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A Unified Field Approach on Fractional-Ordered
Micropolar Thermoelasticity with Diffusion

Soumen Shaw", Basudeb Mukhopadhyay“

Absiract - The present paper is completely devoted on
derivation of some basic fundamental relations in generalized
thermodiffusive micropolar elasticity with fractional-ordered
derivatives. The generalized heat conduction and mass
diffusion equations have been modified by using fractional
calculus. A variational principle is obtained and hence the
unigueness theorem for those equations has been proved.
Keywords : Fractional calculus, Micropolar elasticity,
Thermodiffusion,  Variational  principle,  Unigueness
theorem.

.  INTRODUCTION

t is well established that the thermoelasticity theory is

a fusion of the theory of heat conduction and the

theory of elasticity. In classical theory of
thermoelasticity there was a diffusive phenomenon on
the heat propagation and thermal signals propagate
with infinite speed. This physically unacceptable
drawback of infinite speed of heat propagation was
inherent in that theory. Modifying the Fourier’s law of
heat conduction, Lord-Shulman [1] introduced one non-
classical theory of heat propagation with one relaxation
time which can avoid that paradox. Green-Lindsay [2], in
the year 1972, Proposed another one with two relaxation
times. These non-classical theories are referred as
generalized theory of thermoelasticity. Dhaliwal and
Sherief [3] extended that generalized theory for
anisotropic media. Later on, during the year 1991-1993
Green and Naghdi [4, 5, 6] introduced a new theory of
thermoelasticity and divide their theory into three parts,
referred as types |, Il and Ill. In an extensive review work
on the development of generalized/ hyperbolic
thermoelasticity till 1998 is available in the review article
of Chandrasekharaiah [7].

Diffusion can be defined as the random
movement of the particles from the higher concentrated
regions to the lower concentrated regions because of
the non-zero concentration gradient which can be
expressed in terms of changes of the concentration at
that position. In recent past it has been observed that
there are so many researchers are interested to study on
this aspects due to a great application in geophysics
and in industry e.g. so many oil companies are
interested in the thermodiffusion process for more
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efficient extraction of oil from the oil deposits.Diffusion is
used to form base and emitter in bipolar transistors,
form integrated resistors and used to introduce
‘dopants’ in controlled amounts into the semiconductor
substrate. The thermodiffusion in elastic solids is due to
the coupling among the temperature, elastic strain and
mass diffusion in addition with the exchange between
heat and mass in the nature.

In 1974, Nowacki [8-11] developed the theory of
coupled thermoelastic diffusion. The generalized theory
in thermoelastic diffusion was introduced by Sherief et
al. [12] in 2004. Again, in the year 2005, Sherief et al.
[13] studied a half space problem in the theory of
generalized thermoelastic diffusion. The influence of
diffusion on generalized thermoelastic problems of
infinite body with a cylindrical cavity studied by Rong-
hou et al. [14]. Singh [15, 16] in his couple of papers
discussed the reflection of waves from the free surface
in generalized thermoelastic diffusion. In recent times
Kumar and Kansal [17, 18] studied about the Rayleigh
and Lamb wave propagation on free surface in
transversely isotropic thermoelastic diffusion. Sharma et
al. [19-20] studied on thermodiffusive surface wave
propagation in heat conducting materials and Kumar et
al. [21] discussed on the plane strain deformation in
generalized thermoelastic diffusion in 2007-2008.

The linear theory of micropolar thermoelasticity
has been developed by extending the theory of
micropolar elasticity including thermal effect by Eringen
[22, 23] and Nowacki [24, 25]. Minagawa et al. [26]
discussed the propagation of plane harmonic waves in
a cubic micropolar medium. Kumar and Rani [27]
studied time harmonic sources in a thermally
conducting cubic crystal and Mechanical/ thermal
sources in a micropolar thermoelastic medium with
cubic symmetry by Kumar and Aliawalia [28]. In the year
2006, Kumar and Aliawalia [29] studied on deformation
due to time harmonic sources in  micropolar
thermoelastic medium with two relaxation times.

