<table>
<thead>
<tr>
<th>Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Journal of Medical Research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Apostolos Ch. Zarros</td>
<td>DM, Degree (Psychio) holder in Medicine, National and Kapodistrian University of Athens, MRes, Master of Research in Molecular Functions in Disease, University of Glasgow FRNS, Fellow, Royal Numismatic Society Member, European Society for Neurochemistry Member, Royal Institute of Philosophy Scotland, United Kingdom</td>
</tr>
<tr>
<td>Dr. William Chi-shing Cho</td>
<td>Ph.D., Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong</td>
</tr>
<tr>
<td>Dr. Alfio Ferlito</td>
<td>Professor Department of Surgical Sciences, University of Udine School of Medicine, Italy</td>
</tr>
<tr>
<td>Dr. Michael Wink</td>
<td>Ph.D., Technical University Braunschweig, Germany, Head of Department Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany</td>
</tr>
<tr>
<td>Dr. Jixin Zhong</td>
<td>Department of Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, US</td>
</tr>
<tr>
<td>Dr. Pejcic Ana</td>
<td>Assistant Medical Faculty Department of Periodontology and Oral Medicine University of Nis, Serbia</td>
</tr>
<tr>
<td>Rama Rao Ganga</td>
<td>MBBS, MS (University of Health Sciences, Vijayawada, India), MRCS (Royal College of Surgeons of Edinburgh, UK), United States</td>
</tr>
<tr>
<td>Dr. Izzet Yavuz</td>
<td>MSc, Ph.D., D Ped Dent., Associate Professor, Pediatric Dentistry Faculty of Dentistry, University of Dicle Diyarbakir, Turkey</td>
</tr>
<tr>
<td>Sanguansak Rerksuppaphol</td>
<td>Department of Pediatrics Faculty of Medicine, Srinakhartinwirot University, NakornNayok, Thailand</td>
</tr>
<tr>
<td>Antonio Simone Laganà</td>
<td>M.D. Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi” University of Messina, Italy</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Han-Xiang Deng</td>
<td>Associate Professor and Research Department</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Roberto Sanchez</td>
<td>Associate Professor</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Feng Feng</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Hrushikesh Aphale</td>
<td>M.D., Ph.D., Seoul National University Medical College, Seoul, Korea Department of Obstetrics and Gynecology</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaurav Singhal</td>
<td>Master of Tropical Veterinary Sciences, currently pursuing Ph.D in Medicine</td>
</tr>
<tr>
<td>Dr. Aarti Garg</td>
<td>Bachelor of Dental Surgery (B.D.S.) M.D.S. in Pedodontics and Preventive Dentistry Pursuing Phd in Dentistry</td>
</tr>
<tr>
<td>Name</td>
<td>Qualifications/Fields</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sabreena Safuan</td>
<td>Ph.D (Pathology) MSc (Molecular Pathology and Toxicology) BSc (Biomedicine)</td>
</tr>
<tr>
<td>Arundhati Biswas</td>
<td>MBBS, MS (General Surgery), FCPS, MCh, DNB (Neurosurgery)</td>
</tr>
<tr>
<td>Getahun Asebe</td>
<td>Veterinary medicine, Infectious diseases, Veterinary Public health, Animal Science</td>
</tr>
<tr>
<td>Rui Pedro Pereira de Almeida</td>
<td>Ph.D Student in Health Sciences program, MSc in Quality Management in Healthcare Facilities</td>
</tr>
<tr>
<td>Dr. Suraj Agarwal</td>
<td>Bachelor of dental Surgery Master of dental Surgery in Oromaxillofacial Radiology. Diploma in Forensic Science & Oodontology</td>
</tr>
<tr>
<td>Dr. Sunanda Sharma</td>
<td>B.V.Sc.& AH, M.V.Sc (Animal Reproduction, Obstetrics & gynaecology), Ph.D.(Animal Reproduction, Obstetrics & gynaecology)</td>
</tr>
<tr>
<td>Osama Alali</td>
<td>PhD in Orthodontics, Department of Orthodontics, School of Dentistry, University of Damascus. Damascus, Syria. 2013 Masters Degree in Orthodontics.</td>
</tr>
<tr>
<td>Shahanawaz SD</td>
<td>Master of Physiotherapy in Neurology PhD- Pursuing in Neuro Physiotherapy Master of Physiotherapy in Hospital Management</td>
</tr>
<tr>
<td>Prabudh Goel</td>
<td>MCh (Pediatric Surgery, Gold Medalist), FISPU, FICS-IS</td>
</tr>
<tr>
<td>Raouf Hajji</td>
<td>MD, Specialty Assistant Professor in Internal Medicine</td>
</tr>
<tr>
<td>Dr. Shabana Naz Shah</td>
<td>PhD in Pharmaceutical Chemistry</td>
</tr>
<tr>
<td>Surekha Damineni</td>
<td>Ph.D with Post Doctoral in Cancer Genetics</td>
</tr>
<tr>
<td>Vaishnavi V.K Veddam</td>
<td>Master of dental surgery oral pathology</td>
</tr>
<tr>
<td>Tariq Aziz</td>
<td>PhD Biotechnology in Progress</td>
</tr>
</tbody>
</table>
i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Contents of the Issue

2. Pharmaco-Economic Evaluation of the Treatment used in Ophthalmological Practice. 5-11
3. Ophtalmologic Cystinosis. 13
4. Using the Method of Mathematical Planning of the Experiment in the Development of an Optimal Technology for Obtaining Dry Extract from the Chological Collection “Triflos”. 15-20
5. Water Contamination by Nitrates and its Thyroid Disruptive Action. Bioassay on Xenopus Laevis. 21-34
7. Quality Assessment of Active Substances that Demonstrate Sedative Effect of “Flegmen” Syrup. 43-48
8. Review on Emulsomes as Carriers for Drug Delivery. 49-53

v. Fellows
vi. Auxiliary Memberships
vii. Preferred Author Guidelines
viii. Index
Szmodits László Pharmacist (Hungary, Budapest) Hungarian Pharmacist József Dorner, Pre-Eminent Botanist (1808-1873)

By Szmodits László

Introduction - The author describes the life and scientific work of the Hungarian pharmacist, József Dorner (1808-1873). Dorner worked for 16 years a general pharmacist. But then turned to a special discipline of his profession and became an excellent botanist. He performed at first floristic research, but later concentrated his attention to plant anatomy and physiology, by systematic application of the microscope, be inaugurated a in new aspect in botanica. Very soon, already in 1853, was Dorner discussing bioenergetics. He was selected to Corresponding Member of the Hungarian Academy of Sciences and was a distinguished botanical expert of the Royal Association of Natural Sciences. He has had been estimated as an excellent teacher as well.

GJMR-B Classification: DDC Code: 581.96805 LCC Code: QK396

Strictly as per the compliance and regulations of:

© 2022, Szmodits László. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Szmodits László Pharmacist (Hungary. Budapest) Hungarian Pharmacist József Dorner, Pre-Eminent Botanist (1808-1873)

Szmodits László

I. INTRODUCTION

The author describes the life and scientific work of the Hungarian pharmacist, József Dorner (1808-1873). Dorner worked for 16 years as a general pharmacist. But then turned to a special discipline of his profession and became an excellent botanist. He performed at first floristic research, but later concentrated his attention to plant anatomy and physiology, by systematic application of the microscope, he inaugurated a new aspect in botanica. Very soon, already in 1853, was Dorner discussing bioenergetics. He was selected to Corresponding Member of the Hungarian Academy of Sciences and was a distinguished botanical expert of the Royal Association of Natural Sciences. He has been estimated as an excellent teacher as well.

Life path until 1849

József Dorner was of German nationality. Its original name was József Thurner junior woh1 1834. The time of the name change was confirmed by a letter from the Lutheran parish of Győr-Hungary. Was born in Győr on November 2, 1808 (1). His father József Thurner senior merchant in Győr. The mother Susanna Schmidt. He completed primary school at his birthplace and then an at Lutheran grammar school in Sopron. Here he liked botany, he studied the flora around Sopron with great interest (2, 3).

At that time was enough to complete 6 high school classes to enter the profession of pharmacist. In 1824, they practiced a Hungarian Crown Pharmacy in Sopron. Here learned the Latin names of Medicines and took part in the formulations Technologist also performed an operation (4). After 3 three, he passed the internship successfully. Between 1827 and 1831, he was an assistant in Pest and Bratislava (today Slovakia,) the old Hungarian name: Pozsony, German: Pressburg. After his time an assistant, he enrolled at the University Vienna, where he obtained a degree in pharmacy in 1832. In Vienna, he met the chief physician István Endlicher (1804.-1849), a botanist, who had a significant influence on the Work of of József Dorner.

He published two books on chemical technology: 1. on the theory and practice of vinegar production. 1841.- 2. the process of brandy with mashing, making malt and years, Pesth, 1843. (1).

In 1842 the Hungarian Academy of Sciences announced a tender for the change of the Climate of Hungary about, the flora and fauna- Dorner observed weather data every 2v hours, a day for 5 years wind directions. He also often recorded the temperatures of the water in a well in Buda, Tabán. He continued this work later until 1850. Was valuable because it dealt extensively with 100 gold honors by Academy in 1847 (6, 6, 7).

In 1846 he decided to compile and publish a manul on the flora of Hungary. Heuffel and Sadler welcomed Dorner's plan and offered to collaborate with him, but due to Sadler's death in 1848 and Heuffel's illness, the plan was never realized. Dorner could not undertake the enormous work alone (1, 4).
On March 13 the 1847, was elected a member of the Royal Hungarian Society of Natural Sciences. As one of the notabilities of the botanical committee. He was invited to take over the book collections of the Society. He organized the enlargement of the collections trough exhange (8).

In 1848 during the was of independece the wars invited me as a ministerial secretary to the Ministry of Religion and Public Education. However, after the capitulation of 1849. He retook privacy, At that time he devoted all his to botany. (3, 9).

His life and work from 1851 until his death

In 1851-53 he gave several lectures in the Hungarian Society of Natural Sciences: parasitic plants, fertilization of plants and plant cells (10.11). In 1853 a book was pulished on grape diseases.

In 1853 he delivered a lecture at the Royal Hungarian Society of Natural Sciences with the title;„The plant kingdom and nan“. In a paper published in the journal „Új Magyar Múzeum” (New Hungarian Museum) he discussed the Darwinist theory of evolution:

„The times when botany was confined to the identification, of genera and species... have passed. The new science has assumed a higher standing. It no longer satisfies itself with the classification of forms..., but seareches for their inner relationships."

In the paper „The plant cell.”. He wrote: „The study of cells in the most remarkable part of the science of botany, which with the introduction of the microscope has become a most interesting subject. There exists in the cell a remarkable moving force, so far physically unidentified, whereby the cell content spreads in different ways unnocited in the body of the plant."

József Dorner realized that the tissue structure of plants would only become phenomenon of plants, which is based on motion and metabolism. At that time it was still novel in botany.

On December 15, 1858, he was elected a corresponding member of the Hungarian Academy of Sciences. The title of his inaugural lecture was: „Online of the history and application of the microscope."

In the 1853, He taught natural science (biological subjects) es in the Lutheran grammar school in Szarvas, Békés country. The from 1860 in a similar school in Pest. Both shools taught in Hungarian, but he also taught Chemistry, Physics, German and French.

Textbooks
1. Elements of Botany, 1864. Pest,
2. Elements of Mineralogy: 1858, 1865, Pest,
3. Elements of Zoology:
 - Uninhabited: 1864, Pesth,
 - Reptiles, fish, birds. 1863. Pesth,
 - Mammals: 1863. 1874, Pesth (2).
József Dorner's human characteristics, disease, and death

He was a highly educated, and a very well-prepared humble man. He also acknowledged superstitious customs. Through his scholarly figure he can easily recognize superstars habits as well. He was always a success with the skill of an excellent performer. He was characterized by beautiful Hungarian speech. He justified what he had to say, He calced humor to his performances. He wo speak to hin listened intetly to hin.

He married in 1845, but had no children from marriage. His wife died early, so so he lived alone. He also taught it has long illness. He had an incurable heart problem. So died on 9 th October, 1873. Fiume Road in Budapest, his heas still rest in public cemetery today. The memory Hungarian Pharmacist Pantheon is preserved.

II. Summary

József Dorner was one of the first Hungarian researches in plant morphology snd physiology with a degree in pharmacy. An thet time, he was not yet able to teach an the university as an academy. But with a pen and word, he made great. He was an excellent instructor. I wrote in English so that, readers could get to know the work of Hungarian pharmacists.

"Respect for the greats and noble tradition of the past, the main guarantee our ascension."

(Vilmos Milkó Hungarian doctor-professor, 1878-1956)

Literatuty

11. Új Magyar Múzeum, Pest, 3, 365-365, 574-588 (1853).
Szmodits László Pharmacist (Hungary. Budapest) Hungarian Pharmacist József Dorner, Pre-Eminent Botanist (1808-1873)
Pharmaco-Economic Evaluation of the Treatment used in Ophthalmological Practice

By Shoyusuf F. Shodmanov & Shakhnoza Z. Umarova

Abstract- The most important among the clinical forms of glaucoma is primary open-angle glaucoma (POAG), which, according to various authors, occurs in 70%-92% of cases. Due to the high prevalence of POAG, late detection and serious prognosis for visual functions, this disease occupies a special place in clinical ophthalmology. The aim of the study is to conduct a pharmacoeconomic evaluation of Tafluprost vs Travoprost in patients with POAG. Materials and methods of research is pharmacoeconomic methods of analysis, in particular the calculation of the relative risk, the calculation of the probability of events, cost-effectiveness analysis. According to the calculated results of pharmacoeconomic analyzes, Tafluprost was relatively less expensive and more clinically effective than Travoprost in patients with primary open-angle glaucoma. Alternative treatment with Tafluprost contributes to savings in the overall treatment procedure. Therefore, we recommend adding Tafluprost to the list of essential medicines.

Keywords: pharmacoeconomic evaluation, ophthalmology, medicines, relative risk, probabilities of events, cost-effectiveness analysis.

GJMR-B Classification: DDC Code: 617.7 LCC Code: RE1

Strictly as per the compliance and regulations of: © 2022. Shoyusuf F. Shodmanov & Shakhnoza Z. Umarova. This research review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Pharmaco-Economic Evaluation of the Treatment used in Ophthalmological Practice

Shoyusuf F. Shodmanov & Shakhnoza Z. Umarova

Abstract: The most important among the clinical forms of glaucoma is primary open-angle glaucoma (POAG), which, according to various authors, occurs in 70%-92% of cases. Due to the high prevalence of POAG, late detection and serious prognosis for visual functions, this disease occupies a special place in clinical ophthalmology. The aim of the study is to conduct a pharmacoeconomic evaluation of Tafluprost vs Travoprost in patients with POAG. Materials and methods of research is pharmacoeconomic methods of analysis, in particular the calculation of the relative risk, the calculation of the probability of events, cost-effectiveness analysis. According to the calculated results of pharmaco-economic analyzes, Tafluprost was relatively less expensive and more clinically effective than Travoprost in patients with primary open-angle glaucoma. Alternative treatment with Tafluprost contributes to savings in the overall treatment procedure. Therefore, we recommend adding Tafluprost to the list of essential medicines.

Keywords: pharmaco-economic evaluation, ophthalmology, medicines, relative risk, probabilities of events, cost-effectiveness analysis.

I. Introduction

The most important among the clinical forms of glaucoma is primary open-angle glaucoma (POAG), which, according to various authors, occurs in 70%-92% of cases. Due to the high prevalence of POAG, late detection and serious prognosis for visual functions, this disease occupies a special place in clinical ophthalmology [1].

The proportion of the disease caused by this type of pathology, requiring surgical treatment, is generally small. However, the absolute number of patients with this pathology is quite large: if, in general, in Uzbekistan, the absolute number of patients (2019) with various forms of eye diseases was more than 600 thousand people, then with glaucoma the number of patients was 9,000 [2, 3].

Despite significant advances in the medical treatment of this disease, the percentage of blindness and low vision as a result of glaucoma remains stable and does not tend to decrease. But with the timely detection of the disease, with the help of drug treatment, you can reduce the level of intraocular pressure (IOP).

The issue of introducing a more effective, but less expensive drug remains relevant [4].

The aim of the study was to conduct a pharmaco-economic evaluation of Tafluprost vs Travoprost in patients with POAG.

II. Materials and Methods

In this research pharmaco-economic methods of analysis, in particular relative risk calculation, probability of events calculation, cost-effectiveness analysis was performed in order to achieve the purpose of the investigation.

III. Results and Discussions

To evaluate the cost-effectiveness of Tafluprost compared with Travoprost in patients with POAG, a Markov analytical model was implemented. The structure of the model was taken from the NICE Guide (2017). Patients were initially classified into glaucoma conditions based on visual field characteristics (Hoddap–Parrish–Anderson criteria) [5].

To monitor patients for more than 3 years, a 1-month cycle was used. During a Markov cycle, members of a cohort may stay at their stage, die, or progress. Because glaucoma can only be prevented from worsening further, none of the cohort members can regress along the clinical path. Based on the HPU (hectopascal unit of pressure) classification system, patients were divided using the mean deviation (MD) value into early (MD less than -6dB), moderate (MD less than -12dB) and severe (MD greater than -12dB). It was believed that the main impact of each strategy was to increase or decrease the risk of developing POAG. However, according to clinical data, the most detailed risk factor for treatment outcomes is adjusting for changes in IOP. To find the relative risk of developing glaucoma of each of the interventions, a systematic search was carried out, moreover, the probabilities of transition between stages were found using another search in the literature. Since the model assumed that an increase in IOP is associated with a further increase in the likelihood of developing glaucoma, this study showed that costs decrease when the progression of the disease is inhibited [6, 7].
Several input parameters were used to populate the model. These baseline data were based on clinical evidence derived from effective evidence review, attempting to broadly allocate resources to guideline updates and supplementary databases. Model inputs have been reviewed and validated by clinical experts. More details on sources - clinical outcomes, utilities and costs are explained below.

Initially, the search was conducted to determine the likelihood of a treatment-related transition during the follow-up period. Since all the data obtained reflected a period of time that exceeded the duration of the cycle in our model, we converted the information into monthly probabilities (Table 1.). The incremental cost-effectiveness study presents the annual risk of progression to routine glaucoma with moderate to severe clinical treatments. Input parameters were based on 601 patients followed up for 5 years in the Primary Glaucoma Treatment Collaborative Study (PGTCS). Calculation of transition probabilities from early to severe glaucoma was based on various combinations of methods, including natural decline, from the study of early overt glaucoma to the NICE methodology [11]. The study reported transition probabilities by estimating the
number of months it takes a normal patient to change from one state of well-being, then to the next, which was found to decrease in efficiency-adjusted MD effectiveness each month. IOP and age were identified as significant risk factors. The total mortality of people over 65 years of age was obtained from WHO sources to calculate the Markov model.

Table 1: Probabilities of transition between health states of patients with glaucoma

<table>
<thead>
<tr>
<th>Glaucoma Stages</th>
<th>Average monthly probabilities</th>
<th>Min</th>
<th>Max</th>
<th>Author, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (early to moderate)</td>
<td>0.003779977</td>
<td>0.003023982</td>
<td>0.004535973</td>
<td>Rein et al., 2009, Lichter et al., 2001</td>
</tr>
<tr>
<td>P (moderate to severe)</td>
<td>0.003779977</td>
<td>0.003023982</td>
<td>0.004535973</td>
<td>Rein et al., 2009, Lichter et al., 2001</td>
</tr>
<tr>
<td>Total mortality</td>
<td>0.000483333</td>
<td>0.000386667</td>
<td>0.00058</td>
<td>World Health Organization, 2016</td>
</tr>
</tbody>
</table>

Since glaucoma is a chronic disease, it has a great impact on many stages of a patient's life. Although glaucoma eventually leads to permanent blindness, the performance of daily activities and the quality of life recognized by individuals seriously affect health in the early stages of the disease. There are many potential causes of the impact of glaucoma on the patient's quality of life, such as loss of visual field, stress and anxiety due to tests in clinics, impairment and cost of medical care [13]. Many authors have investigated the impact of illness at health stages on the quality of life of patients. Utility values for early, moderate, and severe health conditions in glaucoma were derived primarily from two studies. The first study included a cross-sectional study of 434 patients with 5 common eye conditions, including glaucoma. Computerized preference scores were used to rate standard utilities from 0 (death) to 1 (excellent health). The second study analyzed the impact of the applied therapy on the utility of patients with glaucoma. The sample population consisted of 225 patients in the same age group as in our evaluation. To the best of our knowledge, a noteworthy finding from this study is that no interference was found between treatment and utility of glaucoma. When reviewing both studies, no rapid discrepancies were found between beneficial outcomes at different stages of glaucoma. Table 2 shows the detailed utility values used in the model.

Table 2: Utility values used in the economic model

<table>
<thead>
<tr>
<th>Health status</th>
<th>Utility</th>
<th>Min.</th>
<th>Max.</th>
<th>Author, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early glaucoma</td>
<td>0.92</td>
<td>0.736</td>
<td>1.104</td>
<td>Lee et al. (2008) and Palette Guedes et al. (2015)</td>
</tr>
<tr>
<td>Moderate glaucoma</td>
<td>0.89</td>
<td>0.712</td>
<td>1.068</td>
<td>Lee et al. (2008) and Palette Guedes et al. (2015)</td>
</tr>
<tr>
<td>Severe glaucoma</td>
<td>0.86</td>
<td>0.688</td>
<td>1.032</td>
<td>Lee et al. (2008) and Palette Guedes et al. (2015)</td>
</tr>
<tr>
<td>Death</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost and resource utilization parameters were obtained from a clinical specialist who works at the Specialized Research Center for Eye Microsurgery in Tashkent.

To calculate the monthly intervention costs, we first derived the annual cost of POAG by multiplying the average unit cost by the expected resource use. Each stage of the disease includes the necessary diagnostic costs, the salaries of medical staff and the weighted cost of medicines. Average prices for prostaglandin analogues and eye drop with beta-blockers were obtained from local pharmacies in Tashkent. After the early stage of glaucoma, monotherapy with Travoprost (Travatan 2.5 ml) or Tafiprost (Teflotan 2.5 ml) was prescribed. However, patients with moderate progression are treated with combined beta-blockers and prostaglandin analogues. The operation is applied on both eyes in a severe condition of glaucoma. In accordance with the recommendations of experts, the frequency of medical diagnoses was set to 4 times a year, that is, once every three months. In addition, it is estimated that 15 vials of Teflotan 2.5 ml and Travatan 2.5 ml are consumed annually per patient. Meanwhile, the patient is annually prescribed 7 vials of timolol maleate, 5 ml each, and Oftan® Timolol, 5 ml each.
Cost-effectiveness study used actual numbers or averages as model parameters. This strategy gives the best estimate of the cost-effectiveness of the Tafluprost intervention, but does not take into account the uncertainty about model inputs or the likelihood of a different sequence of events. A widely used cost-effectiveness measure is to apply the incremental cost-effectiveness ratio (ICER) when comparing Tafluprost and Travoprost eye drops.

