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Numerical Computation of Economic Cooling
Water rate for Two-stage Azeotropic
Refrigerating systems

D.V. Mahindru®, Priyanka Mahendru®

Absiract - With a view to conserve energy, the use of
azeotropes in a multistage refrigerating system is quite timely.
Depending upon the requirement, such a system incorporates
conventionally either a water cooled or air cooled condenser.
The total operating cost of a refrigerating system with a water
cooled condenser comprises the cost of water and the cost of
electricity needed to drive the compressor(s). There is enough
potential for research in finding out the ways to achieve
maximum coefficient of performance and the least operating
cost simultaneously for multi-stage azeotropic refrigerating
system. However, to avoid overloading of sewage facilities and
to comply with municipal codes for the use of water, the water
flow rate required in refrigerating system should be minimized.
In the present investigation, economic water rates for
two stage refrigerating systems, operating on most commonly
used azeotropes R-500 and R-502, have been searched out
over a wide range of operating limits. Such economic rates, if
followed, would produce maximum COP and consume
minimum power. The effects of controlling variables, e.g.
approach, cost ratio etc have also been studied on the heat
transfer to condenser, optimum condensing temperature and
economic water rate. The results have been presented in
tabular form only.
Keywords : Azeotropes ,Mulfi — Stage , Refrigeration ,
Condenser, Therrmodynarnic Concept.

[. DESCRIPTION

he total cost of a multistage refrigerating system
with water cooled condenser comprises the cost of

power required to run the compressors and the
cost of water needed in the condensing unit to make the
system work in a closed and continuous cycle. To
minimize the total operating cost, the power consumed
by compressors may be reduced by properly selecting
their compression ratio, while cost on water can be
diminished by consuming cooling water as low as
possible. The compression ratio of a compressor gets
affected, if either the condensing pressure or inter-stage
pressure is changed. The quality of cooling water gets
controlled by the quantity of heat to be transferred to the
condenser. It is evident that larger is the water flow rate
through a condenser, the lower will be the condensing
temperature resulting in lower compression ratio for high
pressure (HP) compressor and hence lower cost for
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compressor power, but more cost on water. To the
contrary, if the lower quantity of water is used |,
condensing temperature would be higher and thereby
expenditure on  water decreases while that
oncompressor power increases. Hence it calls for a
compromise between condensing temperature and
cooling water rate to achieve minimum total operating
cost. The cooling water rate that minimizes the total
operating cost is usually termed as Economical Cooling
Water Rate.

[1. REVIEW OF PREVIOUS WORK

To cope with the existing energy shortages and
the need to conserve the expended energy to the
maximum possible extent, attempts have been made by
Macharnen and Chapman (4) and Downing (5) on
various refrigerants and their mixtures. Among the
mixtures of refrigerants, R-500 and R-502 have become
very common. These are known as azeotropes. An
azeotrope, by definition, is the mixture of refrigerants
that does not separate in to their original components
with  pressure/temperature changes. It has fixed
thermodynamic properties unlike those of their
components.

Azeotrope R-500 consists of 73.8% R-12 and
26.2% R-152. Its normal boiling point is about 3.5°C
lower than that of R-12. It produces refrigerating effect
per unit of swept volume about 18% more than that of R-
12 A Freon-12 system designed for 60 cycle current
can be shifted to 50 cycle current by using azeotrope R-
500. It would result in approximately the same
refrigerating capacity and evaporator and condenser
conditions.

Azeotrope R-502 is a mixture of 48.8%
refrigerant R22 and 51.2% refrigerant R-115. It boils at a
temperature of about 4.8°C lower than that of R-22.
Significantly lower discharge temperatures and lower
winding temperatures are realized because of the higher
capacities and lower values of compression ratio
associated with R-502. Further R-502 decreases the
swelling or softening effect on the common electrical
insulating materials caused by the presence of R-
115.The inter-stage pressure for the two stage
refrigerating system is conventionally selected as the
geometric mean of operating pressure limits to minimize
the total compression work. But it has been established
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in (6) that if power input to the system is to be
minimized, the inter-stage pressure should be optimized
with coefficient of performance (COP) as the objective
function.

[II. THERMO DYNAMIC CONCEPT

In general, one may write the heat rejected to
condenser for a refrigerating system as :

Q, =P(1+COP) 1.1
But Q'h per unit of cooling is expressed by :
Q./Q.=P(1+COP)/Q,=(1=1/COP) 1.2

Further, for a two stage refrigerating system,
COP becomes maximum if inter-stage pressure is
optimized for minimum power input. Equation 1.2 may
be written as :

Q/ Q.= (1+1/COP)

As COP,> COP, We get
Qno<Qs from equations 1.2 and 1.3

"It means that heat rejection to condenser would
be minimum and hence minimum quantity of cooling
water would be required for given condenser when a two
stage system operates with optimum inter-stage
pressure/temperature as decided on the basis of
minimum power input."

