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Abstract-The lambda calculus can be thought of as an idealized, 

minimalistic programming language. It is capable of expressing 

any algorithm, and it is this fact that makes the model of 

functional programming an important one. This paper is 

focused on introducing lambda calculus and its application. As 

an application dikjestra algorithm is implemented using 

lambda calculus. As program shows algorithm is more 

understandable using lambda calculus in comparison with 

other imperative languages. 

I. INTRODUCTION 

ambda calculus (λ-calculus) is a useful device to make 

the theories realizable. Lambda calculus, introduced by 

Alonzo Church and Stephen Cole Kleene in the 1930s is a 

formal system designed to investigate function definition, 

function application and recursion in mathematical logic and 

computer science. It has emerged as a useful tool in the 

investigation of problems in computability or recursion 

theory, and forms the basis of a paradigm of computer 

programming called functional programming.  

As lambda calculus is capable of expressing any algorithm 

the lambda calculus can be thought of as an idealized, 

minimalistic programming language. Based on these 

capabilities lambda calculus became an important model of 

functional programming. Functional programs are stateless 

and deal exclusively with functions that accept and return 

data (including other functions), but they produce no side 

effects in 'state' and thus make no alterations to incoming 

data. Modern functional languages, building on the lambda 

calculus, include Erlang, Haskell, Lisp, ML, Scheme and 

Microsoft has in the past couple years has turned its 

attention towards functional programming with introduction 

of .NET based functional programming language called 

F#.(ref1) 

The lambda calculus continues to play an important role in 

mathematical foundations, through the Curry-Howard 

correspondence.(ref1) 

Church (1936) invented a formal system called the lambda 

calculus and defined the notion of computable function via 

this system. Turing (1936, 1937) invented a class of 

machines (later to be called Turing machines) and defined 

the notion of computable function via these machines. In 

1936 Turing proved that both models are equally strong in 

the sense that they define the same class of computable 

functions. 
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Basis concept of a Turing machine is the present day Von 

Neumann computers. Conceptually these are Turing 

machines with random access registers. Imperative 

programming languages such as FORTRAN, Pascal etcetera 

as well as all the assembler languages are based on the way 

a Turing machine is instructed by a sequence of statements. 

In addition functional programming languages, like 

Miranda, ML etcetera, are based on the lambda calculus. 

Functional programming is a programming paradigm that 

treats computation as the evaluation of mathematical 

functions and avoids state and mutable data. It emphasizes 

the application of functions, in contrast with the imperative 

programming style that emphasizes changes in state.  

Lambda calculus provides a theoretical framework for 

describing functions and their evaluation. Though it is a 

mathematical abstraction rather than a programming 

language, it forms the basis of almost all functional 

programming languages today.  Modern functional 

languages can be viewed as embellishments to the lambda 

calculus. (ref2) 

In the next section first we introduce functional 

programming and after that functional and non-functional 

programming are compared. 

II. FUNCTIONAL PROGRAMMING 

Functional programming languages, especially purely 

functional ones, have largely been emphasized in academia 

rather than in commercial software development. However, 

notable functional programming languages used in industry 

and commercial applications include Erlang, OCaml, 

Haskell, Scheme (since 1986) and domain-specific 

programming languages like R (statistics), Mathematica 

(symbolic math), J and K (financial analysis), and XSLT 

(XML).  

Many non-functional programming languages such as C, 

C++ and C# can be made to exhibit functional behaviors 

using function pointers, the <functional> library and lambda 

functions respectively. 

A functional program consists of an expression E 

(representing both the algorithm and the input). This 

expression E is subject to some rewrite rules.  

Reduction consists of replacing a part P of E by another 

expression P‘ according to the given rewrite rules. In 

schematic notation 

 
Provided that P -> P‘ is according to the rules. This process 

of reduction will be repeated until the resulting expression 

has no more parts that can be rewritten. This so called 

normal form E* of the expression E consists of the output of 

the given functional program. 
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Iteration (looping) in functional languages is usually 

accomplished via recursion. Recursive functions invoke 

themselves, allowing an operation to be performed over and 

over. Recursion may require maintaining a stack, but tail 

recursion can be recognized and optimized by a compiler 

into the same code used to implement iteration in imperative 

languages. The Scheme programming language standard 

requires implementations to recognize and optimize tail 

recursion. 

