
Global Journal of Researches in Engineering Vol. 10 Issue 2 (Ver 1.0) June 2010 P a g e | 47

GJRE Classification (FOR)
080299, 010199, 010203,

010109

Lambda Calculus and Functional Programming

Anahid Bassiri1Mohammad Reza. Malek2

Pouria Amirian3

Abstract-The lambda calculus can be thought of as an idealized,

minimalistic programming language. It is capable of expressing

any algorithm, and it is this fact that makes the model of

functional programming an important one. This paper is

focused on introducing lambda calculus and its application. As

an application dikjestra algorithm is implemented using

lambda calculus. As program shows algorithm is more

understandable using lambda calculus in comparison with

other imperative languages.

I. INTRODUCTION

ambda calculus (λ-calculus) is a useful device to make

the theories realizable. Lambda calculus, introduced by

Alonzo Church and Stephen Cole Kleene in the 1930s is a

formal system designed to investigate function definition,

function application and recursion in mathematical logic and

computer science. It has emerged as a useful tool in the

investigation of problems in computability or recursion

theory, and forms the basis of a paradigm of computer

programming called functional programming.

As lambda calculus is capable of expressing any algorithm

the lambda calculus can be thought of as an idealized,

minimalistic programming language. Based on these

capabilities lambda calculus became an important model of

functional programming. Functional programs are stateless

and deal exclusively with functions that accept and return

data (including other functions), but they produce no side

effects in 'state' and thus make no alterations to incoming

data. Modern functional languages, building on the lambda

calculus, include Erlang, Haskell, Lisp, ML, Scheme and

Microsoft has in the past couple years has turned its

attention towards functional programming with introduction

of .NET based functional programming language called

F#.(ref1)

The lambda calculus continues to play an important role in

mathematical foundations, through the Curry-Howard

correspondence.(ref1)

Church (1936) invented a formal system called the lambda

calculus and defined the notion of computable function via

this system. Turing (1936, 1937) invented a class of

machines (later to be called Turing machines) and defined

the notion of computable function via these machines. In

1936 Turing proved that both models are equally strong in

the sense that they define the same class of computable

functions.

About*-GIS Department, Faculty Of Geodesy And Geomatic Eng.,

K.N.Toosi University Of Technology, Mirdamad Cross, Valiasr St., Tehran,

IRAN

About- (e-mail;1Anahid_bassiri1984@yahoo.com)

About- (e-mail;2mrmalek@kntu.ac.ir)

About-(e-mail;3Pouria.amirian@gmail.com)

Basis concept of a Turing machine is the present day Von

Neumann computers. Conceptually these are Turing

machines with random access registers. Imperative

programming languages such as FORTRAN, Pascal etcetera

as well as all the assembler languages are based on the way

a Turing machine is instructed by a sequence of statements.

In addition functional programming languages, like

Miranda, ML etcetera, are based on the lambda calculus.

Functional programming is a programming paradigm that

treats computation as the evaluation of mathematical

functions and avoids state and mutable data. It emphasizes

the application of functions, in contrast with the imperative

programming style that emphasizes changes in state.

Lambda calculus provides a theoretical framework for

describing functions and their evaluation. Though it is a

mathematical abstraction rather than a programming

language, it forms the basis of almost all functional

programming languages today. Modern functional

languages can be viewed as embellishments to the lambda

calculus. (ref2)

In the next section first we introduce functional

programming and after that functional and non-functional

programming are compared.

II. FUNCTIONAL PROGRAMMING

Functional programming languages, especially purely

functional ones, have largely been emphasized in academia

rather than in commercial software development. However,

notable functional programming languages used in industry

and commercial applications include Erlang, OCaml,

Haskell, Scheme (since 1986) and domain-specific

programming languages like R (statistics), Mathematica

(symbolic math), J and K (financial analysis), and XSLT

(XML).

Many non-functional programming languages such as C,

C++ and C# can be made to exhibit functional behaviors

using function pointers, the <functional> library and lambda

functions respectively.

A functional program consists of an expression E

(representing both the algorithm and the input). This

expression E is subject to some rewrite rules.

Reduction consists of replacing a part P of E by another

expression P‘ according to the given rewrite rules. In

schematic notation

Provided that P -> P‘ is according to the rules. This process

of reduction will be repeated until the resulting expression

has no more parts that can be rewritten. This so called

normal form E* of the expression E consists of the output of

the given functional program.

