

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING
MECHANICAL AND MECHANICS ENGINEERING
Volume 11 Issue 5 Version 1.0 August 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 Print ISSN: 0975-5861

Numerical Computation of Economic Cooling Water rate for Two-stage Azeotropic Refrigerating systems

By D.V. Mahindru, Priyanka Mahendru

Abstract - With a view to conserve energy, the use of azeotropes in a multistage refrigerating system is quite timely. Depending upon the requirement, such a system incorporates conventionally either a water cooled or air cooled condenser. The total operating cost of a refrigerating system with a water cooled condenser comprises the cost of water and the cost of electricity needed to drive the compressor(s). There is enough potential for research in finding out the ways to achieve maximum coefficient of performance and the least operating cost simultaneously for multi-stage azeotropic refrigerating system. However, to avoid overloading of sewage facilities and to comply with municipal codes for the use of water, the water flow rate required in refrigerating system should be minimized.

In the present investigation, economic water rates for two stage refrigerating systems, operating on most commonly used azeotropes R-500 and R-502, have been searched out over a wide range of operating limits. Such economic rates, if followed, would produce maximum COP and consume minimum power. The effects of controlling variables, e.g. approach, cost ratio etc have also been studied on the heat transfer to condenser, optimum condensing temperature and economic water rate. The results have been presented in tabular form only.

Keywords : Azeotropes ,Multi – Stage , Refrigeration , Condenser, Thermodynamic Concept.

GJRE-C Classification: FOR Code: 091307, 091502

Strictly as per the compliance and regulations of:

Numerical Computation of Economic Cooling Water rate for Two-stage Azeotropic Refrigerating systems

D.V. Mahindru^a, Priyanka Mahendru^Q

Abstract - With a view to conserve energy, the use of azeotropes in a multistage refrigerating system is quite timely. Depending upon the requirement, such a system incorporates conventionally either a water cooled or air cooled condenser. The total operating cost of a refrigerating system with a water cooled condenser comprises the cost of water and the cost of electricity needed to drive the compressor(s). There is enough potential for research in finding out the ways to achieve maximum coefficient of performance and the least operating cost simultaneously for multi-stage azeotropic refrigerating system. However, to avoid overloading of sewage facilities and to comply with municipal codes for the use of water, the water flow rate required in refrigerating system should be minimized.

In the present investigation, economic water rates for two stage refrigerating systems, operating on most commonly used azeotropes R-500 and R-502, have been searched out over a wide range of operating limits. Such economic rates, if followed, would produce maximum COP and consume minimum power. The effects of controlling variables, e.g. approach, cost ratio etc have also been studied on the heat transfer to condenser, optimum condensing temperature and economic water rate. The results have been presented in tabular form only.

Keywords : Azeotropes ,Multi – Stage , Refrigeration , Condenser, Thermodynamic Concept.

I. DESCRIPTION

The total cost of a multistage refrigerating system with water cooled condenser comprises the cost of power required to run the compressors and the cost of water needed in the condensing unit to make the system work in a closed and continuous cycle. To minimize the total operating cost, the power consumed by compressors may be reduced by properly selecting their compression ratio, while cost on water can be diminished by consuming cooling water as low as possible. The compression ratio of a compressor gets affected, if either the condensing pressure or inter-stage pressure is changed. The quality of cooling water gets controlled by the quantity of heat to be transferred to the condenser. It is evident that larger is the water flow rate through a condenser, the lower will be the condensing temperature resulting in lower compression ratio for high pressure (HP) compressor and hence lower cost for

compressor power, but more cost on water. To the contrary, if the lower quantity of water is used, condensing temperature would be higher and thereby expenditure on water decreases while that on compressor power increases. Hence it calls for a compromise between condensing temperature and cooling water rate to achieve minimum total operating cost. The cooling water rate that minimizes the total operating cost is usually termed as *Economical Cooling Water Rate*.

II. REVIEW OF PREVIOUS WORK

To cope with the existing energy shortages and the need to conserve the expended energy to the maximum possible extent, attempts have been made by Macharnen and Chapman (4) and Downing (5) on various refrigerants and their mixtures. Among the mixtures of refrigerants, R-500 and R-502 have become very common. These are known as azeotropes. An azeotrope, by definition, is the mixture of refrigerants that does not separate into their original components with pressure/temperature changes. It has fixed thermodynamic properties unlike those of their components.