During the cost-effectiveness analysis, which gives the best estimate of the cost-effectiveness of Tafluprost, a sensitivity analysis was performed to assess the vulnerability of the model and clinical incidents. To assess the effect of changing one parameter or the parameter that had the greatest impact on the model results, we performed a one-sided sensitivity analysis. When performing a one-sided sensitivity analysis, the valid ranges of the model input data were used. This made it possible to evaluate the individual impact of model inputs on the results. To conduct the Monte Carlo simulation, the model was run on a cohort of 1000 patients and the selected inputs were randomly selected based on the assigned distribution. The results were presented in Table 5, then looking at the cost-effectiveness threshold at the country level, the prospects for the appropriateness of the proposed intervention were assessed.
Table 5: Input range for one-sided sensitivity analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Overall mortality in patients over 65 years of age</td>
<td>0.00058</td>
</tr>
<tr>
<td>Cost discount rate</td>
<td>0.003</td>
</tr>
<tr>
<td>Results discount rate</td>
<td>0.003</td>
</tr>
<tr>
<td>The cost of a severe stage per month Tafluprost</td>
<td>$630,047.60</td>
</tr>
<tr>
<td>The cost of a severe stage per month Travoprost</td>
<td>$711,297.60</td>
</tr>
<tr>
<td>Likelihood of switching from moderate to severe glaucoma with Tafluprost</td>
<td>0.004535973</td>
</tr>
<tr>
<td>Probability of going from early to moderate glaucoma with Tafluprost</td>
<td>0.004535973</td>
</tr>
<tr>
<td>Relative risk of Travoprost</td>
<td>1.235337423</td>
</tr>
<tr>
<td>Health Benefits of Early Glaucoma</td>
<td>1.104</td>
</tr>
<tr>
<td>Moderate stage cost per month Tafluprost</td>
<td>$303,422.60</td>
</tr>
<tr>
<td>Health Benefits in Severe Glaucoma</td>
<td>1.032</td>
</tr>
<tr>
<td>Early-stage cost per month Tafluprost</td>
<td>$261,714.27</td>
</tr>
<tr>
<td>Cost of the moderate stage per month Travoprost</td>
<td>$384,672.60</td>
</tr>
<tr>
<td>Early-stage cost per month Travoprost</td>
<td>$342,964.27</td>
</tr>
<tr>
<td>Benefits of Moderate Health in Glaucoma</td>
<td>1.068</td>
</tr>
</tbody>
</table>

The results of a one-way sensitivity analysis suggested that the variable that strongly influenced the economic model was the utility of the moderate stage of glaucoma. In absolute terms, when the QALY health utility of moderate glaucoma declined, ICER increased nearly 6-fold. In addition, when the risk of spending on Travoprost in early to moderate glaucoma was modified, their ICER showed balanced volatility for both parties per QALY. The results of other models are relatively less sensitive than the above parameters (Fig. 1).

Fig. 1: Results of One-Way Sensitivity Analysis
The results from the cost-effectiveness analysis for the reference case are presented in Table 6. On average, the new intervention dominated by Tafluprost is less costly and clinically more effective than the comparator drug (Travoprost). We calculated that a savings phenomenon could be observed in the treatment of patients with POAG (compared to the Brown study et al.), so ICER was negative.

Table 6: Results of cost-benefit analysis

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Average total cost</th>
<th>Average overall effect, QALYs</th>
<th>ICER UZS/QALY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travoprost</td>
<td>9,721,341</td>
<td>30.878</td>
<td>-1,069,362</td>
</tr>
<tr>
<td>Tafluprost</td>
<td>7,582,616</td>
<td>30.880</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{ICER} = \frac{(7,582,616 - 9,721,341)}{(30.880 - 30.878)} = -1,069,362 \text{ UZS/QALY} \]

Next, we performed a budget impact analysis. According to the results of the analysis, it can be seen that in the treatment of glaucoma, when using Tafluprost, you can save 2,138,725 UZS (Table 7).

Table 7: The results of the "influence on the budget"

<table>
<thead>
<tr>
<th>Transition in treatment glaucoma on Tafluprost with Travoprost</th>
<th>Payment</th>
<th>the effect influence on budget, sum</th>
<th>A comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9,721,341 - 7,582,616</td>
<td>= 2,138,725</td>
<td>Saving funds</td>
</tr>
</tbody>
</table>

The cost-effectiveness analysis based on the model showed that the treatment of patients with POAG with Tafluprost has a dominant advantage over the reference drug Travoprost. Despite marginal improvement in quality of life, the Tafluprost intervention resulted in cost savings due to less resource use. However, it is interesting to note that our results are not consistent with a recent US study comparing several prostaglandin analogs in the treatment of patients with glaucoma. Brown Research et al. (2019) showed that Travoprost is more costly and effective than Tafluprost. The additional allowance for the target group was about US$214,828. However, since the economic study took into account cost parameters related to a developed country such as the United States, it is inappropriate to compare with our findings from the perspective of Uzbekistan. Our analysis shows that the exclusive use of Tafluprost rather than Travoprost in the treatment of patients with glaucoma prevents additional economic burden. Under these model assumptions, it has been calculated that delaying progression in early states of glaucoma may prevent patients from taking additional glaucoma medications and even eye surgery in advanced stages of the disease. Based on this, we can assume that Tafluprost would be the most practical option in the reference center environment for the treatment of glaucoma, which would save money for the healthcare system in Uzbekistan.

The study has many strengths. A short analytical decision tree and a Markov model were used to collect epidemiological, clinical, resource utilization, and outcome estimates. The model included the likelihood of glaucoma progressing to advanced stages. In addition, these stages reflect both the clinical and economic consequences of glaucoma. The literature used to derive the specific parameters in our model is based on the sufficient size of the observation period and the target population. We used specific cost data for Uzbekistan, which was unprecedented in this area for individual interventions in the treatment of patients with POAG.

IV. Conclusions

According to the calculated results of pharmacoeconomic analyzes, Tafluprost was relatively less expensive and more clinically effective than Travoprost in patients with primary open-angle glaucoma. Alternative treatment with Tafluprost contributes to savings in the overall treatment procedure. Therefore, we recommend adding Tafluprost to the list of essential medicines.

References Références Referencias

Ophtalmologic Cystinosis
By Fiqhi Aissam

Introduction- Cystinosis is a very rare lysosomal, autosomal recessive disease (1/200,000 births) caused by a mutation in the CTNS gene (Chz 17) encoding a protein called cystinosine. The intralysosomal accumulation of cystine induces the formation of insoluble crystals responsible for progressive multiple organ failure. Cystinuous nephropathy is manifested by failure to thrive, Fanconi syndrome, damage to the renal glomerulus and manifestations affecting other organs appearing as early as 6 to 12 months of life. The specific treatment for cystinosis is cysteamine. The management is multidisciplinary.

We report the case of a boy, aged 6 years, followed for cystinosis diagnosed at the age of 18 months with polyuropolydipsic syndrome. The patient has been treated with oral cysteamine (Cystagon) since the age of 2 years.

GJMR-B Classification: DDC Code: 724 LCC Code: NA500
Ophtalmologic Cystinosis

Fiqhi Aissam

Introduction

Cystinosis is a very rare lysosomal, autosomal recessive disease (1/200,000 births) caused by a mutation in the CTNS gene (Chz 17) encoding a protein called cystinosine. The intralysosomal accumulation of cystine induces the formation of insoluble crystals responsible for progressive multiple organ failure. Cystinous nephropathy is manifested by failure to thrive, Fanconi syndrome, damage to the renal glomerulus and manifestations affecting other organs appearing as early as 6 to 12 months of life. The specific treatment for cystinosis is cysteamine. The management is multidisciplinary.

We report the case of a boy, aged 6 years, followed for cystinosis diagnosed at the age of 18 months with polyuropolydipsic syndrome. The patient has been treated with oral cysteamine (Cystagon) since the age of 2 years.

On the ophthalmological level, his corrected visual acuity is evaluated at 10/10 P2 ODG, and the intraocular pressure is at 12 mmHg in both eyes. The main complaint of this patient is photophobia. He is treated with cysteamine eye drops (Cystadrops®) at a dosage of 4 drops per day and additional treatment with artificial tears. With the slit lamp, we find a corneal cystinosis of grade 1.50 according to the classification of Gahl (figure 1): deposits of birefringent spindle-shaped crystals accumulating in the corneal stroma, and progressing from the anterior stroma to the endothelium. The appearance is sparkling and multicolored on biomicroscopic examination.

The severity of the corneal involvement can be assessed by corneal OCT.

The fundus does not show retinopathy. Cystinosis retinopathy is very inconstant. Crystal deposits are sometimes found all over the retina, associated with depigmentation and which can progress to retinal atrophy. It can be explored by retinal angiography. The crystals can also deposit on the conjunctiva, iris, ciliary body, anterior lens capsule, choroid or optic nerve and cause various rarer manifestations, such as glaucoma by closing the angle, papillary edema or visual field changes.

Ophthalmologic monitoring for cystinosis should be annual, with visual acuity assessment, Gahl score estimate supplemented by OCT imaging of the cornea, measurement of intraocular pressure and fundus examination.

Figure 1: Corneal crystal deposits.

This case illustrates a well-followed patient who is coping well with his illness.

References Références Referencias

Author: Hospital Militaire Rabat Maroc. e-mail: fiqhaiissam@gmail.com
This page is intentionally left blank
Using the Method of Mathematical Planning of the Experiment in the Development of an Optimal Technology for Obtaining Dry Extract from the Chological Collection “Triflos”

By Nargiza Abdumajidovna Abdurakhmanova & Yokut Saidkarimovna Karieva

Tashkent Pharmaceutical Institute

Abstract- Research is carried out on the development of technology for the dry extract of the choleretic collection "Triflos" by the method of mathematical planning of the experiment. In this case, the method of a four-factor experimental plan based on a 5x5 Greek-Latin square is used. The use of short-term ultrasonic exposure to intensify the extraction of target groups of biologically active substances is scientifically substantiated. The proposed technology is tested in industrial conditions. The dry extract yield was 21%.

Keywords: choleretic collection "Triflos", dry extract, the degree of grinding of raw materials, extractant, temperature, hydromodule, circulating extraction, ultrasound.

GJMR-B Classification: DDC Code: 641.4 LCC Code: TX603

© 2022. Nargiza Abdumajidovna Abdurakhmanova & Yokut Saidkarimovna Karieva. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Using the Method of Mathematical Planning of the Experiment in the Development of an Optimal Technology for Obtaining Dry Extract from the Chological Collection “Triflos”

Nargiza Abdumajidovna Abdurakhmanova & Yokut Saidkarimovna Karieva

Abstract: Research is carried out on the development of technology for the dry extract of the choleretic collection "Triflos" by the method of mathematical planning of the experiment. In this case, the method of a four-factor experimental plan based on a 5x5 Greek-Latin square is used. The use of short-term ultrasonic exposure to intensify the extraction of target groups of biologically active substances is scientifically substantiated. The proposed technology is tested in industrial conditions. The dry extract yield was 21%.

Keywords: choleretic collection "Triflos", dry extract, the degree of grinding of raw materials, extractant, temperature, hydromodule, circulating extraction, ultrasound.

I. Introduction

The Decree of the President of the Republic of Uzbekistan Shavkat Mirziyoyev "On measures to further improve the provision of the population with medicines and medical products" dated October 31, 2016 is an important factor in expanding the scope of work in the pharmaceutical industry. This document outlines important tasks for increasing the localization of pharmaceutical production by expanding the use of local raw materials, in particular, medicinal plants, and improving the delivery of quality medicines to the population at affordable prices.

One of the tasks provided for in the Decree of the President of the Republic of Uzbekistan dated April 10, 2020 No. 4668 “On additional measures for the development of traditional medicine in the Republic of Uzbekistan” and No. PP-4670 "On measures for the protection, cultural cultivation, processing of wild medicinal plants and rational use of available resources" is the organization of cultivation and harvesting of plants and raw materials of non-plant species used in traditional medicine, conducting laboratory and scientific research in this direction, increasing the export potential of the industry, as well as integrating education, science and production processes. In this regard, the Tashkent Pharmaceutical Institute is carrying out consistent work to ensure the implementation of the priority tasks outlined in the resolutions.

Author: Tashkent Pharmaceutical Institute.
E-mail: nargiza_24.10.1975@mail.ru

One of the promising directions in the field of drug development is the creation of phytopreparations for the treatment and prevention of these diseases. More active usage of phytopreparations, both alone and in combination with synthetic drugs, depending on the severity and nature of diseases, will contribute to the use of drug-saving technologies in clinical practice. Natural biologically active substances of plants are evolutionarily closer to the human body than synthetic ones, they are easily included in metabolic processes and have practically no side effects, and many of them are precursors of physiologically active substances (hormones, mediators). Recent studies have shown that the healing properties of medicinal plants depend on the harmonious interaction of all active substances, which together have a broader effect than individually.

In this regard, studies on the conversion of collections and individual plants used in the form of infusions and decoctions into total preparations - extracts are very promising, since the possibility of their wider use is limited by the imperfection of the dosage form [1,2].

Summarizing the above, we can conclude that the creation of medicines and dietary supplements based on medicinal plant materials using a resource-saving extraction method (due to the maximum depletion of raw materials) is timely and relevant and corresponds to the social order of clinical medicine.

Given the above, the Tashkent Pharmaceutical Institute has developed a choleretic collection “Triflos”, consisting of the following types of herbal medicinal raw materials: flowers of tansy false yarrow, flowers of chamomile, yarrow herb. To date, studies are carried out on its standardization, the establishment of quality standards, as well as the study of specific activity and safety. Cholagogue collection when tested on laboratory rats showed more than 50% increase in bile secretion [3]. The pharmacotherapeutic effects of this collection, which mainly consist in the regulation of phospholipid metabolism in the liver and the normalization of bile flow due to the antispasmodic effect on the sphincter of the gallbladder, according to the opinion prevailing in the literature, is determined by the presence of a number of...
phenolcarboxylic acids and flavonoid compounds. So, in the composition of the collection components, along with essential oils, terpenoids, bitter and tannins, resins, organic acids and mineral salts, the presence of chlorogenic, rosmarinic, caffeic, ferulic acids and their corresponding glycosidic derivatives, as well as flavonoids: quercetin, luteolin, acacetin, apigenin and their glycosides. These literature data were confirmed by us experimentally [4].

The purpose of our research is to develop an optimal technology for obtaining a dry extract from this collection using the method of mathematical planning of the experiment.

II. Experiments and its Results

Currently, there are a large number of various extraction schemes designed to increase the yield of active substances, ensure maximum depletion of raw materials and enrichment of the extract with target biologically active substances (BAS). These extraction schemes also include factors that affect the completeness of extraction of biologically active substances, such as the nature and concentration of the extractant, the ratio of raw materials and extractant, temperature, type of extraction, etc. [5-18].

In order to facilitate the laborious process of finding the optimal conditions for extraction, we decided to apply the method of mathematical planning. Based on the characteristics of the technology for obtaining a dry extract, we chose a four-factor experimental plan based on a 5×5 Greek-Latin square. At the same time, the influence of the degree of grinding of raw materials (factor A), the concentration of ethyl alcohol (factor B), the hydromodulus (factor C) and the temperature regime (factor D) on the completeness of the yield of the sum of flavonoids in terms of quercetin in extraction is studied [19].

Factors and their levels are given in Table 1.

Table 1: Factors and their levels used in the experiment

<table>
<thead>
<tr>
<th>Factor and its levels</th>
<th>Factor value</th>
<th>Factor and its levels</th>
<th>Factor value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The degree of grinding of raw materials (factor A)</td>
<td>Ethyl alcohol concentration (factor B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁</td>
<td>2-4 mm</td>
<td>b₁</td>
<td>50%</td>
</tr>
<tr>
<td>a₂</td>
<td>5-7 mm</td>
<td>b₂</td>
<td>60%</td>
</tr>
<tr>
<td>a₃</td>
<td>8-10 mm</td>
<td>b₃</td>
<td>70%</td>
</tr>
<tr>
<td>a₄</td>
<td>11-13 mm</td>
<td>b₄</td>
<td>80%</td>
</tr>
<tr>
<td>a₅</td>
<td>14-16 mm</td>
<td>b₅</td>
<td>90%</td>
</tr>
<tr>
<td>Hydromodulus factor (factor C)</td>
<td>Temperature factor (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c₁</td>
<td>1:5</td>
<td>d₁</td>
<td>40°C</td>
</tr>
<tr>
<td>c₂</td>
<td>1:10</td>
<td>d₂</td>
<td>50°C</td>
</tr>
<tr>
<td>c₃</td>
<td>1:15</td>
<td>d₃</td>
<td>60°C</td>
</tr>
<tr>
<td>c₄</td>
<td>1:20</td>
<td>d₄</td>
<td>70°C</td>
</tr>
<tr>
<td>c₅</td>
<td>1:25</td>
<td>d₅</td>
<td>80°C</td>
</tr>
</tbody>
</table>

The 5×5-experiment plan and the results of determining the quantitative content of biologically active substances (the sum of flavonoids in terms of quercetin) are presented in Table 2.

Table 2: The yield of the sum of flavonoids in terms of quercetin in the extract in a four-factor plan 5×5 with three repeated experiments, %

<table>
<thead>
<tr>
<th>Factor A</th>
<th>Factor B</th>
<th>Totala,</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₁</td>
<td>b₂</td>
<td>b₃</td>
</tr>
<tr>
<td>a₁</td>
<td>c₁d₁</td>
<td>c₂d₂</td>
</tr>
<tr>
<td>1.22</td>
<td>2.15</td>
<td>2.14</td>
</tr>
<tr>
<td>1.28</td>
<td>2.09</td>
<td>2.17</td>
</tr>
<tr>
<td>1.21</td>
<td>2.19</td>
<td>2.11</td>
</tr>
<tr>
<td>3.71</td>
<td>6.43</td>
<td>6.42</td>
</tr>
<tr>
<td>a₂</td>
<td>c₁d₁</td>
<td>c₂d₂</td>
</tr>
<tr>
<td>2.15</td>
<td>1.89</td>
<td>2.02</td>
</tr>
<tr>
<td>2.11</td>
<td>1.93</td>
<td>2.06</td>
</tr>
<tr>
<td>2.17</td>
<td>1.84</td>
<td>1.97</td>
</tr>
<tr>
<td>6.43</td>
<td>5.66</td>
<td>6.05</td>
</tr>
<tr>
<td>a₃</td>
<td>c₁d₁</td>
<td>c₂d₂</td>
</tr>
<tr>
<td>1.26</td>
<td>1.52</td>
<td>1.8</td>
</tr>
<tr>
<td>3.9</td>
<td>4.68</td>
<td>5.27</td>
</tr>
<tr>
<td>a₄</td>
<td>c₁d₁</td>
<td>c₂d₂</td>
</tr>
<tr>
<td>1.3</td>
<td>1.69</td>
<td>1.56</td>
</tr>
</tbody>
</table>
Before carrying out the analysis of variance, the homogeneity of the variance was checked using the Cochran test. The tabular value of the Cochran test for $f_1=2$ and $f=25$ is 0.22, i.e., u_{exp}, equal to 0.0709, is less than the tabular one, which confirms the equal accuracy of the experiments. Analysis of variance of the obtained results is presented in Table 3.

Table 3: Dispersion analysis of experimental data to determine the yield of the total flavonoids in the obtained extracts

<table>
<thead>
<tr>
<th>Source of dispersion</th>
<th>Number of degrees of freedom (f)</th>
<th>Sum of squares (SS)</th>
<th>Mean squares (MS)</th>
<th>F_{exp}</th>
<th>$F_{0.05}$</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A</td>
<td>4</td>
<td>2,245</td>
<td>0.56125</td>
<td>328,0885</td>
<td>2.56</td>
<td>$a \neq 0$</td>
</tr>
<tr>
<td>Factor B</td>
<td>4</td>
<td>1,82652</td>
<td>0.45663</td>
<td>266,931</td>
<td>2.56</td>
<td>$b \neq 0$</td>
</tr>
<tr>
<td>Factor C</td>
<td>4</td>
<td>1,538827</td>
<td>0.384707</td>
<td>224,887</td>
<td>2.56</td>
<td>$c \neq 0$</td>
</tr>
<tr>
<td>Factor D</td>
<td>4</td>
<td>1,782227</td>
<td>0.445557</td>
<td>260,4579</td>
<td>2.56</td>
<td>$d \neq 0$</td>
</tr>
<tr>
<td>Remainder</td>
<td>8</td>
<td>0.15216</td>
<td>0.01902</td>
<td>11,11847</td>
<td>2.13</td>
<td>$res \neq 0$</td>
</tr>
<tr>
<td>Errorinsidecell</td>
<td>50</td>
<td>0.085533</td>
<td>0.001711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalamount</td>
<td>74</td>
<td>7,630267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The obtained values $F_{exp}>F_{tabl}$, which indicates the statistical significance of all four studied factors. The value of $F_{res.in.cell}$ indicates the presence of an interaction between the factors.

Using Duncan’s multiple rank test, the differences in the average values of the data on the yield of the total flavonoids in the obtained extracts are studied. It is established that according to the influence of the degree of dispersion of plant raw materials on the response, they can be arranged in the following row: $a_1 = a_2 = a_3 > a_4 > a_5$, i.e., the optimal degree of grinding of raw materials, providing the maximum yield of the sum of flavonoids, are 2-4 mm, 5-7 mm and 8-10 mm. However, taking into account the fact that the excessive dispersity of plant raw materials will ensure the release of not only biologically active, but also ballast substances, which, accordingly, will lead to a contaminated extract, we decided to use raw materials in further studies, the dimensions of which are in the range of 5-7 mm [20, 21].

The influence of the next studied factor - the concentration of ethanol used as an extractant, can be arranged in the following row: $b_2 = b_3 > b_4 > b_5 > b_1$, Thus, ethanol at a concentration of 60% and 70% is the optimal extractant. For the purpose of economic feasibility, our choice was stopped at 60% ethyl alcohol.

It is known that the ratio of vegetable raw materials and extractant has a significant impact on the yield of biologically active substances in the obtained extracts. This was confirmed by the results of our mathematical planning. It was found that almost the same output with a slight difference was obtained with a hydromodule of 1:10, 1:15, 1:20. In order to save the extractant, we recommend the use of a hydromodule equal to 1:10.

The application of the Duncan rank criterion also helped to reveal the influence of the temperature factor on the yield of the sum of flavonoids, this series can be represented as follows: $d_2 = d_3 > d_4 > d_1 > d_5$, thus, the temperature of 50°C was chosen as the optimal one.

An analysis of domestic and foreign literary sources indicates that the short-term use of ultrasound in the extraction of plant materials stimulates the release of biologically active substances [22, 23]. Given the above, we carried out extraction from the composition of medicinal raw materials, culminating in 10 minutes of ultrasonic exposure. At the same time, an increase in the yield of the total flavonoids in terms of quercetin is observed from 2.34% to 2.6% (1.11 times).

Thus, the proposed technology for obtaining a dry extract from the Triflos choleric collection is tested under industrial conditions at BALZAM LLC.
The industrial extractor, on which the proposed technology was tested, consists of:

1) Main tank. This is the extraction tank, which is the main element of this system. It mainly serves to extract biologically active substances from medicinal plant materials;

2) A condenser, which serves to cool and return the condensed liquid to the extraction tank;

3) A vacuum condenser, which serves to concentrate and collect the resulting extract;

4) A tank for collecting the extractant (used as a collection) (Fig. 1).

This equipment can carry out several operations simultaneously; control and regulation of the temperature regime of the extraction process, use ultrasound, create a vacuum, condense the extractant, recover alcohol, etc.

