

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: D AEROSPACE ENGINEERING

DISCOVERING THOUGHTS AND INVENTING FUTURE

Highlights

- Vehicles Integration Tower
- Environment Control System
- Characterization of Gasoline
- Structural Damage Mitigation

August 2011

Volume 11
Issue 5
version 1.0

GLOBAL JOURNAL OF RESEARCH IN ENGINEERING :D
AEROSPACE ENGINEERING

GLOBAL JOURNAL OF RESEARCH IN ENGINEERING :D
AEROSPACE ENGINEERING

VOLUME 11 ISSUE 5 (VER. 1.0)

OPEN ASSOCIATION OF RESEARCH SOCIETY

© Global Journal of
Researches in Engineering.
2011.

All rights reserved.

This is a special issue published in version 1.0
of "Global Journal of Researches in
Engineering." By Global Journals Inc.

All articles are open access articles distributed
under "Global Journal of Researches in
Engineering"

Reading License, which permits restricted use.
Entire contents are copyright by of "Global
Journal of Researches in Engineering" unless
otherwise noted on specific articles.

No part of this publication may be reproduced
or transmitted in any form or by any means,
electronic or mechanical, including
photocopy, recording, or any information
storage and retrieval system, without written
permission.

The opinions and statements made in this
book are those of the authors concerned.
Ultraculture has not verified and neither
confirms nor denies any of the foregoing and
no warranty or fitness is implied.

Engage with the contents herein at your own
risk.

The use of this journal, and the terms and
conditions for our providing information, is
governed by our Disclaimer, Terms and
Conditions and Privacy Policy given on our
website <http://www.globaljournals.org/global-journals-research-portal/guideline/terms-and-conditions/menu-id-260/>

By referring / using / reading / any type of
association / referencing this journal, this
signifies and you acknowledge that you have
read them and that you accept and will be
bound by the terms thereof.

All information, journals, this journal,
activities undertaken, materials, services and
our website, terms and conditions, privacy
policy, and this journal is subject to change
anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: [Open Association of Research Society](#)
[Open Scientific Standards](#)

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office,
Cambridge Office Center, II Canal Park, Floor No.
5th, **Cambridge (Massachusetts)**, Pin: MA 02141
United States

USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Open Association of Research Society, Marsh Road,
Rainham, Essex, London RM13 8EU
United Kingdom.

Packaging & Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please
email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org

Investor Inquiries: investers@globaljournals.org

Technical Support: technology@globaljournals.org

Media & Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:

22 USD (B/W) & 50 USD (Color)

Yearly Subscription (Personal & Institutional):

200 USD (B/W) & 250 USD (Color)

EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software
Engineering
Director, Information Assurance
Laboratory
Auburn University

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University,
Syracuse, New York
M.S. and B.S. Bogazici University,
Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal
Nutrition
B.A. University of Dublin- Zoology

Dr. Wenyi Feng
Professor, Department of Computing &
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems
Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS,
PhD., (University of Texas-Dallas)

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley
& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and Finance
Professor of Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of Regina
Ph.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windsor

Dr. Lynn Lim

Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Eötvös Loránd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.

Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D
Associate Professor and Research
Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical Neuroscience
Northwestern University Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at
Buffalo, School of Medicine and
Biomedical Sciences

Dr. Michael R. Rudnick

M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center,
Philadelphia
Nephrology and Internal Medicine
Certified by the American Board of
Internal Medicine

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D
Marketing
Lecturer, Department of Marketing,
University of Calabar
Tourism Consultant, Cross River State
Tourism Development Department
Co-ordinator , Sustainable Tourism
Initiative, Calabar, Nigeria

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences,
National Central University, Chung-Li,
TaiwanUniversity Chair Professor
Institute of Environmental Engineering,
National Chiao Tung University, Hsin-
chu, Taiwan.Ph.D., MS The University of
Chicago, Geophysical Sciences
BS National Taiwan University,
Atmospheric Sciences
Associate Professor of Radiology

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science &
Technology
Alfred Naccash Avenue – Ashrafieh

PRESIDENT EDITOR (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences

Denham Harman Research Award (American Aging Association)

ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization

AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences

University of Texas at San Antonio

Postdoctoral Fellow (Department of Cell Biology)

Baylor College of Medicine

Houston, Texas, United States

CHIEF AUTHOR (HON.)

Dr. R.K. Dixit

M.Sc., Ph.D., FICCT

Chief Author, India

Email: authorind@computerresearch.org

DEAN & EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),

MS (Mechanical Engineering)

University of Wisconsin, FICCT

Editor-in-Chief, USA

editorusa@computerresearch.org

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant

CEO at IOSRD, GAOR & OSS

Technical Dean, Global Journals Inc. (US)

Website: www.suyogdixit.com

Email:suyog@suyogdixit.com

Sangita Dixit

M.Sc., FICCT

Dean & Chancellor (Asia Pacific)

deanind@computerresearch.org

Pritesh Rajvaidya

(MS) Computer Science Department

California State University

BE (Computer Science), FICCT

Technical Dean, USA

Email: pritesh@computerresearch.org

Luis Galárraga

J!Research Project Leader

Saarbrücken, Germany

CONTENTS OF THE VOLUME

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Table of Contents
- v. From the Chief Editor's Desk
- vi. Research and Review Papers

- 1. Environmental Control System for Military & Civil Aircraft. **1-6**
- 2. Petri Nets Applied to the Analysis of Algorithm For Space Vehicles Integration Tower Self Test. **7-12**
- 3. Adaptive Control for Structural Damage Mitigation. **13-19**
- 4. Characterization of Gasoline Engine Exhaust Fumes Using Electronic Nose Based Condition Monitoring. **21-29**

- vii. Auxiliary Memberships
- viii. Process of Submission of Research Paper
- ix. Preferred Author Guidelines
- x. Index

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: D
AEROSPACE ENGINEERING
Volume 11 Issue 5 Version 1.0 August 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Environmental Control System for Military & Civil Aircraft

By Prof. D.V.Mahindru, Ms Priyanka Mahendru

SRMGP, Tewari Ganj, Lucknow, U.P., India

Abstract - With a view to provide cooling, heating, ventilation, humidity/contaminant control and pressurization within aircraft occupied compartments, cargo compartments and electronic equipment bays Environmental Control system is a part of all Military and civil aircrafts . It also caters to other pneumatic demands like windshield demisting, aerofoil anti-icing, door-sealing, fuel-tank pressurization and engine bay ventilation.

The technology used for air conditioning of all types of Military/Civil aircrafts is predominantly Air Cycle air Conditioning. Based upon Joule or Reversed Brayton Cycle, the system utilizes the high temperature, high pressure bleed air extracted from compressor of main engine/APU. It not only enjoys the advantage of simplicity and inherent compactness of pneumatic equipment but also meets the integrated cooling and pressurization requirements of an aircraft.

Both air-cycle based refrigeration system which lowers the enthalpy level of air by transforming heat energy into work and conventional vapor compression cooling system that extracts heat by evaporating a suitable liquid refrigerant have their own limitations.

Keywords: *Air Management System, ventilation, humidity/ contaminant control windshield demisting, aerofoil anti-icing, door-sealing, fuel-tank pressurization engine bay ventilation and pressurization within aircraft.*

GJRE-D Classification : FOR Code: 090799

ENVIRONMENTAL CONTROL SYSTEM FOR MILITARY CIVIL AIRCRAFT

Strictly as per the compliance and regulations of:

Environmental Control System for Military & Civil Aircraft

Prof. D.V.Mahindru^a, Ms Priyanka Mahendru^Q

Abstract - With a view to provide cooling, heating, ventilation, humidity/contaminant control and pressurization within aircraft occupied compartments, cargo compartments and electronic equipment bays Environmental Control system is a part of all Military and civil aircrafts . It also caters to other pneumatic demands like windshield demisting, aerofoil anti-icing, door-sealing, fuel-tank pressurization and engine bay ventilation.

The technology used for air conditioning of all types of Military/Civil aircrafts is predominantly Air Cycle air Conditioning. Based upon Joule or Reversed Brayton Cycle, the system utilizes the high temperature, high pressure bleed air extracted from compressor of main engine/APU. It not only enjoys the advantage of simplicity and inherent compactness of pneumatic equipment but also meets the integrated cooling and pressurization requirements of an aircraft.

Both air-cycle based refrigeration system which lowers the enthalpy level of air by transforming heat energy into work and conventional vapor compression cooling system that extracts heat by evaporating a suitable liquid refrigerant have their own limitations.

Therefore, off late, efforts are underway to integrate both the cooling systems to provide the most cost effective solution to the problem of dissipation of heat - generated both within (personnel, flight control systems, avionics, etc.) as well as outside (aerodynamic heating & solar radiation) the aircraft. The technological challenges that the industry is currently facing in this sector are – reduction of power consumption, better overall reliability with free of scheduled maintenance and improved passenger comfort. While improved control through the use of digital controller, re-circulation and increase in individual efficiency factor would minimize power input, better constancy of temperature, faster air-conditioning of cabin/cockpit and lower noise level might cater to a more comfortable air conditioning system. A better overall reliability may be achieved by incorporating cutting-edge technologies like air-foil bearing in ACM. Air-foil bearing increases the reliability of high speed. A pack concept is also employed nowadays for major ECS components to ease the installation and maintenance in the aircraft and also to reduce overall weight.

Keywords : Air Management System, ventilation, humidity/ contaminant control windshield demisting, aerofoil anti-icing, door-sealing, fuel-tank pressurization engine bay ventilation and pressurization within aircraft.

Author ^a : Prof. D.V.Mahindru, Professor (Mech. Engg.), SRM GPC, Tewari Ganj, Lucknow, U.P. , India.

Author ^Q : Ms Priyanka Mahendru, Sr.Lecturer (E.I.Deptt.), SRM GPC, Tewari Ganj, Lucknow, U.P. , India.

I. INTRODUCTION

Environmental Control System or Air Management System, as it is popularly called nowadays, is a generic term used in aircraft industry for system and equipment associated with cooling, heating, ventilation, humidity / contaminant control and Pressurization within aircraft occupied compartments, cargo compartments and electronic equipment bays. It also caters to other pneumatic demands like windshield demisting, aerofoil anti-icing, door-sealing, fuel-tank pressurization and engine bay ventilation. The real challenge for an ECS is to operate and supply adequate cooling over a wide range of ground and flight conditions in a most reliable and efficient manner. Both air-cycle based refrigeration system which lowers the enthalpy level of air by transforming heat energy into work and conventional vapor compression cooling system that extracts heat by evaporating a suitable liquid refrigerant have their own limitations. Therefore, off late, efforts are underway to integrate both the cooling systems to provide the most cost effective solution to the problem of dissipation of heat - generated both within (personnel, flight control systems, avionics, etc.) as well as outside (aerodynamic heating & solar radiation) the aircraft. The areas of concern in ECS which are also drawing much attention nowadays are reduction in power consumption, packaging, schedule free maintenance, easy diagnosis & trouble shooting of malfunction, passenger/pilot comfort and environmental compatibility.

II. DESIGN TECHNOLOGY

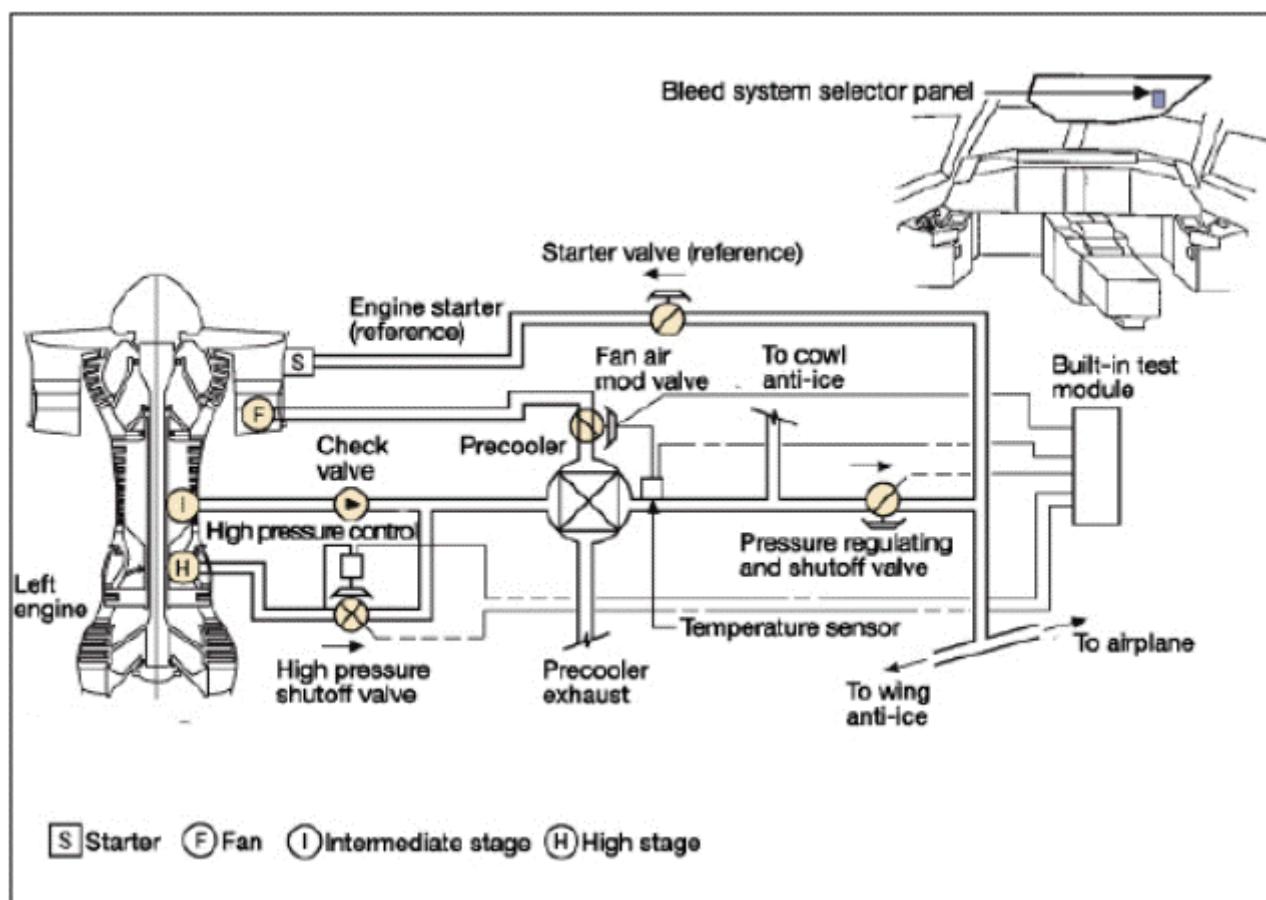
a) Air Cycle Air Conditioning

The air cycle refrigeration is the predominant means of air conditioning for commercial and military aircraft of all types. It not only enjoys the advantage of simplicity and inherent compactness of pneumatic equipment but also meets the integrated cooling and pressurization requirements of an aircraft.

Based on Joule or Reversed Brayton air cycle, this system utilizes high pressure, high temperature bleed air, extracted from the compressor of either main engine or APU. It is first routed through a primary heat exchanger where temperature is brought close to the ram-air temperature. After having the pressure of the air

boosted by the compressor of the Air Cycle Machine (ACM) it is again led through a secondary heat exchanger for further removal of heat. It is finally expanded in the turbine to obtain sufficiently cold air. This air is then delivered into the cabin/cockpit for cooling, ventilation, and air pressurization requirements. A water separator, normally placed at the exit of the ACM, helps in removing the moisture condensed during expansion process.

Heating is achieved by mixing controlled amount of hot bleed-air, after by-passing the ACM, with the cold air that comes out of it. ECS generally consists of three major sub-systems;


i. Engine Bleed Air System (EBAS)

This pneumatic system includes equipment and ducting that supply bleed air from the power source to the air conditioning system. Here the air, tapped from the compressor of the engine/APU, flows through bleed air shut-off-valve (BASOV), Non-Return Valve (NRV) and Pressure Regulating and Shut-Off Valve (PRSOV) before entering the air conditioning system. The solenoid operated BASOV opens when air-conditioning is selected. The NRV is normally fitted to prevent cross

flow between engines in the event of single engine operation. The PRSOV limits the bleed air pressure to suit the system requirement.

The technology growth has enabled EBAS, nowadays, to handle bleed air at high temperature. The proprietary Ni-alloy (HAYNES 25 BS HR 40, DEVA Grade 7218/20, etc.) Sealing Rings & Bushes and Carbon Gaskets & Bearings, made out of St. Steel reinforced graphite laminated foils and Carbon Le Carbon JP 600. Most often, there are two air-conditioning packs for safety (3 packs on B747 and DC10), nominally supplying 50% of air needs, but able to operate at their 180% nominal flow rate in case of one failures. On twin-engine aircraft, each engine bleeding is designed to supply half the total air flow (although the two bleedings are connected). On three-engine aircraft, the third engine bleed is on stand-by for redundancy. On 4-engine aircraft each bleeding only supplies $\frac{1}{4}$ of the total design flow.

