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from 224 women with breast cancer. The digitized images were transferred to the CellProfiler 
software and treated according to a predetermined algorithm, resulting in a database exported to 
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malignancy. The Kappa index of agreement between the medical pathologist and the automated 
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Abstract- Aim: The objective of this study was to determine the 
histological degree of breast cancer malignancy using the 
automated principle of machine learning with the free access 
computer programs CellProfiler and Tanagra. 

Methods and results: Digital photographs of neoplastic tissue 
histological slides were obtained from 224 women with breast 
cancer. The digitized images were transferred to the 
CellProfiler software and treated according to a predetermined 
algorithm, resulting in a database exported to the Tanagra 
software for further automated classification of the histological 
degree of malignancy. The Kappa index of agreement 
between the medical pathologist and the automated analysis 
performed in the Tanagra software was 0.91 for the tubular 
score, 0.55 for the nuclear score, and 0.49 for the mitotic index 
score. Regarding the automated classification of the 
histological degree of malignancy, the Kappa index among the 
analyzers was 0.55, directly correlating with the frequency of 
presentation of each graduation group in the analyzed sample.  

Conclusion: This study stands out as pioneering research 
using free access software to diagnose the histological grade 
in breast cancer and demonstrates that the automated 
analysis of histopathological parameters is feasible for this 
purpose. 
Keywords: breast cancer; image analysis; machine 
learning; cellular diagnosis; histological malignancy 
grade. 

I. Introduction 

ollowing non-melanoma skin cancer, breast 
cancer is the most common type of cancer among 
women and the second worldwide, corresponding 

to 25.2% of all cancers in world statistics and 29.5% in 
Brazil. Breast cancer is rare in men, representing less 
than 1% of cases (American cancer society (2019), 
Instituto Nacional de Cancer, Brazil, 2017). 

To successfully treat and control breast cancer 
in the female population, it is essential to identify risk 
factors for the disease. Moreover, early diagnosis and 

immediate  access to  treatment are decisive conditions 
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for the disease prognosis (American Cancer Society 
(2019), Instituto Nacional de Cancer, Brazil, 2017). 

The histological grade of malignancy proposed 
by Scarff, Bloom, and Richardson and further modified 
by Elston and Ellis, known as the Nottingham 
Classification System, is considered one of the main 
factors for determining the prognosis of breast cancer 
(Beck et al., 2011, Chen et al., 2017, Xu et al., 2016, 
Romo-Bucheli et al., 2017, Lu et al., 2018). 

Intending to offer agility and safety throughout 
the diagnosis of diseases, Artificial Intelligence has been 
increasingly used as a support tool in recent years 
(Wernick et al., 2010, Mulrane et al., 2008, Jones et al., 
2009, Hitchkock et al., 2011, Sommer et al., 2013, Singh 
et al., 2014., Buzin et al., 2015, Vu et al., 2016, Dordea 
et al., 2016, Yu et al., 2016, Hennig et al., 2017, 
Eulenberg et al., 2017, Pesapane et al., 2018, Loukas et 
al., 2013, Ching et al., 2018).  

Machine learning  is advantageous due to its 
potential to gather a large volume of information, once 
the appropriate accuracy and precision are achieved, on 
a specific disease in a single digital tool; suppressing 
the subjectivity of human evaluation with agility in the 
analysis of the material to be studied, aiming at safe and 
quick diagnoses, which could even be used as a 
“second specialized opinion” in cases of greater 
complexity (Wernick et al., 2010, Mulrane et al., 2008, 
Jones et al., 2009, Misselwitz et al., 2010). 

The present study aimed to perform an 
automated and reproducible classification of the 
parameters used by pathologists to diagnose breast 
cancer: nuclear score, tubular score, and mitotic index. 
The software used for image analysis and classification 

(CellProfiler and Tanagra) used for the present study are 
free. The results obtained by the automated analysis 
were compared with a pathologist diagnosis (Jones et 
al., 2009, Carpenter et al., 2006, Lamprecht et al., 2007, 
Lenz et al., 2017). 
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II. Materials e Methods 

a) The samples– Inclusion and exclusion criteria 
The study targeted women with breast cancer 

and presenting the most frequent histological types: 
infiltrating ductal carcinoma, invasive lobular carcinoma, 
and the mixed infiltrating lobular ductal form; who 
underwent surgical treatment for this disease in 2015 
and that, until the time of surgery, had not undergone 
adjuvant chemotherapy or radiotherapy treatments. 
Complete epidemiological diagnosis and treatment data 
could be obtained, and histological slides were stained 
by the Hematoxylin & Eosin method with preserved 
staining, which enabled digital photographs of adequate 
quality. 