Azeotrope R-500 consists of 73.8% R-12 and 26.2% R-152. Its normal boiling point is about 3.5°C lower than that of R-12. It produces refrigerating effect per unit of swept volume about 18% more than that of R-12. A Freon-12 system designed for 60 cycle current can be shifted to 50 cycle current by using azeotrope R-500. It would result in approximately the same refrigerating capacity and evaporator and condenser conditions.

Azeotrope R-502 is a mixture of 48.8% refrigerant R22 and 51.2% refrigerant R-115. It boils at a temperature of about 4.8°C lower than that of R-22. Significantly lower discharge temperatures and lower winding temperatures are realized because of the higher capacities and lower values of compression ratio associated with R-502. Further R-502 decreases the swelling or softening effect on the common electrical insulating materials caused by the presence of R-115. The inter-stage pressure for the two stage refrigerating system is conventionally selected as the geometric mean of operating pressure limits to minimize the total compression work. But it has been established

Author^a : Professor Mech Engg Department SRMGPC, Tewari Ganj, Lucknow-227105, U.P. (India).

Author^Q : Sr.Lecturer, EI Deptt. SRMGPC, Tewari Ganj, Lucknow-227105, U.P. (India).

For preliminary design purposes, the enthalpies per unit mass of superheated vapour at points 2 and 4 can be approximately related to the enthalpies per unit mass of the saturated vapours at points 3 and 4, respectively as:

$$h_2 = h_3 + T_i (s_1 - s_3) \quad 5.5$$

$$h_4 = h_9 + T_h (s_3 - s_9) \quad 5.6$$

saturated properties of both the azeotropes are estimated from the correlations available in reference (10)

The coefficient of performance of system shall be :

$$COP = \dot{Q}_c / W = 12,600 / W \quad 5.7$$

Economic water rate expression as developed in ref (7,8) per unit ton of refrigeration, when total operating costs are minimized, is given by :

$$M_{we} = 15.45 (\dot{Q}_h \Delta P_c / cW)^{0.5} \quad 5.8$$

When \dot{Q}_h is heat rejection to condenser per ton per hour and is given as :

$$\dot{Q}_h = \dot{M} (h_4 - h_5) \quad 5.9$$

ΔP is the increase in power 'P' per degree rise in condensing temperature.

Optimum condensing temperature is expressed as :

$$T_{ho} = T_{wi} + DT_o \quad 5.10$$

$$\text{Where } DT_o = 0.1545(Q_h/P.C_w.C)^{0.5} + AP \quad 5.11$$

With AP as the approach, Fig 1(c) representing the end temperature difference.

It is evident that the expressions given in equation 5.4 and 5.7 to 5.9 can be expressed in temperature alone. An explicit expression has not been attempted at as it becomes extremely involved. Moreover, it serves no useful purpose because We can directly feed the above expressions in computer program to evaluate the objective function. The governing performance quantities in terms of operating parameters/variables can be expressed as:

$$P = P(T_i, T_h, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.12$$

$$\Delta P = P(T_h + 1, T_i, T_e, T_{wi}, AP, \dot{Q}_c) - P(T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.13$$

$$\dot{Q}_h = \dot{Q}_h(T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.14$$

$$\dot{M}_{we} = \dot{M}_{we}(T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c, C_w, C_c) \quad 5.15$$

$$COP = (T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.16$$

b) Objective Function And Optimization

For case 1, the objective function is the total operating cost together with the COP as given by equations (5.15) and (5.16) above. The total operating costs are to be minimized producing maximum COP as well. Since total operating costs have been minimized while deriving expressions for economic water rate (\dot{M}_{we}).from equations 5.15 and 5.16, it is clear that \dot{M}_{we}

and COP depend upon interstage and condensing temperatures (T_i and T_h) if other parameters are kept fixed. It leads to a two dimensional maximization problem with the two decision variables (T_i and T_h) subject to the constraints:

$$T_e < T_i < T_h \quad 5.17$$

And

$$T_h > T_{wi} + AP \quad 5.18$$

c) Solution Technique

To find T_{ho} , where total operating cost is minimum together with the optimum system performance, initially some convenient $T_h > T_a$ was assumed. With the help of this T_h and given values of evaporator temperature(T_e) subroutine maximises the COP and transfers required optimum quantities (\dot{M}_3 and P) to the main program. Now T_h is increased by unit degree and the above process is repeated. P is determined. \dot{Q}_h is found from equation 5.9 in the main program. Thereafter, DT_o is estimated from equation 5.11 to determine T_{ho} from equation 5.10. With this new value of T_{ho} , the above computations are repeated till two successive values of T_{ho} differ by $\pm 0.1\%$. Condensing temperature , thus predicted , is the required optimum condensing temperature (T_{ho}) because it produces minimum operating cost for maximum COP. Finally, at T_{ho} , \dot{M}_{we} is determined from equation 5.8, Fig 1.2(a) and 1.2(b).

Different ranges of various operating parameters considered for the azeotropic systems are based upon practical considerations and their commonly adopted values. They are as follows:

- a) Evaporator temperature : 5 to -50°C
- b) Ambient/Cooling Water Temperature : 15 to 75
- c) Approach Temperature : 2 to 5°C
- d) Cost ratio : 0.5 to 10

VI. RESULTS AND DISCUSSIONS

SYSTEM WITH WATER COOLED CONDENSER

Besides the direct use of Tables 6-1 to 6-3 for preliminary optimum design of the systems, they also exhibit the quantitative effects of operating variables on the design quantities for a specified set of operating parameters. Not only this, the feasible operating conditions can also be achieved with the help of the figures achieved. The approach (AP) has been kept at 3°C. For a fixed set of R_c , AP, t_a and t_e values, t_{ho} for $R-500$ is found to be slightly higher than that of $R-502$. On the other hand, economic water rate and heat rejection to condenser \dot{Q}_{ho} are seen to be higher in case of $R-502$ for given R_c (except equal to 10) .AP, t_a and t_e refer Tables 6.1 to 6.3, the detailed graphical presentation is available in reference-11 (page 27 to 44).

COP's of R-500 system is observed to be higher than that of R-502 systems (Ref. Tables 6.1 to 6.3)

Table 6.1 : Effect of ambient temperature on the optimum design quantities for two-stage azeotropic refrigerating system incorporating water cooled condenser
 Design Parameters : $R_c = 3.0$ $AP = 3^\circ C$

Azeotrope		R-502						R-500					
t_a (°C)	t_e (°C)	t_{io} (°C)	t_{ho} (°C)	\dot{M}_{we} (Kg/ton-h)	Q_{ho} (KJ/ton-h)	COP_o	t_{io} (°C)	t_{ho} (°C)	\dot{M}_{we} (Kg/ton-h)	Q_{ho} (Kg/ton-h)	COP_o		
20	-50	-7.66	30.34	595.01	18,289.2	2.21	-12.25	31.13	527.79	18096.5	2.29		
	-40	-3.01	30.53	547.61	17280.1	2.69	-3.38	30.95	512.50	17067.8	2.82		
	-30	1.73	30.73	506.17	16392.8	3.32	1.46	31.11	477.37	16215.0	3.49		
	-20	6.55	30.93	469.5	15602.9	4.20	6.27	31.27	446.45	15462.3	4.40		
40	-50	4.12	49.72	725.90	20435.5	1.61	2.91	49.94	680.87	19808.5	1.75		
	-40	8.55	49.92	662.23	19193.4	1.91	7.43	50.8	628.80	18663.4	2.08		
	-30	13.06	50.12	606.87	18106.1	2.29	12.28	50.22	583.64	17663.9	2.49		
	-20	17.56	50.33	558.34	17143.3	2.77	16.95	50.36	544.00	16784.4	3.01		
60	-50	16.17	69.13	911.86	23414.2	1.17	15.10	69.32	831.87	22028.1	1.34		
	-40	20.27	69.32	824.51	21817.0	1.37	19.69	69.47	761.94	20659.7	1.56		
	-30	24.45	69.51	749.28	20429.9	1.614	24.27	69.63	700.83	19458.9	1.84		
	-20	28.71	69.71	683.87	19210.3	1.91	28.81	69.79	647.39	18404.9	2.17		