Control valves in all the bleed system below protect against flow reversal, and maximum bleeding (e.g. in case of a break)

Fig : showing Some of the control valves in the bleed system (from Boeing)

Flow rate multiplier. If only hot air is needed, a small amount of bled air at 250 kPa and 180 °C may be used to pump the necessary total flow rate (5 L/(s•pax)) from outside air (at 25 kPa, 250 K) with:

- A jet pump.
- A compressor, driven by a turbine in the bled stream.

Respectively are fitted to the high temperature valves and their control units. This enables the system to tap air at a temperature of 550°C to 650°C from high-pressure stages of compressor thus providing higher operational pressure for ECS.

The system has also gained capability of providing altitude compensated pressure regulation of bleed air where the pressure of the bleed-air flowing out of it is regulated with the aircraft altitude thus optimizing the tapping of bleed air in accordance with the cooling load of the aircraft. As for example, the pressure regulation characteristic of PRSOV used in LCA is a smooth curve that limits the pressure to 6.5, 5.0 and 4.3 bar at a height of 0, 7 and 15 km from the sea-level respectively. As a system protection device, when PRSOV fails open, EBAS incorporates an overpressure switch. The function of this switch is to sense the rising pressure downstream of the PRSOV and send signal to close all SOVs. The overpressure switch used in LCA EBAS has an over pressure setting of 7.35 ± 0.35 bars to restrict the max. transient downstream pressure of the PRSOV to this value.

ii. Air conditioning System

The design of air conditioning system always centers around its air cycle machine. Modern day's system has evolved from simple low flow turbo-cooler based refrigeration with low pressure water separator, manual temperature control and water-air/air-air radiator to intelligent digital controller based air conditioning & temperature Control System configured with 2-wheel, 3-wheel or 4-wheel boot strap air cycle machine, high pressure water extraction, regenerative heating and light weight air-to-air heat-exchangers.

a. Digital Controller

The digital controller based ECS not only maintain cabin/cockpit temperature with a high degree of precision but also offers numerous options such as digital temperature displays and inputs, digital bus connectivity (to on-board computer) Laptop based diagnostics s/w and re-programmable control equation inputs. Sensor at the inlet of the cabin/cockpit allows it to precisely control the temperature of air entering the cabin as control algorithms constantly calculate the inflow temperature required to meet the changing temperature requirements. The system is also capable of maintaining the correct air temperature entering the ACM through a sensor located at the d/s of the primary heat exchanger and then controlling the amount of bypass bleed air for the Primary Heat Exchanger. This

results in an optimum inlet condition for the ACM and guarantees an efficient operation of the unit.

The digitally controlled inflow control system also have the unique ability to set multiple inflow rates for multiple flight conditions as against single or dual flow setting system typically found in pressure regulator or flow limiting orifice based bleed flow control system. All these facilities reduce the pilot load tremendously.

b. High Pressure Water Removal

High pressure water extraction loop comprise of condenser, high pressure water separator and re-heater. This moisture removal technology eliminates icing at ACM outlet, enables turbine exit temperature to attain sub zero state and avoids the usage of complex condensing type heat exchanger. It also obviates regular maintenance involved in conventional type low-pressure water separator and complexity of ducting.

c. Air Cycle Machine

The design of ECS normally centers around a high efficiency air cycle machines. These are generally 2-wheel units comprising of either centrifugal compressor and radial turbine or radial/axial fan and a radial/axial turbine mounted on the same shaft. However, technology improvement has introduced 3 wheel ACM consisting of a turbine, compressor and fan and 4 wheel ACM consisting of two turbines, a compressor and a fan to achieve a high level of cooling capacity for ECS. These ACMs are in operation particularly in commercial aircraft/Helicopters. A pair of patented Hamilton-Sundstrand four wheel ACMs form the heart of the air management system on the world's largest twinjet the Boeing 777. The centrifugal/axial fans, used in the above units, are either to load the turbines or to induce air flow through heat exchangers or to discharge air over board.

The space and weight constraints in airborne application render the rotating elements in the ACM to extremely small sizes of O/D 75 to 100 mm. Therefore to handle huge air mass flow rate required by the system and also to effect a large enthalpy drop, these turbomachines have a very high rotational speed of 60,000 to 90,000 RPM. Hence criticality of design of these units involves handling of seal leakage, bearing lubrication, balancing of rotating assemblies and counter balancing the end thrusts for all flight conditions

The manufacturing of various detail parts of an air cycle machine maintaining close dimensional and geometrical tolerances is a major challenge to the industry. Generally, 4 or 5-axis CNC machines are used to fabricate Aluminium/Stainless Steel turbine wheels or titanium compressor impellers/blowers. The closeness of the tolerances can be gauged from the fact that the bore dia. of the wheels are maintained within 8-9 microns with ovality restricted to within 3 – 4 microns. The inducers and the exducers of the turbine wheel/compressor matched sets are fabricated using precise investment casting technology.

The Scroll Sheet Metal Sub-Assy. is made out of 1 mm thick stainless steel sheet using argon gas welding to get the correct volute area distribution. The diffuser ring, which provides a divergent passage for the air at the Scroll Assy. inlet is manufactured through either investment casting or CNC milling and integrated with the cover plate using Electron Beam Welding technology.

The Drilled-hole Nozzle, made out of stainless steel, after fabrication is coated with tungsten-carbide to eliminate the erosion problem associated with high temperature air flow. The holes in this component are drilled in two rows to reduce vibrational effects and increase the endurance life of the expander. Due to space constraint, the two rows are staggered.

The Torus Assembly which houses torus inlet to receive and direct air it to nozzle inlet, torus-outlet for discharging cold air and bypass inlet is manufactured using investment casting.

The assembly of ACM is also equally challenging. The fits and clearances of the mating parts are to be precisely maintained to contain the internal vibration of the unit and prevent rubbing between two parts which leads to undesirable temperature rise within the unit. The rotating elements are also separately balanced in a balancing machine for a min. unbalance of 14 mgm-in. This prevents rotational vibration and ensures a service life of the unit that match with the other rotables fitted in the aircraft. The clearances between the stator and the rotor of the turbomachines e.g. the compressor wheel and the scroll assy. or the turbine wheel and nozzle are maintained to around 0.25 –0.3 mm since the efficiency of the turbo machines is very sensitive to this parameter.

The critical aspect of testing of Air Cycle Machines is accurate measurements of performance parameters at controlled/design inlet conditions. The temperatures are measured by using K type thermocouple or 4 wire RTD. The pressure values are sensed using the static pressure tapping and ceramic sensing elements based pressure transducers. Orifice plates and electronic multivariable flow transmitter are used to measure the mass flow. The vibration level & RPM of the unit is measured and displayed through accelerometer & magnetic pick up respectively. While the Bourden tube pressure gauges, single/multiple channel digital temperature indicators display the reading on the panels, the output of the RTD, pressure transducer, variable flow transmitter, accelerometer and magnetic pick up are also simultaneously sent to data acquisition system for on line data logging /display and future data analysis and presentation.

iii. Pressurization system

The pressurization system comprises of pressurization control, outflow valve, positive pressure relief valve, vacuum/inward relief valve and pressurizing

indicating and warning. The system controls absolute pressure of the cabin/cockpit by modulating the outflow of air from it through one or more outflow valve and the rate of pressure change. While the positive pressure relief valve prevents over-pressurizing the aircraft occupied space the vacuum/inward relief valve prevents the pressure inside the cockpit/cabin from becoming less than that desired. Pressure indicators are provided to allow monitoring of cabin altitude, differential pressure and rate of pressure change. Normally the control of cabin altitude in a civil aircraft is isobaric type and maintained around 8000 feet. The warning system sounds alarm if the cabin altitude exceeds approximately 10000 feet. For military aircraft this can be less stringent. Above a certain height the constant differential pressure control overrides the isobaric control and a constant difference between cockpit and ambient pressure of around 5 psi is maintained till the ceiling altitude.

Normally these pressure controllers are electrically operated. However, with the advent of digital controller the pressure controller can be electronically controlled. Algorithms for cabin pressure control can be programmed into the controller to enable maintenance of accurate and comfortable pressure levels inside the cabin/cockpit.

a. Vapor Cycle System

The Air cycle refrigeration system, operating on bleed air drawn from the engine, imposes a major fuel penalty on the aircraft. The associated large ram-air drag and icing at the exit of the turboexpander due to moisture content also restricts its application to a certain degree. The vapor cycle systems are free from these deficiencies. It has a high and fairly constant COP compared to air-cycle system whose COP falls with the aircraft Mach No.

The main components of this system are evaporator, compressor, condenser, refrigeration receiver, expansion valve, refrigerant filter drier, high-pressure cut-out switch & blow-out plug. The cooling of occupied and equipment compartment is accomplished by re-circulation of compartment air through the evaporator. Make-up air is generally ducted to the compartment to maintain pressurization and ventilation requirement. Heating is accomplished in the same manner as it is done in the air cycle system.

The filter-drier absorbs moisture and removes foreign matters, acid, sludge etc. As a safety device, the high-pressure cut-off switch shuts down the compressor in the event of excessive refrigerant vapor pressure and protects the system against operational overloads. Provisions are also made to prevent frosting of the evaporator during low cooling load condition and facilitate collecting and draining overboard the moisture.

The main advantage of vapor compressor cycle system is its packaged configuration that facilitates its

installation, removal and maintenance in the aircraft. Also, reliability and life span of high performance flight control systems and avionics warrants supply of air at low and constant operating temperature with reduced humidity that is easily obtained using vapor cycle system.

Today, Hamilton-Sundstrand VCS, using high efficiency Nonazeotropic Refrigerant Mixture (NARM) are found in NH NATO helicopter, Sikorsky S-92 Civil Helicopter and USAF F-16. Hybrid systems are also becoming quite popular. Still a proprietary concept of companies like Honeywell, this new technology combines both Vapor Cycle and Air Cycle system to provide air conditioning in the cabin. The system switches from bleed-air to closed loop refrigerant in flight.

The reliability and life span of high performance flight control systems and avionic increase with low & constant operating temperature and reduced humidity and pollution. Only dedicated liquid cooling system can meet this environmental specifications needed for modern avionics. USAF is thus contemplating on integrating electrically driven on-board vapor cycle heat pump into the F-16's current cooling system so that the aircraft may be retrofitted with advanced, reliable avionics and electronics modules at low cost.

III. CONCLUSIONS

The technological challenges that the industry is currently facing in this sector are – reduction of power consumption, better overall reliability with free of scheduled maintenance and improved passenger comfort. While improved control through the use of digital controller, re-circulation and increase in individual efficiency factor would minimize power input, better constancy of temperature, faster air-conditioning of cabin/cockpit and lower noise level. All these cater to a more comfortable air conditioning system. A better overall reliability may be achieved by incorporating cutting-edge technologies like air-foil bearing in ACM. Air-foil bearing increases the reliability of high speed turbomachines more than tenfold. It enables the turbomachines to rotate at a higher speed. Since no lubrication is required, these bearings can withstand severe environmental conditions. It also eliminates routine maintenance and oil filling of rotating element bearings. A pack concept is also employed nowadays for major ECS components to ease the installation and maintenance in the aircraft and also to reduce overall weight. It is worth noting that the quality of the volume of air is maintained from the time it enters the aircraft's engine to the time it is expelled overboard is very high. All of the processes involved maintain or reestablish the purity of the air volume. The results of many cabin air quality tests reinforce this conclusion. As this brief paper illustrates, the ECS of today's jetliners is carefully

engineered to provide superior cabin air.

IV. ABBREVIATIONS

ACM : Air Cycle Machine
 APU : Auxiliary Power Unit
 EBAS : Engine Bleed Air System
 ECS : Environmental Control System
 NATO : North Atlantic Treaty Organization
 PSOV: Priming Shut off Valve
 RTD : Resistance temperature detectors or resistive thermal devices (RTDs)
 USAF : United States Airforce
 VCS : Vapor Cycle System

REFERENCES REFERENCIAS REFERENCIAS

1. De Doncker, R., Pulle, D. and Veltman A., "Advanced Electrical Drives: Analysis, Modeling, Control", Springer, New York, 2010
2. John Croft, "MRO USA: Engine Diagnostics: GE opens the envelope", <http://www.flightglobal.com/articles/2010/04/20/340710/mro-usa-engine-diagnostics-ge-opens-the-envelope.html>, 2010
3. Gerstler, W.D., and Bunker, R.S., "Aviation Electric Power". Mechanical Engineering, December 2008, pp 74-75
4. Moir, I. and Seabridge, A., "Aircraft Systems, mechanical, electrical and avionics subsystems integration", 3rd edition, John Wiley & Sons, Chichester, England, 2008.
5. Faith, L.E., Ackerman, G.H., and Henderson, H.T., "Heat Sink Capability of Jet A Fuel: Heat Transfer and Coking Studies", Shell Development Co., S-14115, NASA CR-72951, 1971.
6. USAF Scientific Advisory Board, "New World Vistas: Air and Space Power for the 21st Century", Materials Volume, Washington, D.C., 1996.
7. David R. Space and Dr. Fred E. Tilton[1] De Doncker, R., Pulle, D. and Veltman A., "Advanced Electrical Drives: Analysis, Modeling, Control", Springer, New York, 2010.
8. Commercial Airliner Environmental control System: Engineering aspects of Cabin Air Quality by: Elwood H. Hunt, Dr. Don H. Reid,
9. De Doncker, R., Pulle, D. and Veltman A., "Advanced Electrical Drives: Analysis, Modeling, Control", Springer, New York, 2010.
10. John Croft, "MRO USA: Engine Diagnostics: GE opens the envelope", <http://www.flightglobal.com/articles/2010/04/20/340710/mro-usa-engine-diagnostics-ge-opens-the-envelope.html>, 2010.
11. Gerstler, W.D., and Bunker, R.S., "Aviation Electric Power". Mechanical Engineering, December 2008, pp 74-75.
12. Moir, I. and Seabridge, A., "Aircraft Systems, mechanical, electrical and avionics subsystems

integration", 3rd edition, John Wiley & Sons, Chichester, England, 2008.

13. Faith, L.E., Ackerman, G.H., and Henderson, H.T., "Heat Sink Capability of Jet A Fuel: Heat Transfer and Coking Studies", Shell Development Co., S-14115, NASA CR-72951, 1971.
14. USAF Scientific Advisory Board, "New World Vistas: Air and Space Power for the 21st Century", Materials Volume, Washington, D.C., 1996.
15. http://en.wikipedia.org/wiki/Environmental_Control_System.
16. http://www.liebherr.com/ae/en/products_ae.asp?me_nulD=106050!160-0. Liebherr-Aerospace has designed, developed, manufactured and serviced airplane and helicopter air conditioning systems for more than 50 years.
17. Neese, B., 1999, "Aircraft Environmental Systems", Endeavor Books.
18. Pérez-Grande, I., Leo, T., 2002, "Optimisation of a commercial aircraft environmental control system", Applied Thermal Engineering 22 (17), pp. 1885-2004.
19. Leo, T., Pérez-Grande, I., 2005, "A thermo-economic analysis of a commercial aircraft environmental control system", Applied Thermal Engineering 25, pp. 309-325.Cebeci, T., Kafyeke, F., 2003, "Aircraft icing", Annu. Rev. Fluid Mech. 35:11-21.
20. Fortin, G., Laforte J.L., Ilinca A., 2006, "Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model", International Journal of Thermal Sciences 45, 595-606.Saeed, F., 2002, "State-of-the-Art Aircraft Icing and Anti-Icing Simulation". ARA Journal, Vol. 2000-2002, No. 25-27.

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: D
AEROSPACE ENGINEERING
Volume 11 Issue 5 Version 1.0 August 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Petri Nets Applied to the Analysis of Algorithm For Space Vehicles Integration Tower Self Test

By Francisco C. P. Bizarria, Jose W. P. Bizarria, Joao M. Rosario

Taubate University and Systems Engineer in Institute of Aeronautics and Space, Brazil

Abstract - The satellite launch vehicle currently developed in Brazil, need that their modules are integrated into an unit called by Integration Movable Tower. In the tower structure is installed: moving bridge, elevator, work platforms, doors, movement trucks and other equipment that aids the accomplishment of integration tasks, tests and vehicle launching. In order to perform the foreseen procedures in the aforementioned tasks, the equipment are submitted to several operational tests prior to utilization of integration tower control system. On that context, this work presents a proposal of model developed by means of Petri Nets to represent the algorithm steps that tests the sensors and actuators included into the main equipment installed in the mentioned integration tower. That is carried out computational simulations with the target of identifying the Petri Nets properties that are related to the confusion conflicts and dead lock. The results obtained in the simulations indicates that the proposed model is able of representing the sensors and actuator operation embedded inside a standard equipment during the self test and based upon that is evaluated the algorithm performance.