Fractional calculus has been used successfully
to modify many existing model of physical process. In
the formulation of tautochrone problem, Abel applied
fractional calculus to solve integral equation and that
was first application of fractional derivatives. Using
fractional derivatives, for the description of viscoelastic
materials, Caputo [30], Caputo and Mainardi [31] found
an agreement between the experimental results with
theoretical one. Recently, Sherief et al. [32] introduced
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the fractional ordered thermoelasticity by using Caputo’s
[30] Phenomenon.

In the present investigation we are concerned
about the interaction between thermoelastic diffusion
with micropolar-elasticity by using fractional derivatives.

Nomenclature:

U : Internal energy per unit mass, K : Kinetic energy per
unit mass, L : Power of external force, Q: Heat
absorbed by the material body, W: Quantity of heat
generated in unit time in unit volume, Q:Heat flux
vector, F :External body force, r:Body Couple, o, .
Microstretch rotatory inertia, p :Constant mass density
of the medium,U :Displacement vector,giMicro—
vector, | :
’tij
tensor, M; :Coupled stress tensor, &; :Micropolar strain

displacement vector, ¢7 - Microrotation

Microinertia, i : Qutward drawn normal vector . Stress

tensor, v, :¢5i, time rate change of microrotation
component, 7;; : ¢ ;, microrotation tensor, 77 : Flow of

diffusion mass vector, T :Absolute temperature, S:
Entropy per unit mass, P :Chemical potential per unit
mass, C : Concentration, A,p: Lame’ constants,
a, B, v,k Micropolar elastic constants,

B =0Br+2u+K), B, =BA+2u+x)a, a,:
Coefficient of linear thermal expansion, &, :Coefficient

of linear diffusion expansion, Cg :Specific heat at
constant strain, @ :Measure of thermodiffusion effects,
b:Measure of thermodiffusive effects, U : Thermal
relaxation  time, 7 :Diffusion  relaxation  time, D :
Thermoelastic  diffusion  constant, K : Coefficient  of
thermal  conductivity, &, :Permutation tensor,5ij:
Kronecker delta.

[I. FUNDAMENTAL EQUATIONS

The Riemann-Liouville fractional integral is introduced as a natural generalization of the convolution type

integral [33, 34, 35, 36, 37],

“1(0)=—L [y t(e)de. (a>0)

F(a)

(2.1)

The Laplace transform for this fractional integral is defined by,

L s@)]= Lol

22

The Riemann-Liouville derivative of fractional of fractional order & is defined as the left-inverse of the

fractional integral | “ as

n t
D& f(t)=D"l “‘“f(t):r;d

(n-

2y

- I(t—r)”_“_lf(r)dr . N-1l<a<n

(23)

and for Laplace transform, the initial values of the fractional integral In_“f(t) and its derivatives of order

k=123,...,n—1 are required, where

LN

n—

L[Dg f(t)]=s“L[f(t)]-Y s *D* 1™ £(0), n-1<a<n.

=

=0

An alternative definition of fractional derivative was proposed by Caputo [30] as,

L f-operd

DZflt)=——— —
¢t r(n-a)d dt"

f(r)dz,

nN-l<a<n

(2.5)

and for the Laplace transform, this definition has an advantage, the initial values of f(t) and its integer derivatives
O of order k =1,2,3,...,n—1 are required unlike the fractional ordered derivatives given by the equation (2.3), so that

L[Dg £ (t))= s“L[f(t)]—nis”"l’k £(0), n-1<a<n

© 2011 Global Journals Inc. (US)
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Here we shall use the fractional derivatives of order & € (0,1], according to Caputo [30].