 Functional languages can be categorized by whether they 

use strict or non-strict evaluation, concepts that refer to how 

function arguments are processed when an expression is 

being evaluated. 

In brief, strict evaluation always fully evaluates function 

arguments before invoking the function. Non-strict 

evaluation is free to do otherwise 

To illustrate, consider the following two functions f and g: 

f(x) := x^2 + x + 1 

g(x, y) := x + y 

Under strict evaluation, we would have to evaluate function 

arguments first, for example: 

  f(g(1, 4))  

= f(1 + 4) 

= f(5) 

= 5^2 + 5 + 1 

= 31 

 

By contrast, non-strict evaluation need not fully evaluate the 

arguments; in particular it may send the arguments 

unevaluated to the function, perhaps evaluating them later. 

For example, one non-strict strategy (call-by-name) might 

work as follows: 

  f(g(1, 4)) 

= g(1, 4)^2 + g(1, 4) + 1 

= (1 + 4)^2 + (1 + 4) + 1 

= 5^2 + 5 + 1 

= 31 

 

A key property of strict evaluation is that when an argument 

expression fails to terminate, the whole expression fails to 

terminate. With non-strict evaluation, this need not be the 

case, since argument expressions need not be evaluated at 

all. 

Advantages of strict-evaluation can be categorized into two 

categories as it denoted in below: 

Parameters are usually passed around as (simple) atomic 

units, rather than as (rich) expressions. (For example, the 

integer 5 can be passed on a register, whereas the expression 

1+4 will require several memory locations). This has a 

direct implementation on standard hardware.  

The order of evaluation is quite clear to the programmer: 

every argument must be evaluated before the function body 

is invoked.  

Advantages of non-strict-evaluation can be categorized into 

three categories as it denoted in below: 

Lambda calculus provides a stronger theoretic foundation 

for languages that employ non-strict evaluation. 

A non-strict evaluator may recognize that a sub-expression 

does not need to be evaluated. For example, given the 

definitions  

Multiply (0, x) = 0; 

Multiply (n, x) = x + multiply (n-1, x); 

F (0) = 1; 

F (n) = n * f (n-1); 

 

Multiply (0, f (1000000)) a strict evaluator would (strictly 

speaking) need to take (on the order of) 1,000,000 steps to 
find the value of f (1000000). A non-strict evaluator may 

use the definition of multiply first, reducing the whole 

expression to 0 before even trying to compute f (1000000). 

 Non-strict evaluation can use the above to allow 

"infinite" data structures.  

III. COMPARISON OF FUNCTIONAL AND IMPERATIVE 

PROGRAMMING 

Functional programming is very different from imperative 

programming. The most significant differences stem from 

the fact that functional programming avoids side effects, 

which are used in imperative programming to implement 

state and I/O. Pure functional programming disallows side 

effects completely. Disallowing side effects provides for 

referential transparency, which makes it easier to verify, 

optimize, and parallelize programs, and easier to write 

automated tools to perform those tasks. This means that pure 

functions have several useful properties, many of which can 

be used to optimize the code: 

 If the result of a pure expression is not used, it can 

be removed without affecting other expressions.  

 If a pure function is called with parameters that 

cause no side-effects, the result is constant with 

respect to that parameter list (sometimes called 

referential transparency), i.e. if the pure function is 

again called with the same parameters, the same 

result will be returned (this can enable caching 

optimizations).  

If there is no data dependency between two pure 

expressions, then their order can be reversed, or they can be 

performed in parallel and they cannot interfere with one 

another (in other terms, the evaluation of any pure 

expression is thread-safe).  

 If the entire language does not allow side-effects, 

then any evaluation strategy can be used; this gives 

the compiler freedom to reorder or combine the 

evaluation of expressions in a program (for 

example, using lazy evaluation).  
While most compilers for imperative programming 

languages detect pure functions, and perform common-

subexpression elimination for pure function calls, they 

cannot always do this for pre-compiled libraries, which 

generally do not expose this information, thus preventing 

optimizations that involve those external functions. 