Keywords : *Self Test, Integration Tower, Space Vehicles, Petri Nets.*

GJRE-D Classification : *FOR Code: 090199*

Strictly as per the compliance and regulations of:

Petri Nets Applied to the Analysis of Algorithm For Space Vehicles Integration Tower Self Test

Francisco C. P. Bizarria^a, Jose W. P. Bizarria^Q, Joao M. Rosario^B

Abstract - The satellite launch vehicle currently developed in Brazil, need that their modules are integrated into an unit called by Integration Movable Tower. In the tower structure is installed: moving bridge, elevator, work platforms, doors, movement trucks and other equipment that aids the accomplishment of integration tasks, tests and vehicle launching. In order to perform the foreseen procedures in the aforementioned tasks, the equipment are submitted to several operational tests prior to utilization of integration tower control system. On that context, this work presents a proposal of model developed by means of Petri Nets to represent the algorithm steps that tests the sensors and actuators included into the main equipment installed in the mentioned integration tower. That is carried out computational simulations with the target of identifying the Petri Nets properties that are related to the confusion conflicts and dead lock. The results obtained in the simulations indicates that the proposed model is able of representing the sensors and actuator operation embedded inside a standard equipment during the self test and based upon that is evaluated the algorithm performance.

Keywords : Self Test, Integration Tower, Space Vehicles, Petri Nets.

I. INTRODUCTION

The Satellite Launch Vehicle (SLV), illustrated in the figure 1, is currently being developed in Brazil by Institute of Aeronautics and Space. To be launched that vehicle requires that their modules are integrated vertically in the rockets launch center inside a specific site called by Integration Movable Tower (IMT), indicated in the figure 2 [1]. That tower is supported by means of a metallic structure, shaped as a rectangular cubic, with the main side settled on the vertical position.

Such tower is equipped with: movable bridge, elevator, work platforms (movable and fixed), doors, trucks for movement and other equipment that are dedicated to aid a group of task accomplishment specialists that are related to the integration, tests and also to the launch of the vehicle [2]. In order to comply with all procedures foreseen on these tasks is necessary to expose the people, dedicated to perform such tasks, to the risks inherent to the space segment. That scenario of risks defines a situation where is strategic, in

Author ^a : Asst. Professor in Electrical Engineering Department – Taubate University and Systems Engineer in Institute of Aeronautics and Space, Brazil. Email : bizarriacpb@iae.cta.br

Author ^Q : Asst. Professor in Computing Department–Taubate University, Brazil. Email : jwpbiz@gmail.com

Author ^B : Adj. Professor in Mechanical Department - Campinas University, Brazil. Email : rosario@fem.unicamp.br

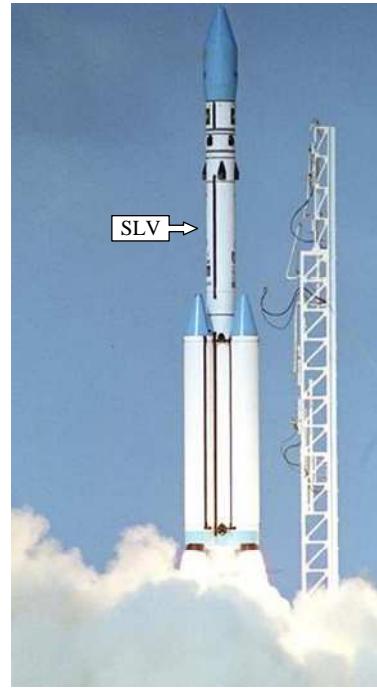


Fig.1 : Satellites Launcher Vehicle Take-off.

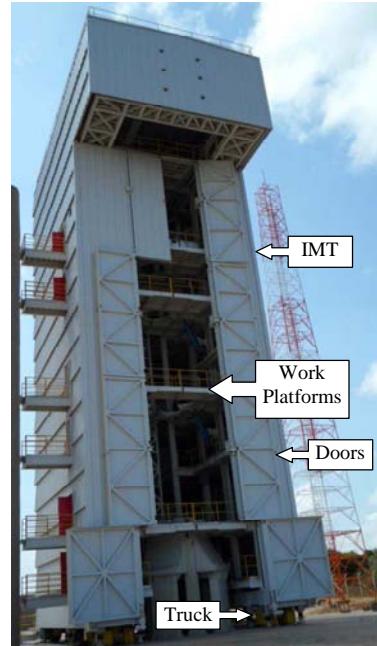


Fig.2 : Integration Movable Tower.

order to increase the safety, that each one of the mentioned equipment is submitted to a several operational tests prior to being used by the tower control system.

The actuation of equipment installed in the Integration Movable Tower (IMT) is carried out by remote mode and managed by an automated system that has basically, in its physical architecture, the elements presented in the figure 3.

The block called Control, represented in the figure 3, has as main function to perform the management of activities developed by the physical architecture of the Integration Movable Tower (IMT) in order to support the procedures established to the accomplishment of integration tasks, tests and vehicle launch. The more relevant parts present on that block are:

Network Interface for Deterministic Protocol (NIDP), Central Processing Unit (CPU) and Network

Interface for Probabilistic Protocol (NIPP). The Network Interface for Deterministic Protocol (NIDP), is responsible for generating and receiving signals, related to the deterministic protocol, to allow the communication between the control module and the Input and Output Remote Units (IORU) and/or Smart Actuators (SA).

The main function of the Central Processing Unit (CPU) is to generate the necessary signals to run the system management program [3]. Network Interface for Probabilistic Protocol (NIPP) generates and receives signals, related to the probabilistic protocol, to allow the communication between the control module and the Host Computer (HC) of the Server (SER).

The Deterministic Communication Line (DCL) is the physical link that transfers the signals between the Network Interface for Deterministic Protocol (NIDP) and the Input and Output Remote Units (IORU) and/or Smart Actuators (SA) of bidirectional mode.

Fig.3: Elements from physical architecture adopted for automation of the Integration Movable Tower.

The Input and Output Remote Units (IORU) are responsible for generating and receiving signals, related to the deterministic protocol, to allow the communication between the Network Interface for Deterministic Protocol (NIDP) and the sensors and/or actuators, which have no self test system, present in the equipment installed in the Integration Movable Tower (IMT). Those units are able of operating with digital and/or analog inputs and outputs, which support a large range of amplitudes and frequencies of signals [4].

The sensors and actuators present in the

equipment (for instance: work platforms, doors etc) installed in the Integration Movable Tower (IMT), which have no self test system are represented respectively by: **S₁₁, S₁₂, ..., S_{1n}, S_{x1}, S_{x2}, ..., S_{xz}** and **A₁₁, A₁₂, ..., A_{1m}, A_{x1}, A_{x2}, ..., A_{xw}**.

The equipment (for instance: movable bridges, elevator, movement trucks etc) present in the Integration Movable Tower (IMT) which have smart actuators equipped with self test are represented by: **SA₁, ..., SA_y**.

The Probabilistic Communication Line (PCL) is the physical link that transfers the bidirectional signals between: i) the Network Interface for Probabilistic Protocol (NIPP) and the Host Computer (HC) of the Server (SER), ii) the Host Computer (HC) of the Server (SER) and the Host Computer (HC) of the Man Machine Interface 1 (MMI1) and iii) the Host Computer (HC) of the Server (SER) and the Host Computer (HC) of the Man Machine Interface 2 (MMI2) [5].

The main functions of the Server (SER) Host Computer (HC) are focused on: i) managing the system supervision layer, ii) storing and becoming available information related to the database and iii) supporting the requests from Man Machine Interface 1 (MMI1) and Man Machine Interface 2 (MMI 2). Those interfaces are the means that operator uses to supervise and command the actuation of the equipment installed in the Integration Movable Tower. On that context, this work presents a proposal of model created to evaluate the steps of the algorithm that was developed to perform self test of the actuators and sensors that are present in the main equipment installed in the space vehicle integration tower, by means of Petri Nets [6]. Computational simulations are performed on that model, with the goal of identifying the Petri Nets properties that are related mainly with the confusion conflicts and dead lock.

II. TARGETS OF THE WORK

The main target of this work is to present a proposal of model, created by means of Petri Nets, to evaluate the algorithm that performs the self test in actuators and sensors which are present in the main equipment installed in the Integration Movable Tower (IMT). To present the most relevant results that were obtained in the simulations performed with that model within the context of the confusion conflicts and dead lock.

III. MODEL PROPOSED

In the model proposed in the figure 4 are represented the main status that are determined by the algorithm that performs the evaluation of actuators and sensors which are present in the equipment installed in the Integration Movable Tower (IMT), that have no self test incorporated, by means of Petri Nets.

During the development of those nets was used the gathering procedure [7] and considered the components foreseen in the architecture presented in the figure 3.

That model indicates separately the Petri Nets that were developed to represent:

i) Control (CONTROLLER), ii) the actuator and sensors which are present in the equipment (EQUIPMENT) and have no self test, iii) the Man Machine Interface (SELF TEST INTERFACE) and iv) the

system to generate faults in the actuator and/or sensors of equipment (FAULTS GENERATOR).

That way of modeling has as main target to allow observing the operational behavior of each part involved in the process during the program simulation that includes the steps foreseen in the self test algorithm. The distribution of positions, transitions, arcs and the quantity of tokens, showed in the figure 4, aims to establish the initial condition of operation of an equipment, that have no self test, present in the physical architecture adopted for the automation of the Integration Movable Tower (IMT).

In the model developed for the CONTROLLER are foreseen specified positions to represent the inputs (I1, I2, I3, I4, I5, I6 and I7) and outputs (O1, O2, O3, O4, O5, O6, O7, O8 and O9) which perform the connections with the models of EQUIPMENT and SELF TEST INTERFACE.

The model operation presented in the figure 4 must comply with the steps foreseen in the analytic flowchart that represents a typical sequence of actions that are performed by the program that runs the actuator and sensors self test, present in a typical equipment (one actuator with two sensors) installed in the Integration Movable Tower (IMT), which is presented in the figure 5.

In the flowchart presented in the figure 5 is foreseen the necessary steps to: i) generate the command of activation and deactivation of the actuators present in the equipment that have no self test and ii) check the faults during operation of actuators and/or sensors [8].

The main status determined by the actuators and sensors present in the equipment installed in the Integration Movable Tower (IMT) are: i) Actuator Off, ii) Actuator On, iii) Sensor Off and iv) Sensor On. Based on that it is important to highlight that the actuator is able of attributing status to the sensors, nonetheless the reciprocal is not true.

The FAULTS GENERATOR was developed to interact directly with the EQUIPMENT model in order to establish the following status possibilities: i) Actuator Off with Sensor Indicating Off, ii) Actuator Off with sensor Indicating On, iii) Actuator Off with one Sensor Indicating Off and other Sensor Indicating On, iv) Actuator Off, v) Actuator On with Sensor Indicating On, vi) Actuator On with Sensor Indicating Off, vii) Actuator On with one Sensor Indicating Off and other Sensor Indicating On and viii) Actuator On. The aforementioned status shall be identified and indicated by the self test algorithm during the equipment test.

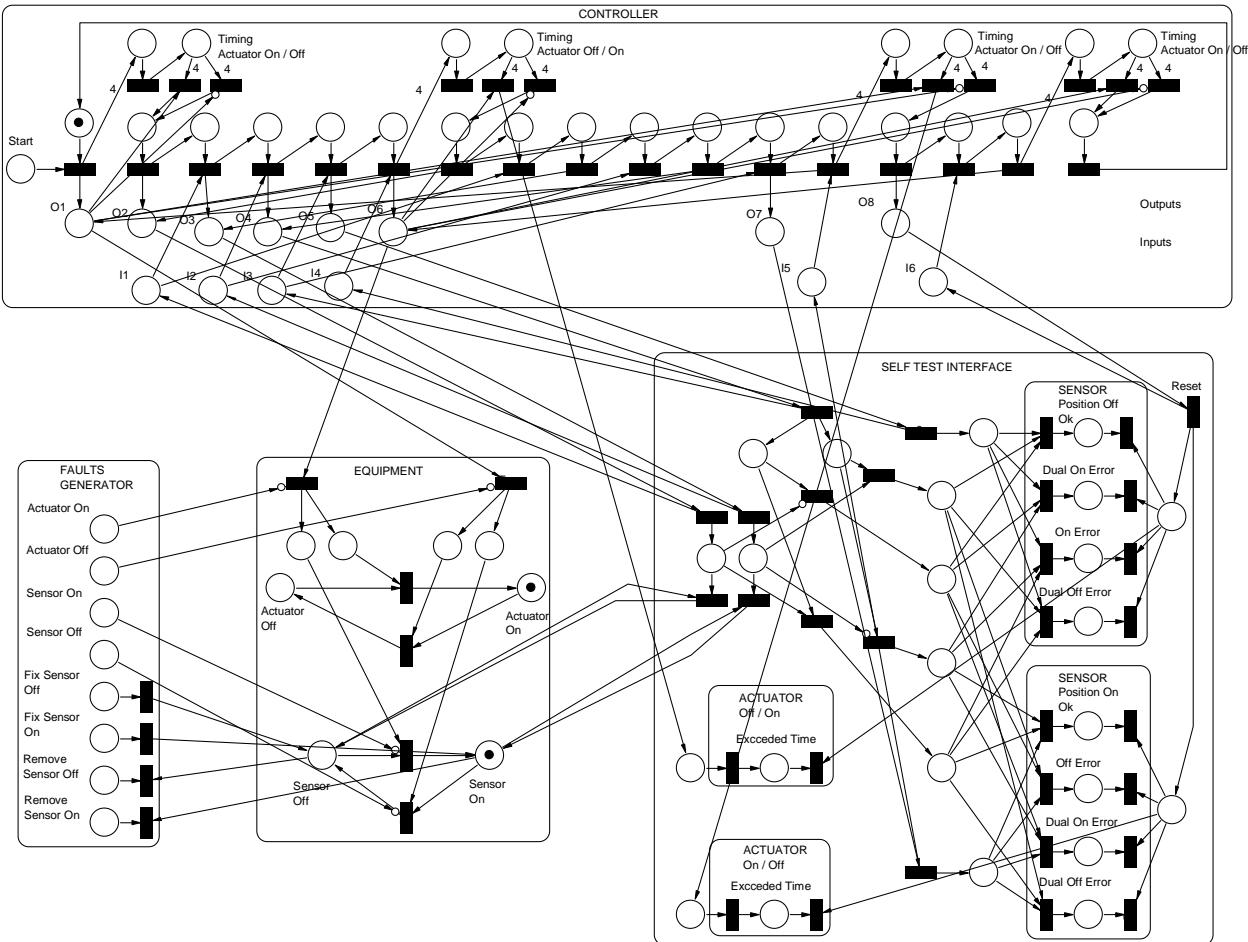
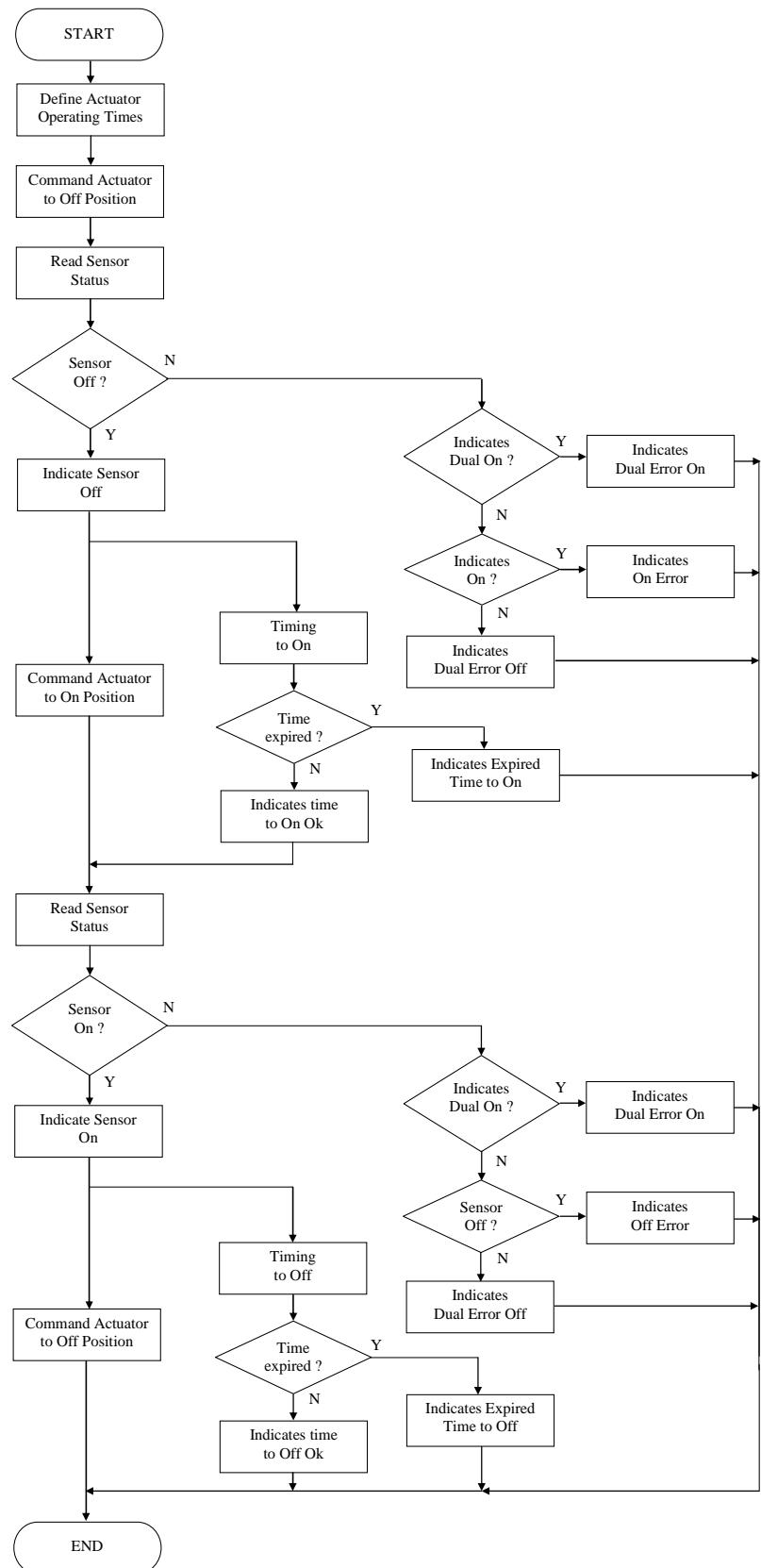



Fig.4 : Models by Petri Nets of physical architecture adopted in the automation of the Integration Movable Tower.

