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Lambda Calculus and Functional Programming
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Abstract-The lambda calculus can be thought of as an idealized,
minimalistic programming language. It is capable of expressing
any algorithm, and it is this fact that makes the model of
functional programming an important one. This paper is
focused on introducing lambda calculus and its application. As
an application dikjestra algorithm is implemented using
lambda calculus. As program shows algorithm is more
understandable using lambda calculus in comparison with
other imperative languages.

I.  INTRODUCTION

ambda calculus (A-calculus) is a useful device to make

the theories realizable. Lambda calculus, introduced by
Alonzo Church and Stephen Cole Kleene in the 1930s is a
formal system designed to investigate function definition,
function application and recursion in mathematical logic and
computer science. It has emerged as a useful tool in the
investigation of problems in computability or recursion
theory, and forms the basis of a paradigm of computer
programming called functional programming.
As lambda calculus is capable of expressing any algorithm
the lambda calculus can be thought of as an idealized,
minimalistic programming language. Based on these
capabilities lambda calculus became an important model of
functional programming. Functional programs are stateless
and deal exclusively with functions that accept and return
data (including other functions), but they produce no side
effects in 'state’ and thus make no alterations to incoming
data. Modern functional languages, building on the lambda
calculus, include Erlang, Haskell, Lisp, ML, Scheme and
Microsoft has in the past couple years has turned its
attention towards functional programming with introduction
of .NET based functional programming language called
F#.(refl)
The lambda calculus continues to play an important role in
mathematical foundations, through the Curry-Howard
correspondence.(refl)
Church (1936) invented a formal system called the lambda
calculus and defined the notion of computable function via
this system. Turing (1936, 1937) invented a class of
machines (later to be called Turing machines) and defined
the notion of computable function via these machines. In
1936 Turing proved that both models are equally strong in
the sense that they define the same class of computable
functions.
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Basis concept of a Turing machine is the present day Von
Neumann computers. Conceptually these are Turing
machines with random access registers. Imperative
programming languages such as FORTRAN, Pascal etcetera
as well as all the assembler languages are based on the way
a Turing machine is instructed by a sequence of statements.
In addition functional programming languages, like
Miranda, ML etcetera, are based on the lambda calculus.
Functional programming is a programming paradigm that
treats computation as the evaluation of mathematical
functions and avoids state and mutable data. It emphasizes
the application of functions, in contrast with the imperative
programming style that emphasizes changes in state.
Lambda calculus provides a theoretical framework for
describing functions and their evaluation. Though it is a
mathematical abstraction rather than a programming
language, it forms the basis of almost all functional
programming languages today. Modern functional
languages can be viewed as embellishments to the lambda
calculus. (ref2)

In the next section first we introduce functional
programming and after that functional and non-functional
programming are compared.

II.  FUNCTIONAL PROGRAMMING

Functional programming languages, especially purely
functional ones, have largely been emphasized in academia
rather than in commercial software development. However,
notable functional programming languages used in industry
and commercial applications include Erlang, OCaml,
Haskell, Scheme (since 1986) and domain-specific
programming languages like R (statistics), Mathematica
(symbolic math), J and K (financial analysis), and XSLT
(XML).

Many non-functional programming languages such as C,
C++ and C# can be made to exhibit functional behaviors
using function pointers, the <functional> library and lambda
functions respectively.

A functional program consists of an expression E
(representing both the algorithm and the input). This
expression E is subject to some rewrite rules.

Reduction consists of replacing a part P of E by another
expression P’ according to the given rewrite rules. In
schematic notation

E[P] — E[P'

Provided that P -> P’ is according to the rules. This process
of reduction will be repeated until the resulting expression
has no more parts that can be rewritten. This so called

normal form E* of the expression E consists of the output of
the given functional program.
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Iteration (looping) in functional languages is usually
accomplished via recursion. Recursive functions invoke
themselves, allowing an operation to be performed over and
over. Recursion may require maintaining a stack, but tail
recursion can be recognized and optimized by a compiler
into the same code used to implement iteration in imperative
languages. The Scheme programming language standard
requires implementations to recognize and optimize tail
recursion.

Functional languages can be categorized by whether they
use strict or non-strict evaluation, concepts that refer to how
function arguments are processed when an expression is
being evaluated.

