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Micropolar Thermoelasticity with Diffusion 

Soumen Shawα, Basudeb MukhopadhyayΩ
 

Abstract - The present paper is completely devoted on 
derivation of some basic fundamental relations in generalized 
thermodiffusive micropolar elasticity with fractional-ordered 
derivatives. The generalized heat conduction and mass 
diffusion equations have been modified by using fractional 
calculus. A variational principle is obtained and hence the 
uniqueness theorem for those equations has been proved.  
Keywords : Fractional calculus, Micropolar elasticity, 
Thermodiffusion, Variational principle, Uniqueness 
theorem. 

I. INTRODUCTION 

t is well established that the thermoelasticity theory is 
a fusion of the theory of heat conduction and the 
theory of elasticity. In classical theory of 

thermoelasticity there was a diffusive phenomenon on 
the heat propagation and thermal signals propagate 
with infinite speed. This physically unacceptable 
drawback of infinite speed of heat propagation was 
inherent in that theory. Modifying the Fourier’s law of 
heat conduction, Lord-Shulman [1] introduced one non-
classical theory of heat propagation with one relaxation 
time which can avoid that paradox. Green-Lindsay [2], in 
the year 1972, Proposed another one with two relaxation 
times. These non-classical theories are referred as 
generalized theory of thermoelasticity. Dhaliwal and 
Sherief [3] extended that generalized theory for 
anisotropic media. Later on, during the year 1991-1993 
Green and Naghdi [4, 5, 6] introduced a new theory of 
thermoelasticity and divide their theory into three parts, 
referred as types I, II and III. In an extensive review work 
on the development of generalized/ hyperbolic 
thermoelasticity till 1998 is available in the review article 
of Chandrasekharaiah [7].  

Diffusion can be defined as the random 
movement of the particles from the higher concentrated 
regions to the lower concentrated regions because of 
the non-zero concentration gradient which can be 
expressed in terms of changes of the concentration at 
that position. In recent past it has been observed that 
there are so many researchers are interested to study on 
this aspects due to a great application in geophysics 
and in industry e.g. so many oil companies are 
interested   in   the  thermodiffusion  process   for   more  
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efficient extraction of oil from the oil deposits.Diffusion is 
used to form base and emitter in bipolar transistors, 
form integrated resistors and used to introduce 
‘dopants’ in controlled amounts into the semiconductor 
substrate. The thermodiffusion in elastic solids is due to 
the coupling among the temperature, elastic strain and 
mass diffusion in addition with the exchange between 
heat and mass in the nature.  

In 1974, Nowacki [8-11] developed the theory of 
coupled thermoelastic diffusion. The generalized theory 
in thermoelastic diffusion was introduced by Sherief et 
al. [12] in 2004. Again, in the year 2005, Sherief et al. 
[13] studied a half space problem in the theory of 
generalized thermoelastic diffusion. The influence of 
diffusion on generalized thermoelastic problems of 
infinite body with a cylindrical cavity studied by Rong-
hou et al. [14]. Singh [15, 16] in his couple of papers 
discussed the reflection of waves from the free surface 
in generalized thermoelastic diffusion. In recent times 
Kumar and Kansal [17, 18] studied about the Rayleigh 
and Lamb wave propagation on free surface in 
transversely isotropic thermoelastic diffusion. Sharma et 
al. [19-20] studied on thermodiffusive surface wave 
propagation in heat conducting materials and Kumar et 
al. [21] discussed on the plane strain deformation in 
generalized thermoelastic diffusion in 2007-2008. 

The linear theory of micropolar thermoelasticity 
has been developed by extending the theory of 
micropolar elasticity including thermal effect by Eringen 
[22, 23] and Nowacki [24, 25]. Minagawa et al. [26] 
discussed the propagation of plane harmonic waves in 
a cubic micropolar medium. Kumar and Rani [27] 
studied time harmonic sources in a thermally 
conducting cubic crystal and Mechanical/ thermal 
sources in a micropolar thermoelastic medium with 
cubic symmetry by Kumar and Aliawalia [28]. In the year 
2006, Kumar and Aliawalia [29] studied on deformation 
due to time harmonic sources in micropolar 
thermoelastic medium with two relaxation times.  