The results obtained in the self test performed by the actuators and sensors present in the equipment are presented in the SELF TEST INTERFACE. That interface is able of indicating the following status: i) Sensor Ok, ii) Sensors with indication of On and Off status (Dual Error On), iii) Sensor failed to On (Error to On), iv) Sensors without status indication (Dual Error Off), v) Actuator with timeout to On (Timeout to On) and vi) Actuator with timeout to Off (Timeout to Off).

Fig.5 : Analytic flowchart for equipment self test.

IV. SIMULATION AND ANALYSIS OF PROPERTIES

The computational simulation of the model proposed in this work aims to represent the algorithm that performs evaluation of the actuators and sensors present in the equipment installed in the Integrated Movable Tower (IMT), that have no self test, by means of Petri Nets. Such simulation was performed exploring all status foreseen in the networks, specially those included in the analytic flowchart presented in the figure 5, employing software Visual Object Net [9].

The confusion conflicts were observed in simulations performed in this work and they were solved inserting restrictions in the transitions involved with the same conflict. The dead lock was not observed in the simulations of the self test algorithm. In the simulation of the proposed model all positions and transitions were respectively achieved and triggered. The quantities of tokens varied during the Petri Nets simulations, nevertheless that situation did not create neither an overflow nor lack of tokens in positions that could degrade the accomplishment of the self test algorithm.

V. CONCLUSION

The method adopted to model the system, employing Petri Nets, was able of showing details of CONTROLLER operation, EQUIPMENT, SELF TEST INTEFACE and the phases foreseen in the self test algorithm. These elements are included in the physical and logical architecture of the Integration Movable Tower (IMT). That method allowed the individual operational analysis of each part foreseen in the system architecture and that fact facilitates the evaluation of the algorithm performance, which was developed to perform the self test of actuators and sensors that are present in the equipment installed in the mentioned tower.

Regarding to the properties evaluated in this work, only confusion conflict was identified in the system simulation with characteristics for causing undesired consequences. The solution for that situation was obtained inserting restrictions in the transitions involved with the mentioned conflict. Furthermore, that is quite important to emphasize that the installation of sensors in strategic points of the architecture is one possibility of physical solution to limit the effects of the confusion conflict.

REFERENCES RÉFÉRENCES REFERENCIAS

- Palmerio, A. F.; Introducao a Engenharia de Foguetes, Apostila de Curso realizado no Instituto de Aeronautica e Espaco, Brasil, 2002.
- Yamanaka, F.; Analise de Faltas em Modelo Representativo de Sistema Eletrico Proposto para Plataforma de Lancamento de Veiculos Espaciais, Dissertacao de Mestrado em Engenharia Mecanica – Instituto Tecnologico de Aeronautica, Brasil, 2006.
- Rosario, J. M.; Princípios de Mecatronica, Editora Person Prentice Hall, Sao Paulo, Brasil, 2005.
- Miyagi, P. E.; Controle Programavel – Fundamentos do Controle de Sistemas a Eventos Discretos, Editora Edgard Blucher Ltda, Sao Paulo, Brasil, 1996.
- Silveira, P. R.; Automacao e Controle Discreto, 4a Edicao - Erica, Sao Paulo, Brasil, 2002.
- Cardoso, J. e Valette, R.; Redes de Petri, Editora da UFSC, Santa Catarina, Brasil, 1997.
- De Moraes, C. C. e Castrucci, P. L.; Engenharia de Automacao Industrial, Editora LTC, Rio de Janeiro, Brasil, 2001.
- Petterle, R.; Redes de Petri Aplicadas na Analise de Algoritmo para Autoteste de Torre De Integracao de Veiculos Espaciais, Dissertacao de Mestrado em Engenharia Mecanica – Instituto Tecnologico de Aeronautica, Brasil, 2009.
- Visual Object Net. Disponivel em: <http://www.systemtechnik.tuilmennau.de/~drath/visual_E.htm>. Acesso em 10/04/2006, 2006.

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: D
AEROSPACE ENGINEERING
Volume 11 Issue 5 Version 1.0 August 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Adaptive Control for Structural Damage Mitigation

By Chimpaltradi R. Ashokkumar, B. Dattaguru, N.G.R. Iyengar

Jain University, Jakkasandra Post, Kanakapura Taluk, Ramanagara District, Bangalore, INDIA

Abstract - Substantial progress has been made in analyzing the integrity of composite structures when macro or nano sensors and actuators are embedded into it. The resulting structure in a dynamic environment is said to be "intelligent" if it performs a certain functional requirements related to vibrations, health, shape, etc. In health, after the damage has been detected, the subject of damage mitigation becomes important, so that in prognosis context (Farrar and Lieven, 2007), the remaining life of the structure is extended. The damage is said to be mitigated if the sensor data of the damaged structure matches with the sensor data of the healthy structure. This is done by applying an actuator loading. In this paper, Model Reference Adaptive Control (Slotine and Li, 1991) is applied for structural damage mitigation. A known finite element model resulting from the structural health monitoring and assessment techniques is adopted to determine the control parameters that mitigate the damage. An example is illustrated using a spring-mass-damper model that depicts a structural model with modal coordinates.

Keywords : *Self Test, Integration Tower, Space Vehicles, Petri Nets.*

GJRE-D Classification : *FOR Code: 090204*

Strictly as per the compliance and regulations of:

Adaptive Control for Structural Damage Mitigation

Chimpalthradi R. Ashokkumar^a, B. Dattaguru^a, N.G.R. Iyengar^b

Abstract - Substantial progress has been made in analyzing the integrity of composite structures when macro or nano sensors and actuators are embedded into it. The resulting structure in a dynamic environment is said to be "intelligent" if it performs a certain functional requirements related to vibrations, health, shape, etc. In health, after the damage has been detected, the subject of damage mitigation becomes important, so that in prognosis context (Farrar and Lieven, 2007), the remaining life of the structure is extended. The damage is said to be mitigated if the sensor data of the damaged structure matches with the sensor data of the healthy structure. This is done by applying an actuator loading. In this paper, Model Reference Adaptive Control (Slotine and Li, 1991) is applied for structural damage mitigation. A known finite element model resulting from the structural health monitoring and assessment techniques is adopted to determine the control parameters that mitigate the damage. An example is illustrated using a spring-mass-damper model that depicts a structural model with modal coordinates.

I. INTRODUCTION

In the last several years, many developments have taken place in the areas of structural health monitoring (SHM). Majority of them not only determine the presence of damage in a structure but also attempt to find the status of the structure through an accurate dynamic model that is uncertain when structural damage identification is divided into high- and low-frequency based excitation methods. Stiffness, damping and mode shape parameter changes are modeled for a relatively broad inspection zone (Yan, Yam, Cheng, and Yu, 2006., Ma and Lui, 2005., Tee, Koh, and Quek, 2005., Meng, Lin, Dong and Wei, 2006) but it applies to a specific frequency range. The bandwidth of the sensor technologies such as fiber-optic sensor (Shivakumar and Bhargava, 2005) and piezoelectric sensors (Ghasemi-Nejhad, 2005) usually limits this frequency-range, model size as well as the damage size. When size and location of the damage through SHM and assessment are known, damage prognosis (Papazian, et al., 2009) and structural health management (Xiaomo, 2010) studies assume a given sensor technology and attempt to determine the remaining life of the material. In this effort, the dynamic loading is assumed to be external and the actuator

loading is completely ignored. Through the actuator loads, Model Reference Adaptive Control (MRAC) can be used such that the sensor data from the damaged structure can mimic the healthy structure. Although, damage prognosis study using similar sensor data for healthy and damaged structures is difficult to distinguish, the damage with such actuator loads is then said to be mitigated (Maryam and Luciana, 2010). In this paper, MRAC in state feedback format is investigated for structural damage mitigation (SDM). Some of the attributes of the MRAC are illustrated using the second order spring-mass-damper model that represents a finite element model of structural material in modal coordinate form.

MRAC has been recently investigated for Civil engineering structures (Tu, Jiang, and Stoten, 2010., Chu, Lo, and Chang, 2010), where the response of the structure in real-time is minimized under an earthquake excitations. To extend similar applications of MRAC for other aeronautical and mechanical structures, the SDM problem proposed in this paper assumes integrity of the composite material when macro (Case and Carman, 1994., Mall, 2002., Trease and Kota, 2009) or nano (Chunyu, Thostenson and Tsu-Wei, 2008) sensors and actuators are embedded into it.

The paper is organized with the problem formulation in Section II. In Section III, adaptation law is explained. In Section IV, a procedure to acquire damage and compute control parameters is briefed. In Section V, an example with spring mass-damper system is illustrated. In Section VI, conclusions are presented.

II. PROBLEM FORMULATION

Consider a single input healthy material in control canonical form as follows:

$$y_m^{(n)} + \bar{\alpha}_{n-1}y_m^{(n-1)} + \dots + \bar{\alpha}_0y_m = u(t) + r(t) \quad (1)$$

Where $r(t)$ is an exogenous input. The n^{th} order differentiation with respect to time variable t is denoted by $y_m^{(n)}$. Let,

$$u(t) = -k_{n-1}y_m^{(n-1)} - \dots - k_0y_m \quad (2)$$

Substituting (2) in (1),

$$y_m^{(n)} + \alpha_{n-1}y_m^{(n-1)} + \dots + \alpha_0y_m = r(t) \quad (3)$$

Author ^a ^b : Department of Aerospace Engineering Jain University, Jakkasandra Post, Kanakapura Taluk, Ramanagara District, Bangalore Rural 562 112, INDIA. ^aProfessor and Corresponding Author, Email : chimpalthradi@gmail.com, ^a Visiting Professor, ^b Professor

Where $\alpha_{n-i} = \bar{\alpha}_{n-i} + k_{n-i}$, $i = 1, 2 \dots n$ Without loss of generality, the open loop structure with an excitation load $r(t)$ can be studied by assuming $k_{n-i} = 0$, $i = 1, 2 \dots n$. Let the finite element model of a material with damage be,

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = \hat{u}(t) \quad (4)$$

The parameters $a_{n-1}, a_{n-2}, \dots, a_0$ are to be acquired using a structural damage assessment technique [18]. The state variables $y, \dot{y}, \dots, y^{(n-1)}$ are measurable. The SDM problem is posed as follows: Find a control law $\hat{u}(t)$ in Eq. (4) such that the sensor data $\{y, \dot{y}, \dots, y^{(n-1)}\}$ mimics the sensor data of the healthy material $\{y_m, \dot{y}_m, \dots, y_m^{(n-1)}\}$. In the process, acquire the parameters $\mathbf{a} = \{1, a_{n-1}, a_{n-2}, \dots, a_0\}$ when applying $\hat{u}(t)$ to the damaged material. MRAC is particularly attractive to address this problem. However, to separate control parameters defining the control law $\hat{u}(t)$ from that of the system parameters \mathbf{a} , a state and parameter estimation technique such as an extended Kalman filter (EKF) (Bauer and Andrisani, 1990., Speyer and Crues, 1987) is required. Currently, all the state variables are assumed to be available as the sensor data. Within this framework, the SDM problem is addressed using two design steps. First, adaptation parameters in MRAC are selected such that the damaged response to an excitation load tracks the healthy response of the material. Next, the adaptation parameters are fixed and this damaged response is utilized as sensor data to find a procedure that acquires damage and determines control parameters. Finally, the control parameters are verified to check if the damaged response is indeed tracking the healthy response.

III. ADAPTATION LAW

Let the Laplace variable be s . Given a Hurwitz polynomial $s^n + \beta_{n-1}s^{n-1} + \dots + \beta_0$, the control law $\hat{u}(t)$ is given by (Slotine and Li, 1991),

$$\hat{u}(t) = \hat{a}_n z + \hat{a}_{n-1}y^{(n-1)} + \dots + \hat{a}_0y = \mathbf{v}^T(t)\hat{\mathbf{a}}(t), \quad (5)$$

Where, \mathbf{v}^T refers the transpose of \mathbf{v} and

$$z(t) = y_m^{(n)} - \beta_{n-1}e^{(n-1)} - \dots - \beta_0e,$$

$$e(t) = y(t) - y_m(t),$$

$$\hat{\mathbf{a}} = [\hat{a}_n, \hat{a}_{n-1}, \dots, \hat{a}_1, \hat{a}_0],$$

$$\mathbf{v} = [z(t), y^{(n-1)}, \dots, \dot{y}, y]^T.$$

Let $\tilde{\mathbf{a}} = \hat{\mathbf{a}} - \mathbf{a}$. Then the adaptation law is given by,

$$\begin{aligned} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{v}^T\tilde{\mathbf{a}}, \\ \mathbf{e} &= \mathbf{c} \mathbf{x}, \end{aligned} \quad (6a)$$

$$\dot{\tilde{\mathbf{a}}} = -\mathbf{I}\mathbf{v}\mathbf{b}^T\mathbf{P}\mathbf{x} \quad (6b)$$

Where,

$$\mathbf{x}^T(t) = [y - y_m, \dot{y} - \dot{y}_m, \dots, y^{(n-1)} - y_m^{(n-1)}],$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \cdot \\ \cdot & \cdot & \cdot & \dots & \cdot \\ \cdot & \cdot & \cdot & \dots & \cdot \\ 0 & 0 & 0 & 0 & 1 \\ -\beta_0 & -\beta_1 & -\beta_2 & \dots & -\beta_{n-1} \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{c} = [1 \ 0 \ \dots \ 0 \ 0].$$

\mathbf{P} , the symmetric positive definite constant matrix, is the solution matrix to the Lyapunov equation given by,

$$\mathbf{P}\mathbf{A} + \mathbf{A}^T\mathbf{P} = -\mathbf{Q}$$

\mathbf{Q} is any positive definite matrix. \mathbf{I} is a positive definite diagonal matrix whose entries refer to an adaptation mechanism with slow or fast parameter convergence depending upon the diagonal values one would like to choose. From Eq. (6), it is further observed that, upon an appropriate numerical integration scheme, the sensor data $\{y, \dot{y}, \dots, y^{(n-1)}\}$ and the vector $\tilde{\mathbf{a}}$ are obtained. Clearly, the adaptation parameters in \mathbf{I} are adjusted in such a way that,

$$y(t) \rightarrow y_m(t), \quad \dot{y}(t) \rightarrow \dot{y}_m(t), \dots, y^{(n-1)} \rightarrow y_m^{(n-1)}.$$

The response $\tilde{\mathbf{a}}$ is coupled with the control parameters $\hat{\mathbf{a}}$ and system parameters \mathbf{a} . In fact, when \mathbf{a} is time invariant, Eq. (6b) modifies to,

$$\dot{\hat{\mathbf{a}}} = -\mathbf{I}\mathbf{v}\mathbf{b}^T\mathbf{P}\mathbf{x}.$$

In this paper, an EKF algorithm is applied to separate the control parameters $\hat{\mathbf{a}}$ from the system parameters \mathbf{a} appearing in $\tilde{\mathbf{a}}$, where $\tilde{\mathbf{a}}$ can be recalled as given by $\tilde{\mathbf{a}} = \hat{\mathbf{a}} - \mathbf{a}$. It is interesting to observe that the MRAC is sensitive to initial conditions $\tilde{\mathbf{a}}(0)$, $\hat{\mathbf{a}}(0)$ and $\mathbf{a}(0)$. Accordingly, the time histories of $\hat{\mathbf{a}}(t)$ and $\mathbf{a}(t)$ vary with time. However, $\hat{u}(t)$ in Eq. (5) is guaranteed to track

$$y(t) \rightarrow y_m(t), \quad \dot{y}(t) \rightarrow \dot{y}_m(t), \dots, y^{(n-1)} \rightarrow y_m^{(n-1)}$$

This attribute of MRAC is utilized to acquire damage, where an appropriate initial condition for $\mathbf{a}(t)$ is selected such that $\lim_{t \rightarrow \infty} \mathbf{a}(t)$ converges to a damaged model which is assumed to be known through a damage assessment techniques. This process is referred as the *damage acquisition* for SDM. Given $\{y, \dot{y}, \dots, y^{(n-1)}\}$ a formulation to compute by acquiring \mathbf{a} is presented in the next section.