Table 6.2 : Effect of approach on the optimum design quantities for two-stage azeotropic refrigerating system incorporating water cooled condenser
 Design Parameters : $R_c = 3.0$ $t_a = 30^\circ C$

Azeotrope		R-502						R-500					
AP (°C)	t_e (°C)	t_{io} (°C)	t_{ho} (°C)	\dot{M}_{we} (Kg/ton-h)	Q_{ho} (KJ/ton-h)	COP_o	t_{io} (°C)	t_{ho} (°C)	\dot{M}_{we} (Kg/ton-h)	Q_{ho} (Kg/ton-h)	COP_o		
2	-50	-2.44	39.10	645.29	19184.6	1.91	2.57	40.29	527.79	18096.5	2.01		
	-40	2.10	39.30	591.51	18081.3	2.30	2.02	40.57	512.50	17067.8	2.42		
	-30	6.72	39.50	544.63	17,113.0	2.79	6.83	40.74	477.37	16215.0	2.94		
	-20	11.43	39.71	503.26	16252.9	3.45	11.63	40.91	446.45	15462.3	3.63		
4	-50	-1.32	41.03	658.27	19397.3	1.85	-1.82	41.90	680.87	19808.5	1.97		
	-40	3.34	41.23	602.83	18,271.2	2.22	2.86	42.09	628.80	18663.4	2.37		
	-30	7.87	41.44	554.58	17283.0	2.69	2.69	42.23	583.64	17663.9	2.88		
	-20	12.50	41.65	512.05	16405.7	3.31	3.31	42.39	544.00	16784.4	3.54		
6	-50	-0.71	42.0	665.00	19,505.8	1.82	-1.41	42.72	831.87	22028.1	1.95		
	-40	3.86	42.20	608.76	18367.9	2.18	3.30	42.89	761.94	20659.7	2.34		
	-30	8.50	42.41	559.74	17,359.5	2.64	8.14	43.03	700.83	19458.9	2.84		
	-20	13.03	42.62	516.64	16,483.5	3.24	12.85	42.7	647.39	18404.9	3.49		

Table 6.3: Effect of Cost Ratio on the optimum design quantities for two-stage azeotropic refrigerating system incorporating water cooled condenser
Design Parameters : AP= 3.0(°C) t_a = 30°C

Azeotrope	R _c	R-502					R-500		
		t _e (°C)	t _o (°C)	M _{we} (Kg/ton-h)	Q _{ho} (KJ/ton-h)	COP _o	t _o (°C)	M _{we} (Kg/ton-h)	Q _{ho} (Kg/ton-h)
0.5	-50	3.92	49.48	295.59	20,407.2	1.61	2.90	50.013	19,806.0
	-40	8.57	49.94	270.49	19198.4	1.91	7.54	50.34	18,677.5
	-30	13.2	50.41	248.71	18138.0	2.28	12.43	50.67	17,698.2
	-20	17.82	50.89	229.41	17,196.7	2.74	17.29	51.01	16,832.8
5.0	-50	-2.78	38.51	828.24	19,121.7	1.93	-2.96	39.62	679.22
	-40	1.73	38.67	759.07	18020.7	2.32	1.62	39.87	617.21
	-30	6.42	38.83	698.75	17054.8	2.83	6.42	40.02	572.77
	-20	11.00	38.99	645.65	16,196.9	3.50	11.2	40.17	534.11
10.0	-50	-3.75	36.92	1153.26	18,953.4	1.98	-4.83	36.49	1271.04
	-40	0.82	37.03	1057.20	17,865.8	2.39	0.11	36.82	1098.81
	-30	5.38	37.15	973.64	16,912.1	2.92	4.54	37.39	904.37
	-20	10.02	37.26	899.93	16065.0	3.64	9.41	36.79	998.34

VII. CONCLUSIONS

- For a preliminary design of two stage azeotropic refrigerating system, the Tables 6-1 to 6-3 presented can directly be used.
- Economic water rate and heat transfer to condenser turns out to be relatively lower in case of R-500 for a given set of condenser, evaporator, ambient and approach temperatures and cost ratio.
- R-500 system produces comparatively higher COP than R-502 system for specified operating conditions.
- The effect of approach temperature is more pronounced on the economic water rate than the other quantities. It should be selected quite carefully.
- Though, the initial investment in case of R-500 system turns out to be more than R-502 system, it would get compensated over a small span of time because of lower operating cost of the R-500 system.