Fractional calculus has been used successfully 
to modify many existing model of physical process. In 
the formulation of tautochrone problem, Abel applied 
fractional calculus to solve integral equation and that 
was first application of fractional derivatives. Using 
fractional derivatives, for the description of viscoelastic 
materials, Caputo [30], Caputo and Mainardi [31] found 
an agreement between the experimental results with 
theoretical one. Recently, Sherief et al. [32] introduced 
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A Unified Field Approach on Fractional-Ordered Micropolar Thermoelasticity with Diffusion

the fractional ordered thermoelasticity by using Caputo’s 
[30] Phenomenon. 

In the present investigation we are concerned 
about the interaction between thermoelastic diffusion 
with micropolar-elasticity by using fractional derivatives. 

Nomenclature:
:U Internal energy per unit mass, K : Kinetic energy per 

unit mass, L : Power of external force, Q : Heat 
absorbed by the material body, W: Quantity of heat 
generated in unit time in unit volume, :q Heat flux 

vector, :F


External body force, :l


Body Couple, :lσ
Microstretch rotatory inertia, :ρ Constant mass density 

of the medium, :u Displacement vector, :ξ


Micro-

displacement vector, :φ


Microrotation vector, :j
Microinertia, :n Outward drawn normal vector, :ijt Stress 

tensor, :ijm Coupled stress tensor, :ijε Micropolar strain 

tensor, ii φυ : , time rate change of microrotation 

component, j,i: φγ ij , microrotation tensor, :η


Flow of 

diffusion mass vector, :T Absolute temperature, :S
Entropy per unit mass, :P Chemical potential per unit 
mass, :C Concentration, :,µλ Lame’ constants, 

:,,, κγβα Micropolar elastic constants,

( ) tακµλβ ++= 231 , ( ) cακµλβ ++= 232 , :tα
Coefficient of linear thermal expansion, :cα Coefficient 

of linear diffusion expansion, :EC Specific heat at 
constant strain, :a Measure of thermodiffusion effects,

:b Measure of thermodiffusive effects, :υ Thermal 
relaxation time, :τ Diffusion relaxation time, :D
Thermoelastic diffusion constant, :K Coefficient of 
thermal conductivity, :ijkε Permutation tensor, :ijδ
Kronecker delta.

II. FUNDAMENTAL EQUATIONS

The Riemann-Liouville fractional integral is introduced as a natural generalization of the convolution type 
integral [33, 34, 35, 36, 37],

( ) ( ) ( ) ( )∫ −−
Γ

=
t

dfttfI
0

11 τττ
α

αα ,   ( )0>α     (2.1)

The Laplace transform for this fractional integral is defined by,

( )[ ] ( )[ ]tfL
s

tfIL α
α 1

= .                                        (2.2)

The Riemann-Liouville derivative of fractional of fractional order α is defined as the left-inverse of the 

fractional integral αI as

( ) ( ) ( ) ( ) ( )∫ −−− −
−Γ

==
t

n
n

n
nn

RL dft
dt
d

n
tfIDtfD

0

11 τττ
α

ααα

  

,   nn <<− α1                                                 (2.3)

and for Laplace transform, the initial values of the fractional integral ( )tfI n α− and its derivatives of order 

1,...,3,2,1 −= nk are required, where

( )[ ] ( )[ ] ( )∑
−

=

−−−−=
1

0

1 0
n

k

nkkn
RL fIDstfLstfDL ααα ,    nn <<− α1 .                                                                  (2.4)

An alternative definition of fractional derivative was proposed by Caputo [30] as,

( ) ( ) ( ) ( )∫ −−−
−Γ

=
t

n

n
n

C df
dt
dt

n
tfD

0

11 τττ
α

αα ,      nn <<− α1                                                                      (2.5)

and for the Laplace transform, this definition has an advantage, the initial values of ( )tf and its integer derivatives 

of order 1,...,3,2,1 −= nk are required unlike the fractional ordered derivatives given by the equation (2.3), so that

( )[ ] ( )[ ] ( ) ( )∑
−

=

−−−=
1

0

1 0
n

k

kk
C fstfLstfDL ααα ,   nn <<− α1                                                                               (2.6)



 

 

                                                      

 

                                                      

                                                                   

 

                                                                                                                                  

  

                                                     

 