Higher order functions are rarely used in older imperative 

programming. Where a traditional imperative program 

might use a loop to traverse a list, a functional style would 

often use a higher-order function, map, that takes as 
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arguments a function and a list, applies the function to each 

element of the list, and returns a list of the results. 

IV. LAMBDA CALCULUS 

The λ-calculus can be called the smallest universal 

programming language of the world. The λ-calculus consists 

of a single transformation rule (variable substitution) and a 

single function definition scheme. It was introduced in the 

1930s by Alonzo Church as a way of formalizing the 

concept of effective computability. The λ-calculus is 

universal in the sense that any computable function can be 

expressed and evaluated using this formalism. It is thus 

equivalent to Turing machines. However, the λ-calculus 

emphasizes the use of transformation rules and does not care 

about the actual machine implementing them. It is an 

approach more related to software than to hardware. 

V. FORMAL LAMBDA CALCULUS 

The central concept in λ -calculus is the ―expression". A 

―name", also called a ―variable", is an identifier which, for 

our purposes, can be any of the letters a; b; c,…. An 

expression is defined recursively as follows: 

 

 

 
An expression can be surrounded with parenthesis for 

clarity, that is, if E is an expression, (E) is the same 

expression. The only keywords used in the language are λ 

and the dot. In order to avoid cluttering expressions with 

parenthesis, we adopt the convention that function 

application associates from the left, that is, the expression 

E1E2E3 …En 

is evaluated applying the expressions as follows: 

(… ((E1E2) E3)…En) 

As can be seen from the definition of λ expressions given 

above, a single identifier is a λ expression. An example of a 

function is the following: 

λ x.x 

For instance, the "add-two" function f such that  f(x) = 

x + 2  would be expressed in lambda calculus as  λ x. 

x + 2  (or equivalently as  λ y. y + 2;  the name of 

the formal parameter is immaterial) and the application of 

the function f(3) would be written as  (λ x. x + 2) 

3.  Note that part of what makes this description "informal" 

is that the expression x + 2 (or even the number 2) is not 

part of lambda calculus; an explanation of how numbers and 

arithmetic can be represented in lambda calculus is below. 

Function application is left associative:  f x y = (f x) y.  

Consider the function which takes a function as an argument 

and applies it to the number 3 as follows: λ f. f 3.  

This latter function could be applied to our earlier "add-two" 

function as follows:  (λ f. f 3) (λ x. x + 2).  

The three expressions: 
(λ f. f 3) (λ x. x + 2)  
(λ x. x + 2) 3  
3 + 2  

are equivalent. 

A function of two variables is expressed in lambda calculus 

as a function of one argument which returns a function of 

one argument. For instance, the function f(x, y) = x - 

y would be written as λ x. λ y. x - y. A common convention 

is to abbreviate curried functions as, in this example, λ x y. x 

- y. While it is not part of the formal definition of the 

language, 

λ x1 x2 … xn. Expression  

Is used as an abbreviation for 

λ x1. λ x2. … λ xn. Expression  

Not every lambda expression can be reduced to a definite 

value like the ones above; consider for instance 

(λ x. x x) (λ x. x x)  

or 

(λ x. x x x) (λ x. x x x)  

and try to visualize what happens when you start to apply 

the first function to its argument.  (λ x. x x)  is also known 

as the ω combinator;  ((λ x. x x) (λ x. x x))  is known as Ω, 

 ((λ x. x x x) (λ x. x x x))  as Ω2, etc. 

Lambda calculus expressions may contain free variables, i.e. 

variables not bound by any λ. For example, the variable y is 

free in the expression (λ x. y), representing a function which 

always produces the result y. occasionally, this necessitates 

the renaming of formal arguments. For example, in the 

formula below, the letter y is used first as a formal 

parameter, then as a free variable: 

(λ x y. y x) (λ x. y).  

To reduce the expression, we rename the first identifier z so 

that the reduction does not mix up the names: 

(λ x z. z x) (λ x. y)  

the reduction is then 

λ z. z (λ x. y).  