Let V be any arbitrary volume element of a material body bounded by the closed surface A. Now the first law
of thermoelasticity, the law of conservation of energy for the volume element V can be written in the following form:

d dQ
— U+K)=L+—= 2.7
" J PLUK) =L+ 27)
Here,
L:J‘p(Fi U, +|iui)dV+J.(tji u, +mjiui)njdA (2.8)
\% A
Q= —'[qini dA+IWdV (2.9)
A \%
Now the equations of the motion are as follows:
t, +pF =pl (2.10)
My k + Emlbmn + Al = PO, (2.11)

where 0y = O + &y JmViUy
After using divergence theorem and the equations of motion (2.10), (2.11) we obtain from the equation (2.7),

d d :
EIP(U +K) :J.[a(pK )+tji(ui,j +8ijkuk)+ MV + P S LYY —q; }dV (212)
\%

\%

Now for micropolar thermoelastic solids, the deformations, micro-rotations and the changes of temperature
are very small in natural state of the body, so a linear approximation is possible. For linear approximation we

introduce, as was done by Eringen [23], the norm function of the array
w=(,.4.4,.0.0,)

by & =|W| =(W-w)"

and for some neighborhood of & = 0, there exist positive constants k and n such that

|ole)

Now, for linear (1% order) approximation equation (2.12) can be written in the following form:

‘skg” ,k>0,n>0.

pU=té, +mp, — g, +W (2.13)
Where, g =U; + &y (2.14)
Now we consider the entropy balance law,

pTS=-q  +Pn,; +W (2.15)

The equation of conservation of mass:

m;=-C (2.16)
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where C is the concentration.
Now using the equations (2.15) and (2.16), from the equation (2.13) we obtain,

pdU =t,de; + m;dy; + pTdS+ PdC (2.17)
For further proceedings, we introduce the helmholtz free energy function W given by,
Y=U-TS (2.18)
Now using the equation (2.17), the total differential of the function ¥ can be written as,
pd¥ =t;de; + m;dy; +PdC - p AT (2.19)

Here the function W and all other functions under consideration can be expressed in terms of the independent
variables &, 7 ,C, T . Now by chain rule we get,

oY oY oY oY
d¥ =p—dg; + dy. + p—dT + p—dC 2.20
P Pag“ pajf” Vi TP aT P oC (2.20)
Comparing the equations (2.19) and (2.20) we obtain,

oY

55,1
m. = 8_\P (2.22)

ji paj/” .

oY
P= p— 2.23
Y o (2.23)
S = _6_‘}’ = _5_‘{’ (2.24)

oT o6

Now expanding the function W into the Taylor series in terms of independent variables about its natural
state, we obtain,

C 1 1
p¥ = p¥o+agf0+Ae; +b,C+ By, — ’I;TE 62+§bCZ+EAWsjiglk+a £;0+b,e,C—afC

i i i
0

1
+EBijkl YiZw T €70+ A7 C+Cipe vy + o (2.25)

where 6 =T —T,, T, is the temperature of the medium in natural state such that |—| << 1.

In the natural state of the material body, we consider,

TZO, 920, tij:O1 C:O, gij:()’ 7/”:0

and we obtain,

‘POZO’aOZO! A“:O’ b():O, BIJZO
Now equation (2.25) can be recast in following form keeping only second order terms,
oC 1 1
p¥ =- 2TE 92 +Eb(:2 +§Aj”kgji5|k +a;¢;0+b;e,C-adC+—- 5 B”kl;/”}/kI +¢; 7,0 +d;7,C
0

+Cia€i%u - (2.26)

© 2011 Global Journals Inc. (US)



Now from equations (2.21) — (2.24) and equation (2.26) we obtain,
ti = Ajca +3;0+b,C+Cyr
m; =B,y +¢;0+d;C+Cj ¢,
P =DbC+b;e; —ad+d,;y;
pS = %H—ajigﬁ +aC—Cij7/ij

0

Now, in isotropic solids, from the equation (2.26) it has been seen that, since free energy is a scalar

quantity, each terms of right hand side of equation (2.26) are scalars and hence,

A =16;0y +(/U+K)5ik5jl + p6, 0 By =ad;6y + 0,0 +r6,6, .Cy =0,

a; :_ﬂléij ’blj =_1625ij ' Gjj =0.