In brief, strict evaluation always fully evaluates function
arguments before invoking the function. Non-strict
evaluation is free to do otherwise
To illustrate, consider the following two functions f and g:
f(x) =x"2+x+1

g(x, y) :=x+y

Under strict evaluation, we would have to evaluate function
arguments first, for example:

f(g(1, 4))

=f(1+4)

=1(5)

=5"2+5+1

=31

By contrast, non-strict evaluation need not fully evaluate the
arguments; in particular it may send the arguments
unevaluated to the function, perhaps evaluating them later.
For example, one non-strict strategy (call-by-name) might
work as follows:

f(g(1, 4))
=g(1, "2 +9(1,4) +1
=(1+4)2+(1+4)+1
=5"2+5+1
=31

A key property of strict evaluation is that when an argument
expression fails to terminate, the whole expression fails to
terminate. With non-strict evaluation, this need not be the
case, since argument expressions need not be evaluated at
all.

Advantages of strict-evaluation can be categorized into two
categories as it denoted in below:

Parameters are usually passed around as (simple) atomic
units, rather than as (rich) expressions. (For example, the
integer 5 can be passed on a register, whereas the expression
1+4 will require several memory locations). This has a
direct implementation on standard hardware.

The order of evaluation is quite clear to the programmer:
every argument must be evaluated before the function body
is invoked.

Advantages of non-strict-evaluation can be categorized into
three categories as it denoted in below:

Lambda calculus provides a stronger theoretic foundation
for languages that employ non-strict evaluation.

A non-strict evaluator may recognize that a sub-expression
does not need to be evaluated. For example, given the
definitions

Multiply (0, x) = 0;

Multiply (n, X) = x + multiply (n-1, x);

F0)=1;

F(n)=n=*f(n-1);

Multiply (0, f (1000000)) a strict evaluator would (strictly
speaking) need to take (on the order of) 1,000,000 steps to
find the value of f (1000000). A non-strict evaluator may
use the definition of multiply first, reducing the whole
expression to 0 before even trying to compute f (1000000).
e Non-strict evaluation can use the above to allow
"infinite" data structures.

. COMPARISON OF FUNCTIONAL AND IMPERATIVE
PROGRAMMING

Functional programming is very different from imperative
programming. The most significant differences stem from
the fact that functional programming avoids side effects,
which are used in imperative programming to implement
state and 1/0. Pure functional programming disallows side
effects completely. Disallowing side effects provides for
referential transparency, which makes it easier to verify,
optimize, and parallelize programs, and easier to write
automated tools to perform those tasks. This means that pure
functions have several useful properties, many of which can
be used to optimize the code:

o If the result of a pure expression is not used, it can
be removed without affecting other expressions.

e If a pure function is called with parameters that
cause no side-effects, the result is constant with
respect to that parameter list (sometimes called
referential transparency), i.e. if the pure function is
again called with the same parameters, the same
result will be returned (this can enable caching
optimizations).

If there is no data dependency between two pure
expressions, then their order can be reversed, or they can be
performed in parallel and they cannot interfere with one
another (in other terms, the evaluation of any pure
expression is thread-safe).

e If the entire language does not allow side-effects,
then any evaluation strategy can be used; this gives
the compiler freedom to reorder or combine the
evaluation of expressions in a program (for
example, using lazy evaluation).

While most compilers for imperative programming
languages detect pure functions, and perform common-
subexpression elimination for pure function calls, they
cannot always do this for pre-compiled libraries, which
generally do not expose this information, thus preventing
optimizations that involve those external functions.

Higher order functions are rarely used in older imperative
programming. Where a traditional imperative program
might use a loop to traverse a list, a functional style would
often use a higher-order function, map, that takes as
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arguments a function and a list, applies the function to each
element of the list, and returns a list of the results.

IV. LAMBDA CALCULUS

The A-calculus can be called the smallest universal
programming language of the world. The A-calculus consists
of a single transformation rule (variable substitution) and a
single function definition scheme. It was introduced in the
1930s by Alonzo Church as a way of formalizing the
concept of effective computability. The Ai-calculus is
universal in the sense that any computable function can be
expressed and evaluated using this formalism. It is thus
equivalent to Turing machines. However, the A-calculus
emphasizes the use of transformation rules and does not care
about the actual machine implementing them. It is an
approach more related to software than to hardware.