If one only formalizes the notion of function application and 

replaces the use of lambda expressions by the use of 

combinators, one obtains combinatory logic. 

A. Definition 

Lambda expressions are composed of 

 Variables v1, v2, . . . vn  

 The abstraction symbols λ   

 Parentheses ( )  

The set of lambda expressions, Λ, can be defined 

recursively: 

1. If x is a variable, then x ∈ Λ  

2. If x is a variable and M ∈ Λ, then ( λ x . M ) ∈ Λ  

3. If M, N ∈ Λ, then ( M N ) ∈ Λ  

Instances of 2 are known as abstractions and instances of 3, 

applications. 

B. Notation 

To keep the notation of lambda expressions uncluttered, the 

following conventions are usually applied. 

Outermost parentheses are dropped: M N instead of (M N).  

Applications are assumed to be left associative: M N P 

means (M N) P.  

The body of an abstraction extends as far right as possible: λ 

x. M N means (λ x.M N) and not (λ x. M) N  
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A sequence of abstractions are contracted: λ x λ y λ z. N is 

abbreviated as λ x y z. N 

C. Free and bound variables 

The abstraction operator, λ, is said to bind its variable 

wherever it occurs in the body of the abstraction. Variables 

that fall within the scope of a lambda are said to be bound. 

All other variables are called free. For example in the 

following expression y is a bound variable and x is free: 

λ y . xxy  

Also note that a variable binds to its "nearest" lambda. In the 

following expression one single occurrence of x is bound by 

the second lambda: 

λ x . y (λ x . z x)  

The set of free variables of a lambda expression, M, is 

denoted as FV (M) and is defined by recursion on the 

structure of the terms, as follows: 

FV( x ) = {x}, where x is a variable  

FV (λ x . M) = FV ( M ) - {x}  

FV ( M N ) = FV ( M ) FV ( N ) 

An expression which contains no free variables is said to be 

closed. Closed lambda expressions are also known as 

combinators and are equivalent to terms in combinatory 

logic. 

VI. REDUCTION 

 Α-conversion 

Alpha conversion allows bound variable names to be 

changed. For example, an alpha conversion of λx.x would 

be λy.y . Frequently in uses of lambda calculus, terms that 

differ only by alpha conversion are considered to be 

equivalent. 

The precise rules for alpha conversion are not completely 

trivial. First, when alpha-converting abstractions, the only 

variable occurrences that are renamed are those that are 

bound to the same abstraction. For example, an alpha 

conversion of λx.λx.x could result in  λy.λx.x , but 

it could not result in  λy.λx.y . The latter has a different 

meaning from the original. 

Second, alpha conversion is not possible if it would result in 

a variable getting captured by a different abstraction. For 

example, if we replace x with y in λx.λy.x, we get 

λy.λy.y, which is not at all the same. 

A. Substitution 

Substitution, written E[V := E′], corresponds to the 

replacement of a variable V by expression E′ every place it 

is free within E. The precise definition must be careful in 

order to avoid accidental variable capture. For example, it is 

not correct for (λ x.y)[y := x] to result in (λ x.x), 

because the substituted x was supposed to be free but ended 

up being bound. The correct substitution in this case is (λ 

z.x), up-to α-equivalence. 

Substitution on terms of the λ-calculus is defined by 

recursion on the structure of terms, as follows. 
x[x := N]        ≡ N  

y[x := N]        ≡ y, if x ≠ y  
(M1 M2)[x := N]  ≡ (M1[x := N]) (M2[x := 

N])  
(λ y. M)[x := N] ≡ λ y. (M[x := N]), if 

x ≠ y and y∉fv(N)  

Notice that substitution is defined uniquely up-to α-

equivalence. 

β-reduction 

Beta reduction expresses the idea of function application. 

The beta reduction of ((λ V. E) E′) is simply 

E[V := E′] . 

 Η-conversion 
Eta conversion expresses the idea of extensionality, which in 

this context is that two functions are the same if and only if 

they give the same result for all arguments. Eta-conversion 

converts between λ x. f x and f  whenever x does not 

appear free in f. 

