

# GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: A MECHANICAL & MECHANICS ENGINEERING

DISCOVERING THOUGHTS AND INVENTING FUTURE



*August 2011*

## Highlights...

- Adopting Practical Approach
- Water Treatment Plant Design
- Computed Tomographic Image
- Azeotropic Refrigerating Systems

Volume 11

Issue 5  
version 1.0



GLOBAL JOURNAL OF RESEARCH IN ENGINEERING:A  
MECHANICAL AND MECHANICS ENGINEERING

---

GLOBAL JOURNAL OF RESEARCH IN ENGINEERING:A  
MECHANICAL AND MECHANICS ENGINEERING

---

VOLUME 11 ISSUE V (VER. 1.0)

OPEN ASSOCIATION OF RESEARCH SOCIETY

© Global Journal of  
Researches in Engineering.  
2011.

All rights reserved.

This is a special issue published in version 1.0  
of "Global Journal of Researches in  
Engineering." By Global Journals Inc.

All articles are open access articles distributed  
under "Global Journal of Researches in  
Engineering"

Reading License, which permits restricted use.  
Entire contents are copyright by of "Global  
Journal of Researches in Engineering" unless  
otherwise noted on specific articles.

No part of this publication may be reproduced  
or transmitted in any form or by any means,  
electronic or mechanical, including  
photocopy, recording, or any information  
storage and retrieval system, without written  
permission.

The opinions and statements made in this  
book are those of the authors concerned.  
Ultraculture has not verified and neither  
confirms nor denies any of the foregoing and  
no warranty or fitness is implied.

Engage with the contents herein at your own  
risk.

The use of this journal, and the terms and  
conditions for our providing information, is  
governed by our Disclaimer, Terms and  
Conditions and Privacy Policy given on our  
website <http://www.globaljournals.org/global-journals-research-portal/guideline/terms-and-conditions/menu-id-260/>

By referring / using / reading / any type of  
association / referencing this journal, this  
signifies and you acknowledge that you have  
read them and that you accept and will be  
bound by the terms thereof.

All information, journals, this journal,  
activities undertaken, materials, services and  
our website, terms and conditions, privacy  
policy, and this journal is subject to change  
anytime without any prior notice.

Incorporation No.: 0423089  
License No.: 42125/022010/1186  
Registration No.: 430374  
Import-Export Code: 1109007027  
Employer Identification Number (EIN):  
USA Tax ID: 98-0673427

## Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)

Sponsors: [Open Association of Research Society](#)  
[Open Scientific Standards](#)

### *Publisher's Headquarters office*

Global Journals Inc., Headquarters Corporate Office,  
Cambridge Office Center, II Canal Park, Floor No.  
5th, **Cambridge (Massachusetts)**, Pin: MA 02141  
United States

USA Toll Free: +001-888-839-7392  
USA Toll Free Fax: +001-888-839-7392

### *Offset Typesetting*

Open Association of Research Society, Marsh Road,  
Rainham, Essex, London RM13 8EU  
United Kingdom.

### *Packaging & Continental Dispatching*

## Global Journals, India

### *Find a correspondence nodal officer near you*

To find nodal officer of your country, please  
email us at [local@globaljournals.org](mailto:local@globaljournals.org)

### *eContacts*

Press Inquiries: [press@globaljournals.org](mailto:press@globaljournals.org)

Investor Inquiries: [investers@globaljournals.org](mailto:investers@globaljournals.org)

Technical Support: [technology@globaljournals.org](mailto:technology@globaljournals.org)

Media & Releases: [media@globaljournals.org](mailto:media@globaljournals.org)

### *Pricing (Including by Air Parcel Charges):*

#### *For Authors:*

22 USD (B/W) & 50 USD (Color)

*Yearly Subscription (Personal & Institutional):*

200 USD (B/W) & 250 USD (Color)

## EDITORIAL BOARD MEMBERS (HON.)

**John A. Hamilton,"Drew" Jr.,**  
Ph.D., Professor, Management  
Computer Science and Software  
Engineering  
Director, Information Assurance  
Laboratory  
Auburn University

**Dr. Henry Hexmoor**  
IEEE senior member since 2004  
Ph.D. Computer Science, University at  
Buffalo  
Department of Computer Science  
Southern Illinois University at Carbondale

**Dr. Osman Balci, Professor**  
Department of Computer Science  
Virginia Tech, Virginia University  
Ph.D. and M.S. Syracuse University,  
Syracuse, New York  
M.S. and B.S. Bogazici University,  
Istanbul, Turkey

**Yogita Bajpai**  
M.Sc. (Computer Science), FICCT  
U.S.A.Email:  
yogita@computerresearch.org

**Dr. T. David A. Forbes**  
Associate Professor and Range  
Nutritionist  
Ph.D. Edinburgh University - Animal  
Nutrition  
M.S. Aberdeen University - Animal  
Nutrition  
B.A. University of Dublin- Zoology