To obtain a dry extract, medicinal plant raw materials, crushed to a size of 5-7 mm, are weighed and mixed in the ratio: tansy flowers - 15 parts, chamomile flowers - 10 parts, yarrow herb - 10 parts. The mixture of vegetable raw materials was loaded into a special container and soaked with half the amount of 60% ethyl alcohol until a “mirror surface” is formed, left for 24 hours. After soaking, the soaked raw material is transferred to the extractor and 60% ethanol was added, bringing the raw material-extractant ratio to 1:10, the mixture was heated to 50°C, and circulation extraction was carried out in the RuianXuanli Machinery Tank extractor. Next, ultrasonic extraction is performed for 10 minutes. After the vacuum extraction process is completed, the liquid extract is pumped through the filter into the reactor and left for 24 hours to settle. Purification of the distillation residue of the water-alcohol extract is carried out by filtration.

Then, the extractant was distilled off in the reactor using vacuum for 3 hours. The extract remaining after distillation of the extractant was spray dried in a high-speed spray dryer "LPG-15 Spray Dryer" (manufactured by RuianXuanli Machinery Co., LTD). (Fig. 2).
As a result of the research, a light brown dry extract with a weak specific odor and a bitter taste is obtained. The dry extract yield is $21 \pm 1.53\%$.

III. Conclusions

1. Using the method of a four-factor experimental plan based on a 5×5 Greek-Latin square, the choice of the degree of grinding of raw materials, the concentration of ethanol, the ratio of raw materials and extractant, the temperature regime in the development of the technology of dry extract of the choleretic collection "Triflos" is carried out. The results of dispersion analysis shows that the most complete yield of the sum of flavonoids is observed with the following indicators of the above factors: dispersion of raw materials -5-7 mm, 60% ethyl alcohol, hydromodulus 1:10, temperature 50°C.

2. The expediency of using ultrasonic treatment for a more complete recovery of target biologically active substances is scientifically substantiated.

3. This technology of circulating extraction using ultrasound is tested in industrial conditions. A dry extract is obtained, the yield of which was 21%.

References

Water Contamination by Nitrates and its Thyroid Disruptive Action. Bioassay on Xenopus Laevis

By María Fernanda Modarelli, Rodrigo Miguel Bilbao & Osvaldo Juan Ponzo

University of Buenos Aires

Abstract- Background: Groundwater could vehicle substances that have shown to have a thyroid-disrupting action. Amphibians are used as bioassays to analyze changes that these disruptors generate during metamorphosis.

Objectives: To assess the thyroid disrupting action of groundwater contaminated with nitrates and arsenic, by means of a bioassay of chronic toxicity in Xenopus laevis larvae.

Methods: Three experimental groups immersed in water: Control group (C) (n=13) filtered drinking water, Exposed group (E) groundwater (n=18) and Positive Control group (PC) (n=18) filtered drinking water added with 0.007 mg/l of potassium perchlorate. A water physicochemical analysis was performed. The duration of metamorphosis stages, total body length, mortality per group, weight and height were morphologically evaluated. The colloid volume, degrees of hyperplasia, and height of the follicular epithelium of the thyroid gland were histologically evaluated. At molecular level, NIS thyroid symporter protein expression was measured.

Keywords: endocrine disruptors - xenopus - groundwater - nitrates – thyroid.

GJMR-B Classification: DDC Code: 174.95 LCC Code: Q175.35

Strictly as per the compliance and regulations of:

© 2022. María Fernanda Modarelli, Rodrigo Miguel Bilbao & Osvaldo Juan Ponzo. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Abstract - Background: Groundwater could vehicle substances that have shown to have a thyroid-disrupting action. Amphibians are used as bioassays to analyze changes that these disruptors generate during metamorphosis.

Objectives: To assess the thyroid disrupting action of groundwater contaminated with nitrates and arsenic, by means of a bioassay of chronic toxicity in Xenopus laevis larvae.

Methods: Three experimental groups immersed in water: Control group (C) (n=13) filtered drinking water, Exposed group (E) groundwater (n=18) and Positive Control group (PC) (n=18) filtered drinking water added with 0.007 mg/l of potassium perchlorate. A water physicochemical analysis was performed. The duration of metamorphosis stages, total body length, mortality per group, weight and height were morphologically evaluated. The colloid volume, degrees of hyperplasia, and height of the follicular epithelium of the thyroid gland were histologically evaluated. At molecular level, NIS thyroid symporter protein expression was measured.

Results: The groundwater physicochemical analysis showed the presence of nitrates (values between 24 and 83 mg/l) and arsenic (0.05 mg/l). Prometamorphosis was longer in group E Vs C (p<0.0001). In PC only three animals completed this stage (p<0.0001). Weight was in increasing order E<PC<C and height E<PC<C (p<0.05). Mortality recorded per group was: 10% in group E exclusively (p<0.0001). Changes could be noticed in the thyroid glandular histoarchitecture at stage 58NF: hyperplasia grade 1 in C, grade 2 in E and PC (p<0.0001). The colloid area and the height of the follicular epithelium were in increasing order PC<C<E (p<0.0001). The level of expression in the larval thyroid tissue of NIS symporter was in increasing order C<PC<E (p<0.0001).

Discussion: Changes observed in the thyroid gland, as well as the morphological alterations, of Xenopus laevis larval development at stage 58NF, could be related to the presence of nitrates and arsenic in the groundwater which cause a synergic disruptive action on the thyroid.

Keywords: endocrine disruptors - xenopus - groundwater - nitrates – thyroid.

1. Introduction

Endocrine disruptors (EDs) affect the normal function of the endocrine system, by interfering with the synthesis, storage, transport, circulating levels, peripheral action and catabolism of hormones. Thyroid disruptors (TDs) are a group of chemical substances that affect the hypothalamus-pituitary-thyroid (HPT) axis in different ways, for example through their capacity to decrease the circulating levels of thyroid hormones (Brucker-Davis F. 1998), or acting directly on their receptors as well as on the enzyme or plasmatic carriers which play a significant role in the mediation of its action (Howdeshell KL. 2022) in humans as well as in animals (Colborn T. et al. 1993).

Contaminated groundwater could vehicle different EDs as nitrates, perchlorates and thiocynates, among others (Zewdie T. et al 2010). Endemic areas of hypothyroidism and goiter with no iodine deficit have been described, being a probable cause the presence of EDs in the water drank by the population living in those areas (Andrada I. et al. 2009).

The correct thyroid function involves a proper activity of the sodium/iodide symporter (NIS) at thyroid follicular cells. In mammals and amphibians, thyrotropin (TSH) stimulates NIS expression being involved in this transcription factors as PAX-8, TFF-1 and TTF -2 (Dohan O. et al. 2003). The NIS symporter inhibition interferes with iodine uptake, decreasing the synthesis of triiodothyronine (T3) and thyroxine (T4) which results in a TSH increase. Consequently, a higher stimulation in an attempt to compensate the hormone synthesis, leads to the development of goiter (Crofton K. et al. 2005).

During the spontaneous amphibian metamorphosis, the NIS mRNA expression is low in pre-metamorphous tadpoles and it increases throughout prometamorphosis, as the same time as the increase of mRNA expression of TSH beta subunit (TSHb) at tadpole hypophysis, thus suggesting a TSH regulation in the NIS expression (Opitz R. et al. 2006). Moreover, thyroid hormones play a fundamental role in amphibian and on human fetus development (Zoeller RT. et al. 2004).

Amphibian larvae are used as bioassays for being highly sensitive to the action of different substances present in water, even in LOAEL (Lowest Observed Adverse Effect Level) and NOAEL (No Observed Adverse Effect) concentrations (FETAX.
2000). The metamorphosis of these animals is a process that depends on thyroid hormones, being this influence higher during the prometamorphosis and climax stages (Tietge JE. et al. 2005). In a short period of time larvae suffer structural, physiological, biochemical and behavioral transformations due to T₄ action and to the conversion of T₄ into T₃ in the target organs. These alterations are accompanied by changes in thyroid gland volume, height of follicular epithelium, colloid reabsorption level and iodine uptake. These processes are regulated by T₄ which secretion increases at prometamorphosis onset and continues rising up to the end of metamorphism (Miranda LA. 1995), to achieve tail resorption. In the case of Xenopus laevis the thyroid gland becomes operational at prometamorphosis onset (Nieuwkoop PD et al. 1967), similar to what happens with other anurans (Saxen L. et al. 1957).

Disorders which involve iodine transport and lead to a change in the thyroid hormone synthesis, may cause changes in the growth and metabolism during amphibian metamorphosis, as well as in humans (Shi YB. et al. 1996). Because of this, Xenopus laevis larvae can be used as a biologic model to study “in vivo” the biological effect of endocrine disruptors (EDs), by evaluating the morphological and functional changes normally induced by thyroid hormones (THs).

This study proposes that the immersion of Xenopus laevis larvae “in vivo” in groundwater could cause morphological, histological and biomolecular changes which are the result of the presence of endocrine disruptors (EDs) in such water under study (Modarelli MF. and Ponzo OJ. 2018).

II. Methods

We experimented with Xenopus laevis larvae from the Endocrinology Laboratory of the Institute of Physiology, School of Medicine, University of Buenos Aires. Larvae used for this experiment were obtained after amplexus (of adult specimens), of only one spawn. Samples from healthy specimens with no malformations and with a homogenous size were selected in accordance with ANFICOR guidelines (Herkovits J. et al. 1999). Selected specimens were placed in transparent containers; one larva by each 500 cm² of water, held in stable conditions on a 12 h light: 12 h darkness photoperiod, temperature: 22° C ± 2° C and pH: 7.2 to 8, in filtered drinking water with extraction of chlorine by carbon filter, and were fed ad libitum with balanced feeds (Sera Micron). To reduce specimen stress, the same person changed the water and controlled larvae each 48 h. The protocol was approved by institutional animal care and use committee (CICUAL/UBA: 0003598/2013. Res. 700).

a) Experimental Design

Larvae were divided into 3 treatment groups: a) Control group (C) (n=13) immersed in filtered drinking water; b) Exposed group (E): immersed in 30-meter-depth well groundwater from the southern suburbs of Buenos Aires, Argentina (n=18); Positive Control group (PC): immersed in filtered drinking water added with 0.007 mg/l potassium perchlorate (KClO₄) as NIS-inhibiting thyroid disruptor (n=18). All animals underwent 70-day-period treatment. Partial study cuts were made at prometamorphosis, metamorphosis and climax stages, using Niewkoop and Faber (NF) criteria (Nieuwkoop PD et al. 1967) to determine those different stages. Mortality per group was recorded and morphological changes in larvae such as: total time of metamorphosis, time of prometamorphosis, metamorphosis, climax, weight and height (Organization for economic Co-Operation and Development, (OECD). 2004) were analyzed. Moreover, thyroid gland histological changes were evaluated like colloid area, height of follicular cell, number of follicles per field, hyperplasia and hypertrophy (Grim C. 2007). Finally, NIS symporter protein expression in the thyroid tissue was studied using Western Blot technique.

b) Histological Technique

Larvae were sacrificed by immersion in MS222 (200mg/l) solution for later histological and biomolecular evaluation. For histological analysis after specimen sacrifice, tissues were fixed in Bouin solution during 24 h and then subjected to a dehydration process with successive passages of 15 min each in increasing alcohol concentrations (70%, 96%, 90%, 100% and Xilol) to be finally embedded in paraffin blocks for staining. The histological slices were 5-micron-thick and dewaxed with Xilol for 15 min, to be later rehydrated by successive passages of 10 min each in decreasing alcohol concentrations (100%, 96%, 90%, 70%). For staining it was used the Hematoxylin and eosin technique.

c) Western Blot

After thyroid extraction by removing lower jaw and a small part of the hyoid bone, samples were homogenized by sonication under refrigeration in lysis buffer (Tris 1,514 g, SDS 6 g and 2 beta mercaptoethanol 5 ml for 200 ml, pH 6.8) and Protease Inhibitor Cocktail (Pierce Biotechnology Inc., Massachusetts, USA) in a ratio of 10 μl per 1 ml of tissue. The supernatant solution was placed at 100°C (boiled in water) for 5 min and then centrifuged at 1600 rpm. The sample protein quantity was measured with Bradford method. Then it was carried out an SDS-PAGE in 12% polyacrylamide gel under denaturing conditions, in an electrophoresis cell (BioRad Mini Protean 3 Cell) for 90 min at 120 volts with transfer buffer (Tris 25mM; glycine 0.2 M; SDS 0.1% and pH 8.3). The loading volume per each sample was 10 to 20 μl. The volume
was decided in relation with the protein quantity present in each sample. Each sample was diluted in loading buffer in a ratio of 1:2 (Tris-HCl 0.065 M, SDS 3%, bromophenol blue 0.1%, β-mercaptoethanol 5% and 10% glycerol, pH 6.8). Beta actin was used as loading control. Afterwards humid electrotransference and immunoblotting were performed. For the electroblotting (electrotransfer) a Polyvinylidene difluoride (PVDF) membrane (Amersham, UK) and a cell with transfer buffer were used (25 mM Tris, 192 mM glycine and 20% methanol) for 1 h at 100 mv. Subsequently, three washes were carried out of 5 min each with TBS 1X (TrisHCl 20 mM, NaCl 150 mM pH 7.8) and it was blocked with a TBS solution with Tween-20 0.2% (TBS-T) and 5% p/v of skim milk (Svelty) for 1 h at room temperature (shaking). The membrane was incubated with rabbit polyclonal primary Anti COOH-terminus NIS antibody (Millipore Corp. USA, CAT #ABC1453) at a 1:500 dilution overnight at 4°C and subsequent three washes with TBS-T and one with TBS of 5 min each. After blocking the membrane during 30 to 40 min and subsequent washes with TBS-T of 5 min each, it was incubated for 1 h at room temperature (shaking) with secondary antibody conjugated with peroxidase 1:1.500 of mouse anti-rabbit polyclonal. Finally, in order to perform detection by chemiluminescence three washes with TBS-T and one with TBS of 7 min each were carried out. After the last wash the membrane was incubated for 5 min with the reagent for enhanced chemiluminescence (ECL) (Biorad, cat #170-5060 USA) and it was exposed to X-ray plate (Kodak and GE) during 1 to 5 min and further plate development in darkroom. The developed signal was quantified with software for image analysis Scion Image Version beta 4.0.2.

d) Water analysis

A groundwater sampling from wells of different depth (30 to 60 meter-depth) located in the studied area (Pampeano aquifer) was carried out. The different types of analyzed water (groundwater and filtered drinking water) used in the experiments were storage and transported, sealed and refrigerated to the place where the experiments were performed in new plastic bottles of mineral water emptied and later rinsed with the collected water. Then, the bottles were filled up to the total capacity, no air gap between the lid and the content, and transported refrigerated to the place of processing. All water samples underwent a microbiologic and physicochemical analysis at the National Institute of Industrial Technology (INTI-Parque Tecnológico Miguelete, Argentina).

To determine the presence of nitrates it was used ion chromatography technique by Metrohm´s 881 Compact, column Metrosep A 150/4mm, with carbonate /bicarbonate eluent, chemical suppression with conductivity detection, and calibration by peak area. For other analyzed parameter APHA-methods 2340 were used according to the standard analysis of water for human consumption (Standard Methods for the Examination of Water and Washwater. 1995). Reference values for water for human consumption are those of the Argentine Food Regulations. The term Undetectable was used for concentrations below the detection limit (DL) of the method of analysis.

e) Statistical analysis

Parametric one-way ANOVA tests were performed for the statistical analysis regarding morphology, histology and biomolecular parameters. The normal distribution was verified by means of Kolmogorov-Smirnov and Bartlett tests, and Tukey and Bonferroni post tests were carried out for the analysis of differences. A non-parametric ANOVA with Kruskal-Wallis and Dunn tests were performed for those small and asymmetric samples. For the qualitative variable analysis reflected in the contingency tables as a percentage, it was used as statistical test the Exact Fisher Test and the Katz´s numerical approximation to evaluate the relative risk. In all cases it was considered as significant p<0.05 with 95% confidence intervals (CI), and in each case it was determined the interval, the average, the standard deviation; and for the percentage analysis it was used the relative risk. For that purpose, statistical GraphPad Software (Inc. San Diego, California USA, www.graphpad.com) and Infostat (statistical program, digital version 2015. www.infostat.com) were used.

III. Results

a) Physicochemical analysis results of studied area water

Regarding the nitrate analysis, Sample N°1 (from 60-meter-depth wells) showed a value of 24 mg/l, exceeding EPA regulations as safety limit for water for human consumption (EPA, 2016) and Sample N°2 (from 30-meter-depth wells) showed a concentration of 83 mg/l exceeding the maximum limit of safety for water for human consumption (CAA, 2021) established in the Argentine Food Regulations (Table 1). These results should be analyzed in connection with the rest of the determinations, as nitrates may be acting per se or in synergy with other components, generating the thyroid disruptive effect observed in the population of those areas.

The samples from well groundwater (1 and 2) showed a higher conductivity (Table 1) which indicates an increase in salinity, probably generated by the presence of septic tanks in the vicinity (between 1 and 3 meters) of sampling areas and for the possible existence of industries near the studied area which dump liquids such as cleaning water. On the other hand, the total hardness of Sample N°3, being over 330 mg/l, is highly superior to the others, so those may be considered hard waters. This fact could favor the
reactivity of substances with possible disruptive action (De Groef et al. 2006).

High levels of arsenic, above safety level for human health by the Argentine Food Regulations (up to 0.01 mg/l), were observed in the samples of groundwater as well as in purified bottled water drunk by the population living in the area of the study (Table 2).

b) Morphological changes

i. Total time of metamorphosis. Weight and Height

Regarding the number of animals which completed metamorphosis in all before mentioned three groups, a very significant difference was observed among the groups. Larvae immerse in filtered drinking water (C) completed metamorphosis in a 100% but just a 38% for those animals in the group exposed to groundwater (E), and none in the positive control group (PC) (filtered drinking water with KClO₄) (p<0.001). Larvae growth delay was particularly observed in the transition from stage 58NF to 60NF (p<0.01). This delay was too evident and progressive in group PC from stage 58NF (p<0.0001) with a 95% CI (233.6 - 4.777) (Pic.2). It was noticed a significant difference in height, but this difference was smaller in group E and PC being this a significant difference (p<0.05) with a 95% CI (-2336.2 - 4.777) (Pic.2).

Total time of metamorphosis in group C was 56 ± 1.95 days, and 67 ± 2.01 days (p<0.01) in group E. In PC this time could not be determined due to the fact that larvae reached metamorphosis stage 62NF but none of them reached stage 66NF, time when the metamorphosis process is completed. This happened due to the addition of a constant dose of potassium perchlorate (0.007 mg/ml), which caused a total stop of metamorphosis at stage 62NF (Fig. 1). Mortality per group was 10% in group E larvae exclusively (p<0.001).

The stage affected was prometamorphosis which is controlled by T₄. It was observed a slower larval growth in group E represented by a delay in the transition from one stage to the following during the metamorphosis process. This difference was significant in groups E and PC vs group C during transition from stage 58NF to 60NF and it was noticed a significant larval growth delay in group E Vs C during the transition from stage 54NF to 60NF (p<0.01) with 0.69 relative risk (RR). The delay was even more pronounced in PC group larvae vs C, (p<0.002), with a 0.46 RR. The weight at stage 58NF was significantly lower in group E Vs C and PC (p<0.05), with a 95% confidence interval (CI) (54.157 - 364.69) (Fig. 2). It was noticed a significant difference in height, but this difference was smaller in group E and PC vs C (p<0.05), with a 95% confidence interval (CI) (8.667 - 5.448; E vs C, -6.750 - 4.619; PC vs C). No significant difference was observed between groups C and PC (Fig. 2).

From the above analyzed we conclude that the delay occurs in the transition from stage 54NF to 60NF in group E and PC vs C, with a larval growth delay in groups E and PC. In group E this delay is evidenced by a decrease in the final size of animals, which achieved less weight and height than the ones in the other two groups (C and PC) (Picture 1).

c) Histological changes

i. Follicular colloidal area

During 58NF stage metamorphosis it was observed an increase in the colloid area size in group E Vs C and PC (p<0.05) with a 95% CI (E vs C: -9184.7 - 179.62 and E vs PC: 2252.2 - 9253) (Fig. 3) (p<0.001). On the other hand, the colloidal area was smaller in group C vs PC (p>0.001) with a 95% CI (-2336.2 - 4.777) (Pic.2).

ii. Glandular hyperplasia degree

Thyroid gland hyperplasia during stage 58NF was degree 1 in group C, degree 2 in groups E and PC. The differences observed in group C Vs E were highly significant (p<0.0001), with a 95% CI (0.3680 - 0.6860) and 0.33 RR. There were also significant differences between groups C and PC (p<0.002) with 95% CI (0.2708 - 0.4799). No significant differences were observed between groups E and PC (Fig. 4).

iii. Number of filled follicles

The number of filled and empty follicles per gland was also significantly different being the number of filled follicles higher in group E Vs C and PC (p<0.02) with 95% CI (0.4906 - 0.8303) and 0.66 RR. Nevertheless, there were no significant differences between C and PC groups (Fig. 5).

iv. Height of follicular epithelium

The height of the follicular epithelium showed significant differences in groups C vs E (p<0.0001) with a 95% IC (-181.22 - 96.084) and in groups E Vs PC (p<0.0001) with a 95% CI (130.56-202.21). In increasing order, the height was less in group PC than in C and in group C than in E (Pic. 3). The average height of the follicular epithelium for each group was: C: 166.23 ± 43.23; E: 284.02 ± 68.12; PC: 128.64 ± 35.69 um (Fig. 6).

d) Molecular changes

i. NIS expression analysis

When data logarithmic correction was made it showed that NIS protein expression increases in groups E and PC vs C without iodine deficiency have been described, suggesting the consumption of EDs by the population living in these areas as a predisposing factor. (Blount
water contamination by nitrates and its thyroid disruptive action. bioassay on Xenopus laevis

BC. et al. 2006). Our study, carried out in the southern suburbs of Buenos Aires, found levels of nitrates and arsenic in the groundwater above the safety limit for human consumption. Furthermore, in studies made in nearby rivers, other pollutants with endocrine disruptive action were detected, among them: lead, chrome, hydrocarbon and polychlorinated biphenyls (PCBs) (Janiot L. 2000). These elements may contaminate the groundwater layers, specially the superficial ones by runoff from water tables in low-gradient streams. In the area of study, the water to drink or to irrigate is obtained from these water layers, being the Pampeano and Puelche aquifers the sources from where most of the population gets their water. The superficial Pampeano aquifer is free and often contaminates the deep Puelche aquifer which is semi confined. The last one represents one of the drinking water reservoirs most important of Argentina and Latin America (Adema MP. 2017 and Ingeniería Geotécnica y Ambiental. 2005).

The action of thyroid endocrine disruptors (TEDs) may alter the synthesis, storage, transport and catabolism of hormone homeostasis (Colborn T. et al 1993) and may decrease the production of thyroid hormones (Kleiman DL. et al. 1989) by acting on membrane transporters such as NIS. In the case of nitrates, the inhibition of the sodium-iodide symporter (NIS) interferes with iodine uptake at thyrocyte level, first step in thyroid hormone synthesis (De Groef B. et al 2006). This leads to hypothyroxinemia with the following increase of TSH (Manzon RG. et al. 2004), which induces cell proliferation as an adaptive response. Thus, generating an increase in gland size and changes in gland histoarchitecture, which in humans may cause goiter development (Brauer VF. et al. 2006).