This conversion is not always appropriate when lambda 

expressions are interpreted as programs. Evaluation of λ 

x. f x can terminate even when evaluation of f does not. 

VII. ARITHMETIC IN LAMBDA CALCULUS 

There are several possible ways to define the natural 

numbers in lambda calculus, but by far the most common 

are the Church numerals, which can be defined as follows: 
0:= λ f x. x  
1:= λ f x. f x  
2:= λ f x. f (f x)  
3:= λ f x. f (f (f x))  

And so on.  

A Church numeral is a higher-order function—it takes a 

single-argument function f, and returns another single-

argument function. The Church numeral n is a function that 

takes a function f as argument and returns the n-th 

composition of f, i.e. the function f composed with itself n 

times. This is denoted f(n) and is in fact the n-th power of f 

(considered as an operator); f(0) is defined to be the identity 

function. Such repeated compositions (of a single function f) 

obey the laws of exponents, which is why these numerals 

can be used for arithmetic. Note that 1 returns f itself, i.e. it 

is essentially the identity function, and 0 returns the identity 

function. (Also note that in Church's original lambda 

calculus, the formal parameter of a lambda expression was 

required to occur at least once in the function body, which 

made the above definition of 0 impossible.) 

We can define a successor function, which takes a number n 

and returns n + 1 by adding an additional application of f: 
SUCC: = λ n f x. f (n f x)  

Because the m-th composition of f composed with the n-th 

composition of f gives the m+n-th composition of f, 

addition can be defined as follows: 
PLUS: = λ m n f x. n f (m f x)  

PLUS can be thought of as a function taking two natural 

numbers as arguments and returning a natural number; it can 

be verified that 

PLUS 2 3    and    5  
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Are equivalent lambda expressions. Since adding m to a 

number, n can be accomplished by adding 1 m times, an 

equivalent definition is: 

PLUS: = λ n m. m SUCC n 

Similarly, multiplication can be defined as 

MULT: = λ m n f . m (n f) 

Alternatively 

MULT: = λ m n. m (PLUS n) 0,  

Since multiplying m and n is the same as repeating the "add 

n" function m times and then applying it to zero. The 

predecessor function defined by PRED n = n - 1  for a 

positive integer n and  PRED 0 = 0  is considerably more 

difficult. The formula 
PRED: = λ n f x. n (λ g h. h (g f)) (λ 

u. x) (λ u. u)   

Can be validated by showing inductively that if T denotes 

(λ g h. h (g f)), then T(n)(λ u. x) = (λ h. 

h(f
(n-1)

(x)) ) for n > 0. Two other definitions of PRED 

are given below, one using conditionals and the other using 

pairs. With the predecessor function, subtraction is 

straightforward. Defining 

SUB: = λ m n. n PRED m,  

SUB m n yields m - n when m > n and 0 otherwise. 

VIII. LOGIC AND PREDICATES 

By convention, the following two definitions (known as 

Church booleans) are used for the boolean values TRUE and 

FALSE: 
TRUE: = λ x y. x  
FALSE: = λ x y. y  

(Note that FALSE is equivalent to the Church numeral zero 

defined above)  

Then, with these two λ-terms, we can define some logic 

operators (these are just possible formulations; other 

expressions are equally correct): 
AND: = λ p q. p q p  
OR: = λ p q. p p q  
NOT: = λ p. λ a b. p b a  
IFTHENELSE: = λ p a b. p a b  

We are now able to compute some logic functions, for 

example: 
AND TRUE FALSE  
≡ (λ p q. p q p) TRUE FALSE →β TRUE 

FALSE TRUE  
≡ (λ x y. x) FALSE TRUE →β FALSE  

and we see that AND TRUE FALSE is equivalent to 

FALSE. 

A predicate is a function which returns a boolean value. The 

most fundamental predicate is ISZERO which returns TRUE 

if its argument is the Church numeral 0, and FALSE if its 

argument is any other Church numeral: 
ISZERO: = λ n. n (λ x. FALSE) TRUE  

The following predicate tests whether the first argument is 

less-than-or-equal-to the second: 

LEQ:= λ m n. ISZERO (SUB m n),  

and since m = n iff LEQ m n and LEQ n m, it is 

straightforward to build a predicate for numerical equality. 