V. FORMAL LAMBDA CALCULUS

The central concept in A -calculus is the “expression". A
“name", also called a “variable", is an identifier which, for
our purposes, can be any of the letters a; b; c,.... An
expression is defined recursively as follows:

<expression> = <name> | <function> | <application>
<function> := A <name>.<expression>
<application> := <expression™><expression>

An expression can be surrounded with parenthesis for
clarity, that is, if E is an expression, (E) is the same
expression. The only keywords used in the language are A
and the dot. In order to avoid cluttering expressions with
parenthesis, we adopt the convention that function
application associates from the left, that is, the expression
E1E2E3...En

is evaluated applying the expressions as follows:

(... ((E1E2) E3)...En)

As can be seen from the definition of A expressions given
above, a single identifier is a A expression. An example of a
function is the following:

A XX

For instance, the "add-two" function f such that r(x) =
x + 2 would be expressed in lambda calculus as A x.
x + 2 (orequivalentlyas A y. y + 2; the name of
the formal parameter is immaterial) and the application of
the function £ (3) would be written as (A x. x + 2)
3. Note that part of what makes this description "informal”
is that the expression x + 2 (or even the number 2) is not
part of lambda calculus; an explanation of how numbers and
arithmetic can be represented in lambda calculus is below.
Function application is left associative: f xy = (f x) y.
Consider the function which takes a function as an argument
and applies it to the number 3 as follows: A £. £ 3.
This latter function could be applied to our earlier "add-two"
function as follows: (A f. £ 3) (A x. x + 2).
The three expressions:

(N f. £ 3) (AN x. x + 2)
(AN x. x + 2) 3
3+ 2

are equivalent.

A function of two variables is expressed in lambda calculus
as a function of one argument which returns a function of
one argument. For instance, the function f(x, y) = x -
y would be written as A x. A y. X - Y. A common convention
is to abbreviate curried functions as, in this example, A x y. X
- y. While it is not part of the formal definition of the
language,

Ax1x2 ... xn. Expression

Is used as an abbreviation for

Ax1.Ax2. ... A xn. Expression

Not every lambda expression can be reduced to a definite
value like the ones above; consider for instance

(Ax.xx) (AX. XX)

or

(Ax.xxXX)(AX. X XX)

and try to visualize what happens when you start to apply
the first function to its argument. (A x. x x) is also known
as the ® combinator; ((A x. x x) (A x. X X)) is known as Q,
(Ax.xxx) (Ax. xXX)) as Q2, etc.

Lambda calculus expressions may contain free variables, i.e.
variables not bound by any A. For example, the variable y is
free in the expression (A x. y), representing a function which
always produces the result y. occasionally, this necessitates
the renaming of formal arguments. For example, in the
formula below, the letter y is used first as a formal
parameter, then as a free variable:

Axy. yx)(AX.y).

To reduce the expression, we rename the first identifier z so
that the reduction does not mix up the names:
Axz.zx)(AX.Y)

the reduction is then

Az.z(AX.y).

If one only formalizes the notion of function application and
replaces the use of lambda expressions by the use of
combinators, one obtains combinatory logic.

A. Definition

Lambda expressions are composed of
e Variables vy, Vs, ...V,
e  The abstraction symbols A
e Parentheses ()
The set of lambda expressions, A, can be defined
recursively:
1. Ifxisavariable, thenx € A
2. Ifxisavariableand M € A then (Ax. M) € A
3. IfM,N € A, then (MN) € A
Instances of 2 are known as abstractions and instances of 3,
applications.

B. Notation

To keep the notation of lambda expressions uncluttered, the
following conventions are usually applied.

Outermost parentheses are dropped: M N instead of (M N).
Applications are assumed to be left associative: M N P
means (M N) P.

The body of an abstraction extends as far right as possible: A
x. M N means (A x.M N) and not (A x. M) N
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A sequence of abstractions are contracted: A x Ay A z. N is
abbreviated as A xy z. N

C. Free and bound variables

The abstraction operator, A, is said to bind its variable
wherever it occurs in the body of the abstraction. Variables
that fall within the scope of a lambda are said to be bound.
All other variables are called free. For example in the
following expression y is a bound variable and x is free:

AV . XXy

Also note that a variable binds to its "nearest" lambda. In the
following expression one single occurrence of x is bound by
the second lambda:

Ax.y(Ax.zX)

The set of free variables of a lambda expression, M, is
denoted as FV (M) and is defined by recursion on the
structure of the terms, as follows:

FV(x) = {x}, where x is a variable
FV(Ax.M)=FV (M) -{x}

FV(MN)=FV (M) FV(N)

An expression which contains no free variables is said to be
closed. Closed lambda expressions are also known as
combinators and are equivalent to terms in combinatory
logic.