 

 

 

 

  

 

 

 
 

   

  

 
 

  

 

 

 

                                                                                                                       

  

 

                                                                                                                        

 

 

                                                                                                                                

 
 

     

                                                                                                                  

 

 

 

 

 

 

© 2011 Global Journals Inc.  (US)

G
l o
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

V
ol
um

e 
 X

I 
 I
ss
ue

 vvvvV
II
  

V
er
si
on

 I
 

  
  
  

  
  

  
  

  
  

41

(
I
)

  2
01

1
D
ec

em
be

r

A Unified Field Approach on Fractional-Ordered Micropolar Thermoelasticity with Diffusion

Here we shall use the fractional derivatives of order ( ]1,0∈α , according to Caputo [30].
Let V be any arbitrary volume element of a material body bounded by the closed surface A. Now the first law 

of thermoelasticity, the law of conservation of energy for the volume element V can be written in the following form:

∫
Vdt

d ρ ( U +K ) = L +
dt
dQ

                            (2.7)

Here, 

L ( ) ( )∫∫ +++=
A

jijiiji
V

iiii dAnmutdVluF υυρ    (2.8)

∫∫ +−=
VA

i WdVdAniqQ                                         (2.9)

Now the equations of the motion are as follows:

iijji uFt ρρ =+,                                           (2.10)

llmnlmnkkl ltm ρσρε =++,                        (2.11)

where    nlmnklmlklk jj υυευσ += 

After using divergence theorem and the equations of motion (2.10), (2.11) we obtain from the equation (2.7), 

∫
Vdt

d ρ ( U +K ) = (∫ 


V dt
d ρ K ( ) dVqjmut jjljiklijkjijikijkjiji 




−++++ ,,,) υυυρευυε (2.12)

Now for micropolar thermoelastic solids, the deformations, micro-rotations and the changes of temperature 
are very small in natural state of the body, so a linear approximation is possible. For linear approximation we 
introduce, as was done by Eringen [23], the norm function of the array  

( )iiiuW ,,, ,,,, θθφφ


=

by  ( ) 2
1

WWW ⋅==ε   

and for some neighborhood of 0=ε , there exist positive constants k and n such that 

( ) .0,0, >>≤Ο nkk nn εε

Now, for linear (1st order) approximation equation (2.12) can be written in the following form:

Wqm iiijjiji +−+= ,jitU γερ                           (2.13)

Where, kijkjiji u φεε += ,                                       (2.14)  

                                                                                                                                                     
Now we consider the entropy balance law,

WPqST iiii ++−= ,, ηρ                                        (2.15)
                                              

The equation of conservation of mass:

Cii
−=,η                                                     (2.16)
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A Unified Field Approach on Fractional-Ordered Micropolar Thermoelasticity with Diffusion

where C is the concentration. 
Now using the equations (2.15) and (2.16), from the equation (2.13) we obtain,

PdCTdSdmdd ijjiji +++= ργερ jitU           (2.17)

For further proceedings, we introduce the helmholtz free energy function Ψ given by,

TS-U=Ψ                                       (2.18)

Now using the equation (2.17), the total differential of the function Ψ can be written as,

SdTPdCdmdtd ijjijiji ργερ −++=Ψ       (2.19)

Here the function Ψ and all other functions under consideration can be expressed in terms of the independent 
variables TCklkl ,,,γε . Now by chain rule we get,

dC
C

dT
T

ddd ij
ij

ji
ji ∂

Ψ∂
+

∂
Ψ∂

+
∂
Ψ∂

+
∂
Ψ∂

=Ψ ρργ
γ

ρε
ε

ρρ                                                 (2.20)

  Comparing the equations (2.19) and (2.20) we obtain,

ji
jit

ε
ρ
∂
Ψ∂

=                                                            (2.21) 

ij
jim

γ
ρ
∂
Ψ∂

=                                                           (2.22) 

C
P

∂
Ψ∂

= ρ                                                              (2.23)

θ∂
Ψ∂

−=
∂
Ψ∂

−=
T

S                                                (2.24)

Now expanding the function Ψ into the Taylor series in terms of independent variables about its natural 
state, we obtain,

                              (2.25).........
2
1

2

1

2

1

2
22

0
000

+++++

−++++−++++Ψ=Ψ

kljijiklijijijijklijijkl

jijijijilkjijilk
E

ijijjiji

CCdcB

CaCbaAbC
T

C
BCbAa

γεγθγγγ

θεθεεεθ
ρ

γεθρρ

where 00 , TTT −=θ is the temperature of the medium in natural state such that 1
0

<<
T
θ

.