IV. COMPUTATION OF CONTROL PARAMETERS THROUGH DAMAGE ACQUISITION

Given $\{y, \dot{y}, \dots, y^{(n-1)}\}$ obtained by integrating Eq. (6) from the previous section, EKF is applied to separate $\hat{\mathbf{a}}$ and \mathbf{a} appearing in $\tilde{\mathbf{a}}$. The state equations compatible to the EKF will be of the form,

$$\dot{\delta} = \mathbf{F}(t, \delta) \quad (7a)$$

$$\mathbf{z}_k = \begin{bmatrix} y_k \\ \dot{y}_k \\ \vdots \\ y_k^{(n-2)} \\ y_k^{(n-1)} \end{bmatrix}, \quad k = 1, 2, \dots \quad (7b)$$

Where $\delta^T = [x^T \quad \hat{\mathbf{a}}^T \quad a_{n-1} \dots a_0]$ is a vector with $3n+1$ components, \mathbf{z}_k , $k = 1, 2, \dots$ is the measurement vector available at discrete time instants t_k , $k = 1, 2, \dots$ and $\mathbf{F}(t, \delta)$ is a system dynamic vector presented below. Note that the sensor measurements for the EKF are the response of the damaged material computed in the previous section using the adaptation parameters specified in the matrix Γ .

$$\mathbf{F}(t, \delta) = \begin{bmatrix} \mathbf{A}x + \mathbf{b}\mathbf{v}^T \hat{\mathbf{a}} - \mathbf{b}\mathbf{v}^T \mathbf{a} \\ -\mathbf{v}\mathbf{b}^T \mathbf{P}x \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Eq. (7) completely specifies the required formulation to apply an EKF algorithm [19, 20]. When $k_{n-i} = 0$, $i = 1, 2, \dots, n$ Or when $y_m(0) = \dot{y}_m(0) = \dots, y_m^{(n-1)}(0) = 0$ the initial condition for the control parameters can be selected as $\mathbf{a}^T(0) = 0$. However, for \mathbf{a} , one has to select the initial conditions $\mathbf{a}^T(0)$ to match the model of the damaged structure as stated in damage acquisition.

The computed system (\mathbf{a}) and control ($\hat{\mathbf{a}}$) parameters are used back again in Eq. (4) and the response of the system is simulated to check if it matches with the sensor data $\{y_m, \dot{y}_m, \dots, y_m^{(n-1)}\}$ for a given exogenous input $r(t)$. If it matches, as adopted by Maryam and Luciana, 2010, the resulting structure with damage is said to be mitigated under an applied load from the actuator that is adaptive to the dynamic loads $r(t)$ appearing in the control input $\hat{u}(t)$. Further, it is inferred that the MRAC adopts a certain trajectory for the system parameters \mathbf{a} to compute the control parameters $\hat{\mathbf{a}}$ such that the response of the damaged model in Eq. (4) tracks the reference model in Eq. (3). Yet, the problem of finding a finite element model with parameters \mathbf{a} remains a fundamental problem in composite materials whenever damage is present (Reddy, 2004). It is observed that the finite element model by MRAC is given in transfer function framework. In the next section, an example is illustrated using a second order spring-mass-damper system.

V. EXAMPLE

Consider a second order spring-mass-damper system representing a structure in modal coordinates. The undamaged model is taken with the parameters $1.4 \alpha_1 = 1.4$ And $\alpha_0 = 1$. The exogenous input is $r(t) = \sin(t)$. Let the damaged model be $\ddot{y} + a_1 \dot{y} + a_0 y = \hat{u}(t)$. Assume steady state values as $a_1(\infty) = 1.2$ and $a_0(\infty) = 0.8$.

The objective in SDM is to find an initial condition for the $\mathbf{a}^T = [1 \ a_1(0) \ a_0(0)]$ system parameters and determine the control parameters $\hat{\mathbf{a}}^T = [\hat{a}_2, \hat{a}_1, \hat{a}_0]$ such that the control law $\hat{u}(t)$ given by $\hat{u}(t) = \hat{a}_2 z - \hat{a}_1 \dot{y} - \hat{a}_0 y$ mitigates damage by the tracking Performance $y(t) \rightarrow y_m(t)$ and $\dot{y}(t) \rightarrow \dot{y}_m(t)$, where $y_m(t)$ and $\dot{y}_m(t)$ are the response of the undamaged material due to exogenous input $r(t)$. Further $\mathbf{a}(t)$ converges to $\mathbf{a}^T(\infty) = [1 \ 1.2 \ 0.8]$. Here $z(t)$ is selected such that $z(t) = \ddot{y}_m - 2\dot{e} - 2e$ with $\beta_1 = 2$ and $\beta_0 = 2$. Note that the control law is adaptive to the exogenous input $r(t)$ through the \dot{y}_m term.

In the first design step, the tracking performance is achieved through the adaptation parameters which were found out to be $\Gamma = \text{diag}(10, 1, 30)$. Integrating Eq. (6), with an initial condition for $\tilde{\mathbf{a}}$ as $\tilde{\mathbf{a}}^T(0) = [-1 \ -0.3 \ -0.2]$ the responses of the damaged and undamaged material is shown in Fig. 1, which suggest that $y(t) \rightarrow y_m(t)$ and $\dot{y}(t) \rightarrow \dot{y}_m(t)$. These responses of $y(t)$ and $\dot{y}(t)$ are used as measurements in EKF that is used to compute control

($\hat{\mathbf{a}}$) and system parameters with damage acquisition in the responses of \mathbf{a} . In Fig. 2, the error responses of position $y(t) - y_m(t)$ and speed $\dot{y}(t) - \dot{y}_m(t)$ contained in $\mathbf{x}(t)$ are compared with the Kalman filter estimates $\hat{\mathbf{x}}(t)$. In Fig. 3, the parameters response $a_1(t)$ and $a_0(t)$ are provided. We observe that the steady state values of these parameters represent the damaged state of the material. In Fig. 4, the control parameters, namely, $\hat{a}_2(t)$, $\hat{a}_1(t)$ and $\hat{a}_0(t)$ are presented. In order to verify that these parameters indeed performs SDM, the control law with these parameters in Eq. (4) are used to get the responses $y_s(t)$ and $\dot{y}_s(t)$. The error responses $y_s(t) - y_m(t)$ and $\dot{y}_s(t) - \dot{y}_m(t)$ are shown in Fig. 5. Clearly SDM is performed; however, the error build up in certain time intervals are due to the choice of initial condition $\tilde{\mathbf{a}}(0)$ that also governs the slow and fast adaptation rates.

VI. CONCLUSIONS

Presently, damage prognosis and structural health management schemes assume a given sensor technology and attempt to diagnose the data to predict the remaining life of the structure when an exogenous input load in a damaged structure is present. Structural damage mitigation proposed in this paper considers both sensor and actuator technologies embedded in a structure and modifies the actuator loading such that the sensor data from the damaged structure mimics the sensor data from the healthy structure. Model Reference Adaptive Control is recognized to fulfill this objective. A damaged finite element model for the material is assumed through a structural damage assessment techniques and a technique to mitigate the effects of damage in an uncertain environment is proposed. A second order spring-mass-damper model that represents a finiteelement structural model in modal coordinates is considered to illustrate the foundations of SDM using MRAC.

REFERENCES REFERENCIAS

1. Bauer, J.E., and Andrisani, D., *Estimating Short-Period Dynamics Using an Extended Kalman Filter*, NASA-TM-101722, June 1990.
2. Case, S.W., and Carman, G.P., Comparison Strength of Composites Containing Embedded Sensors and Actuators, *Journal of Intelligent Material Systems and Structures*, Vol. 5, No. 1, January 1994, pp. 4-11.
3. Chu, Shi-Yu, Lo, Shih-Chieh, and Chang, Ming-Chia, Real-Time Control Performance of a Model-Reference Adaptive Structural Control System Under Earthquake Excitation, *Structural Control and Health Monitoring*, Vol. 17, No. 2, March 2010, pp. 198-217.
4. Chunyu Li, Erik T. Thostenson and Tsu-Wei Chou, Sensors and Actuators Based on Carbon Nano Tubes and Their Composites: A Review, *Composites Science and Technology*, Vol. 68, No. 6, May 2008, pp. 1227-1249.
5. Farrar, Charles R and Lieven, Nick A.J., Damage Prognosis: The Future of Structural Health Monitoring. In *Philosophical Transactions of Royal Society, Series A*, Vol. 365, Issue 1851, 15 Feb 2007, pp. 623-632.
6. Ge, Ma., Lui, Eric M., Structural Damage Identification Using System Dynamic Properties, *Computers and Structures*, Vol. 83, No. 27, October 2005, pp. 2185-2196.
7. Ghasemi-Nejhad, M.N., Manufacturing and Testing of Active Composite Panels with Embedded Piezoelectric Sensors and Actuators, *Journal of Intelligent Material Systems and Actuators*, Vol. 16, No. 4, 2005, pp. 319-333.
8. Mall, S., Integrity of Graphite/Epoxy Laminate Embedded with Piezoelectric Sensor/Actuator Under Monotonic and Fatigue Loads, *Smart Materials and Structures*, Vol. 11, No. 4, 2002, pp.527.
9. Maryam Bitaraf, Barroso, Luciana R., Stefan Hurlebaus, Adaptive Control to Mitigate Damage Impact on Structural Response, *Journal of Intelligent Material Systems and Structures*, Vol. 21, No. 6, 2010, pp. 607-619.
10. Meng, Guang., Lin Ye., Dong, Xing-Jian., and Wei, Ke-Xiang., Closed Loop Finite Element Modeling of Piezoelectric Smart Structures, Shock and Vibration, Vol. 13, No. 1, 2006, pp. 1-12.
11. Papazian, John M., Anagnostou, Elias L., Engel, Stephen J., Hoitsme, David., Madsen, John., Silberstein, Robert P., Welsh, Greg., and Whiteside, James B., A Structural Integrity Prognosis System, *Engineering Fracture Mechanics*, Vol. 75, No. 5, March 2009, pp. 620-632.
12. Reddy, J.N., *Mechanics of Laminated Composite Plates and Shells*, CRC Press, 2004; Second Edition.
13. Shivakumar, Kunigal., and Bhargava, Anil., Fatigue Mechanisms of a Composite Laminate Embedded with a Fiber Optic Sensor, *Journal of Composite Materials*, Vol. 39, No. 9, May 2005, pp. 777-798.
14. Slotine, Jean-Jacques E., and Li, Weiping, *Applied Nonlinear Control*, Chapter 8: Adaptive Control, Prentice Hall, New Jersey, USA, 1991.
15. Speyer, Jason L., and Crues, Edwin Z., On-Line Aircraft State and Stability Derivative Estimation Using the Modified Gain Extended Kalman Filter, *Journal of Guidance, Control, and Dynamics*, Vol. 10, No. 3, 1987, pp. 262-268.
16. Tee, K.F., Koh, C.G., and Quek, S.T., Substructural First- and Second-Order Model Identification for Structural Damage Assessment, *Earthquake Engineering and Structural Dynamics*, Vol. 34, No. 15, December 2005, pp. 1755-1775.

17. Trease, B., and Kota, S., Design of Adaptive and Controllable Compliant Systems with Embedded Actuators and Sensors, *Journal of Mechanical Design*, Vol. 131, No. 11, November 2009, pp. 111001-111012.

18. Tu, J.W., Jiang, S.J., and Stoten, D.P., The Seismic Response Reduction by using Model Reference Adaptive Control Algorithm, 2010 *International Conference on Mechanic Automation and Control Engineering*, 26-28 June 2010, pp. 1215-1218, Wuhan, China.

19. Yan, Y.J, Yam, L.H, Cheng, L. and Yu, L., FEM Modeling Method of Damage Structures for Structural Damage Detection, *Composite Structures*, Vol. 72, No. 2, February 2006, pp. 193-199.

20. Xiaomo, Jiang., Recent Developments in Structural Damage Diagnosis and Prognosis. In *Recent Patents on Engineering*, Vol. 4, No. 2, June 2010, pp. 102-121.

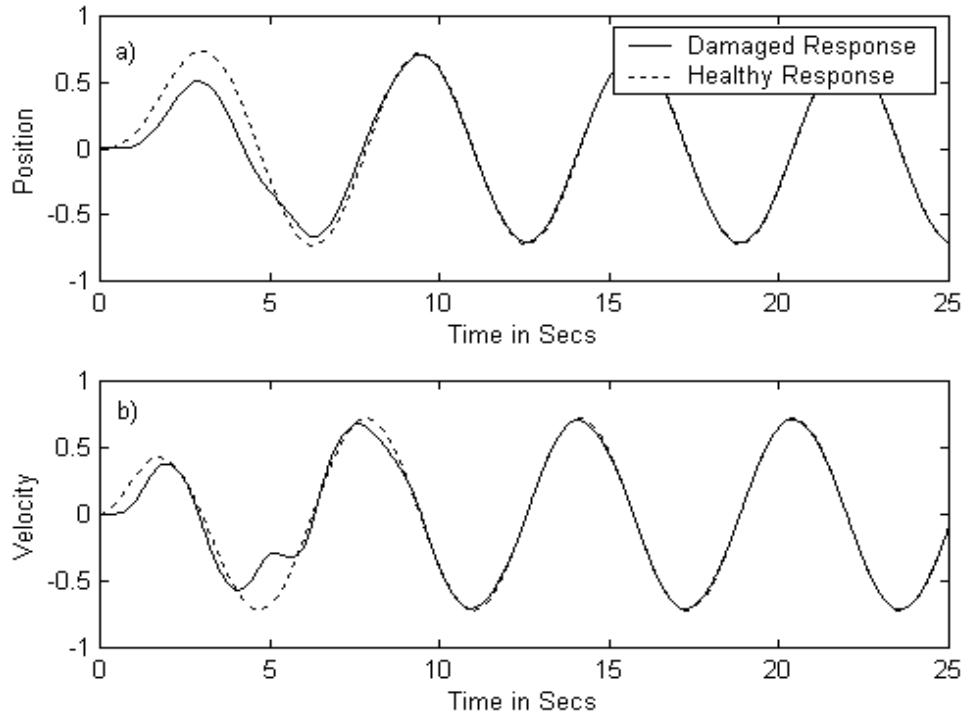


Figure 1: An Adaptation Law for Structural Damage Mitigation with Healthy and Damaged Responses a) $y(t)$ and $y_m(t)$ and b) $y(t)$ and $y_m(t)$

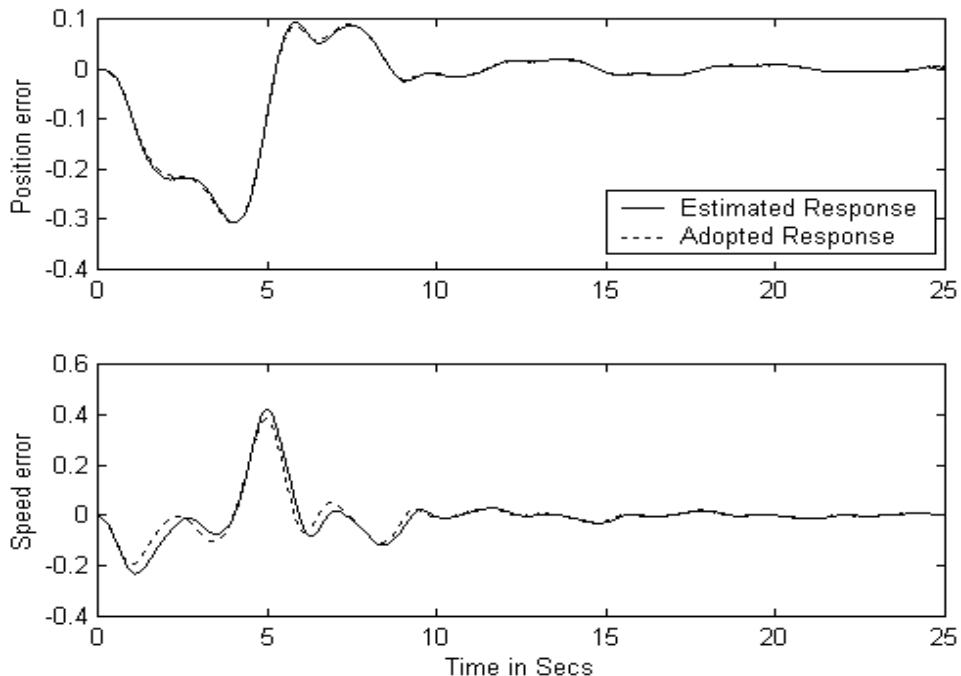


Figure 2: $x(t)$ and $\hat{x}(t)$ by EKF.