VI. REDUCTION

A-conversion

Alpha conversion allows bound variable names to be
changed. For example, an alpha conversion of Ax.x would
be Ay.y . Frequently in uses of lambda calculus, terms that
differ only by alpha conversion are considered to be
equivalent.

The precise rules for alpha conversion are not completely
trivial. First, when alpha-converting abstractions, the only
variable occurrences that are renamed are those that are
bound to the same abstraction. For example, an alpha
conversion of Ax.Ax.x could result in Ay.Ax.x , but
it could not result in Ay .Ax.y . The latter has a different
meaning from the original.

Second, alpha conversion is not possible if it would result in
a variable getting captured by a different abstraction. For
example, if we replace x with y in Ax.Ay.x, we get
Ay.Ay.y, which is not at all the same.

A. Substitution

Substitution, written E[V := E'], corresponds to the
replacement of a variable v by expression £’ every place it
is free within E. The precise definition must be careful in
order to avoid accidental variable capture. For example, it is
not correct for (A x.y) [y := x] toresultin (A x.x),
because the substituted x was supposed to be free but ended
up being bound. The correct substitution in this case is (A
z .x), Up-to a-equivalence.

Substitution on terms of the A-calculus is defined by
recursion on the structure of terms, as follows.

x[x := NJ] = N

y[x := N] =vy, 1f x # y

(M Mp)[x := N] = (M[x := N]) (M[x :=
NT)

(A y. M)[x :=N] = AN y. (M[x := N]), 1if

x # y and y$fv (N)

Notice that substitution is defined uniquely up-to a-
equivalence.

fS-reduction

Beta reduction expresses the idea of function application.
The beta reduction of ((A V. E) E') is simply
E[V := E']

H-conversion

Eta conversion expresses the idea of extensionality, which in
this context is that two functions are the same if and only if
they give the same result for all arguments. Eta-conversion
converts between A x. f x and £ whenever x does not
appear free in f.

This conversion is not always appropriate when lambda
expressions are interpreted as programs. Evaluation of A
x. f x canterminate even when evaluation of f does not.

VIl.  ARITHMETIC IN LAMBDA CALCULUS

There are several possible ways to define the natural
numbers in lambda calculus, but by far the most common
are the Church numerals, which can be defined as follows:
O:= N £ x. X

l:= N f x. £ x
2:= N f x. £ (f x
3:1= A f x. £ (f (
And so on.

A Church numeral is a higher-order function—it takes a
single-argument function f, and returns another single-
argument function. The Church numeral n is a function that
takes a function f as argument and returns the n-th
composition of f, i.e. the function f composed with itself n
times. This is denoted f(n) and is in fact the n-th power of f
(considered as an operator); f(0) is defined to be the identity
function. Such repeated compositions (of a single function f)
obey the laws of exponents, which is why these numerals
can be used for arithmetic. Note that 1 returns f itself, i.e. it
is essentially the identity function, and O returns the identity
function. (Also note that in Church's original lambda
calculus, the formal parameter of a lambda expression was
required to occur at least once in the function body, which
made the above definition of 0 impossible.)

We can define a successor function, which takes a number n
and returns n + 1 by adding an additional application of £:
SUCC: = A n f x. £ (n £ x)

Because the m-th composition of £ composed with the n-th
composition of £ gives the m+n-th composition of £,
addition can be defined as follows:

PLUS: = Amn f x. n £ (m £ x)

PLUS can be thought of as a function taking two natural
numbers as arguments and returning a natural number; it can
be verified that

PLUS23 and 5

)
r x))
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Are equivalent lambda expressions. Since adding m to a
number, n can be accomplished by adding 1 m times, an
equivalent definition is:

PLUS: =Anm. m SUCCn

Similarly, multiplication can be defined as
MULT:=Amnf.m(nf)

Alternatively

MULT: =X mn. m (PLUS n) 0,

Since multiplying m and n is the same as repeating the "add
n" function m times and then applying it to zero. The
predecessor function defined by PRED n = n - 1 for a
positive integer n and PRED 0 = 0 is considerably more
difficult. The formula
PRED: = A n f x. n
u. x) (N u. u

Can be validated by showing inductively that if T denotes
(N g h. h (g £)),thenT (A u. x) = (A h.
h(£f" Y (x)) ) forn>0. Two other definitions of PRED
are given below, one using conditionals and the other using
pairs. With the predecessor function, subtraction is
straightforward. Defining

SUB: = A m n. n PRED m,

SUB m nyieldsm - nwhenm > nand 0 otherwise.