Diffusion is a random walk of the particles of the material body from higher concentrated regions to lower
concentrated regions. Here dij represents the coupling coefficients between Yii and the concentration C of the

body, in an isotropic solid the gradient of microrotation and the concentration are independent. So we take dij =0

in isotropic body. In addition, the material is called spin-isotropic if jaﬂ = jé‘aﬂ
Hence, in isotropic solids constitutive equations are,

L, = A&y + (,UJF K)gij + uey — P05, — p,Co;
My = ayudy + By + 17
P =bC-p,e,—ad
Pl S=pC0+ B Te +al,C
Now, the linear equations of balance law are given by,
Upup + PP, = pU,
My s + Eanlton + 21, = AP,

The linearized form of heat conduction is,

PTS =—0q,; +W

and without contradiction with the second law of thermodynamics, we assume a generalized form of Fourier’s law of

heat conduction equation as,

aa
1+7,— |g, = -K@,
( 0 6t“ qu i

where a is a constant such that O<a <1.
Now using the equations (2.34) and (2.37), from the equation (2.38) we obtain,

0% o6 0% \og 0% \oC
Ko, = pCE(1+ Ty pe j5+ﬁlTo(1+ T, ﬁ]?kkgkk + aTO(1+ Ty at_“jﬁ _

(1+ T, 0

ot”

(2.27)
(2.28)

(2.29)

(2.30)

(2.31)
(2.32)
(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

)W (2.39)
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We may consider the equation (2.39) is an extended version of fractional ordered heat conduction equation
in isotropic, micropolar, thermodiffusive elastic solids.
Now we consider the equation of mass flux vector,

aa
1+7, — |n. = —DP, 2.40
( 1 ata }7. N ( )

Now using the equation (2.16) and (2.33), from the equation (2.40) we obtain,

DbC, =Dp,V’e, + Dad, +(1+ 7 Gat_"j% (2.41)

This equation may be considered as the fractional ordered generalized mass diffusion equation in isotropic,
micropolar elastic solids.

Special cases :
When a — 1, equations (2.39) and (2.41) reduces to

2
Ko, = pCE(9+ ué)+ BT, 2, 08—2 Eq + aTO(C + Ué)—(l-i— uﬁ)W (2.42)
' ot ot ot
2 0 o°
DbC,ii = D,BZV Ew T Da@yii + a‘l‘fat—z C (243)

These are the generalized heat conduction and mass diffusion equations in isotropic, micropolar elastic solids.
Again, when ¢ — 1, ¥ — Oequations (2.39), (2.41) transform to

0 \o6 0 \= - 0 \oC 0
K. = l+o— |—+ [T, 1+vo—|\V-U)+aT,| 1+vo— |——| 1+ v— 2.44
il pCE[ Uatj ot ﬁl o( Uatj( ) o( U@tj ot ( Uat)\N ( )
DbC,, = DB,V2(V -+ Dag, +[1+ T%)% (2.45)

Equations (2.44) and (2.45) represent the heat conduction and mass diffusion equations for isotropic elastic solids,
as was done by Sherief et al. [12].

[1I. A VARIATIONAL PRINCIPLE

The variational theorem in classical thermoelasticity first derived by Biot [38] and explained their applications
by means of several examples. The variational theorem on classical thermoelastic diffusion was done by Sherief et
al. [12]. In micropolar thermoelasticity the variational principle and uniqueness theorem was done by Eringen [22,
23]. Recently, a variational principle of fractional order generalized thermoelasticity was done by Youssef and Al-
Lehaibi [39]. Now we shall present a compact derivation of a variational principle on fractional-ordered micropolar
thermoelastic diffusion.