The decrease in thyroid hormone levels affects human development, as well as it does in larvae metamorphosis. In this study we have shown a delay in the development, and changes in the body morphology during larvae metamorphosis of Xenopus laevis exposed to contaminated water, causing caused by thyroid disruption. We have demonstrated a longer period of prometamorphosis and smaller weight and height of specimens at stage 58NF. These differences could be explained by the need to reach a metabolic threshold, which allows them to complete the morphological changes of this stage. This could be determined by the acquisition of an adequate level of thyroid hormones. In case that this does not happen, it can cause a stop in larval development. This fact has been observed in other amphibians and urodele, which develops a state called neoteny (Galton VA. 1992), determined by a complete brake on the metamorphic process in adverse environmental situations. This fact is similar to the one observed in our experimental Positive Control (PC) group, in which larvae were exposed to a constant dose (0.007 mg/l) of potassium perchlorate (known as a NIS inhibitor), suffering a complete stop of its metamorphic development; therefore, no larvae completed the metamorphosis process.

The observed differences could be explained by the negative feed-back made by the T₃ and T₄ at tadpole hypophysis level which is operational at prometamorphosis onset. Thyroid hormones may negatively regulate the mRNA expression for the TSH synthesis during metamorphosis. The mRNA expression for the thyroid hormone receptor increases during the larval development throughout prometamorphosis and peaks at climax (Opitz R. et al. 2006). The presence in water of NIS inhibitors, such as nitrates, could be interfering with the proper production of thyroid hormones in larvae.

We have known for years that Xenopus laevis are extremely sensitive to water soluble substances as nitrates and perchlorates, even in low concentration, due to their aquatic life. For this reason, Xenopus laevis was chosen as experimental model in this work (Kloas W. 2002).

Histologically, the follicles constitute the anatomical functional unit of the thyroid gland in amphibians and in humans. Its follicular epithelium and the colloid constituted by thyroglobulin change their histological appearance depending on the secretory phase. These events may be altered by thyroid disruptors, being the histologic changes a sensitive parameter to determine the level of action of this disruptor (Wolff J. 1998). Our analysis showed a change in gland histoarchitecture like hyperplasia and hypertrophy of the follicular epithelium and an increase of the colloid volume in the thyroid gland follicles in prometamorphic larvae.

The thyrocyte uptakes iodine against gradient by the sodium-iodide symporter (NIS) located at the basement membrane, with energy expenditure. This transporter is inhibited by nitrates and other disruptors. The NIS expression is stimulated by the TSH, which involves the regulation of transcription factor as TTF1, TTF2 and PAX8 (Rivolta CM. et al. 2005).

The inhibitory action of thyroid disruptors on the NIS co-transporter and the changes on the metamorphosis (Furlow JD. et al. 2006 and Degitz S. et al 2006), as well as histological and biomolecular thyroid changes, have been assessed (Hood A. et al. 1999; Below H. et al 2008 and Mukhopadhayay S. et al. 2005). The increase in the NIS protein expression level noticed during larvae prometamorphosis exposed to nitrate contaminated water, could be the result of an adaptive mechanism trying to compensate its functional state.

Differences observed in our study in larval morphology as well as in glandular histoarchitecture during the different stages of Xenopus laevis metamorphosis between E and C groups may be explained by the presence of one or more substances with a thyroid disruptive action in groundwater of the studied area. These substances could be interacting in
a synergetic way on more than one level on the thyroid gland. This could explain what happens with arsenic. The arsenic, as the nitrates, was detected in concentrations considered as unfit for human consumption by the Argentine Food Regulations. The chronic exposure to an excess of arsenic in drinking water has been strongly linked to higher risk in humans. Arsenic has been shown to be a powerful endocrine disruptor in low levels, changing the genomic regulation mediated by thyroid receptors (Davey JC. 2008). The synergistic action of nitrates and arsenic could explain the mortality observed exclusively in this group.

V. Conclusion

The nitrates present in groundwater, as well as other possible endocrine disruptors such as arsenic, produce morphological alteration in the Xenopus laevis tadpoles, as well as histological and molecular thyroid changes when exposed to this type of water during their metamorphosis. These events are related to an increase of the NIS expression levels during prometamorphosis stage. Despite this adaptive change, it is not possible to compensate for the thyroid alteration generated by nitrates, thus not achieving the morphological changes necessary to adequately complete this stage. New studies must be carried out to better understand the mechanisms that lead to these alterations.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by a Grant of the University of Buenos Aires (UBACYT 20020130 100439BA).

We are grateful to: Dr. J. J. Lopez and his team (Department of Histology, School of Medicine, University of Buenos Aires) for his contribution in the histological analysis.

We thank Angela Ciocca Ortúzar for the manuscript revision.

Bibliography

15. FETAX. 2000. Frog Embryo Teratogenesis Assay Xenopus (Prepared by The National Toxicology Program (NTP) Interagency Program (NTP) Interagencial Center for the Evaluation of Alternative Toxicological Methods (NICEATM) National Institute...
of Environmental Health Sciences Institute National de Science Environmental Health (NIEHS), Environmental Samples Tested in FETA.X Characterization of Environmental in Water. ASTM 11: 439-98.
37. Shi YB, Wong J et al. 1996. Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid...
hormone and its receptors. Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA 98. 18:391-9.

Table 1: Physicochemical analysis of groundwater (Pampean Aquifer, Buenos Aires, Argentina) sampling

COLOUR	Greenish (a)
ODOR	Odorless
SEDIMENT	Null
pH	7.5
RESIDUAL ACTIVE CHLORINE	0.00 ppm
CONDUCTIVITY	729 micros/cm (a)
TOTAL DISSOLVED SOLIDS (TDS)	525 mg/l
TOTAL ALKALINITY (CO3Ca)	312 mg/l
TOTAL HARDNESS (CO3CA)	114 mg/l
CHLORINES (CL)	36 mg/l
SULPHATES (SO42-)	20 mg/l
AMMONIA (NH4+)	Undetectable
NITRITES (NO2):	0.01 mg/l
NITRATES (NO3):	24 mg/l*
CHROMIUM (Cr+6):	Undetectable

COLOUR	Colorless
ODOR	Odorless
SEDIMENT	Plentiful
pH	7.6
RESIDUAL ACTIVE CHLORINE	0.00 ppm
CONDUCTIVITY	685 micros/cm
TOTAL DISSOLVED SOLIDS	493 mg/l
TOTAL ALKALINITY (CO3Ca)	351 mg/l
TOTAL HARDNESS (CO3CA)	80 mg/l
SEDIMENT	18 mg/l
SULPHATES (SO42-)	20 mg/l
AMMONIUM(NH4+):	Undetectable
NITRITES (NO2):	Undetectable
NITRATES (NO3):	< 5 mg/l
CHROMIUM (Cr+6):	Undetectable

Water Contamination by Nitrates and its Thyroid Disruptive Action. Bioassay on *Xenopus laevis*

<table>
<thead>
<tr>
<th>SAMPLE 2</th>
<th>Well depth: 30 meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Colour</td>
</tr>
<tr>
<td></td>
<td>Odor</td>
</tr>
<tr>
<td></td>
<td>Sediment</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>RESIDUAL ACTIVE CHLORINE</td>
<td>0.00 ppm</td>
</tr>
<tr>
<td>CONDUCTIVITY</td>
<td>982 micros/cm (a)</td>
</tr>
<tr>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>707 mg/l</td>
</tr>
<tr>
<td>TOTAL ALKALINITY (CO$_3$Ca)</td>
<td>409 mg/l</td>
</tr>
<tr>
<td>TOTAL HARDNESS (CO$_3$Ca)</td>
<td>336 mg/l (a)</td>
</tr>
<tr>
<td>CHLORINES (Cl)</td>
<td>87 mg/l</td>
</tr>
<tr>
<td>SULPHATES (SO$_4^{2-}$)</td>
<td>25 mg/l</td>
</tr>
<tr>
<td>AMMONIA (NH$_4^+$)</td>
<td>Undetectable</td>
</tr>
<tr>
<td>NITRITES (NO$_2^-$)</td>
<td>0.01 mg/l</td>
</tr>
<tr>
<td>NITRATES (NO$_3^-$)</td>
<td>83 mg/l *</td>
</tr>
<tr>
<td>CHROMIUM (Cr$^{+6}$)</td>
<td>Undetectable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE 3</th>
<th>Drinking water (can)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Colour</td>
</tr>
<tr>
<td></td>
<td>Odor</td>
</tr>
<tr>
<td></td>
<td>Sediment</td>
</tr>
<tr>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>RESIDUAL ACTIVE CHLORINE</td>
<td>0.00 ppm</td>
</tr>
<tr>
<td>CONDUCTIVITY</td>
<td>395 micros/cm (a)</td>
</tr>
<tr>
<td>TOTAL DISSOLVED SOLIDS</td>
<td>284 mg/l</td>
</tr>
<tr>
<td>TOTAL ALKALINITY (CO$_3$Ca)</td>
<td>175 mg/l</td>
</tr>
<tr>
<td>TOTAL HARDNESS (CO$_3$Ca)</td>
<td>112 mg/l (a)</td>
</tr>
<tr>
<td>CHLORINES (Cl)</td>
<td>29 mg/l</td>
</tr>
<tr>
<td>SULPHATES (SO$_4^{2-}$)</td>
<td>20 mg/l</td>
</tr>
<tr>
<td>AMMONIA (NH$_4^+$)</td>
<td>Undetectable</td>
</tr>
<tr>
<td>NITRITES (NO$_2^-$)</td>
<td>Undetectable</td>
</tr>
<tr>
<td>NITRATES (NO$_3^-$)</td>
<td>< 5 mg/l</td>
</tr>
<tr>
<td>CHROMIUM (Cr$^{+6}$)</td>
<td>Undetectable</td>
</tr>
</tbody>
</table>

On or exceeding the limits for safety values.

Table 2: Differences in values between drinking water and purified bottled water

<table>
<thead>
<tr>
<th>DETERMINATION TYPE</th>
<th>PURIFIED BOTTLED WATER</th>
<th>GROUNDWATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL HARDNESS (CO$_3$Ca)</td>
<td>57 ± 2.0 %</td>
<td>64 ± 20 %</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>12.5 ± 2.5 %</td>
<td>13.5 ± 2.5 %</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>6.4 ± 3.0 %</td>
<td>7.2 ± 3.0 %</td>
</tr>
<tr>
<td>ARSENIC</td>
<td>0.02-0.07 mg/l</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>SODIUM+POTASSIUM</td>
<td>132</td>
<td>183</td>
</tr>
</tbody>
</table>
Figure 1: Metamorphosis periods (premetamorphosis, prometamorphosis and climax) per group and water type of X. laevis larvae under Control treatment: C, Exposed: E, and Positive Control: PC. *p<0.05, **p<0.001, ***p<0.0001 vs. Control.

Figure 2: Xenopus laevis larvae body weight and size at stage 58NF. *p<0.05 vs Control.
Picture 1: Larvae morphological development change at stage 58NF (prometamorphosis), showing a delay in the Exposed groups and Positive Control Vs Control.

Figure 3: Thyroid gland colloidal area at stage 58NF. *p<0.05, ***p<0.0001 vs. Control.
Picture 2: Optical microscopy (10x) of the follicular colloid area in Xenopus laevis thyroid glands at stage 58NF: A) Control, B) Exposed: where a bigger size gland and an increase in the colloid area can be observed, C) Positive Control.

Figure 4: Percentage of follicular hyperplasia degrees (0, 1, 2) in each experimental group during stage 58NF. ***p<0.0001 vs Control.
Figure 5: Percentage of filled and empty follicles during stage 58NF. *p<0.01 vs Control.

Picture 3: Optical microscopy (40x) of the thyroid gland in Xenopus laevis at stage 58NF showing colloid area, size and degree of follicular hyperplasia: A) Control, B) Exposed, C) Positive Control.
Figure 6: Follicular epithelium height at stage 58NF. ***p<0.0001 vs Control and vs Positive Control.

Figure 7: NIS protein expression at stage 58NF was higher in groups Exposed (E 1, 2) and Positive Control (PC 1, 2) vs Control group (C 1, 2) *p<0.05.
Development of Dietary Supplement Capsules “Nigelit” using Mathematical Methods

By Kh. K. Bekchanov, S. F. Iskandarova & N. A. Djabbarov

Tashkent Pharmaceutical Institute

Abstract- The research featured the development of formulae and technology of obtaining biologically active additives for functional foods with potential anti-inflammatory activity using a substance containing zinc (microelement) and plant raw material as source of natural biologically active substances. The relevance of the study is comes from the need for more effective use of natural biologically active compounds, the need to expand the range of domestic dietary supplements, in particular, those recommended for the prevention of disorders of the prostate activity and erectile dysfunction, with natural ingredients and import substitution. On the basis of scientific data and the results of the conducted research, substance containing zinc and a promising plant raw material containing biologically active substances were selected; their safety and potential properties were assessed. The optimal ratio and dosage of active ingredients in the composition has been scientifically substantiated.

Keywords: biologically active additives, dietary supplement, raw material, mathematical method, experimental design, factor, optimization parameters, capsules, “nigelit”, excipients.

GJMR-B Classification: LCC Code: KF49

Strictly as per the compliance and regulations of:

© 2022. Kh. K. Bekchanov, S. F. Iskandarova & N. A. Djabbarov. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Development of Dietary Supplement Capsules “Nigelit” using Mathematical Methods

Kh. K. Bekchanov a, S. F. Iskandarova a & N. A. Djabbarov a

Abstract - The research featured the development of formulae and technology of obtaining biologically active additives for functional foods with potential anti-inflammatory activity using a substance containing zinc (microelement) and plant raw material as source of natural biologically active substances. The relevance of the study is comes from the need for more effective use of natural biologically active compounds, the need to expand the range of domestic dietary supplements, in particular, those recommended for the prevention of disorders of the prostate activity and erectile dysfunction, with natural ingredients and import substitution. On the basis of scientific data and the results of the conducted research, substance containing zinc and a promising plant raw material containing biologically active substances were selected; their safety and potential properties were assessed. The optimal ratio and dosage of active ingredients in the composition has been scientifically substantiated. The technological properties of the mixtures of active ingredients that determine the choice of technology and the quality of the finished product were studied. Researches were carried out to select the optimal composition for the capsules “Nigelit” using a mathematical method of experimental design, the 4 × 4 Latin square. The experimental results were processed using mathematical methods of statistical and variance analysis, involving the Fisher statistic - Fstatistic (also called the F-ratio) and the generalized desirability function. As a result, the composition and technology of dietary supplement - capsules “Nigelit” were developed.

Keywords: biologically active additives, dietary supplement, raw material, methodological method, experimental design, factor, optimization parameters, capsules, “nigelit”, excipients.

I. Introduction

Erectile dysfunction or the inability to achieve or maintain an erection sufficient for satisfying sexual activity, often becomes a real problem for men. According to the WHO information every 10th managed older 21 has the erectile disorder and after the age of 60 years every third man is not able to perform sexual intercourse. About 35% of men aged 40 to 70 years suffering from partial or total inability to achieve erection [1].

To date, effective approaches of pharmacological correction of disorders of sexual function in men have been developed. Depending on the indications for use, these drugs should have separately or in combination neurotropic, vasodilating, anti-inflammatory, antimicrobial, antihypoxic, immunotropic effect [1]. The basis of drug therapy for erectile dysfunction, as a rule, is made up of phosphodiesterase inhibitors: vardenafil, sildenafil, tadalafil [1]. However, all of these drugs are available with a doctor's prescription. At the same time, significant advances in the prevention and treatment of male genital pathology can be achieved with the use of over-thecounter herbal remedies. Compared to synthetic ones, natural components have a milder and more versatile effect due to the variety of components actively affecting the body and, as a rule, rarely cause side effects [1]. Most of the herbal remedies for correcting erectile dysfunction are presented in the form of biologically active additives.

Today the market of dietary supplements for the correction of erectile dysfunction mainly offers complex drugs of a certain functional orientation, most often combining herbal ingredients with a pronounced stimulating effect on sexual function and a general tonic effect [1].

When reviewing the literature, it was found that one of the types of plant raw materials that have a beneficial effect on the function of the prostate is the seeds of Nigella sativa [2], and of the microelement – zinc [3, 4].

Based on the analysis of the pharmaceutical market of the manufactured dosage forms, we have selected hard gelatin capsules as the rational dosage form for the medicinal preparation under development. Capsules represent a prospective solid dosage form with a number of advantages. For instance, they are attractive in appearance, easy to swallow, contain accurate dose, protect encapsulated medications against light, air and moisture since capsule shells provide a high level of airtightness, can quickly swell up, dissolve and get absorbed in the gastrointestinal tract, have high bioavailability [5].

The aim of the research is to develop the composition and technology for obtaining dietary...
supplements with specified characteristics using plant raw materials - seeds of Nigella sativa and a microelement – zinc.

II. Materials and Methods

Seeds of Nigella sativa, zinc sulphate, their mixture, their mixtures with different excipients and capsules on their base were selected as the materials of research. The technological properties of the materials that determine the composition, technology and the quality of the finished product and the capsule disintegration were studied using conventional methods, described in [6, 7, 8]. In order to select the optimal composition for the capsules “Nigelit” a mathematical method of experimental design, the 4 × 4 Latin square was used. The experimental results were processed using mathematical methods of statistical and variance analysis, involving the Fisher statistic (F statistic) and the generalized desirability function [9, 10, 11, 12]. In order to create granules moisture activated dry granulation (MADG) was used [13, 14]. This method allows for simultaneous mixing and of ingredients, as well as forming of a product with homogeneous dispersion [13]; minimization grinding of such issues with wet granulation as the need for a significant amount of granulating liquid, the duration and energy intensity of the process of mixing the wet mass, sensitivity of individual components of the mixture to high moisture levels, the necessity of using granule-forming apparatus in most cases, the long-lasting stage of drying the granules, accompanied by the unfavorable effect of temperature on active pharmaceutical ingredients, as well as the cumbersome equipment required for the air preparation and air purification processes [15]. The main advantage of this granulation method is that the resulting granules do not need to be dried - this speeds up the technological process, reduces labor and energy costs. Moreover, the resulting granules do not need additional grinding due to the characteristic homogeneous particle-size distribution [13]. Purified water was used as the moisturizing liquid for granulation.

In order to choose the most rational composition and the encapsulation technology for the capsules “Nigelit”, we took advantage of a mathematical method of experimental design, the method of the 4 × 4 Latin square and performed analysis of variance. The use of this method makes it possible to significantly reduce the experimental error and to quantify the effect of various factors on the optimization parameters [9, 10, 11, 12]. In this case, flowability, bulk density, angle of repose of the granular materials and disintegration time of capsules were selected as the optimization parameters (see table 1); while fillers, antiadhereants (antisticking agents), disintegrants and glidants were selected as factors affecting optimization parameters (see table 2). Technological properties of the granular materials and the capsule disintegration were studied using conventional methods [6, 7, 8]. In order to create capsules moisture activated dry granulation (MADG) was used [13, 14]. This method allows for simultaneous mixing and of ingredients, as well as forming of a product with homogeneous dispersion [13]; minimization grinding of such issues with wet granulation as the need for a significant amount of granulating liquid, the duration and energy intensity of the process of mixing the wet mass, sensitivity of individual components of the mixture to high moisture levels, the necessity of using granule-forming apparatus in most cases, the long-lasting stage of drying the granules, accompanied by the unfavorable effect of temperature on active pharmaceutical ingredients, as well as the cumbersome equipment required for the air preparation and air purification processes [15]. The main advantage of this granulation method is that the resulting granules do not need to be dried - this speeds up the technological process, reduces labor and energy costs. Moreover, the resulting granules do not need additional grinding due to the characteristic homogeneous particle-size distribution [13]. Purified water was used as the moisturizing liquid for granulation.

III. Results and Discussion

For the development of the dietary supplement, firstly, a suitable dose of the microelement – zinc and plant raw material containing biologically active substances were calculated, based on the study of their safety and potential properties. Then the technological properties of the mixture of active components were studied. It was established that the mixture of active components has unsatisfactory technological properties in particular flow ability. This makes obtaining capsules of an acceptable quality from such a material impossible. In order to eliminate these disadvantages, and to produce good-quality capsules, it is necessary to incorporate excipients, and to use granulation, which prevents the segregation (stratification) of the mixture [16].

Table 1: Optimization parameters for the capsules “Nigelit”

<table>
<thead>
<tr>
<th>Optimization parameters (Y)</th>
<th>Y₁</th>
<th>Y₂</th>
<th>Y₃</th>
<th>Y₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowability (10⁻³ kg/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk density (kg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disintegration (min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle of repose (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Factors affecting the optimization parameters of capsules “Nigelit”

<table>
<thead>
<tr>
<th>Name of the capsules</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A - fillers</td>
</tr>
<tr>
<td></td>
<td>a₁ - starch</td>
</tr>
</tbody>
</table>

© 2022 Global Journals
In order to select the optimal composition for capsules "Nigelit" various mixtures of active components and excipients were designed and prepared according to the formulations presented in table 3. Each mixture prepared according to the formulations was granulated using moisture activated dry granulation method. Then the technological properties of these mixtures and the disintegration of the capsules prepared on their base were studied (see table 3).

Table 3: Experiment design matrix and research results on the effect of the excipients on the optimization parameters for capsules "Nigelit"

(Symmetric fractional factorial experiment, 16 out of 256, 1/16 fraction)

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>Factors</th>
<th>Optimization parameters</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>2</td>
<td>a1</td>
<td>b2</td>
<td>c1</td>
</tr>
<tr>
<td>3</td>
<td>a1</td>
<td>b3</td>
<td>c1</td>
</tr>
<tr>
<td>4</td>
<td>a1</td>
<td>b4</td>
<td>c1</td>
</tr>
<tr>
<td>5</td>
<td>a2</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>6</td>
<td>a2</td>
<td>b2</td>
<td>c1</td>
</tr>
<tr>
<td>7</td>
<td>a2</td>
<td>b3</td>
<td>c1</td>
</tr>
<tr>
<td>8</td>
<td>a2</td>
<td>b4</td>
<td>c1</td>
</tr>
<tr>
<td>9</td>
<td>a3</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>10</td>
<td>a3</td>
<td>b2</td>
<td>c1</td>
</tr>
<tr>
<td>11</td>
<td>a3</td>
<td>b3</td>
<td>c1</td>
</tr>
<tr>
<td>12</td>
<td>a3</td>
<td>b4</td>
<td>c1</td>
</tr>
<tr>
<td>13</td>
<td>a4</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>14</td>
<td>a4</td>
<td>b2</td>
<td>c1</td>
</tr>
<tr>
<td>15</td>
<td>a4</td>
<td>b3</td>
<td>c1</td>
</tr>
<tr>
<td>16</td>
<td>a4</td>
<td>b4</td>
<td>c1</td>
</tr>
</tbody>
</table>

Then the results of studying the optimization parameters (table 3) were subjected to analysis of variance which allows us to test the null hypothesis (all means are equal) against the alternative hypothesis (at least one mean is different) with a specified value of alpha (in our case the value of alpha (α) or the level of significance is equal to 0.05 or 5%) and probability (in our case the value of probability (P) is equal to 0.95 or 95%). In other words analysis of variance allows us to determine the significance of the studied factors A, B, C, D for the optimized parameters Y1, Y2, Y3, Y4 (table 4) at a given level of significance [11, 17].