(M g h. h (g f)) (A

VIII.  LOGIC AND PREDICATES

By convention, the following two definitions (known as
Church booleans) are used for the boolean values TRUE and
FALSE:

TRUE: = A X y. X

FALSE: = AN X y. y

(Note that FALSE is equivalent to the Church numeral zero
defined above)

Then, with these two A-terms, we can define some logic
operators (these are just possible formulations; other
expressions are equally correct):

AND: = A p g. p gp

OR: = A pg. ppg

NOT: = A p. N a b. p b a
IFTHENELSE: = A p a b. p a b

We are now able to compute some logic functions, for
example:
AND TRUE FALSE

= (A p g. p g p) TRUE FALSE - TRUE
FALSE TRUE
= (A x y. x) FALSE TRUE —; FALSE

and we see that AND TRUE FALSE is equivalent to
FALSE.

A predicate is a function which returns a boolean value. The
most fundamental predicate is TSZERO which returns TRUE
if its argument is the Church numeral 0, and FALSE if its
argument is any other Church numeral:

ISZERO: = A n. n (A x. FALSE) TRUE

The following predicate tests whether the first argument is
less-than-or-equal-to the second:

LEQ:= A m n. ISZERO (SUB m n),

and since m = n iff LEQ m nand LEQ n m, it is
straightforward to build a predicate for numerical equality.

The availability of predicates and the above definition of
TRUE and FALSE make it convenient to write "if-then-else"

expressions in lambda calculus. For example, the
predecessor function can be defined as'"

PRED: = A n. n (A g k. ISZERO (g 1) k
(PLUS (g k) 1) (A v. 0) O

Which can be verified by showing inductively that n (A g

k. ISZERO (g 1) k (PLUS (g k) 1) (N v.
0) is the "add n - 1" function for n > 0.
IX. PAIRS

A pair (2-tuple) can be defined in terms of TRUE and
FALSE, by using the Church encoding for pairs. For
example, PATR encapsulates the pair (x,y), FIRST returns
the first element of the pair, and SECOND returns the
second.

PAIR:=Axyf fxy

FIRST: =L p.p TRUE

SECOND: =Ap. p FALSE

NIL: = A x. TRUE

NULL: = Ap. p (Ax y.FALSE)

A linked list can be defined as either NIL for the empty list,
or the PATR of an element and a smaller list. The predicate
NULL tests for the value NIL.

As an example of the use of pairs, the shift-and-increment

function that maps (m, n) to (n, n+1) can be defined
as
® := A x. PAIR (SECOND x) (SUCC (SECOND

X))
which allows us to give perhaps the most transparent version
of the predecessor function:
PRED := A n. FIRST

(n ® (PAIR 0 0))

X.  RECURSION

Recursion is the definition of a function using the function
itself; on the face of it, lambda calculus does not allow this.
However, this impression is misleading. Consider for
instance the factorial function £ (n) recursively defined by
f(n) =1, if n = 0; and n-f(n-1), if n>0.
In lambda calculus, one cannot define a function which
includes itself. To get around this, one may start by defining
a function, here called g, which takes a function £ as an
argument and returns another function that takes n as an
argument:

g := AN f n. (1,
if n>0).

The function that g returns is either the constant 1, or n
times the application of the function £ to n-1. Using the
ISZERO predicate, and boolean and algebraic definitions
described above, the function g can be defined in lambda
calculus.