In the natural state of the material body, we consider,

.0,0,0,0,0,0 ======Ψ ijijij Ct γεθ

and we obtain,

.0,0,0,0,0 000 =====Ψ ijji BbAa

Now equation (2.25) can be recast in following form keeping only second order terms,

θγγγθεθεεεθ
ρ

ρ ijijklijijkljijijijilkjijilk
E cBCaCbaAbC

T
C

++−++++−=Ψ
2
1

2
1

2
1

2
22

0

.kljijikl

ijij

C

Cd

γε

γ

+

+

                                                                                     (2.26)
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A Unified Field Approach on Fractional-Ordered Micropolar Thermoelasticity with Diffusion

Now from equations (2.21) – (2.24) and equation (2.26) we obtain,

lkijlkijijklijklij CCbaAt γθε +++=                   (2.27)

lkjiklijijklijklji CCdcBm εθγ +++=                  (2.28)

ijijjiji dabbCP γθε +−+=                               (2.29)

ijijjiji
E caCa

T
CS γεθ
ρ

ρ −+−=
0

                     (2.30)

Now, in isotropic solids, from the equation (2.26) it has been seen that, since free energy is a scalar 
quantity, each terms of right hand side of equation (2.26) are scalars and hence,

( ) jkiljlikklijijklA δµδδδκµδλδ +++= , jlikjkilklijijklB δγδδβδδαδ ++= , 0=ijklC ,                      

ijija δβ1−= , ijijb δβ 2−= , 0=ijc .

Diffusion is a random walk of the particles of the material body from higher concentrated regions to lower 
concentrated regions. Here ijd represents the coupling coefficients between ijγ and the concentration C of the 

body, in an isotropic solid the gradient of microrotation and the concentration are independent. So we take 0=ijd
in isotropic body. In addition, the material is called spin-isotropic if αβαβ δjj = .

Hence, in isotropic solids constitutive equations are,

( ) ijijjiijijkkij Ct δβθδβµεεκµδλε 21 −−+++=
                                                                                       

(2.31)

jiijijkkijm γγβγδαγ ++=                                                                                                                           (2.32)

θεβ abCP kk −−= 2                                                                                                                                     (2.33)

CaTTCST kkE 0010 ++= εβθρρ                                                                                                                    (2.34)  

Now, the linear equations of balance law are given by,

ααββα ρρ uFt =+,                                              (2.35)

αααββα φρρε jltm mnmn =++,                          (2.36)

The linearized form of heat conduction is,

WqST ii +−= ,
ρ                                                 (2.37)

and without contradiction with the second law of thermodynamics, we assume a generalized form of Fourier’s law of 
heat conduction equation as,

ii Kq
t ,01 θτ α

α

−=







∂
∂

+                                      (2.38)

where α   is a constant such that 10 ≤≤α .                                                  
Now using the equations (2.34) and (2.37), from the equation (2.38) we obtain,

t
C

t
aT

tt
T

tt
CK kk

kk
Eii ∂

∂








∂
∂

++
∂
∂









∂
∂

++
∂
∂









∂
∂

+= α

α

α

α

α

α

τε
ε

τβθτρθ 000010, 111 W
t 








∂
∂

+− α

α

τ 01      (2.39)  
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A Unified Field Approach on Fractional-Ordered Micropolar Thermoelasticity with Diffusion

We may consider the equation (2.39) is an extended version of fractional ordered heat conduction equation 
in isotropic, micropolar, thermodiffusive elastic solids.
Now we consider the equation of mass flux vector,

ii DP
t ,11 −=








∂
∂

+ ητ α

α

                                       (2.40)

Now using the equation (2.16) and (2.33), from the equation (2.40) we obtain,

t
C

t
DaDDbC iikkii ∂

∂








∂
∂

+++∇= α

α

τθεβ 1,
2

2, 1

        

(2.41)

This equation may be considered as the fractional ordered generalized mass diffusion equation in isotropic, 
micropolar elastic solids.