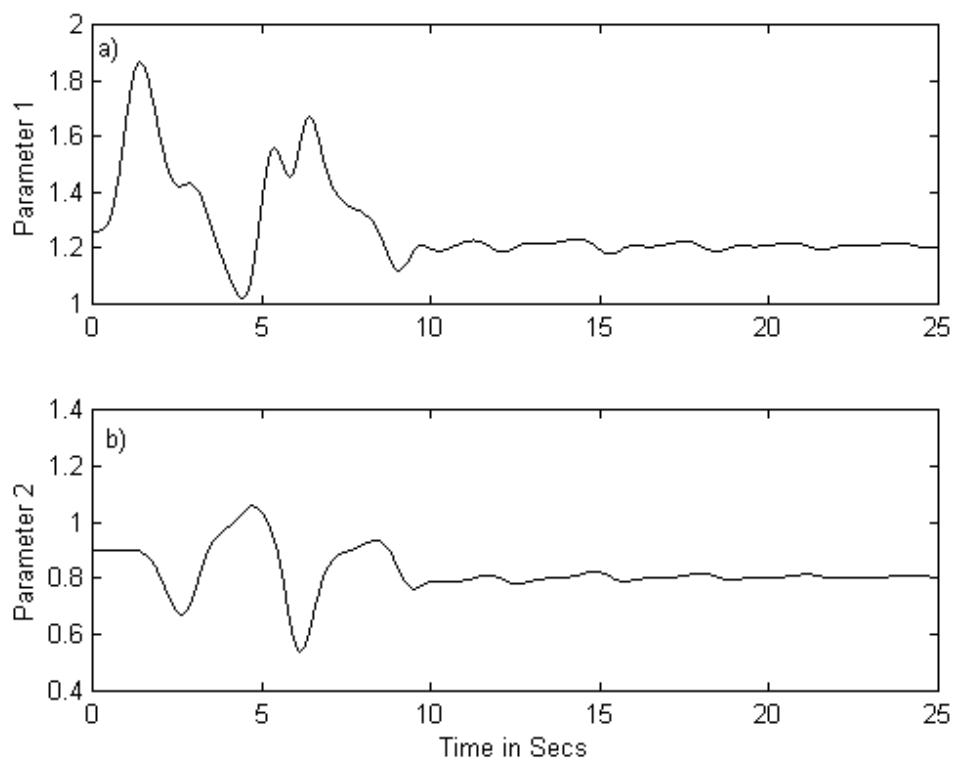


Figure 3 : System Parameters Computed by EKF a) $a_1(t)$ and b) $a_0(t)$.

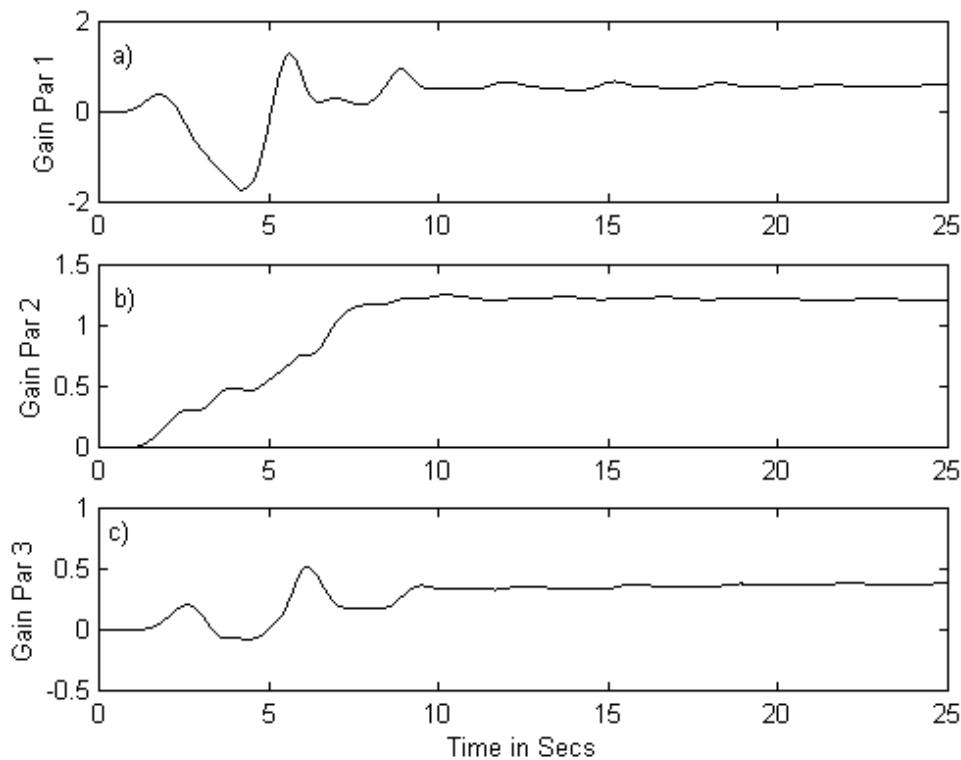


Figure 4 : Control Parameters Computed by EKF a) $\hat{a}_2(t)$, b) $\hat{a}_1(t)$ and c) $\hat{a}_0(t)$.

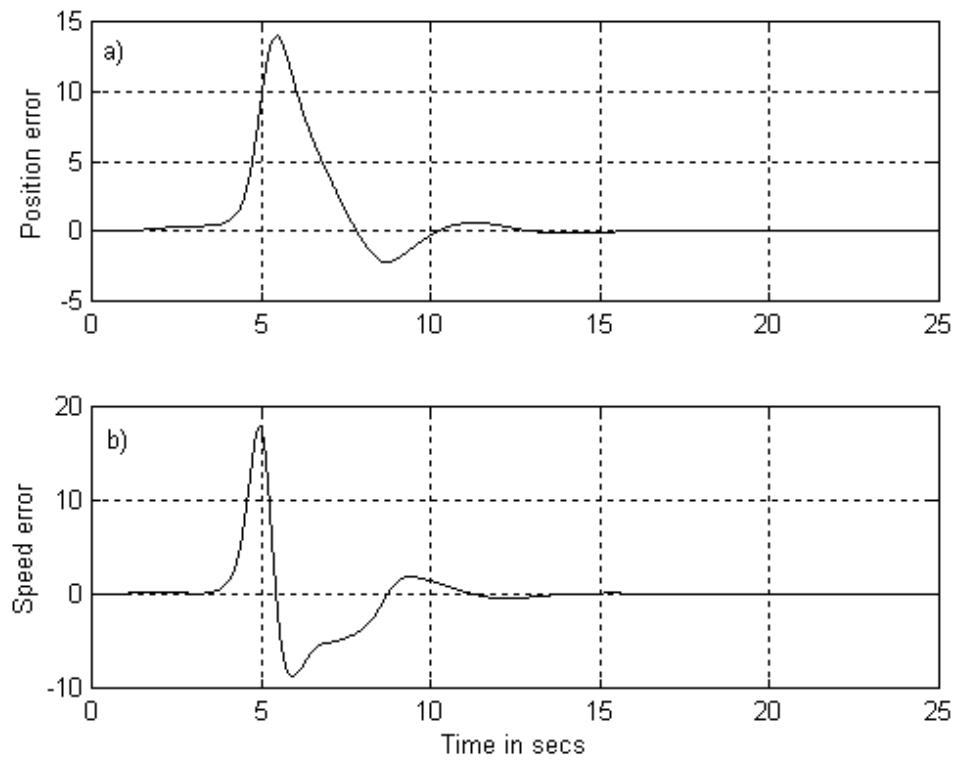


Figure 5 : Simulated Errors a) $y_s(t) - y_m(t)$ and b) $\dot{y}_s(t) - \dot{y}_m(t)$

This page is intentionally left blank

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: D
AEROSPACE ENGINEERING
Volume 11 Issue 5 Version 1.0 August 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Characterization of Gasoline Engine Exhaust Fumes Using Electronic Nose Based Condition Monitoring

By O.T. Arulogun , O.A. Fakolujo , A. Olatunbosun M.A. Waheed ,
E. O. Omidiola , P. O. Ogunbona

University of Ibadan, Nigeria

Abstract - An electronic nose-based condition monitoring of three automobile engines was conducted to obtain smell prints that correspond to normal operating conditions and various induced abnormal operating conditions. Fuzzy C- means clustering was used to ascertain the extent to which the smell prints can characterize faulty engine conditions. Silhouette diagrams and silhouette width figures were used to validate the clusters. Results obtained indicate that the smell prints do in general characterize the faults as most clusters have silhouette width greater than 0.5. In particular the results showed that the following automobile engine faults; plug-not-firing faults and loss of compression faults are diagnosable from the automobile exhaust fumes.

Keywords : *Electronic nose, Condition Monitoring, mobile,Fault, Diagnosis,Fuzzy C-means, silhouette diagram.*

GJRE-D Classification : *FOR Code: 090201*

Strictly as per the compliance and regulations of:

Characterization of Gasoline Engine Exhaust Fumes Using Electronic Nose Based Condition Monitoring

O.T. Arulogun^a, O.A. Fakolujo^Q, A. Olatunbosun^B, M.A. Waheed^Ψ, E. O. Omidiora^Υ, P. O. Ogunbona[§]

Abstract - An electronic nose-based condition monitoring of three automobile engines was conducted to obtain smell prints that correspond to normal operating conditions and various induced abnormal operating conditions. Fuzzy C-means clustering was used to ascertain the extent to which the smell prints can characterize faulty engine conditions. Silhouette diagrams and silhouette width figures were used to validate the clusters. Results obtained indicate that the smell prints do in general characterize the faults as most clusters have silhouette width greater than 0.5. In particular the results showed that the following automobile engine faults; plug-not-firing faults and loss of compression faults are diagnosable from the automobile exhaust fumes.

Keywords : *Electronic nose, Condition Monitoring, Automobile, Fault, Diagnosis, Fuzzy C-means, silhouette diagram.*

I. INTRODUCTION

Condition monitoring is a method by which small variations in the performance of equipment can be detected and used to indicate the need for maintenance and the prediction of failure [1]. Condition monitoring and performance estimation are used to appraise the current state and estimate the future state of plant by using real time measurements and calculations. Such monitoring provides ongoing assurance of acceptable plant condition [2]. Some of the condition monitoring technologies that are widely used for detecting imminent equipment failures in various industries include vibration analysis, infra-red thermal imaging, oil analysis, motor current analysis and ultra-sonic flow detection [3]. Diesel engine cooling system model based on condition monitoring was developed by Twiddle [4]. The developed model was tested on a real life diesel engine powered electricity generator to simulate detection of fan fault, thermostat fault and pump fault using temperature measurements. Agoston et al. [5], used micro-acoustic

viscosity sensors to conduct on - line condition monitoring of lubricating oils in order to monitor the thermal aging of automobile engine oils and predict appropriate timing of engine oil change.

Electronic noses are technology implementation of systems that are used for the automated detection and classification of odours, vapours and gases[6]. The main motivation for the implementation of electronic noses is the need for qualitative low cost, real-time and portable methods to perform reliable, objective and reproducible sensing of volatile compounds and odours [7]. Guadarrama et al. [8] reported the use of electronic nose for the discrimination of odours from trim plastic materials used in automobiles. Huyberechts et al. [9] used electronic nose to quantify the amount of carbon monoxide and methane in humid air. A method for determining the volatile compounds present in new and used engine lubricant oils was reported by Sepcic, et al. [10]. The identification of the new and used oils was based on the abundance of volatile compounds in headspace above the oils that were detectable by electronic nose. The electronic nose sensor array was able to correlate and differentiate both the new and the used oils by their increased mileages. Hunter et al., [11] applied high temperature electronic nose sensors to exhaust gases from modified automotive engine for the purpose of emission control. The array included a tin-oxide-based sensor doped for nitrogen oxide (NO_x) sensitivity, a SiC -based hydrocarbon (CxHy) sensor, and an oxygen sensor (O₂) [11]. The results obtained showed that the electronic nose sensors were adequate to monitor different aspect of the engine's exhaust chemical components qualitatively

In the present study, a prototype of an electronic nose-based condition monitoring scheme using array of broadly tuned Taguchi metal oxide sensors (MOS) was used to acquire the exhaust fume of three gasoline-powered engines operating under induced fault conditions. Three gasoline engines were

Author ^aΥ : Department of Computer Science and Engineering,

*Author ^Q : Department of Electrical and Electronic Engineering
University of Ibadan, Nigeria.*

*Author ^B : Department of Mechanical Engineering, Ladoke Akintola
University of Technology, Nigeria.*

*Author ^Ψ : School of Computer Science and Software Engineering,
University of Wollongong, Australia.*

seeps and mixes with the gasoline-air mixture thereby increases the amount of unburnt hydrocarbon produced in the combustion chamber and escaping via the exhaust valve. The worn piston ring fault was induced by mixing the gasoline and engine oil in various proportional ratios as 90 : 10, 80 : 20, 70 : 30, 60 : 40, 50 : 50 and 40 : 60. The following calibration was used for the loss of compression faults: a 90 : 10 fuel mixture corresponds to a 1st degree worn ring and 80 : 20, 70 : 30, 60 : 40, 50 : 50 and 40 : 60 correspond to 2nd, 3rd, 4th, 5th and 6th degree worn ring respectively.

A high percentage of engine oil in the mixture corresponds to a high degree of wear in the piston ring and this adversely affects the efficiency of the engine.

d) Data acquisition

The required exhaust fumes of the gasoline fuelled engine operating under various induced fault conditions were obtained from the engine exhaust tail pipe in the absence of a catalytic converter. The exhaust gas specimens were collected into 1000ml Intravenous Injection Bags (IIB). Drip set was used to connect each of the IIB containing the exhaust gases to a confined chamber that contained the array of the selected Taguchi MOS sensors. Static headspace analysis odour handling and sampling method was used to expose the exhaust fume samples to the plastic chamber because the exhaust fume tends to diffuse upwards in clean air due to its lighter weight. Thus there was no need for elaborate odour handling and sampling method. Readings were taken from the sensors 60 seconds after the introduction of each exhaust fume sample into the air tight plastic chamber so as to achieve odour saturation of the headspace. The digitized data were collected continuously for 10 minutes using Pico ADC 11/10 data acquisition system (connected to a personal computer) and stored further analysis. 1400×10 data samples (1 dataset) for each of the ten (10) fault classes making a total of 14000×10 data samples (10 data sets) were collected from the test bed engine. The sensors were purged after every measurement so they can return to their respective default states (also referred to as baseline) with the use of compressed air. These measurement procedures were repeated for the engine fitted into the two operational vehicles. The 6th degree worn ring fault measurement could not be carried out because it was difficult to start the engine. All data collection were done with the engine speed maintained at 1000 revolutions per second except for 5th degree worn ring, 6th degree worn ring and 3 plugs bad fault conditions that were collected at engine speed of 2000 revolutions per second.

e) Data analysis

Our hypothesis is that various induced fault conditions can be inferred from the odour prints of the exhaust gas. A clustering analysis of the data was

conducted and the validity of the cluster generated was demonstrated. The data collected from the array of sensors represent features characteristic of each type of induced fault and form patterns in a 10-dimensional space. Data cluster analysis is an unsupervised learning technique that can be used to discover the underlying groupings in a data set, usually represented a vector of measurements, based on some measure of similarity [14]. Given a number of clusters, C , the idea is partition the data into the clusters based on some measure of similarity. Fuzzy clustering, also called fuzzy C-means (FCM), assigns each data point into clusters with some probability of belonging. This is in contrast to the popular k-means clustering where data points are assigned to exactly one cluster. Let u_{ik} denote the strength of membership of the i -th data sample in the k -th cluster. The membership strength for each data sample behaves like probabilities with $u_{ik} > 0$ for all i and $k = 1 \dots C$, and $\sum_{k=1}^C u_{ik} = 1$ [15]. Usually, the pair wise distances of the data samples, $\{d_{ij}\}$ is computed and the membership strengths are obtained iteratively by minimizing the objective function [15],

$$J = \sum_{k=1}^C \frac{\sum_i \sum_j u_{ik}^2 u_{jk}^2 d_{ij}}{2 \sum_i u_{ik}^2} \quad (1)$$

subject to the non-negativity and unit sum constraints.