However, g by itself is still not recursive; in order to use g
to create the recursive factorial function, the function passed
to g as £ must have specific properties. Namely, the
function passed as £ must expand to the function g called
with one argument -- and that argument must be the function
that was passed as £ again!

if n = 0; and n-f(n-1),


http://en.wikipedia.org/wiki/Lambda_calculus#Logic_and_predicates#Logic_and_predicates
http://en.wikipedia.org/wiki/Lambda_calculus#Pairs#Pairs
http://en.wikipedia.org/wiki/Church_encoding#Church_pairs
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Factorial

Page | 52 Vol 10Issue 2 (Ver 1.0) June 2010

Global Journal of Researches in Engineering

In other words, £ must expand to g (£). This call to g will
then expand to the above factorial function and calculate
down to another level of recursion. In that expansion the
function £ will appear again, and will again expand to g ( £)
and continue the recursion. This kind of function, where £
= g (1), is called a fixed-point of g, and it turns out that it
can be implemented in the lambda calculus using what is

Given n =5, for example, this expands to:
(An.(1,ifn=0; and n-((Y g)(n-1)), if n>0)) 5
1,if5=0; and 5-(g(Y g)(5-1)), if 5>0

5:(9(Y 9)4)

5:(An. (1, if n=0; and n-((Y g)(n-1)), if n>0) 4)
5-(1, if4=0; and 4-(g9(Y g)(4-1)), if 4>0)
5-(4-(9(Y 9) 3))

5:(4-(An. (1, if n=0; and n*((Y g)(n-1)), if n>0) 3))
5-(4-(1,if3=0; and 3-(g(Y g)(3-1)), if 3>0))
5-(4-(3-(a(Y 9) 2))

And so on, evaluating the structure of the algorithm
recursively. Every recursively defined function can be seen
as a fixed point of some other suitable function, and
therefore, using v, every recursively defined function can be
expressed as a lambda expression. In particular, we can now
clearly define the subtraction, multiplication and comparison
predicate of natural numbers recursively.

Xl IMPLEMENTATION AND APPLICATION

The strength of the lambda-calculus is that it is easily used
as “glue" on top of a richer world of primitives. Its
advantages as glue are that it has a natural correspondence
with the way that people program, and natural compilation
techniques yield high-performance code.

There are software engineering advantages to a language
glued together with lambda-calculus. Lambda expressions
can be understood locally - their dependence on their
environment is entirely through their free variables. Lambda
expressions tend to have fewer free variables and more
bound variables than comparable imperative code, since
they do not rely as heavily on assignment to express the
computation. An imperative program proceeds by altering
some globally-accessible store of values. By contrast, a
functional program proceeds by function application and the
return of values. This eliminates large classes of errors
associated with maintaining a global store of values.

Based on these advantages we are interested in
implementing some algorithm by lambda calculus as a
programming language. In this regards, djikstra as an
algorithm to find the shortest path between two nodes in a
graph is implemented. Dijkstra's algorithm, conceived by
Dutch computer scientist Edsger Dijkstra in 1959, is a
graph search algorithm that solves the single-source shortest
path problem for a graph with non negative edge path costs,
outputting a shortest path tree. This algorithm is often used
in routing.

For a given source vertex (node) in the graph, the algorithm
finds the path with lowest cost (i.e. the shortest path)
between that vertex and every other vertex. It can also be

known as the paradoxical operator or fixed-point operator
and is represented as Y -- the Y combinator:

Y=Ag. (A x. g (x x)) (A x. g (x x))

In the lambda calculus, ¥ g is a fixed-point of g, as it
expands to g (Y g). Now, to complete our recursive call
to the factorial function, we would simply call g (Y g)
n, where n is the number we are calculating the factorial of.

used for finding costs of shortest paths from a single vertex
to a single destination vertex by stopping the algorithm once
the shortest path to the destination vertex has been
determined. For example, if the vertices of the graph
represent cities and edge path costs represent driving
distances between pairs of cities connected by a direct road,
Dijkstra's algorithm can be used to find the shortest route
between one city and all other cities. As a result, the shortest
path first is widely used in network routing protocols.

Let's call the node we are starting with an initial node. Let a
distance of a node X be the distance from the initial node to
it. Our algorithm will assign some initial distance values and
will try to improve them step-by-step.

1. Assign every node a distance value. Set it to zero
for our initial node and to infinity for all other

nodes.

2. Mark all nodes as unvisited. Set initial node as
current.

3. For current node, consider all its unvisited

neighbors and calculate their distance (from the
initial node) in case they are reached through the
current node. For example, if current node (A) has
distance of 6, and an edge connecting it with
another node (B) is 2, the distance to B through A
will be 6+2=8. If this distance is less than the
previously recorded distance (infinity in the
beginning, zero for the initial node), overwrite the
distance.

