and 0.80 for SR and 4.33 and 1.82 for 
MR), the difference between benign and malignant SR 
can be even smaller, increasing the ratio of gray cases 
that require further invasive testing. However, the means 
of MR for benign and malignant lesions are different 
enough to differentiate between benign and malignant 
lesions, thus benign biopsy could be reduced by      
using MR. 

The proposed approach has an artifact that a/c 
ratio can be varied depending on the application angle 
of US probe, but by manipulating the probe angle with 
imaging the lesion, maximum a/c for oblate lesion or 
minimum a/c for prolate lesion can be obtained for 
conservative assessment of MR. Also, the proposed 
approach is still limited to relatively simple ellipsoidal 
shapes and the protocols for irregular shapes of lesion 
have been yet established, which may be the next 
milestone of the future research. 

V. Conclusion 

We investigated the transfer characteristic of 
observed contrast, SR, from elastography in predicting 
the true contrast, MR, by using the Eshelby’s solution. It 
was found that SR not only significantly underestimates 
MR, but also varies with the shape and the modulus of 
the lesion. A surface regression model to predict MR 
from axial ratio and SR was proposed and verified 
through the application to gelatin phantoms. The model 
was further applied to human breast elastograms 
containing different types of lesions, and statistical 
analysis indicated that significant improvement in both 
confidence level and diagnostic performance could be 
achieved by adopting MR predicted by the model. The 
model can be utilized for the screening of breast cancer 
by comparing the correlated MR from elastography with 
actual modulus data of various tissues from mechanical 
testing. 

Appendix 

Supplementary Materials 
Matlab codes for Eshelby’s solution associated 

with this article can be found in the online version. 
Please run Eshelby_GUI.m, which can be found from 
Eshelby.rar. 
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