It should be mentioned that if the F test statistic (observed) is greater than the F critical value, it is significant.
If $F_{critical}$, then the hypothesis of similarity or the null hypothesis H_0 is rejected, and the hypothesis of the difference or the alternative hypothesis H_1 is accepted with a level of significance $\alpha = 0.05$ or 5%. This means that the factor significantly affects the change in the output data - the values of the optimization parameter and the data depend on the factor with a probability of $P = 0.95$ ($P = 1 - \alpha$) or $P = 95\%$ ($P = 100 - \alpha$). If the F test statistic (observed) is less than the F critical value, i.e. $F_{statistic} < F_{critical}$, then the hypothesis of similarity or null hypothesis H_0 is accepted, and the hypothesis of difference or alternative hypothesis H_1 is rejected with a level of significance $\alpha = 0.05$ or 5%. This means that the factor does not significantly affect the output data - the values of the optimization parameter with a probability of $P = 0.95$ ($P = 1 - \alpha$) or $P = 95\%$ ($P = 100 - \alpha$).

Table 4: Analysis of variance of the experimental data from the study of the indicators of the capsules “Nigelit”

(4-factor analysis of variance without replication)

<table>
<thead>
<tr>
<th>Optimization parameters</th>
<th>Source of variance</th>
<th>Degrees of freedom (df)</th>
<th>Sum of squares (SS)</th>
<th>Mean square (MS)</th>
<th>$F_{statistic}$</th>
<th>$F_{critical}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1 - Flowability, 10^{-3} kg/s</td>
<td>Factor A</td>
<td>3</td>
<td>1.26</td>
<td>0.42</td>
<td>3.02</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor B</td>
<td>3</td>
<td>0.45</td>
<td>0.15</td>
<td>0.74</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor C</td>
<td>3</td>
<td>0.73</td>
<td>0.24</td>
<td>1.34</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor D</td>
<td>3</td>
<td>1.66</td>
<td>0.55</td>
<td>5.23</td>
<td>3.49</td>
</tr>
<tr>
<td>Y_2 - Bulk density, kg/m3</td>
<td>Factor A</td>
<td>3</td>
<td>268.5</td>
<td>89.5</td>
<td>2.26</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor B</td>
<td>3</td>
<td>78.5</td>
<td>26.17</td>
<td>0.47</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor C</td>
<td>3</td>
<td>156.5</td>
<td>52.17</td>
<td>1.07</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor D</td>
<td>3</td>
<td>467.5</td>
<td>155.83</td>
<td>6.79</td>
<td>3.49</td>
</tr>
<tr>
<td>Y_3 - Disintegration, min.</td>
<td>Factor A</td>
<td>3</td>
<td>174.75</td>
<td>58.25</td>
<td>3.41</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor B</td>
<td>3</td>
<td>172.25</td>
<td>57.42</td>
<td>3.32</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor C</td>
<td>3</td>
<td>182.25</td>
<td>60.75</td>
<td>3.69</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor D</td>
<td>3</td>
<td>66.75</td>
<td>22.25</td>
<td>0.85</td>
<td>3.49</td>
</tr>
<tr>
<td>Y_4 - Angle of repose,°</td>
<td>Factor A</td>
<td>3</td>
<td>0.5</td>
<td>0.17</td>
<td>0.02</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor B</td>
<td>3</td>
<td>51.5</td>
<td>17.17</td>
<td>5.49</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor C</td>
<td>3</td>
<td>51.5</td>
<td>17.17</td>
<td>5.49</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>Factor D</td>
<td>3</td>
<td>48.5</td>
<td>16.17</td>
<td>4.79</td>
<td>3.49</td>
</tr>
</tbody>
</table>

*Analysis of variance was conducted on the experimental data from table 3, and the statistical indicators in table 4 were calculated, using ANOVA module of the statistics software MiniTab.

The results of the analysis of variance (table 4) allow us to state the following:

- The selected types of fillers (Factor A) do not have a significant effect on the flowability (Y_1), bulk density (Y_2), angle of repose (Y_3) of the granular materials as well as the disintegration of capsules (Y_4);
- The selected types of antiaherents (Factor B) has a significant effect on the angle of repose (Y_3) of the granular materials and does not have a significant effect on the flow ability (Y_1), bulk density (Y_2) of the granular materials as well as the disintegration of capsules (Y_4);
- The selected types of disintegrants (Factor C) has a significant effect on the disintegration of capsules (Y_3) and the angle of repose (Y_4) of the granular materials and does not have a significant effect on the flow ability (Y_1), bulk density (Y_2);
- The selected types of glidants (Factor D) has a significant effect on the flow ability (Y_1), bulk density (Y_2), angle of repose (Y_4) of the granular materials and does not have a significant effect on the disintegration of capsules (Y_3).
The overall (generalized) evaluation of the optimization parameters - the disintegration of capsules and the technological properties of the granular materials (model mixtures) - was carried out using a desirability function [11, 18]. In order to generalize the values of the optimization parameters that have different units of measurement, we used the well-known and widely accepted Harrington’s desirability function, first introduced by him in solving quality control problems of mass production. The Harrington’s scale establishes a correspondence between linguistic evaluations of desirability of the values of the indicator \(x \) and the numerical intervals \(d(x) \) (table 5) [11, 19].

Table 5: Numerical intervals of the Harrington’s scale

<table>
<thead>
<tr>
<th>Linguistic evaluation</th>
<th>Intervals of the desirability function values (d(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good</td>
<td>1.00 - 0.80</td>
</tr>
<tr>
<td>Good</td>
<td>0.80 - 0.63</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>0.63 - 0.37</td>
</tr>
<tr>
<td>Bad</td>
<td>0.37 - 0.20</td>
</tr>
<tr>
<td>Very bad</td>
<td>0.20 - 0.00</td>
</tr>
</tbody>
</table>

In order to construct the desirability function scale of the optimization parameters for the capsules “Nigelit” (Fig. 1), the method of quantitative analysis was used with the range of desirability values between 0 and 1 (Table 5). The value \(d = 1 \) corresponds to the best value of the optimization parameters, while \(d = 0 \) - to their worst value of ones. The intermediate values of the desirability function reflect specific levels of the product quality: very bad (0.00 - 0.20), bad (0.20 - 0.37), satisfactory (0.37 - 0.63), good (0.63 - 0.80) and very good (0.80 - 1.00). Conversion of the natural values (\(Y \)) into individual desirability values (\(d \)) with a one-sided limit \(Y \leq Y_{\text{max}} \) or \(Y \geq Y_{\text{min}} \) was performed using the following equation:

\[
d = \exp\left[-\exp\left(Y'\right)\right]
\]

where \(Y' = b_0 + b_1 \). The coefficients \(b_0 \) and \(b_1 \) were calculated by assigning the corresponding desirability values \(d \) for two of the property values, preferably selected within the range 0.2 < \(d < 0.8 \). The desirability curve (Fig. 1) were plotted in the \((Y', d)\) coordinates based on the equation of the desirability function. At the same time, \(Y_{\text{max}} \) or \(Y_{\text{min}} \) on the dimensional scales corresponded to 0 (zero) on the dimensionless scale \(Y' \). The desirability scale (Fig. 1) was used to convert the response values \((Y_1, Y_2, Y_3, Y_4)\) into the dimensionless desirability function \((d_1, d_2, d_3, d_4)\), i.e. to find individual desirability values for the measured values of the optimization parameters \(Y_i \).

![Fig. 1: The Desirability Function Scale of the Optimization Parameters for the Capsules “Nigelit”](image)

Then the overall (generalized) desirability function values were calculated using the formula (2) as the geometric mean of individual desirability values found. It should be noted, this is a more successful approach towards optimization of the parameters for finished products (in our case capsules):

\[
D = \sqrt[4]{d_1 d_2 d_3 d_4}
\]

where \(D \) is overall (generalized) desirability function value; \(d_1, d_2, d_3, d_4 \) - individual desirability function values.
The values of the overall (generalized) desirability function \(D \) for the capsules “Nigelit” are presented in table 3.

Based on the generalized evaluation of the optimization parameters - the disintegration of capsules and the technological properties of the granular materials (model mixtures), carried out using a desirability function, the excipients can be arranged in the order of preference as follows:
- The type of fillers (Factor A) – \(a_3 > a_4 > a_1 > a_2 \);
- The type of antiadherents (Factor B) – \(b_1 > b_2 > b_3 > b_4 \);
- The type of disintegrants (Factor C) – \(c_2 > c_1 > c_3 > c_4 \);
- The type of glidants (Factor D) – \(d_3 > d_1 > d_2 > d_4 \).

The optimal composition for capsules “Nigelit” was formulated based on the results of the mathematical method of experimental design and using a desirability function.

The most optimal combination of levels of factors - composition of the excipients that ensure the required indicators for the capsules “Nigelit” (table 3, composition No. 9) was selected based on the values of the overall (generalized) desirability function \(D \) of the optimization parameters. The excipients included in this composition are listed in table 6.

Table 6: The Most Optimal Composition of the Excipients that Ensure the Required Indicators for the Capsules “Nigelit”

<table>
<thead>
<tr>
<th>Name of the capsules</th>
<th>No. of the optimal composition</th>
<th>Excipients included in the optimal composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Nigelit”</td>
<td>composition No. 9 in table 3</td>
<td>MCC Arboce A 300 (filler – (a_3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnesium stearate (antiadherent – (b_1))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCC Arboce A 300 (disintegrant – (c_2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Talc (glidant – (d_3))</td>
</tr>
</tbody>
</table>

Based on the results of the mathematical method of experimental design, we recommend the following formulation and technology:

Formulation:
Nigella sativa seeds ground -350 mg
Zinc sulphate -20 (equal to 7.3 mg of zinc)
MCC Arboce A 300 -22 mg
Talc -4 mg
Magnesium stearate -4 mg
Average net weight of capsule -00 mg

Technological process: A moisturizing liquid (water) is sprayed into the dry mixture during the mixing process of seeds ground of Nigella sativa and zinc sulphate with “granule-forming” excipient- MCC Arboce A 300(filler) in order to form agglomerates - granules. The “drying” of granules is accomplished by adding a “drying” excipient - the rest amount of MCC Arboce A 300 (disintegrant) into the mixer, during the continuous mixing process. Since the final moisture content of the product obtained by this granulation method usually does not exceed the final moisture content of the granules obtained by traditional wet granulation, we did not perform additional thermal drying of the granules. In the final stage, talc (glidant) and magnesium stearate (antiadherent) are added to the granules. The resulted compact granules have good technological properties which are presented in table 7.

Table 7: Results of the study of the technological properties of the granules for the capsules “NIGELIT”

<table>
<thead>
<tr>
<th>No.</th>
<th>Studied indicators</th>
<th>Unit of measurement</th>
<th>Obtained results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Appearance</td>
<td>Dark brown granules with a strong, agreeable aromatic odor and a spicy, pungent taste</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Particle-size distribution:</td>
<td>(\mu m, %)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>+2500</td>
<td></td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>-2500+1000</td>
<td></td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>-1000+500</td>
<td></td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>-500+250</td>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>-250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bulk density untapped</td>
<td>kg/m³</td>
<td>390</td>
</tr>
<tr>
<td>4</td>
<td>Bulk density tapped</td>
<td>kg/m³</td>
<td>455</td>
</tr>
<tr>
<td>5</td>
<td>Flowability</td>
<td>(10^3) kg/s</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>Angle of repose</td>
<td>°</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>Residual moisture</td>
<td>%, 70 °C</td>
<td>4.2</td>
</tr>
</tbody>
</table>
As evidenced by the data in Table 7, in contrast to the mixture of active components, the granular material prepared according to the selected composition and technology has satisfactory technological properties.

Taking into account the amount of granular material to be encapsulated, its density, empty capsule volume capacity and the requirements for uniformity of the capsule contents the capsule size 00 was chosen to encapsulate the calculated dosage. [17, 20]. The process of filling the capsules with the granular material was performed using the capsule-filling machine MF 30.

IV. Conclusion

Thus, based on the results of study of technological properties of the the mixture of active componentsand the granular material prepared according to the selected composition and technology and using the mathematical method of the experimental design, the 4 × 4 Latin square, an optimal composition was formulated and the rational encapsulation technology for the capsules “Nigelit” with an average net weight of capsule (weight of core material) 400 mg was developed.

REFERENCES Références Referencias

Quality Assessment of Active Substances that Demonstrate Sedative Effect of “Flegmen” Syrup

By Zaynab E. Sidametova & Nemat K.Olimov

Tashkent Pharmaceutical Institute

Abstract- As a result of the research, the amino acid and elemental composition of “Flegmen” syrup was determined, and it was found that the syrup contains 18 amino acids and 57 macro and micro elements. The accumulation in “Flegmen” syrup of a significant number of amino acids and useful minerals, along with active biologically active groups (flavonoids, saponins), allows us to objectively consider it as a valuable source of an effective sedative.

Keywords: flegmen; amino acids; regel’s gooseberry; turkestan motherwort; peppermint; high performance liquid chromatography.

GJMR-B Classification: DDC Code: 363.739460973 LCC Code: TD223

© 2022. Zaynab E. Sidametova & Nemat K.Olimov. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Quality Assessment of Active Substances that Demonstrate Sedative Effect of “Flegmen” Syrup

Zaynab E. Sidametova & Nemat K.Olimov

Abstract: As a result of the research, the amino acid and elemental composition of "Flegmen" syrup was determined, and it was found that the syrup contains 18 amino acids and 57 macro and micro elements. The accumulation in "Flegmen" syrup of a significant number of amino acids and useful minerals, along with active biologically active groups (flavonoids, saponins), allows us to objectively consider it as a valuable source of an effective sedative.

Keywords: flegmen; amino acids; regel’s gooseberry; turkestan motherwort; peppermint; high performance liquid chromatography.

I. Introduction

Amino acids are organic compounds which are considered material unity of all tissues of human body. They are responsible for metabolic processes and energy metabolism, ensuring the functioning of the body. Amino acids directly affect the state of the nervous system, regulating mental activity, mood and sleep [2,5]. A deficiency of even one building block can worsen a person's health and lead to serious biochemical and physiological disorders in the body. Therefore, amino acid supplements are best taken in all cases when you load yourself - physically or mentally, but cannot fill the increased need in a timely manner solely from food. There are three groups of amino acids that are replaceable, irreplaceable and conditionally essential [11, 12].

The deficiency of essential amino acids is compensated by the human body with plant foods, and in the case of medical indications, in the form of medicinal preparations containing these compounds. Many amino acids are not only of great physiological importance, but are highly effective pharmacological substances. Replaceable can be independently synthesized in the body. Essential ones are not synthesized on their own and enter the body with food. Conditionally essential amino acids can be synthesized independently in the presence of essential amino acids. There are several optimal periods for taking amino acids. During training, amino acids will help improve athletic performance, muscle growth and strength, as well as speed up recovery processes after exercise. During diets and drying, amino acids will help maintain muscles and health during forced starvation, as well as speed up the process of burning fat. IN periods of mental load of amino acids will increase intellectual productivity and relieve excessive psycho-emotional stress [9,10].

According to WHO, a significant part of the world's population suffers neuropsychiatric disorders during their lives. For the treatment of these types of disorders, sedative herbal preparations are often used, which is due to their wide range of action due to the presence of a complex of active substances in them, ease of use, ease of dosage, minimum contraindications and side effects.

With this in mind, from the plants most commonly used in the formulation of sedatives and having industrial stocks in the republic, namely, Regel’s gooseberry, Turkestan motherwort, peppermint and licorice, we previously developed a collection and based on it a sedative syrup was obtained “Flegmen”[3,13].

Amino acids are an integral part of proteins, they perform one of the most important roles in the body. Almost all tissues are formed from them: skin, hair, ligaments, tendons. There are three types: replaceable, conditionally replaceable and irreplaceable. Non-essential amino acids are supplied to the body with food and can be synthesized in it. Essential amino acids must be supplied to the body from outside. Conditionally essential amino acids can be synthesized by the body from essential amino acids if necessary. There are twenty compounds in nature that form proteins. Non-essential amino acids include: glutamic acid, glycine, aspartic acid, serine, cysteine, tyrosine, alanine, proline. Essential amino acids are those amino acids that our body cannot produce on its own, they must be supplied with protein foods. Essential amino acids include: valine, isoleucine, leucine, threonine, methionine, lysine, phenylalanine, tryptophan, histidine. Conditionally essential amino acids include: arginine, tyrosine, cysteine. Each of them is responsible for a specific function [1,9,10].

As for the sources of obtaining biologically active substances, including amino acids, one of them is vegetable raw materials. In turn, it should be noted
The purpose of the study was the study of amino acid and mineral composition of the sedative syrup "Flegmen".

II. Experimental Part and Methods

To this end, we decided to review the methods for the analysis of amino acids in various objects (primarily in drugs) described in the literature. At the same time, it was established that there are currently many methods for determining amino acids in various objects. Among them, the most common are methods for the determination of amino acids by reverse-phase and cation-exchange High Performance Liquid Chromatography (HPLC), as well as electrophoretic methods. Considering the high prevalence and a number of advantages over other methods, we preferred HPLC in the choice of the amino acid analysis method. In particular, the improvement of HPLC technology and its wide practical application makes it possible to solve the problems of separation and quantitative determination of very small amounts (10 mg/kg and below) of analyzed components in complex objects. However, the absence of chromophore groups in most amino acid molecules requires a derivatization step when using this method. At the same time, various reagents have been proposed for pre- and post-column derivatization.

Thus, in the works of a number of researchers on a C18 column in the gradient elution mode with a methanol-phosphate buffer mixture with fluorimetric detection, glutathione, glutamylcysteine, and 16 amino acids were simultaneously determined using o-phthalaldehyde as a derivatizing agent. And in the works of a number of authors, naphthalenedialdehyde was used in the determination of desmosine, isodesmosine, and 17 other amino acids. 11-dansyl derivatives of amino acid isomers were separated (UV detection) on a β-cyclodextrin column using a mobile phase methanol-phosphate buffer (pH=6.5) [9, 10].

As you know, for each new drug, a specific analysis method should be developed for it. When developing an HPLC technique, in order to obtain reliable results, it is most important to find the optimal conditions for the analysis, the main of which is the choice of the mobile phase (the phase with the highest selectivity with respect to active substances), the column size, the type and size of the sorbent particles, and the elution mode (gradient or isocratic mode), detection method (conditions), standard, etc. All this, of course, requires appropriate research using various reagents and solvents, as well as a waste of time. However, when reviewing the literature, we came across the HPLC technique [6] used to determine similar substances in a similar object. This circumstance led us to the idea of testing this technique for our case, in order to establish its suitability for determining amino acids in "Flegmen" syrup and, if necessary, modifying it.

The object of the study was the "Flegmen" sedative syrup obtained on the basis of a plant liquid extract. The syrup obtained in this way is a thick solution of a light brown color, with a characteristic odor and a sweet, slightly icy taste [3, 13].

The suitability of the chromatographic system was checked by the efficiency of the chromatographic column, the degree of separation of the peaks and the relative standard deviation.

Chromatography of the amino acids of "Flegmen" syrup and a standard mixture of amino acids with a known concentration was carried out sequentially under similar conditions. The results of the chromatographic analysis of the amino acids of the "Flegmen" syrup are shown in fig. one.
Identification and quantification of the amino acids contained in the study preparation was carried out by comparing the retention times and peak areas on the standard amino acid chromatogram with those on the amino acid chromatogram of the study preparation. Analysis of the obtained amino acid chromatograms of the test sample and the standard mixture showed the presence of several amino acids in the “Flegmen” syrup.

The results of the analysis with names, chemical formula and amino acid content are presented in Table 1.

Analysis of the obtained amino acid chromatograms of the test sample and the standard mixture showed the presence of several amino acids in the “Flegmen” syrup. The results of the analysis with names, chemical formula and amino acid content are presented in Table 1.

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Amino acid name</th>
<th>Chemical formula</th>
<th>Content µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>Aspartic acid</td>
<td>C₄H₇O₄N</td>
<td>0.0240</td>
</tr>
<tr>
<td>2</td>
<td>Glutamic acid</td>
<td>C₅H₉O₂N</td>
<td>0.0840</td>
</tr>
<tr>
<td>3</td>
<td>Asparagine</td>
<td>C₄H₈N₂O₃</td>
<td>0.0344</td>
</tr>
<tr>
<td>five</td>
<td>Glutamine</td>
<td>C₃H₇O₃N</td>
<td>0.0124</td>
</tr>
<tr>
<td>6</td>
<td>Histidine</td>
<td>C₄H₉O₂N</td>
<td>0.0038</td>
</tr>
<tr>
<td>7</td>
<td>Threonine*</td>
<td>C₆H₁₂N₂O</td>
<td>0.0292</td>
</tr>
<tr>
<td>8</td>
<td>Glycine</td>
<td>C₂H₅NO₂</td>
<td>0.0543</td>
</tr>
<tr>
<td>nine</td>
<td>Argenin</td>
<td>C₆H₁₅O₂N</td>
<td>0.0688</td>
</tr>
<tr>
<td>10</td>
<td>Alanine</td>
<td>C₆H₁₄N₂O</td>
<td>0.0418</td>
</tr>
<tr>
<td>eleven</td>
<td>tryptophan</td>
<td>C₁₁H₁₄N₂O₂</td>
<td>0.0218</td>
</tr>
<tr>
<td>12</td>
<td>Methionine*</td>
<td>C₁₃H₂₃NO₄S</td>
<td>0.0421</td>
</tr>
<tr>
<td>13</td>
<td>Tyrosine*</td>
<td>C₁₀H₁₄NO₂</td>
<td>0.0112</td>
</tr>
<tr>
<td>fourteen</td>
<td>Valine*</td>
<td>C₄H₈O₂N</td>
<td>0.0177</td>
</tr>
<tr>
<td>15</td>
<td>Phenylalanine*</td>
<td>C₁₀H₁₄O₂N</td>
<td>0.0177</td>
</tr>
<tr>
<td>16</td>
<td>Isoleucine*</td>
<td>C₆H₁₃O₂N</td>
<td>0.0092</td>
</tr>
<tr>
<td>17</td>
<td>Leucine*</td>
<td>C₁₀H₁₃NO₂</td>
<td>0.0092</td>
</tr>
<tr>
<td>eighteen</td>
<td>Lysine HCl*</td>
<td>C₆H₁₃N₂O₂</td>
<td>0.0713</td>
</tr>
</tbody>
</table>

| *Essential amino acids |

III. Research Results

According to the research data, “Flegmen” syrup contains 18 amino acids, which indicates a high biological value of the sum of amino acids of the studied liquid extract. Among the amino acids of the collection, glutamic acid predominates, which is used in the treatment of diseases of the central nervous system.

From this it follows that the amino acids of the studied syrup can participate in the manifestation of the pharmacological activity of the syrup.

Further research was aimed at studying the mineral composition of “Flegmen” syrup.

Trace elements have been known for a long time, but only very recently they have been recognized...
as substances necessary for Life. Trace elements are “food mainly for the endocrine glands”, more precisely, for enzyme enzymes, since they are catalysts for vital processes. In the impact on the body, all microelements are interconnected and interdependent. Human needs for these "metals of life" are very individual. Minerals make up only 4% of the mass of the human body. Half of this amount is part of the solid parts of the body: bones, teeth, nails, hair, soft tissues. The rest is in the blood, in the intercellular and intracellular fluid.

70-80% of our body mass is water and gases soluble in it - carbon, hydrogen, nitrogen and oxygen, and most of all in our body oxygen is about 60% of body weight, carbon - about 17%, hydrogen - about 10%, nitrogen – only 3% [3].