L

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Formal_system
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Mathematical_logic
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/ML_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Foundations_of_mathematics
http://en.wikipedia.org/wiki/Curry-Howard_correspondence
http://en.wikipedia.org/wiki/Curry-Howard_correspondence
mailto:mrmalek@kntu.ac.ir
mailto:Pouria.amirian@gmail.com
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Program_state
http://en.wikipedia.org/wiki/Immutable_object
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Purely_functional
http://en.wikipedia.org/wiki/Purely_functional
http://en.wikipedia.org/wiki/Purely_functional
http://en.wikipedia.org/wiki/Academic
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Objective_Caml
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://en.wikipedia.org/wiki/R_(programming_language)
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/wiki/J_(programming_language)
http://en.wikipedia.org/wiki/K_(programming_language)
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/XML

P a g e | 48 Vol. 10 Issue 2 (Ver 1.0) June 2010 Global Journal of Researches in Engineering

Iteration (looping) in functional languages is usually

accomplished via recursion. Recursive functions invoke

themselves, allowing an operation to be performed over and

over. Recursion may require maintaining a stack, but tail

recursion can be recognized and optimized by a compiler

into the same code used to implement iteration in imperative

languages. The Scheme programming language standard

requires implementations to recognize and optimize tail

recursion.

 Functional languages can be categorized by whether they

use strict or non-strict evaluation, concepts that refer to how

function arguments are processed when an expression is

being evaluated.

In brief, strict evaluation always fully evaluates function

arguments before invoking the function. Non-strict

evaluation is free to do otherwise

To illustrate, consider the following two functions f and g:

f(x) := x^2 + x + 1

g(x, y) := x + y

Under strict evaluation, we would have to evaluate function

arguments first, for example:

 f(g(1, 4))

= f(1 + 4)

= f(5)

= 5^2 + 5 + 1

= 31

By contrast, non-strict evaluation need not fully evaluate the

arguments; in particular it may send the arguments

unevaluated to the function, perhaps evaluating them later.

For example, one non-strict strategy (call-by-name) might

work as follows:

 f(g(1, 4))

= g(1, 4)^2 + g(1, 4) + 1

= (1 + 4)^2 + (1 + 4) + 1

= 5^2 + 5 + 1

= 31

A key property of strict evaluation is that when an argument

expression fails to terminate, the whole expression fails to

terminate. With non-strict evaluation, this need not be the

case, since argument expressions need not be evaluated at

all.

Advantages of strict-evaluation can be categorized into two

categories as it denoted in below:

Parameters are usually passed around as (simple) atomic

units, rather than as (rich) expressions. (For example, the

integer 5 can be passed on a register, whereas the expression

1+4 will require several memory locations). This has a

direct implementation on standard hardware.

The order of evaluation is quite clear to the programmer:

every argument must be evaluated before the function body

is invoked.

Advantages of non-strict-evaluation can be categorized into

three categories as it denoted in below:

Lambda calculus provides a stronger theoretic foundation

for languages that employ non-strict evaluation.

A non-strict evaluator may recognize that a sub-expression

does not need to be evaluated. For example, given the

definitions

Multiply (0, x) = 0;

Multiply (n, x) = x + multiply (n-1, x);

F (0) = 1;

F (n) = n * f (n-1);

Multiply (0, f (1000000)) a strict evaluator would (strictly

speaking) need to take (on the order of) 1,000,000 steps to
find the value of f (1000000). A non-strict evaluator may

use the definition of multiply first, reducing the whole

expression to 0 before even trying to compute f (1000000).

 Non-strict evaluation can use the above to allow

"infinite" data structures.

III. COMPARISON OF FUNCTIONAL AND IMPERATIVE

PROGRAMMING

Functional programming is very different from imperative

programming. The most significant differences stem from

the fact that functional programming avoids side effects,

which are used in imperative programming to implement

state and I/O. Pure functional programming disallows side

effects completely. Disallowing side effects provides for

referential transparency, which makes it easier to verify,

optimize, and parallelize programs, and easier to write

automated tools to perform those tasks. This means that pure

functions have several useful properties, many of which can

be used to optimize the code:

 If the result of a pure expression is not used, it can

be removed without affecting other expressions.