The availability of predicates and the above definition of 

TRUE and FALSE make it convenient to write "if-then-else" 

expressions in lambda calculus. For example, the 

predecessor function can be defined as' ' 
PRED: = λ n. n (λ g k. ISZERO (g 1) k 

(PLUS (g k) 1) (λ v. 0) 0  

Which can be verified by showing inductively that n (λ g 
k. ISZERO (g 1) k (PLUS (g k) 1)  (λ v. 

0) is the "add n - 1" function for n > 0. 

IX. PAIRS 

A pair (2-tuple) can be defined in terms of TRUE and 

FALSE, by using the Church encoding for pairs. For 

example, PAIR encapsulates the pair (x,y), FIRST returns 

the first element of the pair, and SECOND returns the 

second. 

PAIR:= λ x y f. f x y  

FIRST: = λ p. p TRUE  

SECOND: = λ p. p FALSE  

NIL: = λ x. TRUE  

NULL: = λp. p (λx y.FALSE)  

A linked list can be defined as either NIL for the empty list, 

or the PAIR of an element and a smaller list. The predicate 

NULL tests for the value NIL. 

As an example of the use of pairs, the shift-and-increment 

function that maps (m, n) to (n, n+1) can be defined 

as 
Φ := λ x. PAIR (SECOND x) (SUCC (SECOND 

x))  

which allows us to give perhaps the most transparent version 

of the predecessor function: 
PRED := λ n. FIRST (n Φ (PAIR 0 0))  

X. RECURSION 

Recursion is the definition of a function using the function 

itself; on the face of it, lambda calculus does not allow this. 

However, this impression is misleading. Consider for 

instance the factorial function f(n) recursively defined by 

f(n) = 1, if n = 0; and n·f(n-1), if n>0.  

In lambda calculus, one cannot define a function which 

includes itself. To get around this, one may start by defining 

a function, here called g, which takes a function f as an 

argument and returns another function that takes n as an 

argument: 
g := λ f n. (1, if n = 0; and n·f(n-1), 

if n>0).  

The function that g returns is either the constant 1, or n 

times the application of the function f to n-1. Using the 

ISZERO predicate, and boolean and algebraic definitions 

described above, the function g can be defined in lambda 

calculus. 

However, g by itself is still not recursive; in order to use g 

to create the recursive factorial function, the function passed 

to g as f must have specific properties. Namely, the 

function passed as f must expand to the function g called 

with one argument -- and that argument must be the function 

that was passed as f again! 

http://en.wikipedia.org/wiki/Lambda_calculus#Logic_and_predicates#Logic_and_predicates
http://en.wikipedia.org/wiki/Lambda_calculus#Pairs#Pairs
http://en.wikipedia.org/wiki/Church_encoding#Church_pairs
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Factorial
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In other words, f must expand to g(f). This call to g will 

then expand to the above factorial function and calculate 

down to another level of recursion. In that expansion the 

function f will appear again, and will again expand to g(f) 

and continue the recursion. This kind of function, where f 

= g(f), is called a fixed-point of g, and it turns out that it 

can be implemented in the lambda calculus using what is 

known as the paradoxical operator or fixed-point operator 

and is represented as Y -- the Y combinator: 
Y = λ g. (λ x. g (x x)) (λ x. g (x x))  

In the lambda calculus, Y g is a fixed-point of g, as it 

expands to g (Y g). Now, to complete our recursive call 

to the factorial function, we would simply call  g (Y g) 

n,  where n is the number we are calculating the factorial of. 
 