Micro and macro elements control metabolic processes, maintain the physical and chemical integrity of cells and tissues by maintaining characteristic bioelectric potentials. It is microelements that play the main role in the activity of enzymatic processes necessary for life. That is why their deficiency, as well as excess, will immediately affect human health. It should be noted that the intercellular space contains mainly sodium and calcium, and inside the cells - potassium and magnesium. If the balance between them is disturbed, a person develops various diseases, accompanied by swelling. In this case, the balance should be maintained both between sodium and calcium, and between potassium and magnesium [2,12].

It should also be noted that the minerals contained in plants are divided into two groups: the first, called macroelements, includes potassium, sodium, calcium, magnesium, manganese, silicon, chlorine, phosphorus; plant ash contains at least hundredths of a percent of these elements; the second, called trace elements, include: iron, copper, zinc, iodine, barium, etc. Their content in the ash is thousandths of a percent. Accumulation of trace elements in plants is often selective: different types of plants grow in the same soil conditions, and only some of them are able to concentrate certain microelements [4,7,14].

The determination of the elemental composition was carried out using a highly sensitive multi-element analysis method - mass spectral with inductively coupled plasma (ICP - MS) [15]. As a result of the analysis, the presence of 57 mineral elements was established in the syrup. According to the results obtained, 2 elements (Br and K) were contained in concentrations from 100 to 1000 mg/kg, 2 elements (Na and Mg) ranged from 10 to 100 mg/kg, 2 elements (P and Fe) ranged from 1 to 10 mg/kg, and below 1 mg/kg 51 elements (Fe, Zn, B, Cr, Al, I, Sr, Mn, Cu, Ca, Sc, Ba, Mo, Ni, Li, V, Se, Sb, Zr, Sn, Nb, As, Co, Ga, Ag, Cd, Ta, Cs, Te, W, Ti, Bi, Re, Nd, Ce, Pb, Hf, Y, Gd, In, Sm, La, Er, Eu, Dy, Pr, Lu, Ho, Tm, Au, Hg, Pt)[102; pp.-206-213].

As the data in table 2 show, “Flegmen” syrup contains 57 elements. Of these elements, calcium, magnesium, potassium, sodium and chlorine, which are part of the cell in the form of ions, are vital. The listed elements are included in the group of macronutrients. Macronutrients in the syrup, the largest quantities are: bromine, potassium, sodium, magnesium, phosphorus, iron, zinc, boron, chromium. Elements found in syrup having a positive effect on the vital activity of the organism, to a certain extent, contribute to an increase

<table>
<thead>
<tr>
<th>Element</th>
<th>Soda in µg/ml</th>
<th>Element</th>
<th>Sod-e in mcg/ml</th>
<th>Element</th>
<th>Soda - e in mcg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br</td>
<td>4015</td>
<td>Li</td>
<td>0.016</td>
<td>Nd</td>
<td>0.00018</td>
</tr>
<tr>
<td>K</td>
<td>2755</td>
<td>V</td>
<td>0.01</td>
<td>Ce</td>
<td>0.00018</td>
</tr>
<tr>
<td>Na</td>
<td>51.9</td>
<td>Se</td>
<td>0.011</td>
<td>Pb</td>
<td>0.00015</td>
</tr>
<tr>
<td>mg</td>
<td>16.5</td>
<td>Sb</td>
<td>0.005</td>
<td>hf</td>
<td>0.00013</td>
</tr>
<tr>
<td>P</td>
<td>1.96</td>
<td>Zr</td>
<td>0.003</td>
<td>Y</td>
<td>0.0001</td>
</tr>
<tr>
<td>Fe</td>
<td>1.41</td>
<td>Sn</td>
<td>0.002</td>
<td>Gd</td>
<td>0.00007</td>
</tr>
<tr>
<td>Zn</td>
<td>0.22</td>
<td>Nb</td>
<td>0.0016</td>
<td>In</td>
<td>0.00007</td>
</tr>
<tr>
<td>B</td>
<td>0.16</td>
<td>As</td>
<td>0.0012</td>
<td>Sm</td>
<td>0.00006</td>
</tr>
<tr>
<td>Cr</td>
<td>0.14</td>
<td>Co</td>
<td>0.0011</td>
<td>La</td>
<td>0.00006</td>
</tr>
<tr>
<td>Al</td>
<td>0.12</td>
<td>Ga</td>
<td>0.001</td>
<td>Er</td>
<td>0.00006</td>
</tr>
<tr>
<td>I</td>
<td>0.125</td>
<td>Ag</td>
<td>0.0008</td>
<td>Eu</td>
<td>0.00005</td>
</tr>
<tr>
<td>Sr</td>
<td>0.11</td>
<td>CD</td>
<td>0.0007</td>
<td>Dy</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mn</td>
<td>0.08</td>
<td>Ta</td>
<td>0.0007</td>
<td>Pr</td>
<td>0.00004</td>
</tr>
<tr>
<td>Cu</td>
<td>0.08</td>
<td>Cs</td>
<td>0.00055</td>
<td>Lu</td>
<td>0.00003</td>
</tr>
<tr>
<td>Ca</td>
<td>0.07</td>
<td>Te</td>
<td>0.0004</td>
<td>Ho</td>
<td>0.000019</td>
</tr>
<tr>
<td>sc</td>
<td>0.03</td>
<td>W</td>
<td>0.00046</td>
<td>Tm</td>
<td>0.00001</td>
</tr>
<tr>
<td>Ba</td>
<td>0.042</td>
<td>Ti</td>
<td>0.00035</td>
<td>Au</td>
<td>0.0000039</td>
</tr>
<tr>
<td>Mo</td>
<td>0.033</td>
<td>Bi</td>
<td>0.00033</td>
<td>hg</td>
<td>0.0000023</td>
</tr>
<tr>
<td>Ni</td>
<td>0.01</td>
<td>Re</td>
<td>0.00026</td>
<td>Pt</td>
<td>0.0000023</td>
</tr>
</tbody>
</table>

As the data in table 2 show, “Flegmen” syrup contains 57 elements. Of these elements, calcium, magnesium, potassium, sodium and chlorine, which are part of the cell in the form of ions, are vital. The listed elements are included in the group of macronutrients. Macronutrients in the syrup, the largest quantities are: bromine, potassium, sodium, magnesium, phosphorus, iron, zinc, boron, chromium. Elements found in syrup having a positive effect on the vital activity of the organism, to a certain extent, contribute to an increase
in the pharmacological value of this medicinal vegetable syrup due to the combination with its main biologically active substances [10].

The detected elements according to the degree of decrease in their content can be represented as the following series: Br > K > Na > Mg > P > Fe > Zn > B > Cr > Al > I > Sr > Mn = Cu > Ca > Sc > Ba > Mo > Ni > Li > V > Se > Sb > Zr > Sn > Nb > As > Co > Ga > Ag > Cd = Ta > Cs > Te > W > Ti > Bi, > Re > Nd = Ce > Pb > Hf > Y > Gd = In > Sm > La > Er > Eu > Dy > Pr > Lu > Ho > Tm > Au > Hg = Pt

When determining the elemental composition of the syrup, special attention is paid to the content of toxic heavy metals - lead, cadmium and mercury, which the FAO and WHO Joint Commission on the Food Code (Codex Alimentarius) refers to the number of components subject to priority control in international food trade [8,9]. It is shown that the content of toxic heavy metals in the syrup is within the limits allowed by SanPin 0193-06[4]. Comparison of the concentrations of these metals in the studied preparation with their clarks showed that their content practically corresponds to uncontaminated territories, which indicates the environmental safety of raw materials.

Thus, for the first time by the ICP - MS method, the mineral composition of “Flegmen” syrup was determined, in which the content of 57 elements was found. Elements such as bromine, potassium, sodium, magnesium, phosphorus, zinc have been found, which have a pronounced sedative effect and have a beneficial effect on nervous tissue, restoring performance after emotional and physical stress. The data obtained allow us to conclude that the elemental composition of the syrup is very diverse and, accordingly, can have a complex effect. It has been established that the content of toxic heavy metals lead, cadmium and mercury does not exceed the permissible values, which indicates the environmental friendliness and safe use of the syrup in medical practice.

Also, from table 2 it can be seen that in the “Flegmen” syrup such elements were found that are involved in sedative activity.

Magnesium deficiency, even if not too great, can be the cause of heart disease. A serious lack of this mineral leads to disastrous consequences - as a rule, to heart attacks. Lack of magnesium leads to anxiety, fear, confusion, depression. Also, there is hyperactivity, nervousness, stepping from foot to foot, jumping gait, sharpness of movements. Loss of balance, dizziness, fainting, weakness in the arms and legs, blood pressure disorders, cold extremities. The trace element magnesium promotes the absorption of calcium. Bromine is involved in the regulation of the activity of the thyroid gland, as it is a competitive inhibitor of iodine.

The lack of bromine in food leads to insomnia, growth retardation and a decrease in the number of erythrocytes in the blood [2,11]. Phosphorus and bromine have a pronounced sedative effect and have a beneficial effect on the nervous tissue, restoring performance after emotional and physical stress [2,11,12]. Lack of iodine contributes to the development of Graves’ disease (goiter). Children and adolescents require more iodine than adults. Iodine is used in atherosclerosis, treatment of syphilis in the tertiary period, inflammatory processes of the respiratory tract, chronic mercury and lead poisoning, to prevent and treat goiter [2,11]. Potassium iodide is prescribed for mastopathy of the mammary gland and other neoplasms in the endocrine glands. Iodine has a sedative (calming) effect on a person, increases mental abilities. Iodine is necessary for the synthesis of the thyroid hormone - thyroxine, as well as for the creation of phagocytes - patrol cells in the blood, which must destroy debris and foreign bodies. Phagocytes capture and digest microorganisms, defective cells.

Lithium prevents the development of neuropsychiatric diseases and has a positive effect on the treatment of schizophrenia [2,11,12]. Zinc deficiency is of exceptional importance, as it not only leads to underdevelopment of the nervous and reproductive systems, but is also deeply linked to immunodeficiency problems. T-lymphocytes in conditions of zinc deficiency are inactive.

Potassium is a very common mineral found in many foods. The best sources of potassium are plant products, especially dried fruits and berries, nuts, seeds, Jerusalem artichoke, potatoes, radishes, cabbage, green vegetables, oatmeal, beets, bananas, bread, currants, tomatoes. Symptoms of potassium deficiency are muscle weakness, heart problems and mental disorders. Low potassium intake can lead to sodium retention and high blood pressure. A potassium-rich diet has been linked to beneficial effects on cardiovascular health. The macroelement potassium is needed, first of all, for the transmission of nerve impulses, to maintain the acid-base balance of the blood, for normal carbohydrate metabolism, to ensure muscle contraction. Its need increases primarily with vomiting and prolonged diarrhea, with profuse sweating, with diuretics, with increased excretion of potassium in the urine, which can be caused, as well as excessive amounts of sodium, coffee, sugar and/or alcohol consumed, or low blood sugar levels.

The macronutrient sodium is primarily needed for normal water exchange between blood cells and tissues, to maintain the acid-base balance in the body, to transmit nerve impulses, to ensure muscle contraction.

A profound lack of sodium can lead to coma and death. Excessive consumption of this macronutrient burdens the kidneys, causes edema (normal water exchange between blood cells and tissues is disturbed), can cause an increase in blood pressure, and leads to
excessive excretion of water and potassium in the urine (which, however, does not relieve edema). Dietary sodium deficiency usually does not occur. Acute deficiency can occur with profuse sweating in combination with the consumption of large amounts of non-sodium fluids, or as a result of vomiting and diarrhea. Symptoms are muscle cramps, lack of appetite, malabsorption of nutrients.

IV. Conclusion

Thus, as a result of the research, the amino acid and elemental composition of the “Flegmen” syrup was determined, while it was found that the syrup contains 18 amino acids and 57 macro and micro elements. Among the amino acids of the collection, glutamic acid predominates, which is used in the treatment of diseases of the central nervous system. Among the macronutrients, such elements as lithium, phosphorus, iodine, magnesium, bromine were found, which have a pronounced sedative effect and have a beneficial effect on the nervous tissue, restoring performance after emotional and physical stress. The data obtained allow us to conclude that the amino acid and elemental composition of the syrup is very diverse and, accordingly, can have a complex effect.

References Références Referencias

Review on Emulsomes as Carriers for Drug Delivery

By Bandaru Hemanth Kumar, Shaik Farooq Ahmed & Prasanthi D

Abstract- This review determines the introduction to emulsomes, need to the invention, advantages, disadvantages, formulation of the emulsomes, methods of preparation and application of emulsomes. In the recent years attention has been focused on development of vesicular drug delivery system. These emulsomes provide the drug release in a controlled and sustained manner up to 24 hours, whereas the liposomes have shown release up to the mark of 6 hours. Emulsomes comes under the category of the vesicular drug delivery system and these are mainly developed for the purpose to overcome poor bioavailability, protection from harsh gastric environment and from gastric enzymes, which mainly degrade the drug molecules. The success of the emulsomes is for the delivery of drugs to fight against viral infections, fungal infections, dermal therapy, cancer, auto immunity. Mainly the drug is enclosed in the emulsomes and provide existence of drug in systemic circulation. Emulsomal based formulations of genetic drugs, antisense oligonucleotides and plasmids for gene therapy having proper and clear potential for systemic utility are increasingly available.

Keywords: emulsomes, liposomes, emulsions, preparation methods of emulsomes, applications of emulsomes.

GJMR-B Classification: DDC Code: 610.3 LCC Code: R121
Review on Emulsomes as Carriers for Drug Delivery

Bandaru Hemanth Kumar a, Shaik Farooq Ahmed b & Prasanthi D c

Abstract- This review determines the introduction to emulsomes, need to the invention, advantages, disadvantages, formulation of the emulsomes, methods of preparation and application of emulsomes. In the recent years attention has been focused on development of vesicular drug delivery system. These emulsomes provide the drug release in a controlled and sustained manner up to 24 hours, whereas the liposomes have shown release up to the mark of 6 hours. Emulsomes comes under the category of the vesicular drug delivery system and these are mainly developed for the purpose to overcome poor bioavailability, protection from harsh gastric environment and from gastric enzymes, which mainly degrade the drug molecules. The success of the emulsomes is for the delivery of drugs to fight against viral infections, fungal infections, dermal therapy, cancer, auto immunity. Mainly the drug is enclosed in the emulsomes and provide existence of drug in systemic circulation. Emulsomal based formulations of genetic drugs, antisense oligonucleotides and plasmids for gene therapy having proper and clear potential for systemic utility are increasingly available. The worldwide market for drug delivery systems is growing at an ever-increasing rate and is being fueled by several significant needs, the commercial necessity of extending product life and product portfolios, the clinical need to enhance drug safety and patient compliance and the technological challenge of delivering new therapeutics. Exploitation of new advances in drug delivery technology will give pharmaceutical companies a significant competitive advantage in an increasingly demanding marketplace.

Keywords: emulsomes, liposomes, emulsions, preparation methods of emulsomes, applications of emulsomes.

I. Introduction

a) Emulsomes

Emulsomes are nanosize in range compared with the other vesicular drug delivery system such as niosomes, pharmacosomes, ethosomes. Due to their reduced size, they can be used to increase the bioavailability of drug and as the best carrier for the intravenous delivery as well as the oral drug delivery[1]. Oral route is the best route to reduce the number of adverse effects. Emulsomes are novel oral drug delivery systems which carries lipophilic drugs within it. Emulsomes are lipoidal vesicles which contains solid fat core surrounded by phospholipid bilayer. They are the liposomes with extra single inner phospholipid layer which contains solid fat. The drug release pattern by emulsomes is sustained and slow release and it is also soluble in aqueous phases and can be easily circulated through blood[2]. The Emulsome nanocarrier technology is a lipid-based drug delivery system designed to act as a vehicle for drugs with poor water solubility. Emulsome particles consist of a microscopic lipid assembly with an internal fat core, which dissolve the water-insoluble drugs in the absence of any surfactant or solvent.

b) Need for the invention

Undesirable side-effects are often produced when water-insoluble vehicles are used for the parenteral administration for example thrombophlebitis, hemolysis, or blood coagulation. The potential carriers for fat soluble materials are liposomes and o/w emulsions which minimize such undesirable side effects. However, there are many problems with stability and drug loading capacity which have been reported using either of these delivery systems[3].

c) Liposomes

It consists of one or more concentric phospholipid bilayers, separated by water or aqueous compartments, range from 20nm to 10μm. They are

1. SUV (20-100nm)
2. LUV (>100nm)
3. REV (0.5μm)
4. MLV (2-10μm)

Effective for localized sustained release of drugs in tissues [4].

Drawbacks of liposomes

1. Unilamellar Vesicles- low content of lipid molecules so
 - Low drug loading capacity for lipophilic compounds
 - More suitable for entrapment of water –soluble materials
2. Amount of drug that can be contained therein is limited.
3. MLV liposomes- not appropriate for I.V due to large size.
4. Difficulties in preparation of acceptable liposomal formulations with long-term stability and high drug loading [2].

Author a: Department of Pharmaceutics, G. Pulla Reddy College of Pharmacy, Mehdipatnam, Hyderabad, Telangana. e-mails: Bandaruhemanthkumar9493@gmail.com, gpfarooqahmed@gmail.com
Corresponding Author b: Associate Professor, G. Pulla Reddy College of Pharmacy, Mehdipatnam, Hyderabad, Telangana, India. e-mail: prasanthidhanu@gmail.com
d) Emulsions

Emulsions are defined as “heterogeneous systems of one liquid dispersed in another liquid in the form of droplets usually exceeding 1 µm in diameter". The two liquids are immiscible and are chemically not reactive or slowly reactive. An emulsion is a thermodynamically unstable dispersed system. This instability causes reduction in its free energy by separating the dispersed droplets into two liquid phases.

Evidence of emulsion instability during storage:
- Creaming
- Flocculation
- Coalescence [5]

Drawbacks
1. Micro-droplets of size less than 1µm should be achieved to prevent the formation of emboli in blood vessels.
2. Emulsions must be coated to lower the free energy at the interface and decrease the tendency of droplets to coalesce. These emulsions produce harmful side effects upon injection into the body.
3. It has detergent characteristics because most of them are hemolytic agents which act as membrane solubilizers.
4. Limited formulation options due to restricted emulsifiers for parenteral injection.
5. The water insoluble drugs such as phenytoin, amphotericin B, cyclosporin, miconazole, diazepam, etoposide, etc makes the formulation difficult for intravenous use.
6. These drugs are marketed in co-solvent systems such as polyethylene glycol or propylene glycol-ethanol-benzyl alcohol mixtures, which have shown toxicity problems, such as thrombophlebitis on injection.
7. Alternatives to cosolvent systems are micellar solutions or emulsions, but the presence of toxic surfactants in these systems makes them undesirable for intravenous administration.[5]

Summary of the invention

To provide pharmaceutical compositions comprising nano-emulsions of particles comprising of lipid core composed of lipid which is in a solid or liquid crystalline phase at least 25°C, stabilized by at least one phospholipid envelope, for parenteral, oral, rectal, intranasal or topical delivery of both fat-soluble and water-soluble drugs.

This is solid fat nanoemulsion or “EMULSOMES”.

Emulsomes, having the characteristics of both liposomes and emulsions [1]

II. Formulation

1. Composition of lipid core

It exhibits solid (or) liquid crystal or mixed solid and liquid crystal phases at room temperature (25°C) when measured in bulk. Lipid compositions suitable for use as the core component of emulsomes may be characterized as being in the solid or liquid crystalline phase at least about 25°C., when measured in bulk form without incorporation into emulsomes. Some lipid compounds present in a mixture optionally may be fluids at 25°C. When pure provided that the lipid mixture as a whole is solid or liquid crystalline in bulk at 25°C. In preferred compositions, at least 90% of the individual lipid compounds present in the core are solids or liquid crystals at 25°C when measured in pure bulk form.

Phase determination is performed on the bulk lipid, incorporation into the emulsome core. The macroscopic phase determination on a bulk sample may be made on a melting apparatus or by spectroscopic means, such as IR, NMR, or fluorescence intensity or anisotropy. Bulk phase determination of an existing emulsome preparation may be performed by first extracting the core lipids, then measuring. It consists of - triglycerides,
- Monoesters,
- Cholesteryl esters & cholesterol,
- Antioxidants,
- Protein components [6]

a) Triglycerides

Available as synthetic triglycerides or mixture of several triglycerides. Fats isolated from natural sources usually are available only as mixtures of triglycerides. Such natural mixtures are suitable for preparation of emulsomes, provided that the melting characteristics of the mixture are such that they exhibit a solid or liquid crystal phase at 25°C.

Triglycerides, which are solid at 25°C have fully saturated fatty acid chains which are incapable of undergoing peroxidation reactions. Examples of solid fats suitable for the preparation of emulsomes are:

Triglycerides composed of natural, even-numbered and unbranched fatty acids with chain lengths in the C10-C18 range, or microcrystalline glycerol triesters of saturated, even-numbered and unbranched fatty acids of natural origin such as tricaprin, trilaurin, trinystatin, tripalmitin, and tristearin.

Partially hydrogenated vegetable oils may be used to prepare emulsomes which are free of cholesterol or cholesteryl esters [7].

In some the lipid of the hydrophobic core may have a solid to fluid phase transition (melting) temperature between 25°C and physiological temperature (37°C) when measured in bulk. For example, tricaprin melts at 35°C-37°C., and is wholly or
predominantly in the fluid phase at physiological temperature. Tricaprin may be used to form an excellent lipid core for nanoemulsions. Lipid core may be composed of lipid, which is in solid phase at 37 °C. Ex: higher saturated triglycerides-tripalmitin and tristearin

b) **Monoesters**

The lipid core may contain monoesters of fatty acids such as waxes

Ex: Esters from beeswax and spermaceti-cetyl palmitate

Preferred waxes are made from saturated or monounsaturated fatty acids and saturated or unsaturated fatty alcohols.

Ex: Arachidyl oleate

Other monoesters include solid monoglycerides such as glyceryl monostearate, and fatty acid esters of short chain alcohols such as ethyl stearate [8].

c) **Cholesteryl esters & cholesterol**

These can be incorporated into the lipid core or the surrounding phospholipid envelope. cholesterol has a polar alcohol group, it tends to incorporate into the envelope monolayers or bilayers rather than into the lipid core itself, and should be considered a component of the phospholipid envelope rather than of the core [9].

Preferred cholesteryl esters are those of saturated or monounsaturated long chain fatty acids, such as palmityl or oleoyl, respectively.

Cholesteryl esters may be present in levels up to 50 mol % relative to the triglyceride or other solid lipid core component [10].

d) **Antioxidants**

Lipid core may contain one or more antioxidants.

The need for antioxidants may be lessened by preparing the lipid core from saturated fatty acids.

Ex: Alpha tocopherol & its derivative Butylated hydroxytoluene

e) **Protein components**

Lipid particles of the invention preferably do not contain serum apolipoproteins such as apo B, apo AI, apo AI, or apo E.

The apo B protein has the effect of targeting intravenously administered lipid particles to certain cellular receptors, such as the LDL receptor on hepatocytes and certain other cells.

Other proteins and peptides optionally may be present in emulsomes.

Examples of such peptides and proteins may be cyclosporin, luteinizing hormone releasing hormone (LHRH) and its analogs, calcitonin, insulin, and other synthetic or recombinant peptides.

An example of natural protein is collagen, which may be used to prepare emulsomes with controlled or sustained release properties.

2. **Phospholipids**: Constitute the surrounding envelope of emulsomes

*Ex: 1. Natural phospholipids - soybean lecithin, egg lecithin, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, diphasphatidylglycerol, Cardiolipin, phosphatidylserine, phosphatidylcholine, sphingomyelin.