We consider,

1
w = EJ.[Aklmngkl gmn + BkImn7/kI ymn] dV , (3.1)
\%

where the integrand is homogeneous quadratic form of strain tensor and microrotation tensors.
Now we consider a virtual displacement i.e. for a neighboring state in which the displacement, strain tensor,

microrotation tensors are changed by the quantities §ui ,58” , 57” respectively, we obtain,

1
oW = EJ.[Aklm” (58” )8mn + Aklmngkl (5gmn)+ Bklrm(57KI )}/mn + Bklmnykl (7rm )]dv (3.2)
\

© 2011 Global Journals Inc. (US)



Now using the constitutive equations;
by = A0y + (,u + K)gij + uey — f,05; — B,Co; (3.3)
m;, = 0571«5” + ﬁ?ﬁj + 77 (3.4)
Taking into account the equations of motion;
Ly + PF, = pU, (3.5)
My, 5+ € b +pl, :Pj(}Sa (3.6)
Corresponding boundary conditions;
p, =t;n, 3.7)
m =m;n; 38

and using divergence theorem, we obtain,
[PF 8u dV +[ p ou dA+ [ ol 54, AV + [m &6 dA-[ pti, 5, AV - pj [ 5 ¢, AV
\% A \% A \% \Y
=W = B,[05, AV - B,[C ey AV (3.9)
\% \%

This is the first variational equation and it would be complete for uncoupled thermoelasticity if the
temperature @ and the concentration Cin last two integrations of the right hand side of the equation (3.9) were
known. Taking into account the coupling between the strain field, temperature and concentration it is observed that

fand Care unknown. Hence it is necessary to introduce other relations considering the phenomena of heat
conduction as well as mass diffusion.

Now we introduce one vector H as was done by Biot [40], related with entropy by,

pS=—divH =-H, , (3.10)
Again we know the relations,
pl,S=pC.0+ pT,e, +al,C (3.11)
g, = —pTOS (3.12)
(1+ 7, a—o;jqi =-K@, (3.13)
ot

Now using the equation (3.10), from the relations (3.11), (3.12) and (3.13) we obtain,

—Hi,i :&0+ﬂlgkk+ac (3.14)
0
q =T,H, (3.15)
a al+a B
T, 5+T°—atl*“ H, =-K@, (3.16)
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Now multiplying both sides of equation (3.16) by & Hi and then integrating over the region V of the body we obtain,

T I+a
[16,+-2| Sy 2, oM, av =0 3.17)
vl Kot ot
Now,
[o,6H dv =[on sH, dA+&j059dv + B[ 058, AV +af05CaAV (3.18)
' T,
. \% A 0 v \% \%
?‘ Using the equation (3.18), from the equation (3.17) we obtain,
_’; T +a
- [ensH, dA+&j959dv +B,[ 08, AV +a[o5CaV w2 QHO‘?T HoH dvV =0 (319
2 % T, 3 v v Kyt ot
m Here we introduce heat potential function,
E IP = &Iez dv (3.20)
£ 2T, §
= And &P:ﬁjeaedv G.21)
5 To v
; Again, the heat dissipation function D , where
Y T Ita
AD=-2 L, (TR TR, (3.22)
S Kyt ot
E Therefore, from equation (3.19) we obtain,
[on sH, dA+5(1P+1D)+ 5,[ 052, dV +af05CdV =0 (3.23)
2, A v v
E This is the second variational equation connected with heat conduction.
P In order to obtain the variational equation connected with the process of thermodiffusion we introduce
é another vector as was done by Sherief et al [12] related with mass concentration by,
é C = —divG = -G, | (3.24)
é Now from the relations,
P=bC-B,s, —ad (3.25)
:g n. = -C (3.26)
1+7 o =-DP (8.27)
1 8t“ ’7| | '
and using the equation (3.24) we obtain,
N n =G, (3.28)
£+rali6 =-DP (3.29)
ot 1 at1+a i Ji .

© 2011 Global Journals Inc. (US)



Now multiplying both sides of equation (3.29) by 5Gi and then integrating over the region V we obtain,

I+oa
[P L 2+TlaT G, |8, dv =0 (3.30)
J7  Dlat tatte
Now,
[P 3G dV = [Pn &G dA+b[C&aV - B, [z, AV —a[65CaAV (3.31)
\% A \% \% \Y