Given n = 5, for example, this expands to: 

(λ n.(1, if n = 0; and n·((Y g)(n-1)), if n>0)) 5 

1, if 5 = 0; and 5·(g(Y g)(5-1)), if 5>0 

5·(g(Y g) 4) 

5·(λ n. (1, if n = 0; and n·((Y g)(n-1)), if n>0) 4) 

5·(1, if 4 = 0; and 4·(g(Y g)(4-1)), if 4>0) 

5·(4·(g(Y g) 3)) 

5·(4·(λ n. (1, if n = 0; and n·((Y g)(n-1)), if n>0) 3)) 

5·(4·(1, if 3 = 0; and 3·(g(Y g)(3-1)), if 3>0)) 

5·(4·(3·(g(Y g) 2))) 

 

And so on, evaluating the structure of the algorithm 

recursively. Every recursively defined function can be seen 

as a fixed point of some other suitable function, and 

therefore, using Y, every recursively defined function can be 

expressed as a lambda expression. In particular, we can now 

clearly define the subtraction, multiplication and comparison 

predicate of natural numbers recursively. 

XI. IMPLEMENTATION AND APPLICATION 

The strength of the lambda-calculus is that it is easily used 

as ―glue" on top of a richer world of primitives. Its 

advantages as glue are that it has a natural correspondence 

with the way that people program, and natural compilation 

techniques yield high-performance code.  

There are software engineering advantages to a language 

glued together with lambda-calculus. Lambda expressions 

can be understood locally - their dependence on their 

environment is entirely through their free variables. Lambda 

expressions tend to have fewer free variables and more 

bound variables than comparable imperative code, since 

they do not rely as heavily on assignment to express the 

computation. An imperative program proceeds by altering 

some globally-accessible store of values. By contrast, a 

functional program proceeds by function application and the 

return of values. This eliminates large classes of errors 

associated with maintaining a global store of values.  

Based on these advantages we are interested in 

implementing some algorithm by lambda calculus as a 

programming language. In this regards, djikstra as an 

algorithm to find the shortest path between two nodes in a 

graph is implemented.  Dijkstra's algorithm, conceived by 

Dutch computer scientist Edsger Dijkstra in 1959,  is a 

graph search algorithm that solves the single-source shortest 

path problem for a graph with non negative edge path costs, 

outputting a shortest path tree. This algorithm is often used 

in routing. 

For a given source vertex (node) in the graph, the algorithm 

finds the path with lowest cost (i.e. the shortest path) 

between that vertex and every other vertex. It can also be 

used for finding costs of shortest paths from a single vertex 

to a single destination vertex by stopping the algorithm once 

the shortest path to the destination vertex has been 

determined. For example, if the vertices of the graph 

represent cities and edge path costs represent driving 

distances between pairs of cities connected by a direct road, 

Dijkstra's algorithm can be used to find the shortest route 

between one city and all other cities. As a result, the shortest 

path first is widely used in network routing protocols. 

Let's call the node we are starting with an initial node. Let a 

distance of a node X be the distance from the initial node to 

it. Our algorithm will assign some initial distance values and 

will try to improve them step-by-step. 

 

1. Assign every node a distance value. Set it to zero 

for our initial node and to infinity for all other 

nodes.  

2. Mark all nodes as unvisited. Set initial node as 

current.  

3. For current node, consider all its unvisited 

neighbors and calculate their distance (from the 

initial node) in case they are reached through the 

current node. For example, if current node (A) has 

distance of 6, and an edge connecting it with 

another node (B) is 2, the distance to B through A 

will be 6+2=8. If this distance is less than the 

previously recorded distance (infinity in the 

beginning, zero for the initial node), overwrite the 

distance.  

4. When we are done visiting all neighbors of the 

current node, mark it as visited. A visited node will 

not be checked ever again, its distance recorded 

now is final and minimal.  

5. Set the nearest unvisited neighbor of the current 

node as the next "current node" and continue from 

step 3.  

6. When all nodes are visited, algorithm ends.  

The program using lambda calculus languages became as 

illustrated in below: 

http://en.wikipedia.org/wiki/Fixed_point_combinator
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Routing_protocol
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λ n. n (λ x. λ x y. y) λ x y. x 

 Weight Node. λ n. n (λ x. λ x y. y) λ x y. x Weight Node 

 λ n f x. f (n f x)  

λ m n. λ n. n (λ x. λ x y. y) λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y) 

 λ x y. x (g λ f x. f x ) k (λ m n f x. n f (m f x)  (g k) λ f x. f x  ) )  

(λ v. λ f x. x  ) λ f x. x   m n) Weight Node. m n. λ n. n (λ x. λ x y. y) λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y  ) 