 If a pure function is called with parameters that

cause no side-effects, the result is constant with

respect to that parameter list (sometimes called

referential transparency), i.e. if the pure function is

again called with the same parameters, the same

result will be returned (this can enable caching

optimizations).

If there is no data dependency between two pure

expressions, then their order can be reversed, or they can be

performed in parallel and they cannot interfere with one

another (in other terms, the evaluation of any pure

expression is thread-safe).

 If the entire language does not allow side-effects,

then any evaluation strategy can be used; this gives

the compiler freedom to reorder or combine the

evaluation of expressions in a program (for

example, using lazy evaluation).
While most compilers for imperative programming

languages detect pure functions, and perform common-

subexpression elimination for pure function calls, they

cannot always do this for pre-compiled libraries, which

generally do not expose this information, thus preventing

optimizations that involve those external functions.

Higher order functions are rarely used in older imperative

programming. Where a traditional imperative program

might use a loop to traverse a list, a functional style would

often use a higher-order function, map, that takes as

http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion_(computer_science)
http://en.wikipedia.org/wiki/Tail_recursion
http://en.wikipedia.org/wiki/Tail_recursion
http://en.wikipedia.org/wiki/Tail_recursion
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Call-by-name
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Side_effect_(computer_science)
http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)
http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)
http://en.wikipedia.org/wiki/Parallelisation
http://en.wikipedia.org/wiki/Thread-safe
http://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_need

Global Journal of Researches in Engineering Vol. 10 Issue 2 (Ver 1.0) June 2010 P a g e | 49

arguments a function and a list, applies the function to each

element of the list, and returns a list of the results.

IV. LAMBDA CALCULUS

The λ-calculus can be called the smallest universal

programming language of the world. The λ-calculus consists

of a single transformation rule (variable substitution) and a

single function definition scheme. It was introduced in the

1930s by Alonzo Church as a way of formalizing the

concept of effective computability. The λ-calculus is

universal in the sense that any computable function can be

expressed and evaluated using this formalism. It is thus

equivalent to Turing machines. However, the λ-calculus

emphasizes the use of transformation rules and does not care

about the actual machine implementing them. It is an

approach more related to software than to hardware.

V. FORMAL LAMBDA CALCULUS

The central concept in λ -calculus is the ―expression". A

―name", also called a ―variable", is an identifier which, for

our purposes, can be any of the letters a; b; c,…. An

expression is defined recursively as follows:

An expression can be surrounded with parenthesis for

clarity, that is, if E is an expression, (E) is the same

expression. The only keywords used in the language are λ

and the dot. In order to avoid cluttering expressions with

parenthesis, we adopt the convention that function

application associates from the left, that is, the expression

E1E2E3 …En

is evaluated applying the expressions as follows:

(… ((E1E2) E3)…En)

As can be seen from the definition of λ expressions given

above, a single identifier is a λ expression. An example of a

function is the following:

λ x.x

For instance, the "add-two" function f such that f(x) =

x + 2 would be expressed in lambda calculus as λ x.

x + 2 (or equivalently as λ y. y + 2; the name of

the formal parameter is immaterial) and the application of

the function f(3) would be written as (λ x. x + 2)

3. Note that part of what makes this description "informal"

is that the expression x + 2 (or even the number 2) is not

part of lambda calculus; an explanation of how numbers and

arithmetic can be represented in lambda calculus is below.

Function application is left associative: f x y = (f x) y.

Consider the function which takes a function as an argument

and applies it to the number 3 as follows: λ f. f 3.

This latter function could be applied to our earlier "add-two"

function as follows: (λ f. f 3) (λ x. x + 2).

The three expressions:
(λ f. f 3) (λ x. x + 2)
(λ x. x + 2) 3
3 + 2

are equivalent.

A function of two variables is expressed in lambda calculus

as a function of one argument which returns a function of

one argument. For instance, the function f(x, y) = x -

y would be written as λ x. λ y. x - y. A common convention

is to abbreviate curried functions as, in this example, λ x y. x

- y. While it is not part of the formal definition of the

language,

λ x1 x2 … xn. Expression

Is used as an abbreviation for

λ x1. λ x2. … λ xn. Expression

Not every lambda expression can be reduced to a definite

value like the ones above; consider for instance

(λ x. x x) (λ x. x x)

or

(λ x. x x x) (λ x. x x x)

and try to visualize what happens when you start to apply

the first function to its argument. (λ x. x x) is also known

as the ω combinator; ((λ x. x x) (λ x. x x)) is known as Ω,

 ((λ x. x x x) (λ x. x x x)) as Ω2, etc.