Special cases :
When 1→α , equations (2.39) and (2.41) reduces to

( ) ( ) W
t

CCaT
tt

TCK kkEii 







∂
∂

+−++







∂
∂

+
∂
∂

++= υυευβθυθρθ 102

2

01,
                                     (2.42)

C
tt

DaDDbC iikkii 







∂
∂

+
∂
∂

++∇= 2

2

,
2

2, τθεβ                                                                                       (2.43)

These are the generalized heat conduction and mass diffusion equations in isotropic, micropolar elastic solids.
Again, when 0,1 →→ κα equations (2.39), (2.41) transform to

( ) W
tt

C
t

aTu
t

T
tt

CK Eii 







∂
∂

+−
∂
∂









∂
∂

++⋅∇







∂
∂

++
∂
∂









∂
∂

+= υυυβθυρθ 1111 001,




                     
(2.44)

( )
t
C

t
DauDDbC iiii ∂

∂









∂
∂

+++⋅∇∇= τθβ 1,
2

2,


                                                                                    (2.45)

Equations (2.44) and (2.45) represent the heat conduction and mass diffusion equations for isotropic elastic solids, 
as was done by Sherief et al. [12].

III. A VARIATIONAL PRINCIPLE

The variational theorem in classical thermoelasticity first derived by Biot [38] and explained their applications 
by means of several examples. The variational theorem on classical thermoelastic diffusion was done by Sherief et 
al. [12]. In micropolar thermoelasticity the variational principle and uniqueness theorem was done by Eringen [22, 
23]. Recently, a variational principle of fractional order generalized thermoelasticity was done by Youssef and Al-
Lehaibi [39]. Now we shall present a compact derivation of a variational principle on fractional-ordered micropolar 
thermoelastic diffusion.
We consider,

W [ ]∫ +=
V

mnklklmnmnklklmn dVBA γγεε
2
1

,            (3.1)

where the integrand is homogeneous quadratic form of strain tensor and microrotation tensors.
Now we consider a virtual displacement i.e. for a neighboring state in which the displacement, strain tensor, 
microrotation tensors are changed by the quantities iuδ , ijδε , ijδγ respectively, we obtain,

δ W ( ) ( ) ( ) ( )[ ]∫ +++=
V

mnklklmnmnklklmnmnklklmnmnklklmn dVBBAA γγγδγδεεεδε
2
1

            (3.2) 
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Now using the constitutive equations;

( ) ijijjiijijkkij Ct δβθδβµεεκµδλε 21 −−+++=                                                               (3.3)

jiijijkkijm γγβγδαγ ++=                                                                                                      (3.4)      
     
Taking into account the equations of motion;

ααββα ρρ uFt =+,                                             (3.5)

αααββα φρρε jltm mnmn =++,                          (3.6)

Corresponding boundary conditions;

jjii ntp =                                                                (3.7)

jjii nmm =                                                              (3.8)

and using divergence theorem, we obtain,

∫∫∫∫∫∫ −−+++
V

ii
V

ii
A

ii
V

ii
A

ii
V

ii dVjdVuudAmdVldAupdVuF φδφρδρδφδφρδδρ 

δ= W ∫∫ −−
V

kk
V

kk dVCdV δεβεδθβ 21                                                 (3.9)         

This is the first variational equation and it would be complete for uncoupled thermoelasticity if the 
temperatureθ and the concentration C in last two integrations of the right hand side of the equation (3.9) were 
known. Taking into account the coupling between the strain field, temperature and concentration it is observed that 
θ and C are unknown. Hence it is necessary to introduce other relations considering the phenomena of heat 
conduction as well as mass diffusion.