**Dr. Wenyi Feng**  
Professor, Department of Computing &  
Information Systems  
Department of Mathematics  
Trent University, Peterborough,  
ON Canada K9J 7B8

**Dr. Thomas Wischgoll**  
Computer Science and Engineering,  
Wright State University, Dayton, Ohio  
B.S., M.S., Ph.D.  
(University of Kaiserslautern)

**Dr. Abdurrahman Arslanyilmaz**  
Computer Science & Information Systems  
Department  
Youngstown State University  
Ph.D., Texas A&M University  
University of Missouri, Columbia  
Gazi University, Turkey

**Dr. Xiaohong He**  
Professor of International Business  
University of Quinnipiac  
BS, Jilin Institute of Technology; MA, MS,  
PhD., (University of Texas-Dallas)

**Burcin Becerik-Gerber**  
University of Southern California  
Ph.D. in Civil Engineering  
DDes from Harvard University  
M.S. from University of California, Berkeley  
& Istanbul University

**Dr. Bart Lambrecht**

Director of Research in Accounting and Finance  
Professor of Finance  
Lancaster University Management School  
BA (Antwerp); MPhil, MA, PhD (Cambridge)

**Dr. Carlos García Pont**

Associate Professor of Marketing  
IESE Business School, University of Navarra  
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)  
Master in Business Administration, IESE, University of Navarra  
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

**Dr. Fotini Labropulu**

Mathematics - Luther College  
University of Regina  
Ph.D., M.Sc. in Mathematics  
B.A. (Honors) in Mathematics  
University of Windsor

**Dr. Lynn Lim**

Reader in Business and Marketing  
Roehampton University, London  
BCom, PGDip, MBA (Distinction), PhD, FHEA

**Dr. Mihaly Mezei**

ASSOCIATE PROFESSOR  
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center  
Ph.D., Eötvös Loránd University  
Postdoctoral Training, New York University

**Dr. Söhnke M. Bartram**

Department of Accounting and Finance  
Lancaster University Management School  
Ph.D. (WHU Koblenz)  
MBA/BBA (University of Saarbrücken)

**Dr. Miguel Angel Ariño**

Professor of Decision Sciences  
IESE Business School  
Barcelona, Spain (Universidad de Navarra)  
CEIBS (China Europe International Business School).  
Beijing, Shanghai and Shenzhen  
Ph.D. in Mathematics  
University of Barcelona  
BA in Mathematics (Licenciatura)  
University of Barcelona

**Philip G. Moscoso**

Technology and Operations Management  
IESE Business School, University of Navarra  
Ph.D in Industrial Engineering and Management, ETH Zurich  
M.Sc. in Chemical Engineering, ETH Zurich

**Dr. Sanjay Dixit, M.D.**

Director, EP Laboratories, Philadelphia VA Medical Center  
Cardiovascular Medicine - Cardiac Arrhythmia  
Univ of Penn School of Medicine

**Dr. Han-Xiang Deng**

MD., Ph.D  
Associate Professor and Research  
Department Division of Neuromuscular Medicine  
Davee Department of Neurology and Clinical Neuroscience  
Northwestern University Feinberg School of Medicine

**Dr. Pina C. Sanelli**

Associate Professor of Public Health  
Weill Cornell Medical College  
Associate Attending Radiologist  
NewYork-Presbyterian Hospital  
MRI, MRA, CT, and CTA  
Neuroradiology and Diagnostic  
Radiology  
M.D., State University of New York at  
Buffalo, School of Medicine and  
Biomedical Sciences

**Dr. Michael R. Rudnick**

M.D., FACP  
Associate Professor of Medicine  
Chief, Renal Electrolyte and  
Hypertension Division (PMC)  
Penn Medicine, University of  
Pennsylvania  
Presbyterian Medical Center,  
Philadelphia  
Nephrology and Internal Medicine  
Certified by the American Board of  
Internal Medicine

**Dr. Roberto Sanchez**

Associate Professor  
Department of Structural and Chemical  
Biology  
Mount Sinai School of Medicine  
Ph.D., The Rockefeller University

**Dr. Bassey Benjamin Esu**

B.Sc. Marketing; MBA Marketing; Ph.D  
Marketing  
Lecturer, Department of Marketing,  
University of Calabar  
Tourism Consultant, Cross River State  
Tourism Development Department  
Co-ordinator , Sustainable Tourism  
Initiative, Calabar, Nigeria