Using the equation (3.31), from the equation (3.30) we obtain,

Ita
[Pn &G, dA- B, [, SCAV +b[C AV —afosCav +ij §+rlaT G &G dV=0 (332
A \% \% \% D \% at at "
Now we define, the diffusion potential function,
IP’ = EICZ dv (3.33)
2V
And AP =bfCsCaV (3.34)
\
Again, the diffusive dissipation function ID", where
I+a
&D':ij ﬁﬂlaT G, &G dV (3.35)
Dy ot ot
Therefore, from the equation (3.32) we obtain,
[Pn &G dA- B, [, SCAV —af@sCaV + (1P’ +1D)=0 (3.36)
A \% \Y

Equation (3.36) represents the third variational equation.
Now from the equations (3.9), (3.23) and (3.36) we obtain,

5[ W+1P+IP'+ID+1D'- B, [Cey dV ]=—-[On oH, dA- [Pn, &G dA+ [ oF, Su, AV
\% A A \%
+[pisu dA+ [ pl 54,V +[m 8¢ dA- p[ G SudV - pi [ 54, AV (3.37)
A \% A \% \%

Now, Su, =u dt, 50 =0dt, SH, =H, dt, §G =G, dt etc.

Therefore, equation (3.37) reduces to,

d , , a ~ _ : . :
E[ W +K+ P+ 1P + 1D+ 1D +E\_[P0dv ]—\J;pFiuidV+\J;pIi¢idV+J;piuidA+'/[m¢idA
+ X 0% aa+ [P A (3.39)
Ty on A on

where the mass concentration C is written in terms of the chemical potential P .
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[V.  UNIQUENESS THEOREM

Unigueness theorem states that there is only one solution of the equations (2.25), (2.36) (2.39) and (2.41)
subject to the boundary conditions;

p=t,n,m=m;n, 0=6(xt), P=R(xt) , xeA t>0
and initial conditions;
U (%,0) = uo(x). 1, (x,0)=to(x), 4,(x,0)=4(x). 4(x.0)=g(x). 0(x.0)= ()
P(x,0)=P,(x), P(x,0)=P,(x), xeV,t=0,
where the body occupying the region V. bounded by the surface A.

Proof : We consider, if possible, there exist two sets of solutions (U, ,¢,,8,P)and (u/,4/,0",P’).

mWetake, 0 =u-U.d=¢-¢.0=0-0P=P—P

Version |

Issue VII
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[
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Hence the solution (ﬁi,¢i ,0, |5) must satisfy the equations of motion, heat conduction equation and
equation of mass diffusion with no body forces, body couples and without heat sources termi.e.,

U = PU, 4.1)
mﬂa,ﬂ +8amn mn IOJ¢ (4-2)

0% 00 0% \oe 0% |oC
pCE(l 7, pre j + BT, (1 T, P j?k w +art, {1+ 7o pe j p (4.3)

( ac
Ja

DbC, =D Vi +Dad; +|1+
i B Kk L Tlat at

with homogeneous boundary and initial conditions.

A

Thus we arrive with a system for which the displacement U., microrotation ¢, , temperature @ and the
chemical potential P are vanishes inside the body initially and the surface traction fJi, surface couple rﬁ

temperature @ and the chemical potential P are vanishes on surface A.

Hence, it is enough to prove that the measure of strain tensor, microrotation tensor, temperature and the
chemical potential are vanishes inside the body.
Now from the equation (3.38) we obtain,

i[ W+K+|P+|P'+|D+|D'+§jpedv ]=0 o,
dt by

d , o° 0% ) <
E[ W+ K +IP+IP ]———jPHdV——IH(l T jH dv ——IG(1+Tlat ]Gidv <0 (4.5)

The integral in the left hand side of equation (4.5) is zero initially. On the other hand the inequality proves
that the left hand side of the equation is either zero or decreases taking negative values. Since the integrand is a

sum of squares and vanishes at t = 0, therefore, first possibility holds.
Hence, W + K +IP+IP'=0,

© 2011 Global Journals Inc. (US)



and U, =0, ¢ =0, =0, P=0, £;=0,7,=0 for t20.

Since fij and rﬁj are the linear functions of éij , ;7” . @and P which are zero for t >0,

therefore, f; =0 =1, t>0.

Hence, (. =¢ =0 =P =0 for t>0.

This completes the proof of uniqueness theorem.
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