Lambda calculus expressions may contain free variables, i.e.

variables not bound by any λ. For example, the variable y is

free in the expression (λ x. y), representing a function which

always produces the result y. occasionally, this necessitates

the renaming of formal arguments. For example, in the

formula below, the letter y is used first as a formal

parameter, then as a free variable:

(λ x y. y x) (λ x. y).

To reduce the expression, we rename the first identifier z so

that the reduction does not mix up the names:

(λ x z. z x) (λ x. y)

the reduction is then

λ z. z (λ x. y).

If one only formalizes the notion of function application and

replaces the use of lambda expressions by the use of

combinators, one obtains combinatory logic.

A. Definition

Lambda expressions are composed of

 Variables v1, v2, . . . vn

 The abstraction symbols λ

 Parentheses ()

The set of lambda expressions, Λ, can be defined

recursively:

1. If x is a variable, then x ∈ Λ

2. If x is a variable and M ∈ Λ, then (λ x . M) ∈ Λ

3. If M, N ∈ Λ, then (M N) ∈ Λ

Instances of 2 are known as abstractions and instances of 3,

applications.

B. Notation

To keep the notation of lambda expressions uncluttered, the

following conventions are usually applied.

Outermost parentheses are dropped: M N instead of (M N).

Applications are assumed to be left associative: M N P

means (M N) P.

The body of an abstraction extends as far right as possible: λ

x. M N means (λ x.M N) and not (λ x. M) N

http://en.wikipedia.org/wiki/Lambda_calculus#Arithmetic_in_lambda_calculus#Arithmetic_in_lambda_calculus
http://en.wikipedia.org/wiki/Left_associative_operator
http://en.wikipedia.org/wiki/Combinator
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Recursion

P a g e | 50 Vol. 10 Issue 2 (Ver 1.0) June 2010 Global Journal of Researches in Engineering

A sequence of abstractions are contracted: λ x λ y λ z. N is

abbreviated as λ x y z. N

C. Free and bound variables

The abstraction operator, λ, is said to bind its variable

wherever it occurs in the body of the abstraction. Variables

that fall within the scope of a lambda are said to be bound.

All other variables are called free. For example in the

following expression y is a bound variable and x is free:

λ y . xxy

Also note that a variable binds to its "nearest" lambda. In the

following expression one single occurrence of x is bound by

the second lambda:

λ x . y (λ x . z x)

The set of free variables of a lambda expression, M, is

denoted as FV (M) and is defined by recursion on the

structure of the terms, as follows:

FV(x) = {x}, where x is a variable

FV (λ x . M) = FV (M) - {x}

FV (M N) = FV (M) FV (N)

An expression which contains no free variables is said to be

closed. Closed lambda expressions are also known as

combinators and are equivalent to terms in combinatory

logic.

VI. REDUCTION

 Α-conversion

Alpha conversion allows bound variable names to be

changed. For example, an alpha conversion of λx.x would

be λy.y . Frequently in uses of lambda calculus, terms that

differ only by alpha conversion are considered to be

equivalent.

The precise rules for alpha conversion are not completely

trivial. First, when alpha-converting abstractions, the only

variable occurrences that are renamed are those that are

bound to the same abstraction. For example, an alpha

conversion of λx.λx.x could result in λy.λx.x , but

it could not result in λy.λx.y . The latter has a different

meaning from the original.

Second, alpha conversion is not possible if it would result in

a variable getting captured by a different abstraction. For

example, if we replace x with y in λx.λy.x, we get

λy.λy.y, which is not at all the same.

A. Substitution

Substitution, written E[V := E′], corresponds to the

replacement of a variable V by expression E′ every place it

is free within E. The precise definition must be careful in

order to avoid accidental variable capture. For example, it is

not correct for (λ x.y)[y := x] to result in (λ x.x),

because the substituted x was supposed to be free but ended

up being bound. The correct substitution in this case is (λ

z.x), up-to α-equivalence.

Substitution on terms of the λ-calculus is defined by

recursion on the structure of terms, as follows.
x[x := N] ≡ N

y[x := N] ≡ y, if x ≠ y
(M1 M2)[x := N] ≡ (M1[x := N]) (M2[x :=

N])
(λ y. M)[x := N] ≡ λ y. (M[x := N]), if

x ≠ y and y∉fv(N)

Notice that substitution is defined uniquely up-to α-

equivalence.