**Dr. Wen-Yih Sun**

Professor of Earth and Atmospheric  
SciencesPurdue University Director  
National Center for Typhoon and  
Flooding Research, Taiwan  
University Chair Professor  
Department of Atmospheric Sciences,  
National Central University, Chung-Li,  
TaiwanUniversity Chair Professor  
Institute of Environmental Engineering,  
National Chiao Tung University, Hsin-  
chu, Taiwan.Ph.D., MS The University of  
Chicago, Geophysical Sciences  
BS National Taiwan University,  
Atmospheric Sciences  
Associate Professor of Radiology

**Dr. Aziz M. Barbar, Ph.D.**

IEEE Senior Member  
Chairperson, Department of Computer  
Science  
AUST - American University of Science &  
Technology  
Alfred Naccash Avenue – Ashrafieh

## PRESIDENT EDITOR (HON.)

### **Dr. George Perry, (Neuroscientist)**

Dean and Professor, College of Sciences

Denham Harman Research Award (American Aging Association)

ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization

AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences

University of Texas at San Antonio

Postdoctoral Fellow (Department of Cell Biology)

Baylor College of Medicine

Houston, Texas, United States

## CHIEF AUTHOR (HON.)

### **Dr. R.K. Dixit**

M.Sc., Ph.D., FICCT

Chief Author, India

Email: [authorind@computerresearch.org](mailto:authorind@computerresearch.org)

## DEAN & EDITOR-IN-CHIEF (HON.)

### **Vivek Dubey(HON.)**

MS (Industrial Engineering),

MS (Mechanical Engineering)

University of Wisconsin, FICCT

Editor-in-Chief, USA

[editorusa@computerresearch.org](mailto:editorusa@computerresearch.org)

### **Er. Suyog Dixit**

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant

CEO at IOSRD, GAOR & OSS

Technical Dean, Global Journals Inc. (US)

Website: [www.suyogdixit.com](http://www.suyogdixit.com)

Email:[suyog@suyogdixit.com](mailto:suyog@suyogdixit.com)

### **Sangita Dixit**

M.Sc., FICCT

Dean & Chancellor (Asia Pacific)

[deanind@computerresearch.org](mailto:deanind@computerresearch.org)

### **Pritesh Rajvaidya**

(MS) Computer Science Department

California State University

BE (Computer Science), FICCT

Technical Dean, USA

Email: [pritesh@computerresearch.org](mailto:pritesh@computerresearch.org)

### **Luis Galárraga**

J!Research Project Leader

Saarbrücken, Germany

## CONTENTS OF THE VOLUME

---

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Table of Contents
- v. From the Chief Editor's Desk
- vi. Research and Review Papers
  
- 1. Study of Performance of Shaft output with Rotorto-Casing Ratios versus Different Vane Angles Adopting Practical Approach on a Novel Multi - Vane Air Turbine. **1-8**
- 2. Study on Algorithms of Graphic Element Recognition for Precise Vectorization of Industrial Computed Tomographic Image. **11-17**
- 3. Numerical Computation of Economic Cooling Water rate for Two-stage Azeotropic Refrigerating systems. **19-24**
- 4. Dynamic Programming and Taguchi Method Optimization of Water-Treatment-Plant Design. **25-32**
  
- vii. Auxiliary Memberships
- viii. Process of Submission of Research Paper
- ix. Preferred Author Guidelines
- x. Index



# Study of Performance of Shaft output with Rotor-to-Casing Ratios versus Different Vane Angles Adopting Practical Approach on a Novel Multi-Vane Air Turbine

By Bharat Raj Singh , Onkar Singh

*SMS Institute of Technology, Gosainganj, Lucknow, UP, India*

**Abstract** - A concept of using compressed atmospheric air as an alternative to fossil fuel and zero pollution power sources for running light vehicle such as: motorbikes etc.. Here considered vehicle is equipped with an air turbine in place of an internal combustion engine, and transforms the compressed air energy into shaft work. The mathematical modeling shown here is reproduced from author's earlier publications on a small capacity compressed air driven vaned type novel air turbine. The effect of different rotor to casing diameter ratios with respect to different vane angles (number of vanes) have been considered and analyzed under specific parametric conditions. The shaft work output is found optimum adopting practical conditions of rotor / casing diameter ratios on a particular value of vane angle (no. of vanes). In this study, the maximum power is obtained as 4.02 kW (5.6 HP) when casing diameter is taken 100 mm, and rotor to casing diameter ratio is kept from 0.70, as the construction of turbine can be fabricated between rotor to casing ( $d/D$ ) ratio from 0.95 to 0.70 only. It is learnt that the generated power output of 4.02 kW (5.6 HP) is sufficient to run any motorbike.