The phospholipid component may be either saturated or unsaturated, and may have a gel to fluid phase transition temperature either above or below 25°C.

Ex: egg or soy PC – below room temp dimyristoyl PC – slightly below room temp distearoyl & dipalmitoyl PC – above room temperature

Emulsomes may be prepared with molar ratios of phospholipid to total lipid in the range of 0.1 to 0.75 (10 to 75 mol %), more usually 0.1 to 0.5 (10 to 50 mol %). The molar ratio of phospholipid to core lipid typically may be in the range of 0.1:1 to 2:1, usually 0.1:1 to 1:1, often 0.2:1 to 0.9:1, frequently 0.2:1 to 0.8:1, and commonly 0.25:1 to 0.6:1.

On a weight basis, the ratio of phospholipid to core lipid usually falls in the range 0.5:1 to 1.5:1, and frequently 0.6:1 to 1.2:1. [1]

3. Non-natural surfactants: optionally may be incorporated into emulsomes in small amount as less than 0.1% to less than 10% (mol/mol) of total surfactants.

The increasing concentrations of synthetic surfactants progressively decrease the particle size, and higher concentrations than those used are expected to result in formation of micelles (1-10 nm diameter).

4. **Negatively charged lipids**: These are added to the lipid phase of emulsomes to increase the zeta potential of the composition, thus stabilizing the particles.

Incorporation of these negatively charged lipid compounds in emulsomes results in the formation of phospholipid bilayers with opposing charges, thus increasing the loading of water-soluble molecules in the aqueous compartments formed by the phospholipid bilayers surrounding the lipid core.

Inclusion of negatively charged lipid molecules in emulsomes is to reduce the likelihood of particle aggregation, which minimizes destabilizing processes such as coalescence, flocculation, or fusion. Aggregation is prevented by the repulsive forces between the approaching particles.
Ex: negatively charged lipid molecule-oleic acid, negatively charged phospholipid- phosphatidylglycerol, phosphatidic acid, phosphatidylserine, phosphatidylcholine, phosphatidylinositol.

Range is 0 to 30-mol % relative to total phospholipid & charged lipid.

5. Incorporation of drugs

Water insoluble compounds – incorporated by dissolving drug in suitable organic solvent along with other ingredients.

Water-soluble drugs- by dissolving in aqueous medium.

Categories of drugs incorporated

III. Pharmaceutical Preparations of Emulsomes

a) Method

1) Lipid film formation (Handshaking method)

Surfactants/lipids are casted as layers of film on their organic solution using flask rotary evaporator under reduce pressure (or) by hand shaking. The casted films are dispersed in aqueous. Hydration is done with constant hand shaking. The lipids will swell and get peeled off from the walls of round bottom flask at slightly above the phase transition temperature of surfactants used for specific period of time. Swelling of lipid and dispersion of casted lipid film is done by manual hand shaking or by exposing the film to a steam of water saturated nitrogen for 15 minutes, followed by swelling in the aqueous medium without shaking. Hand shaking method produce multi lamellar vesicles (MLV) and non-shaking method produced large unilamellar vesicles (LUVs).

2) Reserve phase evaporation

This technique is comprised of two steps. First prepare a water-in-oil emulsion of phospholipids and buffer in excess organic phase. Second remove organic phase under reduced pressure. The two phases of phospholipids and water are usually emulsified by mechanical methods. Remove the organic solvent under vacuum, it causes the phospholipid coated water droplets to combine to form a gel-like matrix. Further continual removal of organic solvent under reduced pressure causes the gel like matrix to form into a paste of smooth consistency, which is a suspension of LUV. Drug entrapment efficiency is achieved up to 60-65%. This method is used to encapsulate both small and large molecules. Avoid the exposure of drug to be encapsulated to organic solvents and to mechanical agitation as less as possible. Phospholipids are dissolved in organic solvents such as chloroform, isopropylether, or mix two organic solvents to adjust the density to unity that is closer to the density of aqueous phase. Biologically active molecules such as enzymes, protein pharmaceuticals and RNA type molecules may undergo conformational changes, protein denaturation, or breakage of DNA strands due to the harsh conditions of organic solvent exposure and mechanical agitation[7].

3) Ethanol injection method

It is the alternative method used for the preparation of small unimammellar vesicles (SUVs). An ethanol solution of surfactant is injected rapidly through a fine needle into excess of saline or other aqueous medium. Vaporize the ethanol for the formation of vesicles. Narrow distribution of small liposomes (under 100 nm) can be obtained by simply injecting an ethanolic lipid solution in water, i.e. in one step, without extrusion or sonication. This method is a suitable technique to obtain the spontaneous formation of emulsomes with small average radius. Alternatively, the lipid or lipid mixture is dissolved in alcoholic solvent and an aliquot of 200, 500, or 600 ml fast injected at room temperature, which contains water or saline solution, of 9.8 ml further diluted to 1:50, 9.5 ml diluted to 1:20 or 9.8 ml diluted to 1:17, respectively. The solution was then vigorously hand-shaken for 20-30 seconds. After that the ethanol solution is fast-injected in a 5% glucose solution. The vesicles had shown average diameter of about 60 nm and may be stable for at least one week[6].

4) Cast film method

Mix the phospholipids and triglycerides in a weight ratio of 0.5:1.0 where triglycerides have a solid to liquid phase transition temperature of greater than 25°C. Suspend the mixture in an aqueous solution at a temperature below the solid to liquid transition temperature in order to reduce the suspension to yield emulsomes. These emulsomes comprise a nano-emulsion of liquid particles having a mean particle diameter between 10-250 nm usually within the range 20 to 180 nm usually and frequency within range 50-150 nm. The size range is determined on a weight percentage basis rather than a particle number basis. Usually, the lipid component may be volatile and chemically un-reactive volatile organic solvent such as dichloromethane or diethylether. Remove the solvent under reduced pressure in a rotary evaporator or under stream of inert gas. The resulting lipid film is then hydrated and dispersed by covering and shaking with an aqueous solution. If the drug component were not included in the organic solution, they may be added to aqueous hydration solution. Size the lipid suspension or dispersion at 800 pressure bars by high shear homogenizer.

5) Detergent removal technique

Phospholipids and a detergent are mixed together to form micellar mixtures. The detergent is
removed from the preparation while the micelles progressively become richer in phospholipid content and the lipids come together to form single bilayer vesicles. Methods such as column chromatography, dialysis or adsorption onto bio beads used to remove the detergent from the preparation. The dialysis technique was first reported for reconstituting biological membranes solubilized with detergents. This method is also applicable for the preparation of emulsomes. Commonly used detergents here are those with high critical micelle concentration. Ex: sodium cholate, sodium deoxycholate, and octylglycoside. In this technique detergent is removed by a flow through dialysis cell from phospholipid detergent mixture. Reports were found that this technique yielded homogeneous population of single layered emulsomes with mean diameters of 50-100nm[4].

Applications of Emulsomes

1. Entrapment of water insoluble drugs
 - Neuroprotectant drug HU-211
2. Encapsulation of water-soluble drugs
 - Adaprolol-Maleate
3. For controlled release
4. As blood substitutes or oxygen carriers
 - Stable blood-substitute perfluorodecaline formulation
 - Perfluorotributylamine formulation
5. Can be lyophilized
6. In anti-viral therapy (anti HIV)
 - AZT- CDS in emulsomes
 - Brain enhanced delivery of AZT-Q by AZT-CDS-emulsomes
7. For ophthalmic use
 - 1% Indomethacin
8. For topical use as creams
 - 1% Indomethacin
 - Diclofenac & ketoprofen
9. In anti-fungal therapy
 - Miconazole
 - Amphotericin-B
10. Antiepileptic & anticonvulsant
 - Diazepam
 - Phenytoin
11. For sustained & targeted delivery
 - Zidovudine – to liver
12. For immunization
 - HIV-1 neutralising antibodies in genital & respiratory tracts of mice intranasally immunized with oligomeric gp160 formulated in emulsome[3]

References Références Referencias

This page is intentionally left blank
Usage of Nivolumab- Platinum Containing STAT1 Molecule for Suppression PD-1/PD-L1 Genes in PD-1/ PD-L1 Expressing Cancer Cells

By Waleed O. Atta
Assiut University

Abstract- Blockage of PD-1 proteins by immune checkpoint inhibitors showed an accepted therapeutic effect in cancer. But; tumor microenvironment exerts its antitumor influence by various mechanisms. Malignant cells have the ability of PD-1/PD-L1 protein over synthesis, which can be a defense action against immune checkpoint inhibitors and immunotherapy. Binding nivolumab with platinum-containing STAT1 will be used to reduce PD-1 genetic level. Nivolumab has the option of endocytosis, while STAT1 is the transcription factor that binds to the DNA, specifically PD-1 gene. STAT1 is the activated protein in response to multiple cytokines stimulation of cancer cells, which are the same for increasing PD-1/ PD-L1 upregulation. The used STAT1 in our therapeutic strategy is the activated form and loaded with platinum particles for damaging DNA bases in PD-1 promoter regions upon translocation to the nucleus. STAT1-platinum molecule is connected to nivolumab Fc region by solamargine polymer for selective cancer cell targeting.

Keywords: A5 complex, IFN-γ endocytosis, cytokines, solamargine, phosphorylation.

GJMR-B Classification: DDC Code: 784.2 LCC Code: M3.1

Strictly as per the compliance and regulations of:

© 2022. Waleed O. Atta. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Usage of Nivolumab- Platinum Containing STAT1 Molecule for Suppression PD-1/PD-L1 Genes in PD-1/ PD-L1 Expressing Cancer Cells

Waleed O. Atta

Abstract: Blockage of PD-1 proteins by immune checkpoint inhibitors showed an accepted therapeutic effect in cancer. But; tumor microenvironment exerts its antitumor influence by various mechanisms. Malignant cells have the ability of PD-1/PD-L1 protein over synthesis, which can be a defense action against immune checkpoint inhibitors and immunotherapy. Binding nivolumab with platinum-containing STAT1 will be used to reduce PD-1 genetic level. Nivolumab has the option of endocytosis, while STAT1 is the transcription factor that binds to the DNA, specifically PD-1 gene. STAT1 is activated in response to multiple cytokines stimulation of cancer cells, which are the same for increasing PD-1/PD-L1 upregulation. The used STAT1 in our therapeutic strategy is the activated form and loaded with platinum particles for damaging DNA bases in PD-1 promoter regions upon translocation to the nucleus. STAT1-platinum molecule is connected to nivolumab Fc region by solamargine polymer for selective cancer cell targeting.

Keywords: A5 complex, IFN-γ endocytosis, cytokines, solamargine, phosphorylation.

I. Background

a) PD-1/ PD-L1/PD-L2 Levels and Functions

PD-1 is a surface glycoprotein and is presented on CD4+ and CD8+ T cells, natural killer [NK] cells, natural killer T [NKT] cells, B cells, macrophages, and dendritic cells [DC] subsets. Also; PD-1 is expressed on tumor cells and TAMs [tumor associated macrophages] of many cancer types such as melanoma, non-small cell lung cancer, and head and neck squamous cell cancer [Baumeister et al. 2016]. PD-1 surface receptors should be suitable because it controls the immune balance towards self-antigens. Its deficiency or increased level causes altered immune response, lethal immune response and autoimmune disorder. PD-1 deficiency in murine models by genetic knockdown or blocking its signaling pathway results in serious immunopathology during acute infection via elevated levels of cytokines that result in tissue damage [Barber et al. 2006, Frebel et al. 2012]. Other harmful possibilities can occur, such as autoimmune dilated cardiomyopathy and autoimmunity encephalomyelitis. [Sage et al. 2018] PD-1 has an inhibitory function on binding with PD-L1 and PD-L2 expressing cells [Latchman et al. 2001]. PD-L1 and PD-L2 receptors are expressed on hematopoietic cells such as CD8+, CD4+ T cells, B cells, dendritic cells, macrophages and non-hematopoietic cells like hepatocytes, vascular endothelial cells, epithelial cells, myocytes, pancreatic islet cells, placenta and eye cells. Also, PD-L1 and PD-L2 are expressed on tumor cells and stromal tumor cells [Sun et al. 2018]. PD-1 inhibitory signals play a critical immune modulatory response by induction regulatory [Treg] and natural [T reg]. As result, immune modulatory molecules, such as anti-inflammatory cytokines transforming growth factor-b [TGF-b] and interleukin-10 [IL-10], are secreted [Attanasio et al. 2016]. Activated Treg cells show high PD-1 levels, and their blockage will inhibit Treg cells’ essential function.

PD-1 is overexpressed on M1 and M2 macrophages within the tumor tissue that represent tumor-associated macrophages [TAMs]. M1 macrophages have an early tumorigenic effect, while M2 macrophages stimulate metastasis [Tamura et al. 2018, Pollari et al. 2018] PD-1 receptors within the tumor different cells inactivate T cells, B cells, Natural killer cells and dendritic cells, by that way it inhibits the phagocytic action of T cells and other cellular immune response against tumor cells [Gordon et al. 2017]. The cytoplasmic tail of PD-1 entails two structural motifs: ITIM and ITSM. Once binding to PD-L1/PD-L2, the tyrosine residues are phosphorylated, which permits the efficacy of cytoplasmic tyrosine phosphatases such as SHP2. These phosphatases attenuate the signal of the TCR and CD28 [Berraondo, 2019]. PD-1 expressing tumor cells by that mechanism can convert CD8+ cytotoxic cells into exhausted cells. PD-1 can stimulate and induce T regulatory cells to consider tumor antigens as self-antigens and escape from phagocytosis within the tumor microenvironment [Jiang et al. 2015]. Also, PD-1 disturbs T cell metabolism by glycolysis suppression and lipolysis stimulation [Patsoukis et al. 2015].

b) PD-L1/ PD-1 Overexpression and Association with Stat1 Level

Tumor cells can induce stromal cells and TAMs to express PD-L1 directly by cell to cell contact or indirectly through secretion specific mediators such as IL-4, IL-6, IL-10, IL-13, CXCL8, SPP1 and IFN-γ [Lu et al. 2010].
In that way, tumor cells recruit surrounding cells for macrophage resistance by PD-L1 increased transcription. STAT1 is activated by the same activators of PD-L1 such as IL-4, IL-13 [Wang et al. 2004], CXCL8 [Chen et al. 2019] α and TNF- [Wang et al. 2000].

The number of PD-1 membrane receptors is increased by IFN-γ that activates Janus Kinases [JANs] that phosphorylate STAT1; in turn, activated STAT1 is transferred to the nucleus and acts as a transcriptional factor to enhance interferon-stimulated genes replication [ISGs] [Walter MR 2020]. Also, Anti-PD-1 antibody activates STAT1 through IL-12 activation [Lu et al. 2109].

STAT1-Pt molecule selection to be included in a therapeutic approach after linking to nivolumab can be an effective therapy. As illustrated above, PD-1/PD-L1 transcriptional cascade reactions by cancer cells share the same activators of STAT1. So, PD-L1 and PD-1 enhancement is resulted by malignant cells’ mediators against nivolumab, helping STAT1-Pt transported to the nucleus [fig 1]. So endocytosis of the nivolumab-activated STAT1-Pt complex into the cancer cell will permit deposition of platinum loaded on STAT1 onto the nucleus [in response to malignant cell defense], specifically PD-1 and PD-L1 gene promoter regions. Also that can be upregulated by the advantage of nivolumab that can be endocytosed more than other anti-PD1 antibodies [Ben Saad et al. 2020].

c) Solamargine Specific Anti-Tumor Properties

Solamargine’s selective anti-cancer efficacy makes it a candidate for directing nivolumab specifically to malignant cells. Solamargine used in treatment of cancer cell lines of Ehrlich Carcinoma, Leukemia [K562], Colon Cancer [HT-29, HCT-15], Liver Cancer [HepG2, PLC/PRF/5, SMMC-7721], Lung Cancer [A549], Gastric Carcinoma [AGS], Pancreatic Carcinoma [MIA, PaCa-2], Renal Adenocarcinoma [786-O], Uterine Adenocarcinoma [HeLa 229], Ovarian Carcinoma [JAM], Mesothelioma [NO36], Glioblastoma, Astrocytoma [U87-MG], Prostate Carcinoma [DU-145, LNCap, PC-3], Melanoma [A2058], Breast Cancer [T47D, MDA-MB-231], Osteosarcoma [U20S] and Squamous Cell Carcinoma [A431, SCC4, SCC9, SCC25][Bill, 2013].

Solamargine has multiple anti-cancer mechanisms such as stimulation the intrinsic and extrinsic pathways of apoptosis, increased function of external death receptors [TNFR-1, Fas receptor, TNFR-
1-associated death domain [TRADD], Fas-associated death domain [FADD], elevation of the intrinsic ratio of Bax to Bcl-2 and oncosis [Sun et al. 2010].

Solamargine polymer will be the bridging molecule between nivolumab [after glycosylation its Fc portion] and STAT1-Pt complex. [Chemical and biochemical reactions will be discussed later] Nivolumab, like other immune checkpoint inhibitors, are related to exaggerate immune-related Side effects, such as colitis, hepatitis and skin disorders because of cross-reaction with healthy PD-1 presenting hematopoietic cells [Dyck et al. 2017]. Those autoimmune adverse reactions can be avoided by solamargine, in other words, it will restrict nivolumab binding with normal PD-1 presenting cells and will facilitate selectivity towards PD-1 expressing malignant cells and TAMs only.

Solamargine molecular formula is C45H73NO15 with a mass of 868.04 Da. Its systematic name is [22R, 25R]- spiro-5-ene-3ßL-α-L-rhamnopyranosyl-[1 2glu]-0-α--yl-rhamnopyranosyl-[14glu]-ß-D-glucopyranose. [Fig. 2]

d) Structure of Nivolumab–Stat1- Platinum Molecule

The innovated molecule consists of nivolumab [anti PD-1 MAB] glycosylated with glucopyranose of solamargine. Solamargine β-solamargine polymer through its Fc region with is bound to glycosylated cisplatin molecules loaded on seven lysine residues of biochemically activated synthetized STAT1. [Fig 3]
e) **Nivolumab-Stat1 Pt Therapeutic Mechanisms**

On Nivolumab-STAT1 Pt administration, it runs within the body circulation towards PD-1 presenting malignant cells due to the presence of multiple targeting elements. The first is nivolumab’s nature a monoclonal antibody [Anti-PD1] however, it can be directed towards PD-1 expressing hematopoietic cells such as CD4+ and CD8+ T cells, natural killer [NK] cells, natural killer T [NKT] cells, B cells, macrophages, and dendritic cells resulting in immunosuppression. Also, it can bind to hepatocytes, vascular endothelial cells, epithelial cells, myocytes, pancreatic islet cells, placenta and eye, initiating autoimmune adverse reactions. Here the role of solamargine polymer comes. Solamargine glycoside is considered as an attracting factor for cancer cell requirements for proliferation and spread. Also, it is characterized by selective tumor cell binding. The third is the activated STAT1 which is the needed transcriptional factor for malignant cells to overexpress PD-1 as a defending pathway against nivolumab. So cancer cells and TAMs will uptake the activated STAT1 because it is their rescue to escape from the immune system, After all, it is responsible for increasing PD-1 expression on their surface membranes.

Also, nivolumab-STAT1 Pt molecule is a concentrated anti-cancer therapeutic molecule. Nivolumab is a human immunoglobulin G4 PD-1 immune checkpoint inhibitor antibody that attenuates PD-1 interaction with PD-L1/PD-L2 receptors and stimulates anticancer immunity. It showed good therapeutic parameters [prolonged PFS and increased response rate] in the treatment of non-small-cell lung cancer (NSCLC), melanoma, renal cell carcinoma [RCC] and other cancers. [Guo et al. 2016]. Nivolumab [IgG4] Fc region consists of double heavy-chain Cy2 and Cy3 constant domains that are bound to two Fabs, comprising VH and CV1 [heavy chain] and VL and Cγ/k [light chain] domains, through a hinge. The Fc region has the dominant role for functioning. A biantennary oligosaccharide moiety, covalently attached to Asn297 in the Cc2 domain, contains two N-acetylglucosamine residues, and a branching mannose residue to which α[1–3] and α[1–6] ‘arms’ of mannose and N-acetylglucosamine residues are attached. The oligosaccharide moiety can additionally contain a fucose residue, attached to the first N-acetylglucosamine residue, and galactose and sialic acid residues attached to the α[1–3] and α[1–6] arms [Davies and Sutton 2015.]

Activated STAT1–Pt molecule will be a trap for malignant cells. Malignant cells use activated STAT1 for tumor spread and immunity resistance [Messi et al. 2017]. This is observed in the reduction of NK cellular activity in multiple myeloma, acute myeloid leukemia [AML], and acute lymphoblastic leukemia [ALL] [Bellucci et al. 2015] after IFNγ stimulation. While in head and cancer, wild type of EGFR induces JAK2/STAT1 activation that promotes the antitumor effect by PD-L1 over-transcription [Concha-Benavente et al. 2016] Interferon regulatory factor 1 [IRF1], which is a downstream activator of STAT1 just after IFNγ stimulation, has an enhancing effect of PD-L1 genetic activity [Lee et al. 2006].

Activated STAT1 contains 2-acetyl serine which is essential for protein integrity [Bienvenut et al. 2012]. Lysine residues 114, 175, 29, 366, 525, 637 and 665 are methylated. Methylation gives the advantage of the antiviral function. Methylation is done by methyltransferase SETD2 [Chen et al. 2015]. Lysine residues without methylation are the target ones to be conjugated with glycosylated cisplatin molecules. That conjugation will not affect STAT1 function in malignancy. Glutamic acid residues 657, 705 are ADP-ribosylated by PARP 14. Glutamic acid ADP ribosylation suppresses STAT1 phosphorylation [Iwata et al 2016]. During synthesis and purification of activated STAT1-Pt molecule, ADP ribosylation of glutamic acid will be avoided. Tyrosine 701 residue is phosphorylated in response to Janus protein-tyrosine kinase and epidermal growth factor receptor stimulation after IFNγ induction [Quelle et al. 1995, Iwata et al 2016]. Tyrosine 701 phosphorylation also is one by KIT-Asp [816] mutants in neoplastic mast cell lines [Chaix et al. 2011]. Serine residues 708, 745 phosphorylation occurs through IFN-αβ induction by IKKε, so serine residues 708,745 phosphorylation is essential for STAT1 activation [Perwitasari et al. 2011]. Serine 727 phosphorylation and tyrosine 701 phosphorylation is really necessary for STAT1 activation. Serine 727 phosphorylation occurs by the action of etoposide and PKCdelta. [Brodie and Blumberg 2003, Wen et al. 1995]

Glycosylated cisplatin are combined with purified active STAT1 lysine residues. Glycosylated cisplatin [platinum IV] are prodrugs that undergo activation to platinum II by malignant cell reductants such as ascorbic acid and glutathione. Being a prodrug and activation inside malignant cells only minimize possible side effects to a significant extent. Glycosylation helps attachment to lysine residues and at the same time, glycosylation to rhamnose residues of solamargine [fig.2]. Also, platinum IV drugs are favored other than platinum II ones because they are more stable and have longer half-life than platinum II drugs. Glycosylation adjusts steric hindrance and length to enable cisplatin for a reduction potential and positive shift to the cancer cells. It is not forgettable that platinum IV drugs have lipophilicity more than platinum II. Lipophilicity permits more access of platinum IV drugs for tumoral cellular uptake and DNA adenine-guanine platination. The used platinum IV drug in STAT1-Pt is A5 complex of cisplatin [fig. 4]. It is known that A5 has more efficacy towards HeLa, A549, MCF-7 and PC3 cancer cell lines other than cisplatin and oxaliplatin. [Jing, et al., 2016].
Usage of Nivolumab-Platinum Containing STAT1 Molecule for Suppression PD-1/PD-L1 Genes in PD-1/PD-L1 Expressing Cancer Cells

Figure [4]: Structure of A5 cisplatin complexes.

f) Chemical and Biochemical Steps for Nivolumab-Stat1-Platinum Molecule

1. Purification of activated STAT1: HeLa cells have a major role in STAT1 cultivation. HeLa cells will be incorporated with Lysine 6- dehydrogenase gene delivered by exosome pDNA [plasmid DNA] containing the enzyme gene [Munagala et al. 2021], then keeping PH 10.1 and temperature 70 o C [Heydari et al. 2004]. 70°C will not affect STAT1 protein integrity because its denaturation temperature is 95°C [Sisler et al. 2015]. The resulted STAT1 within HeLa cells will be unphosphorylated and deaminated lysine residues. Then IFN stimulation of HeLa cells for tyrosine phosphorylation. [Kim and Maniatis 1996]. However, it is inactivated in the nucleus by unknown tyrosine phosphatase PTP and purified as Stat1-PTP from HeLa nuclear extract. [ten Hoeve et al. 2002] Then E6-E6AP complex [one of the Human Papilloma Virus E6 oncoproteins] can be used to combine with Stat1-PTP and degrade it in vitro to yield purified phosphorylated STAT1 [Jing et al. 2007]. The purified STAT1 is phosphorylated at its tyrosine 701 and serine 727 because of IFN stimulation besides deaminated lysine residues 114, 175, 296, 366, 525, 637 and 665, and that is the wanted form to be used in our molecule [fig.5].