β-reduction

Beta reduction expresses the idea of function application.

The beta reduction of ((λ V. E) E′) is simply

E[V := E′] .

 Η-conversion
Eta conversion expresses the idea of extensionality, which in

this context is that two functions are the same if and only if

they give the same result for all arguments. Eta-conversion

converts between λ x. f x and f whenever x does not

appear free in f.

This conversion is not always appropriate when lambda

expressions are interpreted as programs. Evaluation of λ

x. f x can terminate even when evaluation of f does not.

VII. ARITHMETIC IN LAMBDA CALCULUS

There are several possible ways to define the natural

numbers in lambda calculus, but by far the most common

are the Church numerals, which can be defined as follows:
0:= λ f x. x
1:= λ f x. f x
2:= λ f x. f (f x)
3:= λ f x. f (f (f x))

And so on.

A Church numeral is a higher-order function—it takes a

single-argument function f, and returns another single-

argument function. The Church numeral n is a function that

takes a function f as argument and returns the n-th

composition of f, i.e. the function f composed with itself n

times. This is denoted f(n) and is in fact the n-th power of f

(considered as an operator); f(0) is defined to be the identity

function. Such repeated compositions (of a single function f)

obey the laws of exponents, which is why these numerals

can be used for arithmetic. Note that 1 returns f itself, i.e. it

is essentially the identity function, and 0 returns the identity

function. (Also note that in Church's original lambda

calculus, the formal parameter of a lambda expression was

required to occur at least once in the function body, which

made the above definition of 0 impossible.)

We can define a successor function, which takes a number n

and returns n + 1 by adding an additional application of f:
SUCC: = λ n f x. f (n f x)

Because the m-th composition of f composed with the n-th

composition of f gives the m+n-th composition of f,

addition can be defined as follows:
PLUS: = λ m n f x. n f (m f x)

PLUS can be thought of as a function taking two natural

numbers as arguments and returning a natural number; it can

be verified that

PLUS 2 3 and 5

http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Extensionality
http://en.wikipedia.org/wiki/If_and_only_if
http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Natural_number
http://en.wikipedia.org/wiki/Church_numeral
http://en.wikipedia.org/wiki/Higher-order_function
http://en.wikipedia.org/wiki/Exponentiation#Identities_and_properties

Global Journal of Researches in Engineering Vol. 10 Issue 2 (Ver 1.0) June 2010 P a g e | 51

Are equivalent lambda expressions. Since adding m to a

number, n can be accomplished by adding 1 m times, an

equivalent definition is:

PLUS: = λ n m. m SUCC n

Similarly, multiplication can be defined as

MULT: = λ m n f . m (n f)

Alternatively

MULT: = λ m n. m (PLUS n) 0,

Since multiplying m and n is the same as repeating the "add

n" function m times and then applying it to zero. The

predecessor function defined by PRED n = n - 1 for a

positive integer n and PRED 0 = 0 is considerably more

difficult. The formula
PRED: = λ n f x. n (λ g h. h (g f)) (λ

u. x) (λ u. u)

Can be validated by showing inductively that if T denotes

(λ g h. h (g f)), then T(n)(λ u. x) = (λ h.

h(f
(n-1)

(x))) for n > 0. Two other definitions of PRED

are given below, one using conditionals and the other using

pairs. With the predecessor function, subtraction is

straightforward. Defining

SUB: = λ m n. n PRED m,

SUB m n yields m - n when m > n and 0 otherwise.

VIII. LOGIC AND PREDICATES

By convention, the following two definitions (known as

Church booleans) are used for the boolean values TRUE and

FALSE:
TRUE: = λ x y. x
FALSE: = λ x y. y

(Note that FALSE is equivalent to the Church numeral zero

defined above)

Then, with these two λ-terms, we can define some logic

operators (these are just possible formulations; other

expressions are equally correct):
AND: = λ p q. p q p
OR: = λ p q. p p q
NOT: = λ p. λ a b. p b a
IFTHENELSE: = λ p a b. p a b

We are now able to compute some logic functions, for

example:
AND TRUE FALSE
≡ (λ p q. p q p) TRUE FALSE →β TRUE

FALSE TRUE
≡ (λ x y. x) FALSE TRUE →β FALSE

and we see that AND TRUE FALSE is equivalent to

FALSE.