 λ x y. x (g λ f x. f x  ) k (λ m n f x. n f (m f x)  (g k) λ f x. f x  ) ) (λ v. λ f x. x  ) λ f x. x   m n) Weight Node y f. f λ m n. λ n. 

n (λ x. λ x y. y) 

 λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y ) λ x y. x (g 1) k (λ m n f x. n f (m f x)  (g k) λ f x. f x  ) ) (λ v. λ f x. x  ) λ 

f x. x  

  

m n) Weight Node. m n. λ n. n (λ x. λ x y. y) λ x y. x (λ m n. n λ n. n (λ g k. λ n. n (λ x. λ x y. y ) 

λ x y. x (g 1) k (λ m n f x. n f (m f x)  (g k) λ f x. f x  ) ) (λ v. λ f x. x  ) λ f x. x  m n) Weight Node y 

 

In comparison with the other programming languages, as an 

example we wrote some of them in below, Lambda 

expressions tend to have fewer free variables and more 

bound variables than comparable imperative code. In 

addition it is easier to understand the algorithm in lambda-

based program because our understandings are not limited to 

the variable definition. 

XII. PYTHON IMPLEMENTATION 

Import heapq 

From collections import defaultdict 

  

class Edge(object): 

    def __init__(self, u, v, weight): 

        self.start, self.end, self.weight = u, v, weight 

  

    # For heapq. 

    def __cmp__(self, other): return cmp(self.weight, 

other.weight) 

  

class Graph(object): 

    def __init__(self): 

        # The adjacency list. 

        self.adj = defaultdict(list) 

  

    def add_e(self, u, v, weight = 0): 

        self.adj[u].append (Edge (u, v, weight)) 

  

    def s_path(self, src): 

        """ 

        Returns the distance to every vertex from the 

source and the 

        array representing, at index i, the node visited 

before 

        visiting node i. This is in the form (dist, 

previous). 
        """ 

        dist, visited, previous, queue = {src: 0}, {}, {}, [] 

        heapq.heappush(queue, src) 

        while len(queue) > 0: 

            current = heapq.heappop(queue) 

            if current in visited: 

                Continue 

            visited[current] = True 

  

            for edge in self.adj[current]: 

                relaxed = dist[current] + edge.weight 

                v = edge.end 

                if v not in dist or relaxed < dist[v]: 

                    previous[v], dist[v] = current, relaxed 

                heapq.heappush(queue, v) 

        return dist, previous 

  

g = Graph() 

g.add_e(1,2,4) 

g.add_e(1,4,1) 

g.add_e(2,1,74) 

g.add_e(2,3,2) 

g.add_e(2,5,12) 

g.add_e(3,2,12) 

g.add_e(3,10,12) 

g.add_e(3,6,74) 

g.add_e(4,7,22) 

g.add_e(4,5,32) 

g.add_e(5,8,33) 

g.add_e(5,4,66) 

g.add_e(5,6,76) 

g.add_e(6,10,21) 

g.add_e(6,9,11) 

g.add_e(7,3,12) 

g.add_e(7,8,10) 

g.add_e(8,7,2) 

g.add_e(8,9,72) 

g.add_e(9,10,7) 

g.add_e(9,6,31) 

g.add_e(9,8,18) 

g.add_e(10,6,8) 

  

# Find a shortest path from vertex 'a' (1) to 'j' (10). 

Dist, prev = g.s_path(1) 

# Trace the path back using the prev array. 

Path, current, end = [], 10, 10 

While current in prev: 

    path.insert(0, prev[current]) 

    current = prev[current] 

  

print path 

print dist[end] 
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as it is clear, the program written first is much easier to 

develop because the developer is not supposed to know 

syntaxes. Although lambda calculus is easy, it is not a user 

friendly language which should be like human‘s language.  

XIII. CONCLUSION 

The strength of the lambda-calculus is that it is easy to use 

and in order to implement, you are not supposed to learn a 

huge amount of syntaxes. In comparison to other, although 

lambda calculus is easy, it is not a user friendly language 

which should be like human‘s language. 
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