2. A5 complex molecules of cisplatin will be reacted with deaminated Lysine residues of purified STAT1 not methylated] by lanthionine biosynthetic enzyme B [LanB] proteins in the presence of glutamate, ATP and Mg2+. [Garg et al. 2103]. This in vitro dehydration reaction between the glycosidic component of 7 molecules of A5 complex cisplatin and 7deaminated lysine residues of phosphorylated STAT1 to result in STAT1-A5 cisplatin molecule. [fig.6]

3. Production of glycosylated Nivolumab with solamargine polymer: Transgenic immunization for human immunoglobulin loci with genetically recombinant Chinese hamster ovarian cells expressing human PD-1/PD-L1/human IgG1 Fc fusion protein. [Mimura et al. 2018]. The core complex biantennary heptasaccharide attached to the purified nivolumab Fc region is GlcNAc2Man3GlcNAc2. Previously mentioned heptasaccharide can be attached to G0, G1 or G2 saccharide according to the number of galactose residues.G0 has no galactose residue, and G1 has one galactose terminal, while G2 has two galactose residues. [Mimura et al. 2018]. 6-glucosyltransferase enzyme [CaUGT3] can elongate the heptasacchride G0/G1/G2 of nivolumab as a sugar acceptor to β-D-glucopyranose of solamargine. [Masada et al. 2009]. The enzymatic assay is used with the purified nivolumab using quercetin 3-O-glucoside as an acceptor substrate in the presence of UDP-glucose. The same retention time and UV absorption of quercetin 3-O–gentiobioside result in nivolumab [one side Fc region] with solamargine polymer [Masada et al. 2009]. [fig.7]

4. Solamargine rhamnose moiety is transferred to one A5 complex molecule of cisplatin [attached to STAT1] by rhamnosiyltransferases besides the nucleotide diphosphate-sugar UDP-rhamnose [UDP-Rha] as a substrate to result in STAT1-Pt-Nivolumab molecule [Lairson et al. 2008] [fig.3].
Figure (5): Structure of purified STAT1 that contains phosphorylated tyrosine 701, phosphorylated serine 727 and seven (114, 175, 296, 366, 525, 637, 665) deaminated lysine residues.

Figure (6): Reaction of phosphorylated purified STAT1 with 7 deaminated lysine residues with seven A5 cisplatin complex molecules (dehydration reaction) by the help of lanthionine enzyme B and other cofactors (glutamate, ATP and Mg) to result in seven molecules of A5 cisplatin complex attached to seven deaminated lysine residues on one STAT1 molecule.
II. Conclusion

STAT1-Pt nivolumab molecules are targeted towards malignant cells only by the bridging solamargine glycoside. After binding nivolumab to PD-1 expressing malignant cell, endocytosis occurs. Here, glycosidic bonds of solamargine - nivolumab and solamargine- A5 cisplatin STAT1 are hydrolyzed by malignant cell glycosidase enzymes. STAT1- Pt [A5 cisplatin molecules] are transported to the nucleus and seven molecules of platinum IV of A5 cisplatin complex molecule are reduced by malignant cell reductants [glutathione and ascorbic acid] to functioning cytotoxic platinum II. The active form of the used STAT1 in the therapeutic molecule is essential because it does facilitate its nuclear translocation upon different cytokines and IFN-γ secretion by malignant cells [malignant cells use those mediators for over recruitment PD-1/PD-L1 genes to resist nivolumab]. So the more mediators secretion, the more STAT1-A5 cisplatin movement to the malignant cell nucleus. In the end, the aim of the molecule is reached, which is damaging PD-1/PD-L1 genetic promoter regions by multiple concentrated platinum containing STAT1 molecules. Also anti-tumor role of endocytosed solamargine is not forgotten as it becomes free after glycosidic bonds hydrolysis. While nivolumab exerts anti PD-1 signaling pathway, it can be considered a targeting molecule besides solamargine towards PD-1 expressing malignant cell for initiating the cytotoxic reactions of the innovated therapeutic molecule.

Conflict of Interest
Authors have no conflict of interest.

References Références Referencias

6. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-

Abbreviations

STAT1: Signal transducer and activator of transcription 1.
PD-1: Programmed death 1
PD-L1: Programmed death ligand 1
NK: natural killer
NKT: Natural killer T cells
DC: Dendritic cells
TGF-b: cytokines transforming growth factor-b
IL-10: interleukin-10
TAMs: tumor associated macrophages
JANs: Janus Kinases
IFN- \(\gamma \): interferon \(\gamma \)
ISGs: interferon stimulated genes
Memberships
Fellows/Associates of Medical Research Council
FMRC/AMRC Memberships

Introduction

FMRC/AMRC is the most prestigious membership of Global Journals accredited by Open Association of Research Society, U.S.A (OARS). The credentials of Fellow and Associate designations signify that the researcher has gained the knowledge of the fundamental and high-level concepts, and is a subject matter expert, proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice. The credentials are designated only to the researchers, scientists, and professionals that have been selected by a rigorous process by our Editorial Board and Management Board.

Associates of FMRC/AMRC are scientists and researchers from around the world are working on projects/researches that have huge potentials. Members support Global Journals’ mission to advance technology for humanity and the profession.

FMRC
Fellow of Medical Research Council

FELLOW OF MEDICAL RESEARCH COUNCIL is the most prestigious membership of Global Journals. It is an award and membership granted to individuals that the Open Association of Research Society judges to have made a substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Fellow Members.
Benefit

To the Institution
Get Letter of Appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive Network
Get Access to a Closed Network
A FMRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Fellows can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate
Certificate, LoR and Laser-Momento
Fellows receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member’s university.

Designation
Get Honored Title of Membership
Fellows can use the honored title of membership. The “FMRC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., FMRC or William Walldroff, M.S., FMRC.

Recognition on the Platform
Better Visibility and Citation
All the Fellow members of FMRC get a badge of “Leading Member of Global Journals” on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All fellows get a dedicated page on the website with their biography.
FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS
Fellows receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ INTERNAL ACCOUNT
Unlimited forward of emails
Fellows get secure and fast GJ work emails with unlimited storage of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

PREMIUM TOOLS
Access to all the premium tools
To take future researches to the zenith, fellows receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

CONFERENCES & EVENTS
Organize seminar/conference
Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

EARLY INVITATIONS
Early invitations to all the symposiums, seminars, conferences
All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.
And Much More

Get access to scientific museums and observatories across the globe

All members get access to 5 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 10 GB free secure cloud access for storing research files.

Publishing Articles & Books

Earn 60% of sales proceeds

Fellows can publish articles (limited) without any fees. Also, they can earn up to 70% of sales proceeds from the sale of reference/review books/literature/publishing of research paper. The FMRC member can decide its price and we can help in making the right decision.

Reviewers

Get a remuneration of 15% of author fees

Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

Access to Editorial Board

Become a member of the Editorial Board

Fellows and Associates may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer.
The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members.
To the Institution
Get Letter of Appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive Network
Get Access to a Closed Network
A AMRC member gets access to a closed network of Tier 2 researchers and scientists with direct communication channel through our website. Associates can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate
Certificate, LoR and Laser-Momento
Associates receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Designation
Get Honored Title of Membership
Associates can use the honored title of membership. The “AMRC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., AMRC or William Walldroff, M.S., AMRC.

Recognition on the Platform
Better Visibility and Citation
All the Associate members of AMRC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation.
FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS
Associates receive discounts on future publications with Global Journals up to 30%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ ACCOUNT

UNLIMITED FORWARD OF EMAILS
Associates get secure and fast GJ work emails with 5GB forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS
To take future researches to the zenith, fellows receive access to almost all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

Conferences & Events

Organize seminar/conference
Associates are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

Early Invitations

Early invitations to all the symposiums, seminars, conferences
All associates receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.
PUBLISHING ARTICLES & BOOKS

Earn 60% of sales proceeds

Associates can publish articles (limited) without any fees. Also, they can earn up to 30-40% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.

Reviewers

Get a remuneration of 15% of author fees

Associate members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

And Much More

Get access to scientific museums and observatories across the globe

All members get access to 2 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 5 GB free secure cloud access for storing research files.
<table>
<thead>
<tr>
<th>ASSOCIATE</th>
<th>FELLOW</th>
<th>RESEARCH GROUP</th>
<th>BASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4800 lifetime designation</td>
<td>$6800 lifetime designation</td>
<td>$12500.00 organizational</td>
<td>APC per article</td>
</tr>
<tr>
<td>Certificate, LoR and Momento</td>
<td>Certificate, LoR and Momento</td>
<td>Certificate, LoRs and Momentos</td>
<td>GJ Community Access</td>
</tr>
<tr>
<td>2 discounted publishing/year</td>
<td>Unlimited discounted publishing/year</td>
<td>Unlimited free publishing/year</td>
<td>GJ Community Access</td>
</tr>
<tr>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td></td>
</tr>
<tr>
<td>10 research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td>Unlimited research</td>
<td></td>
</tr>
<tr>
<td>1 GB Cloud Storage</td>
<td>5 GB Cloud Storage</td>
<td>Cloud Storage</td>
<td></td>
</tr>
<tr>
<td>GJ Community Access</td>
<td>Online Presence Assistance</td>
<td>Online Presence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GJ Community Access</td>
<td>Assistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GJ Community Access</td>
<td></td>
</tr>
</tbody>
</table>

© Copyright by Global Journals | Guidelines Handbook
Preferred Author Guidelines

We accept the manuscript submissions in any standard (generic) format.

We typeset manuscripts using advanced typesetting tools like Adobe In Design, CorelDraw, TeXnicCenter, and TeXStudio. We usually recommend authors submit their research using any standard format they are comfortable with, and let Global Journals do the rest.

Alternatively, you can download our basic template from https://globaljournals.org/Template

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. Authors who are not able to submit manuscript using the form above can email the manuscript department at submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before submission.

Before and during Submission

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the following checklist before submitting:

1. Authors must go through the complete author guideline and understand and agree to Global Journals' ethics and code of conduct, along with author responsibilities.
2. Authors must accept the privacy policy, terms, and conditions of Global Journals.
3. Ensure corresponding author’s email address and postal address are accurate and reachable.
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s’) names and details (email address, name, phone number, and institution), figures and illustrations in vector format including appropriate captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references.
5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper.
6. Proper permissions must be acquired for the use of any copyrighted material.
7. Manuscript submitted must not have been submitted or published elsewhere and all authors must be aware of the submission.

Declaration of Conflicts of Interest

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and organizations that could influence (bias) their research.

Policy on Plagiarism

Plagiarism is not acceptable in Global Journals submissions at all.

Plagiarized content will not be considered for publication. We reserve the right to inform authors’ institutions about plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines:

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize existing research data. The following, if copied, will be considered plagiarism:

- Words (language)
- Ideas
- Findings
- Writings
- Diagrams
- Graphs
- Illustrations
- Lectures

© Copyright by Global Journals | Guidelines Handbook
Authorship Policies

Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to its guidelines, authorship criteria must be based on:

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings.
2. Drafting the paper and revising it critically regarding important academic content.
3. Final approval of the version of the paper to be published.

Changes in Authorship

The corresponding author should mention the name and complete details of all co-authors during submission and in manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for changes in authorship.

Copyright

During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which gives Global Journals the authority to reproduce, reuse, and republish authors’ research. We also believe in flexible copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after acceptance to choose your copyright policy. You may follow this form for copyright transfers.

Appealing Decisions

Unless specified in the notification, the Editorial Board’s decision on publication of the paper is final and cannot be appealed before making the major change in the manuscript.

Acknowledgments

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding for the research can be included. Suppliers of resources may be mentioned along with their addresses.

Declaration of funding sources

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research domain. Authors are requested to disclose their source of funding during every stage of their research, such as making analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global Journals and submitting to the respective funding source.

Preparing your Manuscript

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and abstract should be in English. This will facilitate indexing and the pre-peer review process.

The following is the official style and template developed for publication of a research paper. Authors are not required to follow this style during the submission of the paper. It is just for reference purposes.
Manuscript Style Instruction (Optional)

- Microsoft Word Document Setting Instructions.
- Font type of all text should be Swis721 Lt BT.
- Page size: 8.27” x 11’’, left margin: 0.65, right margin: 0.65, bottom margin: 0.75.
- Paper title should be in one column of font size 24.
- Author name in font size of 11 in one column.
- Abstract: font size 9 with the word “Abstract” in bold italics.
- Main text: font size 10 with two justified columns.
- Two columns with equal column width of 3.38 and spacing of 0.2.
- First character must be three lines drop-capped.
- The paragraph before spacing of 1 pt and after of 0 pt.
- Line spacing of 1 pt.
- Large images must be in one column.
- The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10.
- The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10.

Structure and Format of Manuscript

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers are reports of significant research (typically less than 7,000 words, including tables, figures, and references)

A research paper must include:

a) A title which should be relevant to the theme of the paper.

b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.

c) Up to 10 keywords that precisely identify the paper’s subject, purpose, and focus.

d) An introduction, giving fundamental background objectives.

e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition, sources of information must be given, and numerical methods must be specified by reference.

f) Results which should be presented concisely by well-designed tables and figures.

g) Suitable statistical data should also be given.

h) All data must have been gathered with attention to numerical detail in the planning stage.

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned unrefereed.

i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also be summarized.

j) There should be brief acknowledgments.

k) There ought to be references in the conventional format. Global Journals recommends APA format.

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow instructions. They will also be published with much fewer delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity.
It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

All manuscripts submitted to Global Journals should include:

Title

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) where the work was carried out.

Author details

The full postal address of any related author(s) must be specified.

Abstract

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon.

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Keywords

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining, and indexing.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list of possible keywords and phrases to try.

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search should be as strategic as possible.

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in a research paper?” Then consider synonyms for the important words.

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, the keywords under which a research paper is abstracted are listed with the paper.

Numerical Methods

Numerical methods used should be transparent and, where appropriate, supported by references.

Abbreviations

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them.

Formulas and equations

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality image.

Tables, Figures, and Figure Legends

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable format and not as images. References to these tables (if any) must be mentioned accurately.
Figures

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it.

Preparation of Electronic Figures for Publication

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings). Please give the data for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a Color Work Agreement form before your paper can be published. Also, you can email your editor to remove the color fee after acceptance of the paper.

Tips for Writing a Good Quality Medical Research Paper

1. Choosing the topic: In most cases, the topic is selected by the interests of the author, but it can also be suggested by the guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is "yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So present your best aspect.

2. Think like evaluators: If you are in confusion or getting demotivated because your paper may not be accepted by the evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

3. Ask your guides: If you are having any difficulty with your research, then do not hesitate to share your difficulty with your guide (if you have one). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list of essential readings.

4. Use of computer is recommended: As you are doing research in the field of medical research then this point is quite obvious. Use right software: Always use good quality software packages. If you are not capable of judging good software, then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can get through the internet.

5. Use the internet for help: An excellent start for your paper is using Google. It is a wondrous search engine, where you can have your doubts resolved. You may also read some answers for the frequent question of how to write your research paper or find a model research paper. You can download books from the internet. If you have all the required books, place importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should strictly follow here.
6. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right? It is a good habit which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will make your search easier.

7. Revise what you wrote: When you write anything, always read it, summarize it, and then finalize it.

8. Make every effort: Make every effort to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any important thing like making a research paper, you should always have backup copies of it either on your computer or on paper. This protects you from losing any portion of your important data.

9. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant to science, use of quotes is not preferable.

10. Use proper verb tense: Use proper verb tenses in your paper. Use past tense to present those events that have happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete.

11. Pick a good study spot: Always try to pick a spot for your research which is quiet. Not every spot is good for studying.

12. Know what you know: Always try to know what you know by making objectives, otherwise you will be confused and unable to achieve your target.

13. Use good grammar: Always use good grammar and words that will have a positive impact on the evaluator; use of good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice.

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. Put together a neat summary.

14. Arrangement of information: Each section of the main body should start with an opening sentence, and there should be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain your arguments with records.

15. Never start at the last minute: Always allow enough time for research work. Leaving everything to the last minute will degrade your paper and spoil your work.

16. Multitasking in research is not good: Doing several things at the same time is a bad habit in the case of research activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a particular part in a particular time slot.

17. Never copy others' work: Never copy others' work and give it your name because if the evaluator has seen it anywhere, you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and food.

18. Go to seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

19. Refresh your mind after intervals: Try to give your mind a rest by listening to soft music or sleeping in intervals. This will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you acquire colleagues, they can give you ideas which will be helpful to your research.

© Copyright by Global Journals | Guidelines Handbook
20. **Think technically:** Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think and then print: When you go to print your paper, check that tables are not split, headings are not detached from their descriptions, and page sequence is maintained.

21. **Adding unnecessary information:** Do not add unnecessary information like "I have used MS Excel to draw graphs." Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review.

22. **Report concluded results:** Use concluded results. From raw data, filter the results, and then conclude your studies based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include examples.

23. **Upon conclusion:** Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print for the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects of your research.

Informal Guidelines of Research Paper Writing

Key points to remember:
- Submit all work in its final form.
- Write your paper in the form which is presented in the guidelines using the template.
- Please note the criteria peer reviewers will use for grading the final paper.

Final points:

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the following sections, submitted in the order listed, with each section starting on a new page:

The introduction: This will be compiled from reference matter and reflect the design processes or outline of basis that directed you to make a study. As you carry out the process of study, the method and process section will be constructed like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar intellectual paths throughout the data that you gathered to carry out your study.

The discussion section:

This will provide understanding of the data and projections as to the implications of the results. The use of good quality references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings.

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record-keeping are the only means to make straightforward progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear: Adhere to recommended page limits.
Mistakes to avoid:

- Insertion of a title at the foot of a page with subsequent text on the next page.
- Separating a table, chart, or figure—confine each to a single page.
- Submitting a manuscript with pages out of sequence.
- In every section of your document, use standard writing style, including articles ("a" and "the").
- Keep paying attention to the topic of the paper.
- Use paragraphs to split each significant point (excluding the abstract).
- Align the primary line of each section.
- Present your points in sound order.
- Use present tense to report well-accepted matters.
- Use past tense to describe specific results.
- Do not use familiar wording; don’t address the reviewer directly. Don’t use slang or superlatives.
- Avoid use of extra pictures—include only those figures essential to presenting results.

Title page:
Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have acronyms or abbreviations or exceed two printed lines.

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in itself. Do not cite references at this point.

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any summary. Try to limit the initial two items to no more than one line each.

Reason for writing the article—theory, overall issue, purpose.
- Fundamental goal.
- To-the-point depiction of the research.
- Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of any numerical analysis should be reported. Significant conclusions or questions that emerge from the research.

Approach:
- Single section and succinct.
- An outline of the job done is always written in past tense.
- Concentrate on shortening results—limit background information to a verdict or two.
- Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else.

Introduction:
The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable of comprehending and calculating the purpose of your study without having to refer to other works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here.
The following approach can create a valuable beginning:

- Explain the value (significance) of the study.
- Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it.
- Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose them.
- Briefly explain the study's tentative purpose and how it meets the declared objectives.

Approach:

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad view.

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases.

Procedures (methods and materials):

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section.

When a technique is used that has been well-described in another section, mention the specific item describing the way, but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad procedures so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

Materials may be reported in part of a section or else they may be recognized along with your measures.

Methods:

- Report the method and not the particulars of each process that engaged the same methodology.
- Describe the method entirely.
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures.
- Simplify—detail how procedures were completed, not how they were performed on a particular day.
- If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all.

Approach:

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the reviewer’s interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third person passive voice.

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences.

What to keep away from:

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings—save it for the argument.
- Leave out information that is immaterial to a third party.
Results:
The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to present consequences most efficiently.

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if requested by the instructor.

Content:
- Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables.
- In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation of an exacting study.
- Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or manuscript.

What to stay away from:
- Do not discuss or infer your outcome, report surrounding information, or try to explain anything.
- Do not include raw data or intermediate calculations in a research manuscript.
- Do not present similar data more than once.
- A manuscript should complement any figures or tables, not duplicate information.
- Never confuse figures with tables—there is a difference.

Approach:
As always, use past tense when you submit your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report.

If you desire, you may place your figures and tables properly within the text of your results section.

Figures and tables:
If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and include a heading. All figures and tables must be divided from the text.

Discussion:
The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded based on problems with the discussion. There is no rule for how long an argument should be.

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of results should be fully described.

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.

- You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea.
- Give details of all of your remarks as much as possible, focusing on mechanisms.
- Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was correctly restricted. Try to present substitute explanations if they are sensible alternatives.
- One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

When you refer to information, differentiate data generated by your own studies from other available information. Present work done by specific persons (including you) in past tense.

Describe generally acknowledged facts and main beliefs in present tense.

The Administration Rules

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc.

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to avoid rejection.

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and do not rephrase someone else’s analysis. Do not allow anyone else to proofread your manuscript.

Written material: You may discuss this with your guides and key sources. Do not copy anyone else’s paper, even if this is only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read your paper and file.
Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals.

<table>
<thead>
<tr>
<th>Topics</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td>Abstract</td>
<td>Clear and concise with appropriate content, Correct format. 200 words or below</td>
</tr>
<tr>
<td>Introduction</td>
<td>Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads</td>
</tr>
<tr>
<td>Result</td>
<td>Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake</td>
</tr>
<tr>
<td>Discussion</td>
<td>Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited</td>
</tr>
<tr>
<td>References</td>
<td>Complete and correct format, well organized</td>
</tr>
</tbody>
</table>
INDEX

A
Arsenic · 22, 27, 29, 31, 32, 35

D
Decoctions · 15

E
Expediency · 19

F
Feasibility · 17

G
Granulation · 20, 42, 43, 46

H
Harmonious · 15

I
Immersed · 22, 24

S
Substantiated · 15, 19, 41