A predicate is a function which returns a boolean value. The

most fundamental predicate is ISZERO which returns TRUE

if its argument is the Church numeral 0, and FALSE if its

argument is any other Church numeral:
ISZERO: = λ n. n (λ x. FALSE) TRUE

The following predicate tests whether the first argument is

less-than-or-equal-to the second:

LEQ:= λ m n. ISZERO (SUB m n),

and since m = n iff LEQ m n and LEQ n m, it is

straightforward to build a predicate for numerical equality.

The availability of predicates and the above definition of

TRUE and FALSE make it convenient to write "if-then-else"

expressions in lambda calculus. For example, the

predecessor function can be defined as' '
PRED: = λ n. n (λ g k. ISZERO (g 1) k

(PLUS (g k) 1) (λ v. 0) 0

Which can be verified by showing inductively that n (λ g
k. ISZERO (g 1) k (PLUS (g k) 1) (λ v.

0) is the "add n - 1" function for n > 0.

IX. PAIRS

A pair (2-tuple) can be defined in terms of TRUE and

FALSE, by using the Church encoding for pairs. For

example, PAIR encapsulates the pair (x,y), FIRST returns

the first element of the pair, and SECOND returns the

second.

PAIR:= λ x y f. f x y

FIRST: = λ p. p TRUE

SECOND: = λ p. p FALSE

NIL: = λ x. TRUE

NULL: = λp. p (λx y.FALSE)

A linked list can be defined as either NIL for the empty list,

or the PAIR of an element and a smaller list. The predicate

NULL tests for the value NIL.

As an example of the use of pairs, the shift-and-increment

function that maps (m, n) to (n, n+1) can be defined

as
Φ := λ x. PAIR (SECOND x) (SUCC (SECOND

x))

which allows us to give perhaps the most transparent version

of the predecessor function:
PRED := λ n. FIRST (n Φ (PAIR 0 0))

X. RECURSION

Recursion is the definition of a function using the function

itself; on the face of it, lambda calculus does not allow this.

However, this impression is misleading. Consider for

instance the factorial function f(n) recursively defined by

f(n) = 1, if n = 0; and n·f(n-1), if n>0.

In lambda calculus, one cannot define a function which

includes itself. To get around this, one may start by defining

a function, here called g, which takes a function f as an

argument and returns another function that takes n as an

argument:
g := λ f n. (1, if n = 0; and n·f(n-1),

if n>0).

The function that g returns is either the constant 1, or n

times the application of the function f to n-1. Using the

ISZERO predicate, and boolean and algebraic definitions

described above, the function g can be defined in lambda

calculus.

However, g by itself is still not recursive; in order to use g

to create the recursive factorial function, the function passed

to g as f must have specific properties. Namely, the

function passed as f must expand to the function g called

with one argument -- and that argument must be the function

that was passed as f again!

http://en.wikipedia.org/wiki/Lambda_calculus#Logic_and_predicates#Logic_and_predicates
http://en.wikipedia.org/wiki/Lambda_calculus#Pairs#Pairs
http://en.wikipedia.org/wiki/Church_encoding#Church_pairs
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Factorial

P a g e | 52 Vol. 10 Issue 2 (Ver 1.0) June 2010 Global Journal of Researches in Engineering

In other words, f must expand to g(f). This call to g will

then expand to the above factorial function and calculate

down to another level of recursion. In that expansion the

function f will appear again, and will again expand to g(f)

and continue the recursion. This kind of function, where f

= g(f), is called a fixed-point of g, and it turns out that it

can be implemented in the lambda calculus using what is

known as the paradoxical operator or fixed-point operator

and is represented as Y -- the Y combinator:
Y = λ g. (λ x. g (x x)) (λ x. g (x x))

In the lambda calculus, Y g is a fixed-point of g, as it

expands to g (Y g). Now, to complete our recursive call

to the factorial function, we would simply call g (Y g)

n, where n is the number we are calculating the factorial of.