Now we introduce one vector H


as was done by Biot [40], related with entropy by,

iiHHdivS ,−=−=


ρ                                          (3.10)

Again we know the relations,

CaTTCST kkE 0010 ++= εβθρρ                       (3.11)

STq ii


0, ρ−=                                                          (3.12)

ii Kq
t ,01 θτ α

α

−=







∂
∂

+                                        (3.13)

Now using the equation (3.10), from the relations (3.11), (3.12) and (3.13) we obtain, 

aC
T
CH kk

E
ii ++=− εβθ

ρ
1

0
,                           (3.14)

ii HTq 
0=                                                             (3.15)

ii KH
tt

T ,1

1

00 θτ α

α

−=







∂
∂

+
∂
∂

+

+

                           (3.16)
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Now multiplying both sides of equation (3.16) by iHδ and then integrating over the region V of the body we obtain,

∫ =















∂
∂

+
∂
∂

+ +

+

V
iii dVHH

ttK
T

01

1

0
0

, δτθ α

α

    (3.17)

Now, 

∫∫∫∫∫ +++=
VV

kk
V

E

A
ii

V
ii dVCadVdV

T
CdAHndVH δθδεθβθδθ
ρ

δθδθ 1
0

,                                     (3.18)

Using the equation (3.18), from the equation (3.17) we obtain,

∫∫∫∫ +++
VV

kk
V

E

A
ii dVCadVdV

T
CdAHn δθδεθβθδθ
ρ

δθ 1
0

01

1

0
0 =








∂
∂

+
∂
∂

+ ∫ +

+

dVHH
ttK

T
i

V
iδτ α

α

  (3.19)

                                                                        
Here we introduce heat potential function,

∫=
V

E dV
T
CIP 2

02
θ

ρ
                                             (3.20)

And    ∫=
V

E dV
T
CIP θδθ
ρ

δ
0

                             (3.21)

Again, the heat dissipation function ID , where

∫ 







∂
∂

+
∂
∂

= +

+

V
ii dVHH

ttK
T

ID δτδ α

α

1

1

0
0           (3.22)

Therefore, from equation (3.19) we obtain,

( ) 01 =++++ ∫∫∫
VV

kk
A

ii dVCadVIDIPdAHn δθδεθβδδθ                                      (3.23)

This is the second variational equation connected with heat conduction.
In order to obtain the variational equation connected with the process of thermodiffusion we introduce 

another vector as was done by Sherief et al [12] related with mass concentration by,

iiGGdivC ,−=−=


                                         (3.24)

Now from the relations,

θεβ abCP kk −−= 2 ,                                     (3.25)

Cii
−=,η                                                             (3.26)

                                                                   

ii DP
t ,11 −=








∂
∂

+ ητ α

α

                                      (3.27)

and using the equation (3.24) we obtain,

ii G=η                                                                 (3.28)

ii DPG
tt ,1

1

1 −=







∂
∂

+
∂
∂

+

+

α

α

τ                               (3.29)
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Now multiplying both sides of equation (3.29) by iGδ and then integrating over the region V we obtain,

∫ =















∂
∂

+
∂
∂

+ +

+

V
iii dVGG

ttD
P 01

1

1

1, δτ α

α

      (3.30)

Now, 

∫∫∫∫∫ −−+=
VV

kk
VA

ii
V

ii dVCadVCdVCCbdAGnPdVGP δθδεβδδδ 2,           (3.31)

Using the equation (3.31), from the equation (3.30) we obtain,

∫∫∫∫∫ =







∂
∂

+
∂
∂

+−+− +

+

V
ii

VVV
kk

A
ii dVGG

ttD
dVCadVCCbdVCdAGnP 01

1

1

12 δτδθδδεβδ α

α

     (3.32)

                                                               
                                                           

Now we define, the diffusion potential function,

∫=′
V

dVCbPI 2

2
                                               (3.33)

And   ∫=′
V

dVCCbPI δδ                                    (3.34)

Again, the diffusive dissipation function DI ′ , where

∫ 







∂
∂

+
∂
∂

=′ +

+

V
ii dVGG

ttD
DI δτδ α

α

1

1

1
1

            (3.35)

Therefore, from the equation (3.32) we obtain,

( ) 02 =′+′+−− ∫∫∫ DIPIdVCadVCdAGnP
VV

kk
A

ii δδθδεβδ                                    (3.36)

Equation (3.36) represents the third variational equation.

Now from the equations (3.9), (3.23) and (3.36) we obtain, 

[δ W ] ∫∫∫ −−=−′++′++
A

ii
A

ii
V

kk dAGnPdAHndVCDIIDPIIP δδθεβ 2

∫∫∫∫∫

∫
−−+++

+

V
ii

V
ii

A
ii

V
ii

A
ii

V
ii

dVjdVuudAmdVldAup

dVuF

φδφρδρφδφδρδ

δρ

         (3.37)

                                                                                                            

Now, dtuu ii =δ , dtθθδ = , dtHH ii
=δ , dtGG ii

=δ    etc.