Thus the problem of finding out economical
cooling water rate for a two stage refrigerating system is
coupled optimization problem, that is, first the system
needs to be optimized for its minimum power
consumption, —and  then  optimum  condensing
temperature is to be searched out to minimize the fotal
operating cost.

[V.

1.3

PRESENT WORK

In the present investigation, azeotropes R-500
and R-502 have been selected as the working fluids for
two stage refrigerating system. Economic water rates
that minimize the total operating cost and maximum
COP are searched out over a wide range of operating
temperature limits. Optimum design quantities of
interest are presented in the form of tables. Effects of
operating variables on the design quantities are also
displayed through tables.

V. SYSTEM ANALYSIS

a) System Employing Water Cooled Condenser

Figure -1(a) shows the schematic of idealized
two stage refrigeration system. The various heat and
work quantities and pressure levels are indicated in the
figure. The following simplifying assumptions are made
for this system analysis :

i. The thermodynamic cycle of the system is a
standard one comprising isentropic compression,
isentropic expansion and absence of superheating of

the suction vapour and sub cooling of the high pressure

(HP) condensate.

i. The pressure drop in  evaporator, compressor

valves, condenser piping etc are neglected.

ii. Entire condensation of HP gas inside the

condenser takes place at a fixed temperature (T,).
Referring to fig-1(b), one may write refrigerant

mass flow through LP compressor on per ton-hour basis

as .

By energy balance on the flash chamber,
refrigerant mass flow through HP compressor turns out
to be :

Ms =M, (hy—hy) /((hs—hg)
= 12,600( h2-h1)/ (hi—hs) (h-hs)
If we consider that refrigerant mass flow through

LP compressor is unit kg, then mass flow through HP
compressor based on similar lines, would be :

5.2a

l\/|3:( h, _h1 ) /(( hs_ha ) 5.2b
and, total compression work shall be :
Wir=(h=hy) + M; ((h,—hy) 5.3a

However, on the basis of per ton hour, the total
compression work may be written as :

W=W, + W,

= M1(h2_hw)+Mw(h4_h3) 5.3b
power consumption of the system :
P= W/(3600) 5.4
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For preliminary design purposes, the enthalpies
per unit mass of superheated vapour at points 2 and 4
can be approximately related to the enthalpies per unit
mass of the saturated vapours at points 3 and 4,

respectively as:

ho=hs+ T, (s-53) 5.5

h4:hg + Th ( 83'89) 56

saturated properties of both the azeotropes are
estimated from the correlations available in reference
(10)
The coefficient of performance of system shall be :

COP=Q,/W = 12,600/ W 5.7

Economic water rate expression as developed
in ref (7,8) per unit ton of refrigeration, when total
operating costs are minimized, is given by :

Mue = 15.45 (Q, AP o/ cW)°° 5.8

When Q, is heat rejection to condenser per ton
per hour and is given as :

Q,=M(h, - hy) 5.9

AP is the increase in power ‘P’ per degree rise
in condensing temperature.
Optimum condensing temperature is expressed as :

Tho:Twi'f'DTo 5.10

Where DTo=0.1545(Qi/P.Cu/C)*°+AP 511

With AP as the approach, Fig 1(c) representing
the end temperature difference.

It is evident that the expressions given in
equation 5.4 and 5.7 to 59 can be expressed in
temperature alone. An explicit expression has not been
attempted at as it becomes extremely involved.
Moreover, it serves no useful purpose because We can
directly feed the above expressions in computer
program to evaluate the objective function. The
governing performance quantities in terms of operating
parameters/variables can be expressed as:

P=P(T, T, T.T../AP.Q,) 5.12
AP=P(T,+1,T, T, T, AP,Q)-P(T,, T, T, T,AP.Q) 5.13
Q,=Q,(T,T.T.T..AP.Q) 5.14
Mye=M,o(T, T.To T AP.Q, C.C,) 5.15
COP=(T, T, T. T,.AP,Q.) 5.16

b) Objective Function And Optimization

For case 1, the objective function is the total
operating cost together with the COP as given by
equations (5.15) and ( 5.16) above. The total operating
costs are to be minimized producing maximum COP as
well.Since total operating costs have been minimized
while deriving expressions for economic water rate

( Mwe).from equations 5.15 and 5.16, it is clear that M,

and COP-depend upon interstage and condensing
temperatures ( T and Tr) if other parameters are  kept
fixed. It leads to a two dimensional maximization

problem with the two decision variables ( Ti and Tn )
subject to the constraints:

Te<Ti< Th 517
And

Th>Twi+AP 5.18
c) Solution Technigue

To find Th, where total operating cost is

minimum  together with the optimum  system

performance, initially some convenient T, >T, was
assumed. With the help of this T, and given values of
evaporator temperature( Te) subroutine maximises the
COP and transfers required optimum quantities (Ms and
P) to the main program. Now T, is increased by unit
degree and the above process is repeated. P is
determined. Qx is found from equation 5.9 in the main
program. Thereafter, DT, is estimated from equation
5.11 to determine Ti, from equation 5.10. With this new
value of Tro, the above computations are repeated Hill
two successive values of Twe differ by + 0.1%
Condensing temperature , thus predicted , is the
required optimum condensing temperature ( Tho)
because it produces minimum operating cost for
maximum COP. Finally, at Tro , Mwe is determined from
equation 5.8, Fig 1.2(a) and 1.2(b).

Different  ranges of various operating
parameters considered for the azeotropic systems are

based upon practical considerations and their

commonly adopted values. They are as follows:

a) Evaporator temperature : 5t0-50°C

b) Ambient/Cooling Water Temperature :15 to 75

c) Approach Temperature ;2 to 5°C

d) Costratio :0.5t0 10
VI RESULTS AND DISCUSSIONS

SYSTEM WITH WATER COOLED CONDENSER

Besides the direct use of Tables 6-1 to 6-3 for
preliminary optimum design of the systems, they also
exhibit the quantitative effects of operating variables on
the design quantities for a specified set of operating
parameters. Not only this, the feasible operating
conditions can also be achieved with the help of the
figures achieved. The approach (AP) has been kept at
3°C. For a fixed set of Re, AP, ta and te values, tno for R-
500 is found to be slightly higher than that of R-502. On
the other hand, economic water rate and heat rejection
to condenser Qno are seen to be higher in case of R-502
for given Rc (except equal to 10) ,AP, ta and te refer
Tables 6.1 to 6.3, the detailed graphical presentation is
available in reference-11 ( page 27 to 44).

COP’s of R-500 system /s observed fo be
higher than that of R-502 systems ( Ref. Tables 6.1 fo
6.3)
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Table 6.3 Effect of Cost Ratio on the optimum design quantities for two-stage azeotropic

refrigerating system incorporating water cooled condenser
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VII.  CONCLUSSIONS

For a preliminary design of two stage azeotropic
refrigerating system, the Tables 6-1 to 6-3 presented
can directly be used.

Economic water rate and heat transfer to condenser
turns out to be relatively lower in case of R-500 for a
given set of condenser, evaporator, ambient and
approach temperatures and cost ratio.

R-500 system produces comparatively higher COP
than R-502 system for specified operating
conditions.

The effect of approach temperature is more
pronounced on the economic water rate than the
other quantities. It should be selected quite
carefully.

Though, the initial investment in case of R-500
system turns out to be more than R-502 system, it
would get compensated over a small span of time
because of lower operating cost of the R-500
system.
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VIII. NOMENCLATURE

. Approach °C
- Cost of Electricity (Rs/kw-h).
: Cost of Water (Rs/k- litre).
: Maximum co-efficient of performance.
- Enthalpy per un it mass at state condition X’
(kd/kg).
- Refrigerant mass flow through LP compressor
9kg/ton-h).
. Refrigerant mass flow through HP
compressor (kg/ton-h).
: Economic water rate ( kg/ton -h).
‘Refrigerant mass flow through HP
compressor per unitmass flow through Lp
compressor( kg/kg).
: Power 9kw/ton).
- Minimum power (kw/ton).
-Power increase per ton per degree rise in
condensing Temperature ( kw/ton-°C).
: Condensing pressure (bar).
- Evaporating pressure (bar).
- Optimum inter -stage pressure (bar).
- Heat transfer to condenser ( kd/ton -h).
‘Heat transfer to condenser pertaining to
minimum operating cost and maximum COP
(kd/ton-h).
:cooling effect per unit mass flow throu gh LP
compressor (kJ/kg).
:Compression ratio (P,/P.) of LP compressor.
:Compression ratio (R,/P,,) of HP compressor.
:Cost ratio (c/c,,).
‘Entropy per unit mass at state condition(
kd/kg-K).
:Ambient temperature (°C,K).
‘Inlet water temperature  (°C,K).
:condensing temperature (°C,K).
:evaporating temperature (°C,K).
:Optimum condensing temperature(°C,K).
‘Interstage temperatures (°C,K).
:Outlet water temperature (°C,K).
:Optimum interstage temperature( °C,K).
: Minimum volume flow through LP compressor
per unit mass flow through LP compressor
(m¥kQ).
: Minimum volume through HP compressor per
unit mass flow through LP compressor (m?/kg).
- compression work of LP compressor (kJ/ton-h).
: compression work of HP compressor(kJ/ton-h).
- Total compression work (kJ/ton-h).
- Total compression work (kJ/ton-h).
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