Given n = 5, for example, this expands to:

(λ n.(1, if n = 0; and n·((Y g)(n-1)), if n>0)) 5

1, if 5 = 0; and 5·(g(Y g)(5-1)), if 5>0

5·(g(Y g) 4)

5·(λ n. (1, if n = 0; and n·((Y g)(n-1)), if n>0) 4)

5·(1, if 4 = 0; and 4·(g(Y g)(4-1)), if 4>0)

5·(4·(g(Y g) 3))

5·(4·(λ n. (1, if n = 0; and n·((Y g)(n-1)), if n>0) 3))

5·(4·(1, if 3 = 0; and 3·(g(Y g)(3-1)), if 3>0))

5·(4·(3·(g(Y g) 2)))

And so on, evaluating the structure of the algorithm

recursively. Every recursively defined function can be seen

as a fixed point of some other suitable function, and

therefore, using Y, every recursively defined function can be

expressed as a lambda expression. In particular, we can now

clearly define the subtraction, multiplication and comparison

predicate of natural numbers recursively.

XI. IMPLEMENTATION AND APPLICATION

The strength of the lambda-calculus is that it is easily used

as ―glue" on top of a richer world of primitives. Its

advantages as glue are that it has a natural correspondence

with the way that people program, and natural compilation

techniques yield high-performance code.

There are software engineering advantages to a language

glued together with lambda-calculus. Lambda expressions

can be understood locally - their dependence on their

environment is entirely through their free variables. Lambda

expressions tend to have fewer free variables and more

bound variables than comparable imperative code, since

they do not rely as heavily on assignment to express the

computation. An imperative program proceeds by altering

some globally-accessible store of values. By contrast, a

functional program proceeds by function application and the

return of values. This eliminates large classes of errors

associated with maintaining a global store of values.

Based on these advantages we are interested in

implementing some algorithm by lambda calculus as a

programming language. In this regards, djikstra as an

algorithm to find the shortest path between two nodes in a

graph is implemented. Dijkstra's algorithm, conceived by

Dutch computer scientist Edsger Dijkstra in 1959, is a

graph search algorithm that solves the single-source shortest

path problem for a graph with non negative edge path costs,

outputting a shortest path tree. This algorithm is often used

in routing.

For a given source vertex (node) in the graph, the algorithm

finds the path with lowest cost (i.e. the shortest path)

between that vertex and every other vertex. It can also be

used for finding costs of shortest paths from a single vertex

to a single destination vertex by stopping the algorithm once

the shortest path to the destination vertex has been

determined. For example, if the vertices of the graph

represent cities and edge path costs represent driving

distances between pairs of cities connected by a direct road,

Dijkstra's algorithm can be used to find the shortest route

between one city and all other cities. As a result, the shortest

path first is widely used in network routing protocols.

Let's call the node we are starting with an initial node. Let a

distance of a node X be the distance from the initial node to

it. Our algorithm will assign some initial distance values and

will try to improve them step-by-step.

1. Assign every node a distance value. Set it to zero

for our initial node and to infinity for all other

nodes.

2. Mark all nodes as unvisited. Set initial node as

current.

3. For current node, consider all its unvisited

neighbors and calculate their distance (from the

initial node) in case they are reached through the

current node. For example, if current node (A) has

distance of 6, and an edge connecting it with

another node (B) is 2, the distance to B through A

will be 6+2=8. If this distance is less than the

previously recorded distance (infinity in the

beginning, zero for the initial node), overwrite the

distance.

4. When we are done visiting all neighbors of the

current node, mark it as visited. A visited node will

not be checked ever again, its distance recorded

now is final and minimal.

5. Set the nearest unvisited neighbor of the current

node as the next "current node" and continue from

step 3.

6. When all nodes are visited, algorithm ends.

The program using lambda calculus languages became as

illustrated in below:

http://en.wikipedia.org/wiki/Fixed_point_combinator
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Routing_protocol

Global Journal of Researches in Engineering Vol. 10 Issue 2 (Ver 1.0) June 2010 P a g e | 53

λ n. n (λ x. λ x y. y) λ x y. x

 Weight Node. λ n. n (λ x. λ x y. y) λ x y. x Weight Node

 λ n f x. f (n f x)

λ m n. λ n. n (λ x. λ x y. y) λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y)

 λ x y. x (g λ f x. f x) k (λ m n f x. n f (m f x) (g k) λ f x. f x))

(λ v. λ f x. x) λ f x. x m n) Weight Node. m n. λ n. n (λ x. λ x y. y) λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y)

 λ x y. x (g λ f x. f x) k (λ m n f x. n f (m f x) (g k) λ f x. f x)) (λ v. λ f x. x) λ f x. x m n) Weight Node y f. f λ m n. λ n.