REFERENCES RÉFÉRENCES REFERENCIAS

- Buchler,Leon, Economical use of condense water for Amonia Compression refrireration systems, Ic and Refrig, January,1947.
- Bochmer,Andrew P., Condenser pressure for Air Conditioning,Heating,Piping and air-Cond., p77 and 94,1946.
- Buchler,Leon, Andrew P., economical of condenser water in compression refrigeration system, journal ASRE, 57,pp. 251-254 March,1949.
- Mcharness,R.C. and chapman, D.D., Refrigerating capacity and performance data,ASRE J., pp 49-58, January,1962.
- Downing, R.C. Mixed refrigerants, Service Manual RT-38, El. Du Pont Nemours company., Wilmington, Delaware U.S.A.
- Gupta, V.K and Prasad, Manohar, Numerical Estimation of main parameters for realistic Two stage ammonia refrigerating systems, J. Indian Innstitute of Science Bangalore,64,10,pp.219-227,1983.
- Jordan ,R.C. and Priester, G.B.refrigeration and Air conditioning, Prentice-Hall of India, New delhi,1969.
- Prasad, Manohar, Refrigeration and air Conditioning, Wiley Eastern, New Delhi,1983.
- Gupta, V.K., Thermodynamic design data for optimum performance of Two Stage Azeotropic Refrigerating systems, J.Heat Recovery Systems (U.K)
- Kern,D.Q., Process Heat Transfer, Mv Graw-Hill, Kogakusha, Tokyo,1960.

11. Mahindru, D.V., Economic Water rate and Optimum Performance of Two Stage Azeotropic Refrigerating Systems, a Thesis submitted to Kanpur University in partial fulfillment of the requirements for the degree of Master of Technology, Mechanical Engineering (Design) ,1985.

VIII. NOMENCLATURE

AP : Approach °C

C_1 : Cost of Electricity (Rs/kw-h).

C_w : Cost of Water (Rs/k- litre).

COP_o : Maximum co-efficient of performance.

h_x : Enthalpy per unit mass at state condition 'x' (kJ/kg).

\dot{M}_1 : Refrigerant mass flow through LP compressor 9kg/ton-h).

\dot{M}_3 : Refrigerant mass flow through HP compressor (kg/ton-h).

\dot{M}_{we} : Economic water rate (kg/ton -h).

M_3 : Refrigerant mass flow through HP compressor per unit mass flow through Lp compressor(kg/kg).

P : Power 9kw/ton).

P_o : Minimum power (kw/ton).

ΔP : Power increase per ton per degree rise in condensing Temperature (kw/ton -°C).

P_h : Condensing pressure (bar).

P_e : Evaporating pressure (bar).

P_{io} : Optimum inter -stage pressure (bar).

Q_h : Heat transfer to condenser (kJ/ton -h).

Q_{ho} : Heat transfer to condenser pertaining to minimum operating cost and maximum COP (kJ/ton-h).

\dot{Q}_c : cooling effect per unit mass flow through LP compressor (kJ/kg).

r_1 : Compression ratio (P_{io}/P_e) of LP compressor.

r_2 : Compression ratio (P_h/P_{io}) of HP compressor.

R_c : Cost ratio (c/c_w).

s_x : Entropy per unit mass at state condition(kJ/kg-k).

t_a, T_a : Ambient temperature (°C,K).

t_{w1}, T_{w1} : Inlet water temperature (°C,K).

t_h, T_h : condensing temperature (°C,K).

t_e, T_e : evaporating temperature (°C,K).

t_{ho}, T_{ho} : Optimum condensing temperature(°C,K).

t_i, T_i : Interstage temperatures (°C,K).

t_o, T_o : Outlet water temperature (°C,K).

t_{io}, T_{io} : Optimum interstage temperature(°C,K).

V_1 : Minimum volume flow through LP compressor per unit mass flow through LP compressor (m³/kg).

V_3 : Minimum volume through HP compressor per unit mass flow through LP compressor(m³/kg).

W_1 : compression work of LP compressor (kJ/ton-h).

W_2 : compression work of HP compressor(kJ/ton-h).

W : Total compression work (kJ/ton-h).

W_T : Total compression work (kJ/ton-h).