Therefore, equation (3.37) reduces to,

[
dt
d

W +K ] ∫∫∫ +=+′++′++
V

ii
V

ii
V

dVldVuFdVP
b
aDIIDPIIP φρρθ       

                  

∫∫

∫∫

∂
∂

+
∂
∂

+

++

A

i

A

A
ii

A
ii

dA
n

PdA
nT

K

dAmdAup

ηθθ

φ

0



                        (3.38)

where the mass concentration C is written in terms of the chemical potential P .
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IV. UNIQUENESS THEOREM

Uniqueness theorem states that there is only one solution of the equations (2.25), (2.36) (2.39) and (2.41) 
subject to the boundary conditions;

jjii ntp = , jjii nmm = , ( )tx,1θθ = , ( ) 0,,,1 >∈= tAxtxPP

and initial conditions;

( ) ( )xuxu ii 00, = , ( ) ( )xuxu ii 00,  = , ( ) ( )xx ii 00, φφ = , ( ) ( )xx ii 00, φφ  = , ( ) ( )xx 00, θθ =

( ) ( )xPxP 00, = , ( ) ( )xPxP 00,  = , 0, =∈ tVx ,

where the body occupying the region V bounded by the surface .

Proof : We consider, if possible, there exist two sets of solutions ( )Pu ii ,,, θφ and ( )Pu ii ′′′′ ,,, θφ .

We take, iii uuu ′−=ˆ , iii φφφ ′−=ˆ , iii θθθ ′−=ˆ , PPP ′−=ˆ

Hence the solution ( )Pu ii
ˆ,ˆ,ˆ,ˆ θφ must satisfy the equations of motion, heat conduction equation and 

equation of mass diffusion with no body forces, body couples and without heat sources term i.e.,

αββα ρ ut =,                                                                                                                                                    (4.1)

ααββα φρε jtm mnmn =+,                                                                                                                                (4.2)

t
C

t
aT

tt
T

tt
CK kk

kk
Eii ∂

∂








∂
∂

++
∂
∂









∂
∂

++
∂
∂









∂
∂

+= α

α

α

α

α

α

τε
ε

τβθτρθ 000010, 111                                       (4.3)

t
C

t
DaDDbC iikkii ∂

∂








∂
∂

+++∇= α

α

τθεβ 1,
2

2, 1                                                                                        (4.4)

with homogeneous boundary and initial conditions.

Thus we arrive with a system for which the displacement iû , microrotation iφ̂ , temperature θ̂ and the 

chemical potential P̂ are vanishes inside the body initially and the surface traction ip̂ , surface couple im̂ , 

temperature θ̂ and the chemical potential P̂ are vanishes on surface A .

Hence, it is enough to prove that the measure of strain tensor, microrotation tensor, temperature and the 
chemical potential are vanishes inside the body.
Now from the equation (3.38) we obtain,

  [
dt
d

W+ K ] 0=+′++′++ ∫
V

dVP
b
aDIIDPIIP θ or,

[
dt
d

W+ K ]PIIP ′++ ∫∫ 







∂
∂

+−−=
V

ii
V

dVH
t

H
K
T

dVP
b
a 

α

α

τθ 0
0 1 011

1 ≤







∂
∂

+− ∫
V

ii dVG
t

G
D


α

α

τ (4.5)

                       
The integral in the left hand side of equation (4.5) is zero initially. On the other hand the inequality proves 

that the left hand side of the equation is either zero or decreases taking negative values. Since the integrand is a 
sum of squares and vanishes at 0=t , therefore, first possibility holds.
Hence, W + K 0=′++ PIIP ,

A
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and 0ˆ =iu , 0ˆ =iφ , 0ˆ =θ , 0ˆ =P , 0ˆ =ijε , 0ˆ =ijγ    for  0≥t .
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therefore, ijij mt ˆ0ˆ == ,   0≥t .

Hence, 0ˆˆˆˆ ==== Pu ii θφ   for  0≥t .

This completes the proof of uniqueness theorem.
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