n (λ x. λ x y. y)

 λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y) λ x y. x (g 1) k (λ m n f x. n f (m f x) (g k) λ f x. f x)) (λ v. λ f x. x) λ

f x. x

m n) Weight Node. m n. λ n. n (λ x. λ x y. y) λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y)

λ x y. x (g 1) k (λ m n f x. n f (m f x) (g k) λ f x. f x)) (λ v. λ f x. x) λ f x. x m n) Weight Node y

In comparison with the other programming languages, as an

example we wrote some of them in below, Lambda

expressions tend to have fewer free variables and more

bound variables than comparable imperative code. In

addition it is easier to understand the algorithm in lambda-

based program because our understandings are not limited to

the variable definition.

XII. PYTHON IMPLEMENTATION

Import heapq

From collections import defaultdict

class Edge(object):

 def __init__(self, u, v, weight):

 self.start, self.end, self.weight = u, v, weight

 # For heapq.

 def __cmp__(self, other): return cmp(self.weight,

other.weight)

class Graph(object):

 def __init__(self):

 # The adjacency list.

 self.adj = defaultdict(list)

 def add_e(self, u, v, weight = 0):

 self.adj[u].append (Edge (u, v, weight))

 def s_path(self, src):

 """

 Returns the distance to every vertex from the

source and the

 array representing, at index i, the node visited

before

 visiting node i. This is in the form (dist,

previous).
 """

 dist, visited, previous, queue = {src: 0}, {}, {}, []

 heapq.heappush(queue, src)

 while len(queue) > 0:

 current = heapq.heappop(queue)

 if current in visited:

 Continue

 visited[current] = True

 for edge in self.adj[current]:

 relaxed = dist[current] + edge.weight

 v = edge.end

 if v not in dist or relaxed < dist[v]:

 previous[v], dist[v] = current, relaxed

 heapq.heappush(queue, v)

 return dist, previous

g = Graph()

g.add_e(1,2,4)

g.add_e(1,4,1)

g.add_e(2,1,74)

g.add_e(2,3,2)

g.add_e(2,5,12)

g.add_e(3,2,12)

g.add_e(3,10,12)

g.add_e(3,6,74)

g.add_e(4,7,22)

g.add_e(4,5,32)

g.add_e(5,8,33)

g.add_e(5,4,66)

g.add_e(5,6,76)

g.add_e(6,10,21)

g.add_e(6,9,11)

g.add_e(7,3,12)

g.add_e(7,8,10)

g.add_e(8,7,2)

g.add_e(8,9,72)

g.add_e(9,10,7)

g.add_e(9,6,31)

g.add_e(9,8,18)

g.add_e(10,6,8)

Find a shortest path from vertex 'a' (1) to 'j' (10).

Dist, prev = g.s_path(1)

Trace the path back using the prev array.

Path, current, end = [], 10, 10

While current in prev:

 path.insert(0, prev[current])

 current = prev[current]

print path

print dist[end]

P a g e | 54 Vol. 10 Issue 2 (Ver 1.0) June 2010 Global Journal of Researches in Engineering

as it is clear, the program written first is much easier to

develop because the developer is not supposed to know

syntaxes. Although lambda calculus is easy, it is not a user

friendly language which should be like human‘s language.

XIII. CONCLUSION

The strength of the lambda-calculus is that it is easy to use

and in order to implement, you are not supposed to learn a

huge amount of syntaxes. In comparison to other, although

lambda calculus is easy, it is not a user friendly language

which should be like human‘s language.

	Lambda Calculus and Functional Programming
	Author
	Abstract
	I. INTRODUCTION
	II. FUNCTIONAL PROGRAMMING
	III. COMPARISON OF FUNCTIONAL AND IMPERATIVE PROGRAMMING
	IV. LAMBDA CALCULUS
	V. FORMAL LAMBDA CALCULUS
	A. Definition
	B. Notation
	C. Free and bound variables
	A. Substitution

	VI. REDUCTION
	A. Substitution

	VII. ARITHMETIC IN LAMBDA CALCULUS
	VIII. LOGIC AND PREDICATES
	IX. PAIRS
	X. RECURSION
	XI. IMPLEMENTATION AND APPLICATION
	XII. PYTHON IMPLEMENTATION
	XIII. CONCLUSION