The Santa Rita de Cássia Hospital, located in 
the city of Vitória, is considered the main reference 
hospital for cancer treatment in the Espírito Santo state, 
providing medical care for 625 women with breast 
cancer in 2015. 

Out of 276 cases selected for meeting the 
inclusion and exclusion criteria, 52 patients were also 
excluded by the pathologist at the Hospital Santa Rita 
de Cássia due to “in situ” suffering from breast cancers. 
Since these issues could compromise machine learning 
and, consequently, the automated analysis of these 
images, this study included 224 cases at the end. 

The year 2015 was selected because the Tumor 
Record Sheets for that year represents, at the beginning 
of the study, the most recent and complete data 
released by the Health Information System - Hospital 
Cancer Registry of the Ministry of Health of the Federal 
Government of Brazil. 

The Research Project received a favorable 
opinion from the Human Research Ethics Committee of 
the Cassiano Antônio de Moraes University Hospital of 
the Federal University of Espírito Santo under No. 
2,014,675 of 12/04/2017 and from the Research Ethics 
Committee on the University of Vila Velha under number 
2020,954 of 4/18/2017. 

b) Digitization of histological slides 
All histological slides from the 224 selected 

cases were randomly reviewed by a pathologist without 
access to patient data at the Hospital Santa Rita de 
Cássia, aiming to select the samples with the best-
preserved color aspect. Twenty images of breast tissue 
of each selected patient were obtained using a digital 
camera (Moticam 1000 1.3 MPixel MTC 1000) attached 
to a light microscope. 

c) Loading images to CellProfiler 
Out of 4,480 digitalized photographs in the 40-

fold magnification, after their upload to the CellProfiler 
program, only the artifact-free images were maintained 
and recognized as adequate by this image analysis 
program., Therefore, 1937 images were transferred to 
the CellProfiler software and submitted to its algorithm, 

 
These attributes are aspects and 

characteristics, identified by the CellProfiler software that 
express the averages of the quantitative parameters of 
the study’s objects (the images) and enabled the 
automated identification and classification of each 
object. 

d) CellProfiler algorithm 
Following an algorithm developed for treating 

digitized images for the CellProfiler computational 
environment, all 1997 images were treated in the 
following sequence of the 9-step algorithm, as shown in 
Chart 1. 

Chart 1: CellProfiler algorithm. 

 

The 1937 digitized photographs treated 
according to this algorithm resulted in a data set 
exported to Tanagra cellular image data analysis 
software. Then, this dataset was distributed in an Excel 
spreadsheet (MicrosoftR), and the automated 
classifications of the tubular, nuclear and mitotic 
indexes, as well as the histological degree of 
malignancy, were acquired. 

e) CellProfiler Algorithm 

i.
 
Phase 1 – Load

 
Images

 

All the digitized images observed
 

from 
histological slides at 40-fold magnification were 
transferred to the CellProfiler software (Figure 1a).

 

ii.
 
Phase 2 – Color to Gray

 

The original scanned images were converted to 
the white/gray/black spectrum (Figure 1b).

 

iii.
 
Phase 3 – ImageMath  

Since the CellProfiler software analyzes the 
study’s objects according to the light intensity and the 
cell nuclei,

 
it was necessary to reverse the nuclei 

coloration initially stained in black to white and invert the 
other elements coloring to black (Figure 1c).
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generated for each digitized image with 47 quantitative 
parameters, called attributes.



iv. Phase 4 – Apply Threshold 
In this stage, a binary image (i.e., an image with 

only two-pixel intensities, 0 and 1), was created. 

v. Phase 5 – Identify Primary Objects 
Cell nuclei were defined and identified as 

primary objects of the study in this step of the algorithm 
(Figure 1d). 

vi. Phase 6 – Measure Objects Size and Shape 
Primary objects were measured in this step, and 

the parameters (attributes), identified by the CellProfiler 

software for each study object, were acquired by the 
average of these measurements. 

vii. Phase 7 – Filter Objects 
An image filtering was used to suppress 

changes that could interfere in the primary object 
analysis, eliminating the artifacts and preserving only the 
cell nuclei (Figure 1e). 