4. When we are done visiting all neighbors of the
current node, mark it as visited. A visited node will
not be checked ever again, its distance recorded
now is final and minimal.

5. Set the nearest unvisited neighbor of the current
node as the next "current node™ and continue from
step 3.

6. When all nodes are visited, algorithm ends.

The program using lambda calculus languages became as
illustrated in below:


http://en.wikipedia.org/wiki/Fixed_point_combinator
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Routing_protocol
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AmnAnnAX.AXy. yYAxy.x(Amnninn(AgkAinn(Ax.Axy.y)

Axy. x(ghfx. fx)k(Amnfx.nf(mfx) (gk)rfx. fx ))

(Av.Afx.x )Afx.x mn)Weight Node mn. Ann(Ax.Axy. y)Axy.x(Amnninn(Agk Ann(AXx AXxy.y )
Axy. x(gAfx.fx )kQmnfx.nf(mfx) (gk)Afx.fx ))Av.Afx.x )Afx.x mn) Weight Node y f. fAmn. A n.

n(AX.AXYy.y)

Axy.x(AmnninnAgk Ann(AxAxy. y)Axy.x(@H)k@Amnfxnf(mfx) (gk)Afx. fx ))(Av.Afx.x )A

fXx x

mn) Weight Node. mn. An.n(Ax.Axy. y)Axy.x(Amnninn(Agk Ann(Ax Axy.y)
Axy.x(gDk@Amnfx.nf(mfx) (gk)Afx.fx ))(Av.Afx x )AL fx. x mn)Weight Node y

In comparison with the other programming languages, as an
example we wrote some of them in below, Lambda
expressions tend to have fewer free variables and more
bound variables than comparable imperative code. In
addition it is easier to understand the algorithm in lambda-
based program because our understandings are not limited to
the variable definition.

XIl.  PYTHON IMPLEMENTATION

Import heapq
From collections import defaultdict

class Edge(object):
def __init__ (self, u, v, weight):
self.start, self.end, self.weight = u, v, weight

# For heapq.
def _ cmp__ (self,
other.weight

other): return cmp(self.weight,

class Graph(object):
def __init__(self):
# The adjacency list.
self.adj = defaultdict(list

def add_e(self, u, v, weight = 0):
self.adj[u].append (Edge (u, v, weight

def s_path(self, src):
Returns the distance to every vertex from the
source and the
array representing, at index i, the node visited
before
visiting node i. This is in the form (dist,
previous).

dist, visited, previous, queue = {src: 0}, {}, {},
heapg.heappush(queue, src
while len(queue) > 0:
current = heapg.heappop(queue
if current in visited:
Continue

visited|current] = True

for edge in self.adj[current]:

relaxed = dist/current] + edge.weight

v = edge.end

if v not in dist or relaxed < dist|v]:

previous|v], dist[v] = current, relaxed

heapg.heappush(queue, v
return dist, previous

g = Graph
g.add_e(1,2,4
g.add_e(1,4,1
g.add_e(2,1,74
g.add_e(2,3,2
g.add_e(2,5,12
g.add_e(3,2,12
g.add_e(3,10,12
g.add_e(3,6,74
g.add_e(4,7,22
g.add_e(4,5,32
g.add_e(5,8,33
g.add_e(5,4,66
g.add_e(5,6,76
g.add_e(6,10,21
g.add_e(6,9,11
g.add_e(7,3,12
g.add_e(7,8,10
g.add_e(8,7,2
g.add_e(8,9,72
g.add_e(9,10,7
g.add_e(9,6,31
g.add _e(9,8,18
g.add_e(10,6,8

# Find a shortest path from vertex 'a' (1) to 'j' (10).

Dist, prev = g.s_path(1
# Trace the path back using the prev array.
Path, current, end =[], 10, 10
While current in prev:
path.insert(0, prev|current
current = prev/current

print path
print dist/end
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as it is clear, the program written first is much easier to
develop because the developer is not supposed to know
syntaxes. Although lambda calculus is easy, it is not a user
friendly language which should be like human’s language.

Xlll.  CONCLUSION

The strength of the lambda-calculus is that it is easy to use
and in order to implement, you are not supposed to learn a
huge amount of syntaxes. In comparison to other, although
lambda calculus is easy, it is not a user friendly language
which should be like human’s language.
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