The quality of the clustering can be ascertained using several cluster validity techniques. In this paper, the quality of the clusters formed were validated using silhouette index proposed by Rousseeuw [16]. It has been shown to be a robust approach to predict optimal clustering partitions [17]. For a given cluster, X_k ($k = 1, \dots, C$), this method assigns to each sample of X_k a quality measure, $s(i)$ ($i = 1, \dots, m$), (m is the number of samples in cluster X_k) known as the silhouette width. The silhouette width is a confidence indicator on the membership of the i -th sample in cluster X_k and is defined as

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \quad (2)$$

where $a(i)$ is the average distance between the i -th sample and all of the samples included in X_k ; and $b(i)$ is the minimum average distance between the i -th sample and all of the samples clustered in X_j ($j = 1, \dots, C; j \neq k$). From Equation 2 it follows that the $-1 \leq s(i) \leq 1$.

When $s(i)$ is close to 1, one may infer that the i -th sample has been "well clustered", i.e. it was assigned to an appropriate cluster. When a $s(i)$ is close to zero, it suggests that the i -th sample could also be assigned to the nearest neighbouring cluster. If $s(i)$ is close to -1, one may argue that such a sample has been "misclassified" [16]. Thus, for a given cluster, X_k

($k = 1 \dots C$), it is possible to calculate the average silhouette width or cluster silhouette value S_k , which characterizes the heterogeneity and isolation properties of the cluster,

$$S_j = \frac{1}{m} \sum_{i=1}^m s(i) \quad (3)$$

where m is number of samples in S_k

III. RESULT AND DISCUSSION

The results of data clustering analysis on the three engine data sets are shown in Figures 2 to 7. Figure 2 shows the results of FCM clustering algorithms on the Toyota Carina II engine data sets. Figures 4 and 6 show the results of clustering datasets from the Mitsubishi Gallant engine and Nissan sunny engine respectively. The results of FCM clustering shows that most of the data fall into distinct grouping and there are clear boundaries. Silhouette diagrams for the cluster validity are shown in Figures 3, 5 and 7 with the silhouette values for each cluster. None of the silhouette values in the silhouette graph of Figure 3 is negative. Considering the case of overlap in Figure 2 (40% worn ring and 10% worn ring faults); the silhouette values for clusters 2 and 5 are 0.70 and 0.75 respectively, this indicates that the clusters are well formed with high positive values. All other FCM clusters and silhouette diagrams in Figures 4 to 7 show results similar to that of Figures 2 and 3 except the silhouette diagrams in Figures 5 and 7 with two clusters having small negative silhouette values that suggest that the clusters involved overlap adjacent clusters. The silhouette graph in Figure 5 shows that clusters 6 and 9 have silhouette values close to -0.2 with cluster 9 having more data points overlapping other clusters. Similar arguments hold for Figure 7 where clusters 1 and 5 are having small negative silhouette values.

The result of clustering all the data from the three engines is shown in Figure 8 and the silhouette diagram for same is shown in figure 9. These results show that irrespective of the automobile engine, the faults can be characterized accurately from the exhaust gases by electronic nose.

IV. CONCLUSION

Exhaust gas samples from three gasoline fuelled engines were collected and analyzed via electronic nose system comprising ten broadly tuned MOS sensors. The results of cluster analysis on the acquired smell prints samples from the three automobile engines using fuzzy C-means clustering algorithm showed close similarities among data items in same dataset and distant similarity among data items in different data sets with distinct fault class boundaries. The results of cluster validity showed that all the data samples were well clustered except for data sets of two induced faults in respect of Nissan Sunny

engine and Mitsubishi Gallant engine that have some data points overlapping adjacent data sets. These results showed that the data samples acquired with the electronic nose based condition monitoring scheme were true representations of the normal and induced faults conditions investigated. The collected data samples could be well classified as normal and faulty states smell characteristic data for the faults investigated in this study.

REFERENCES REFERENCIAS REFERENCIAS

1. T. L. Massuyes, R. Milne, Gas-turbine condition monitoring using qualitative model based diagnosis, *IEEE Expert* 12 (1997) 22–31.
2. R. Beebe, Condition monitoring of steam turbines by performance analysis, *Journal of Quality in Maintenance Engineering* 9 (2) (2003) 102–112.
3. S. Poyhonen, P. Jover, H. Hytyniemi, Signal processing of vibrations for condition monitoring of an induction motor, in: Proc. of the 1st IEEE-EURASIP Int. Symp. on Control, Communications, and Signal Processing, ISCCSP 2004, Hammamet, Tunisia, 2004, pp. 499–502.
4. J. A. Twiddle, Fuzzy model based fault diagnosis of a diesel engine cooling system, Tech. Rep. 99-1, Department of Engineering, University of Leicester, U.K. (1999).
5. A. Agoston, C. Otsch, B. Jakoby, Viscosity sensors for engine oil condition monitoring: application and interpretation of results, *Sensors and Actuators A* 121 (2005) 327–332.
6. J. W. Gardner, P. N. Bartlett, *Electronic Noses: Principles and Applications*, Oxford University Press, New York, 1999.
7. N. Shilbayeh, M. Iskandarani, Quality control of coffee using an electronic nose system, *American Journal of Applied Sciences* 1 (2) (2004) 129–135.
8. A. Guadarrama, M. Rodriguez-Mendez, J. A. D. Saja, Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles, *Anal. Chim. Acta* 455 (2002) 41–47.
9. G. Huyberechts, P. Szecowka, J. Roggen, B. W. Laczner, Simultaneous quantification of carbon monoxide and methane in humid air using a sensor array and an artificial neural network, *Sensors and Actuators B* 45 (1997) 123–130.
10. K. Sepcic, M. Josowicz, J. Janata, T. Selbyb, Diagnosis of used engine oil based on gas phase analysis, *Analyst* 129 (2004) 1070 – 1075.
11. G. W. Hunter, L. Chung-Chiun, D. B. Makel, *Microfabricated Chemical Sensors for Aerospace Applications*, The MEMS Handbook, CRC Press, Boca Raton, FL, 2002, Ch. 22, pp. 1–24.

11. P. N. Bartlett, J. M. Elliott, J. W. Gardner, Electronic noses and their applications in the food industry, *Food Technology* 51 (12) (1997) 44–48.
12. P. Meille, Electronic noses: Towards the objective instrumental characterization of food aroma, *Trends in Food Science and Technology* 7(1996) 432–438
13. A.K. Jain, M. Murty, P. J. Flynn, Data clustering: A review, *ACM Computing Surveys* 31 (3) (1999) 264–323.
14. A. J. Izenman, *Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning*, Springer Text in Statistics, Springer, New York, 2008.
15. P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, *Journal of Computational and Applied Mathematics* 20 (1987) 53–65.
16. N. Bolshakova, F. Azuaje, Cluster validation techniques for genome expression data, *Signal processing* 83 (4) (2003) 825–833.