 

 

Figure 1a: Original image of breast cancer tissue 

Figure 1b: Figure 1a converted to greyscale 

Figure 1c: Figure 1b with inverted intensities 

Figure 1d & e: Initial identification of nuclei 

Figure 1f: Remaining objects after filtering for subsequent analysis 

viii. Phase 8 – Measure Object Size and Shape 
After applying the image filter and eliminating 

artifactual changes, a new measurement of the primary 
objects (cell nuclei) attributes was performed. 

ix. Phase 9 – Export to Database 
After the CellProfiler algorithm steps, 47 

quantitative data (attributes) for each primary object 
studied were identified using qualitative data from the 
digitized images and defined as parameters, enabling 
both individual identification and analysis of each 
primary object. 

This list of attributes constituted the database 
exported to the Tanagra image data analysis software. 

f) Classification after machine learning 

Tanagra is open-source software for database 
analysis and statistical analysis developed under the 
design of machine learning. 

In the present study, Tanagra software was 
used to perform the automated classification of the 

malignancy degree of breast cancers for the tubular, 
nuclear and mitotic index scores, as well as for the 
histological grade. Moreover, 3 parameters used in the 
definition of the histological grade in breast cancer were 
analyzed: the tubular aspect, the nuclear morphology, 
and the cell count in mitosis; from the analysis of the 
database containing 47 quantitative parameters for each 
analyzed object of the study. 

III. Statistical Analysis 

The tubular, nuclear, and mitotic index scores, 
which together define the histological degree of 
malignancy in breast cancer, were determined. The 
statistical parameters of Predictive Values, Accuracy, 
Error, and the Kappa Index of agreement between the 
pathologist and the medical program analyzer, were 
also used in this phase. The programs Tanagra and 
Med Calc were used for statistical processing. The 
statistical parameters gathered were used to determine 
the histological degree of malignancy.  
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IV. Results 

The present study aimed to perform an 
automated and reproducible classification of the 
pathological parameters used to diagnose breast 
cancer: nuclear score, tubular score, and mitotic index. 

The automated classification results are depicted in 
Table 1, while the outcomes comparing the pathological 
and the automated diagnoses are shown in Table 2. A 
scatter plot of the automated classification resulted from 
machine learning is exhibited in Figure 2. 

Table 1: Results of the malignancy classification based on image analysis and subsequent classification based on 
machine learning 

 

Table 2: Results of the comparison between pathological and automated analysis 
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Figure 2a: Classification of malignancy using the tubular score 

 

Figure 2b: Classification of malignancy using the nuclear score 

 

Figure 2c: Classification of malignancy using the mitotic index 

Regarding the nuclear score automated 
classification, the Kappa value represents a sufficient 
result, while the other analyzed parameters (nuclear 
score, mitotic index, and histological grade) are 

considered weak. However, the present study is a pilot 
study, and further studies are needed to bring more 
precise results to light.  
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V. Discussion 

Artificial Intelligence, particularly linked to 
machine learning, has been increasingly used as a safe 
and effective tool in disease diagnosis and prognosis, 
especially on studies assessing breast cancer, a 
disease of high impact on several women's lives. 

This study stands out as a pioneering 
publication using free access software to diagnose the 
histological degree of malignancy in breast cancer. 
Thus, the automated analysis to obtain safe diagnoses 
of histopathological parameters is a feasible tool since a 
dataset with sufficient information for adequate machine 
learning can provide an efficient analysis that ensures 
remarkable accuracy. 

In conclusion, digitalized images of breast 
cancer histological slides enabled the automated 
analysis of histopathological parameters, converting 
them into quantitative parameters for the diagnosis, and 
defining the histological degree of malignancy. A 
database expansion is necessary to optimize the 
analysis and provide the machine sufficient information 
and data, postulating solid concepts and knowledge to 
support all requested aspects of the analysis. 

In this sense, further multidisciplinary studies 
covering machine learning and breast cancer in women 
may lead to significant novel contributions. 

Conflicts of interest: None declared. 
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