Figure 1: Experimental rig: Toyota Carina II engine

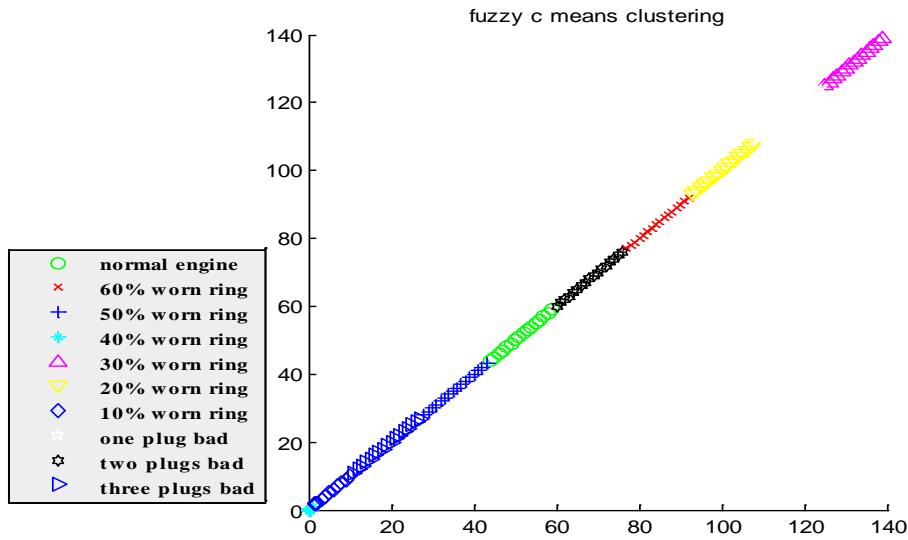


Figure 2: FCM diagram for Toyota Carina II engine

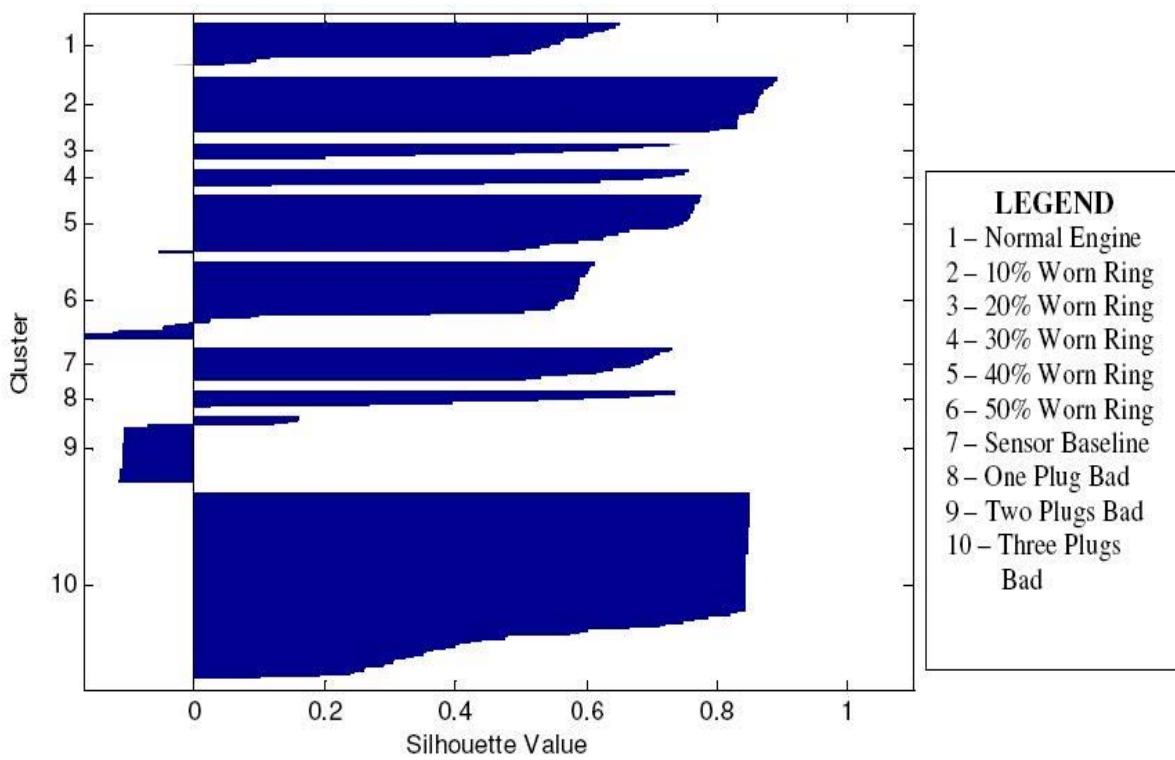


Figure 3: FCM silhouette diagram for Toyota Carina II engine

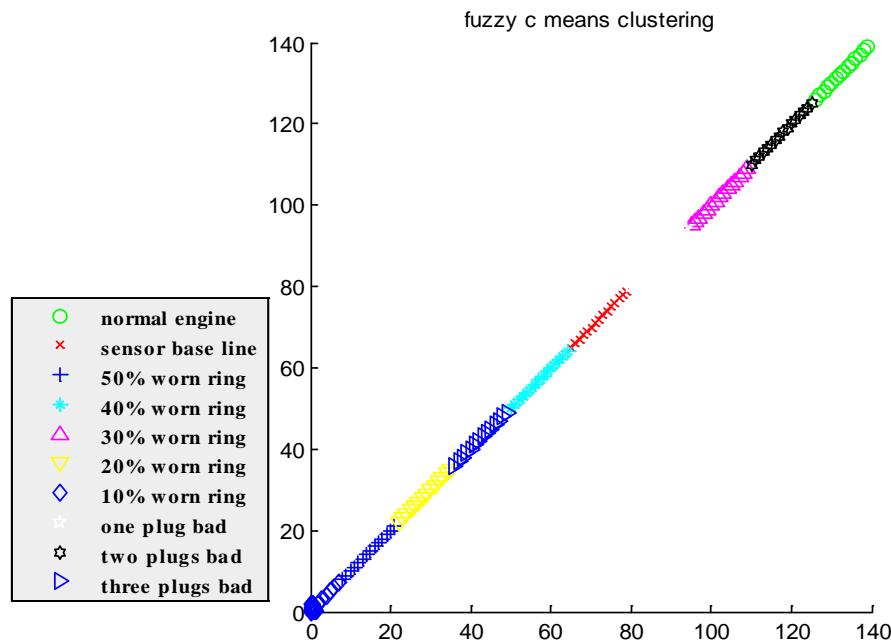


Figure 4: FCM diagram for Mitsubishi Gallant II engine

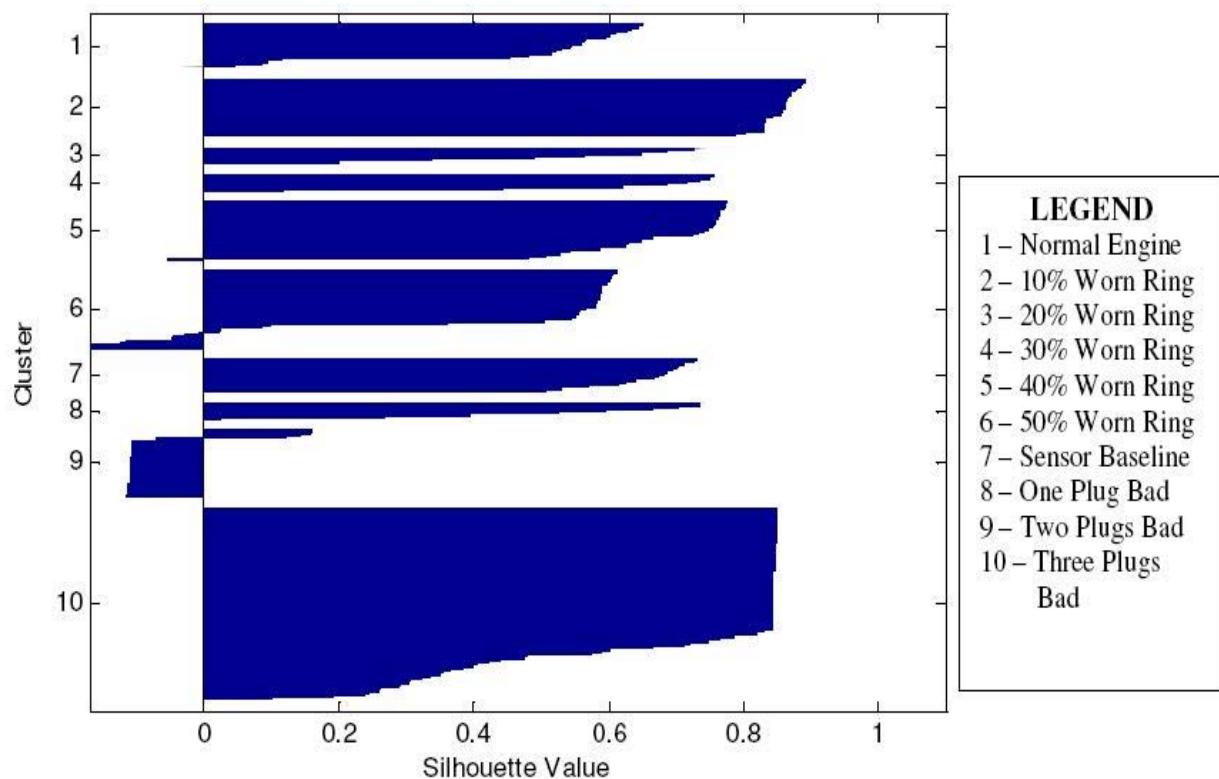


Figure 5: FCM silhouette diagram for Mitsubishi Gallant engine

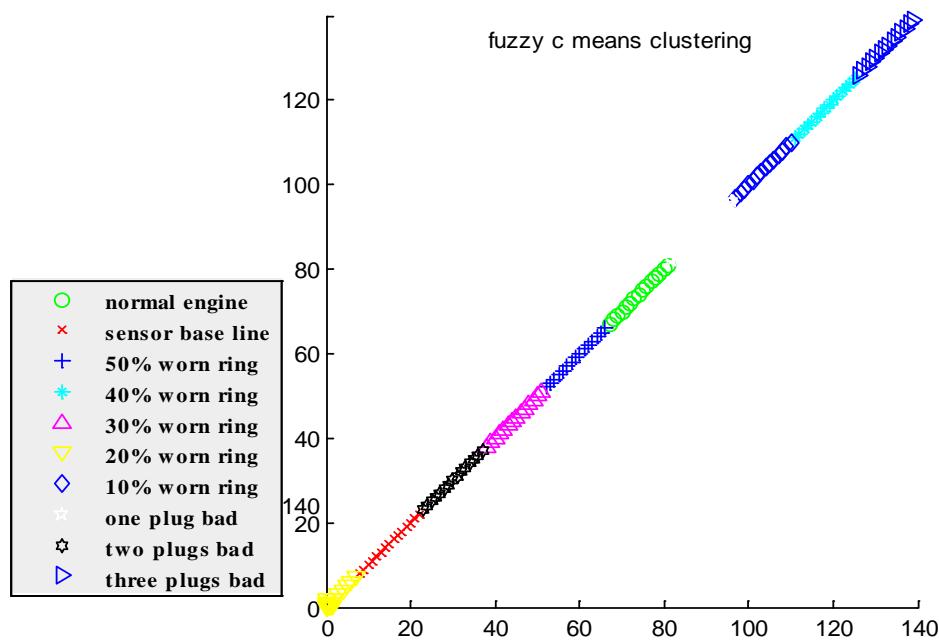


Figure 6: FCM diagram for Nissan Sunny engine

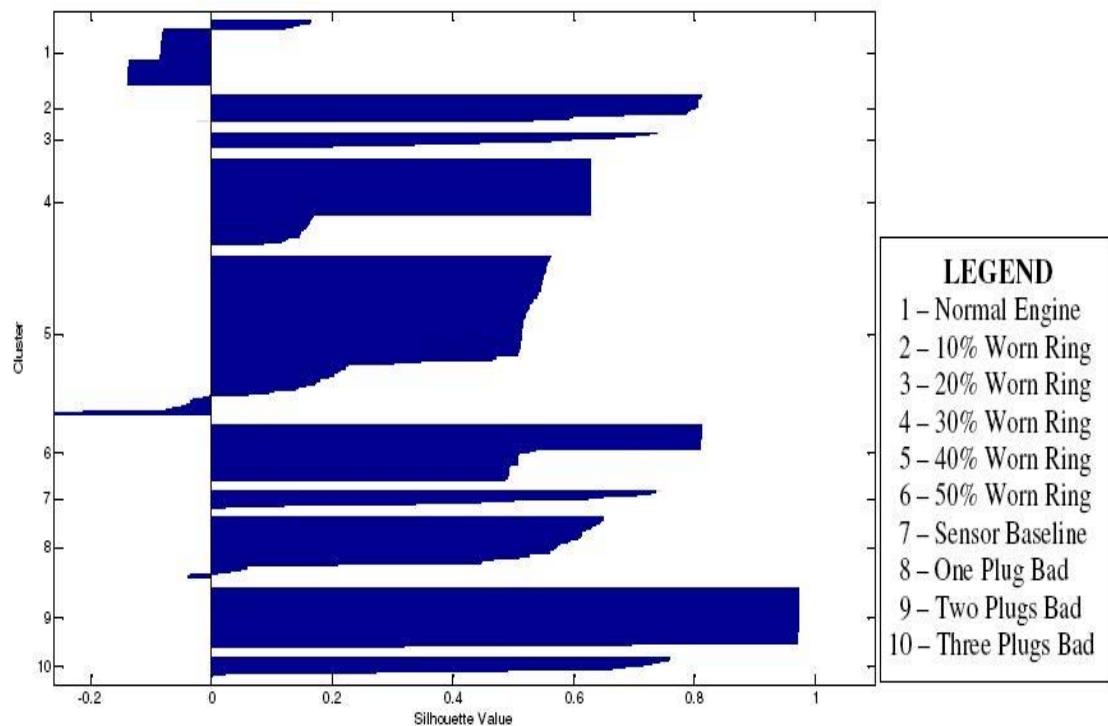


Figure 7: FCM silhouette diagram for Nissan Sunny engine

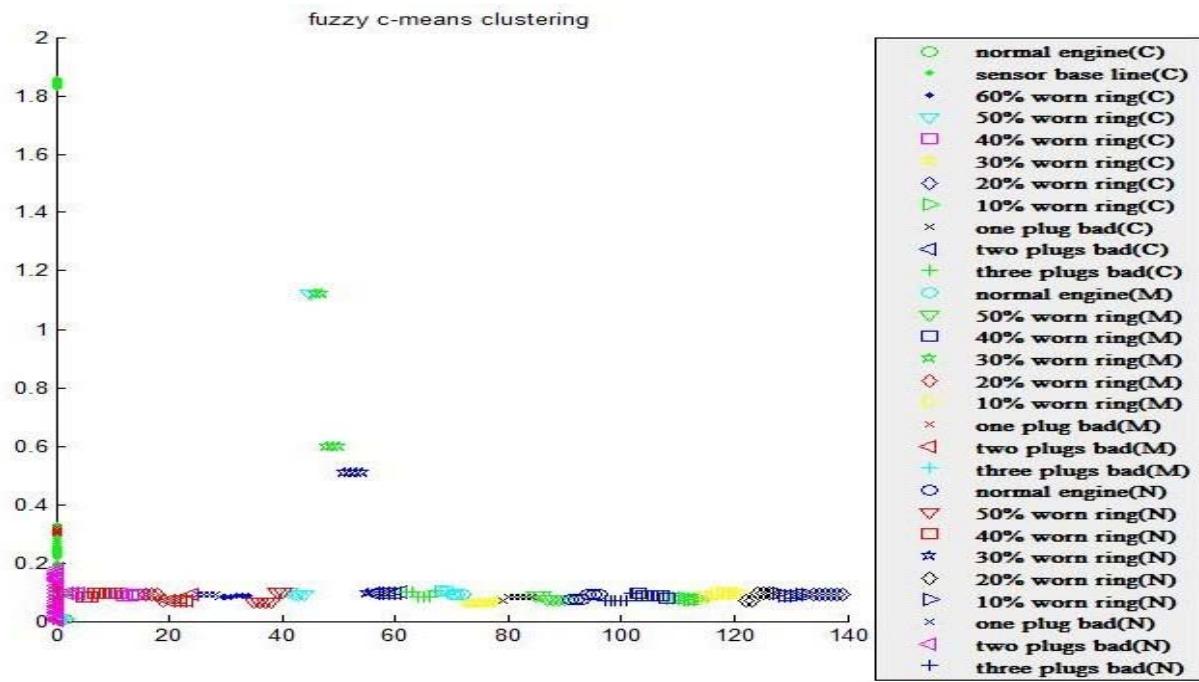


Figure 8: FCM diagram for the three engines

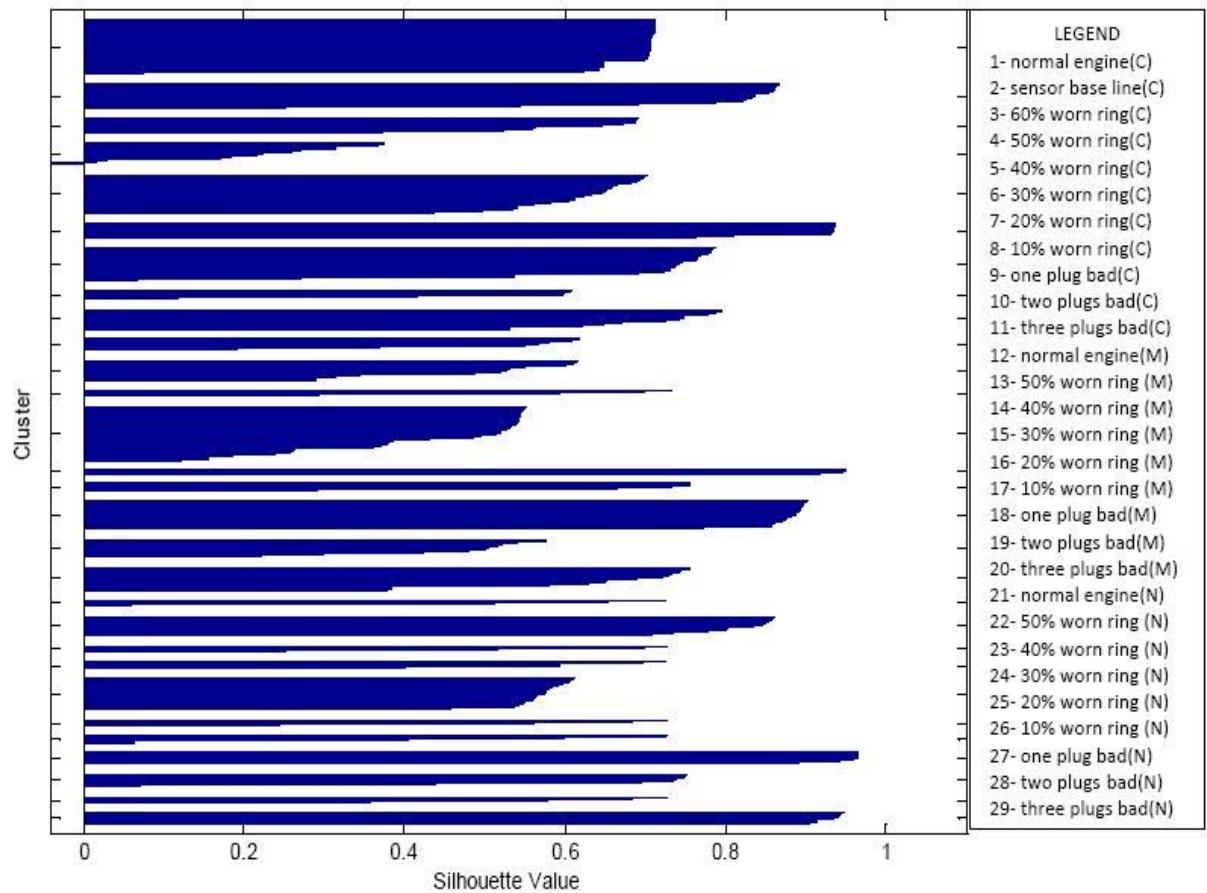


Figure 9: FCM silhouette diagram for the three engines

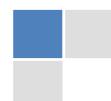
GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2011

WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF INTERNATIONAL CONGRESS OF ENGINEER (FICE)

- 'FICE' title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'FICE' can be added to name in the following manner


e.g. **Dr. Andrew Knoll, Ph.D., FICE**

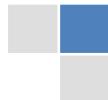
Er. Pettar Jhone, M.E., FICE

- FICE can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- **Free unlimited Web-space** will be allotted to 'FICE' along with subDomain to contribute and partake in our activities.
- **A professional email address** will be allotted free with unlimited email space.
- FICE will be authorized to receive e-Journals -GJRE for the Lifetime.
- FICE will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJRE (FREE of Charge).
- FICE will be Honorable Guest of any gathering held.

ASSOCIATE OF INTERNATIONAL CONGRESS OF ENGINEER (AICE)

- AICE title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICE' can be added to name in the following manner:
eg. Dr. Thomas Herry, Ph.D., AICE
- AICE can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'FICE' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICE will be authorized to receive e-Journal GJRE for lifetime.

AUXILIARY MEMBERSHIPS



ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJRE for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

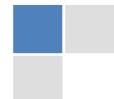
PROCESS OF SUBMISSION OF RESEARCH PAPER

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:

(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.


(II) Choose corresponding Journal.

(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.

(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.

(C) If these two are not convenient, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

PREFERRED AUTHOR GUIDELINES

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

- 1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
- 2) Drafting the paper and revising it critically regarding important academic content.
- 3) Final approval of the version of the paper to be published.

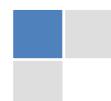
All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.


If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

- (a) Title should be relevant and commensurate with the theme of the paper.
- (b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
- (c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
- (d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
- (e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
- (f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
- (g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
- (h) Brief Acknowledgements.
- (i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve brevity.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4×10^{-3} m³, or 4 mm somewhat than 4×10^{-3} m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

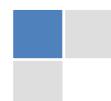
All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.


Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: *Please make these as concise as possible.*

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: *Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.*

Figures: *Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.*

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: *Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.*

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded

(Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

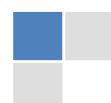
Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services


Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grown readers. Amplification is a billion times of inferior quality than sarcasm.

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

· Adhere to recommended page limits

Mistakes to evade

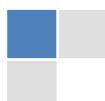
- Insertion a title at the foot of a page with the subsequent text on the next page

- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:


Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The **Introduction** should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.

- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

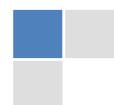
Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.


ADMINISTRATION RULES LISTED BEFORE SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The **major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- **Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)**
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
<i>Abstract</i>	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
<i>Introduction</i>	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
<i>Methods and Procedures</i>	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
<i>Result</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
<i>Discussion</i>	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>References</i>			

INDEX

A

accomplishment · 14, 16, 22
acquisition · 9, 28, 29, 30, 39
actuation · 16, 18
aeronautical · 24
analytic · 19, 22
architecture · 16, 18, 19, 20, 22
assessment · 24, 26, 28, 30
automation · 16, 19, 20

C

catalytic · 39
chemical · 36, 37, 38
chemoresistive · 38
circulation · 3, 10, 11
compressor · 3, 4, 5, 7, 8, 9, 10
computational · 14, 22
constraints · 7, 39
contaminant · 3, 4

D

Deterministic · 16
Diagnosis · 32, 36, 42
Diagnostics · 12
dimensional · 7, 39
Disponivel · 23
divergent · 9

E

excitation · 24, 26
exogenous · 24, 28, 30

F

facilitate · 10
foundations · 30

H

heterogeneity · 41

I

Integration · 2, 14, 15, 16, 17, 18, 19, 20, 21, 22

L

Laminate · 31
laminated · 5

M

malfunctioning · 38
mechanical · 12, 24, 37
misclassified · 40
multivariable · 9

O

operational · 7, 10, 14, 16, 19, 22, 37, 39
Optimisation · 13

P

pneumatic · 3, 4, 5
possibilities · 19
predominant · 4
pressurization · 3, 4, 5, 9, 10
probabilistic · 16
Probabilistic · 16, 18

R

refrigeration · 3, 4, 7, 10
reliability · 3, 11

S

scenario · 14
Seismic · 32
silhouette · 36, 39, 41, 44, 45, 46
simulations · 14, 18, 22
stringent · 10
Substantial · 24

T

technological · 3, 11
technology · 3, 5, 7, 8, 9, 11, 24, 30, 36
thermostat · 36
trajectory · 28
transient · 7

U

utilization · 14

V

ventilation · 3, 4, 5, 10
vibrational · 9

A small, white, 3D-style human figure stands at the bottom center, looking up towards a large globe. The globe is mostly white with green continents, representing Earth. The figure appears to be in a contemplative or admiring pose.

Global Journal of Researches in Engineering

Visit us on the Web at www.GlobalJournals.org | www.EngineeringResearch.org
or email us at helpdesk@globaljournals.org

ISSN 9755861

9 70116 58698 2 61427 >

© 2011 by Global Journals