**Keywords** : zero pollution, compressed air, air turbine, vane angle, rotor / casing diameter ratio, air-o-cycle.

**GJRE-A Classification** : FOR Code :091399



*Strictly as per the compliance and regulations of:*



# Study of Performance of Shaft output with Rotor-to-Casing Ratios versus Different Vane Angles Adopting Practical Approach on a Novel Multi-Vane Air Turbine

Bharat Raj Singh<sup>a</sup>, Onkar Singh<sup>Q</sup>

**Abstract** - This paper describes a concept of using compressed atmospheric air as an alternative to fossil fuel and zero pollution power sources for running light vehicle such as: motorbikes etc.. Here considered vehicle is equipped with an air turbine in place of an internal combustion engine, and transforms the compressed air energy into shaft work. The mathematical modeling shown here is reproduced from author's earlier publications on a small capacity compressed air driven vane type novel air turbine. The effect of different rotor to casing diameter ratios with respect to different vane angles (number of vanes) have been considered and analyzed under specific parametric conditions. The shaft work output is found optimum adopting practical conditions of rotor / casing diameter ratios on a particular value of vane angle (no. of vanes). In this study, the maximum power is obtained as 4.02 kW (5.6 HP) when casing diameter is taken 100 mm, and rotor to casing diameter ratio is kept from 0.70, as the construction of turbine can be fabricated between rotor to casing ( $d/D$ ) ratio from 0.95 to 0.70 only. It is learnt that the generated power output of 4.02 kW (5.6 HP) is sufficient to run any motorbike.

**Keywords** : zero pollution, compressed air, air turbine, vane angle, rotor / casing diameter ratio, air-o-cycle.

## I. INTRODUCTION

It is an established fact that the Worldwide faster consumptions of fossil fuel in transport vehicles have resulted fast depletion to energy resources and releasing huge quantities of pollutant in the atmosphere.. A US geologist Marian King Hubbert [1] in 1956 indicated that the conventional crude-oil production will attain Peak Oil within 20 years and thereafter it will start depleting which may cause serious threat to mankind within 40 years i.e. by 1995. Aleklett K. and Campbell C.J., [2] in 2003 illustrated that with current rate of consumptions, the production of oil and gas in many country will peak and begin to decline by around 2010. Such apprehension has led the search for environment friendly alternative to fossil fuel oil, or some

method of conserving natural resources using non-conventional options, such as; biodiesel, wind power, photo voltaic cells etc. and or energy conversion systems like battery storage, hydrogen cell, compressed air etc to obtain shaft work for the engines of vehicles [3-9].

Guy Negre [10] a French technologist and G. Saint Hillarie [11] an inventor of quasi turbine have carried out very important work in the area of compressed air engine. They stored highly compressed air in the energy storage systems up to 300 bar pressure within 15-20 minutes, and reused for running compressed air engines. In view of such attractive features of nearly zero pollution and air compression by using non-conventional resources, the compressed air engine became comparable in place of the other technology in vehicle markets.

In this paper author has carried out the parametric analysis of a small capacity air turbine having vane type rotor and describes the investigation of the effect of rotor to casing diameter ratios with different vanes fitted in the rotor. Results obtained by using a mathematical model are presented and analyzed here.

## II. FEATURE OF VANE TYPE AIR TURBINE

In this study a multi-vane type air turbine having casing diameter =D mm and rotor diameter =d mm is proposed as shown in Fig. 1. The considered air turbine works on the reverse working principle of vane type compressor. In this arrangement total shaft work is seen to be the cumulative effect of isobaric admission of compressed air jet on vanes and the adiabatic expansion of high pressure air. In earlier study conducted by authors a prototype of air turbine was developed [12].and its functionality was examined. A storage cylinder for the compressed air having capacity of 30 minutes stored air, for the requirement of running turbine at initial stage at working pressure of 10 bar, is used as a compressed air energy source. This storage cylinder is designed to produce constant pressure for the minimum variation of torque at low volumes of compressed air and attached with filter, regulator and lubricator. The clean air then admits into air turbine

*Author<sup>a</sup>* : Department of Mechanical Engineering, SMS Institute of Technology, Gosainganj, Lucknow-227125, UP, India.

(Telephone: +91-9415025825, E-mail : brsingh1ko@yahoo.com)

*Author<sup>Q</sup>* : Department of Mechanical Engineering, Harcourt Butler Technological Institute, Karapur-208002, UP, India.

(Telephone: +91-9415114011; E-mail: onkpar@rediffmail.com)

through its inlet nozzle and vanes of air turbine are also fitted into rotor under spring loading to maintain their regular contact with the casing wall. This arrangement is proposed to minimize leakage through mating contacts and is novelty of improvement in the vane turbine. A study on highly efficient energy conversion system for liquid nitrogen [13], design and verification of airfoil and its tests, influence of tip speed ratios for small wind turbine and parabolic heat transfer and structural analysis were also carried out for conceptualizing the energy conversion system [14-17]. The study of design feasibility of vane type novel air turbine has also been carried out [18-21].

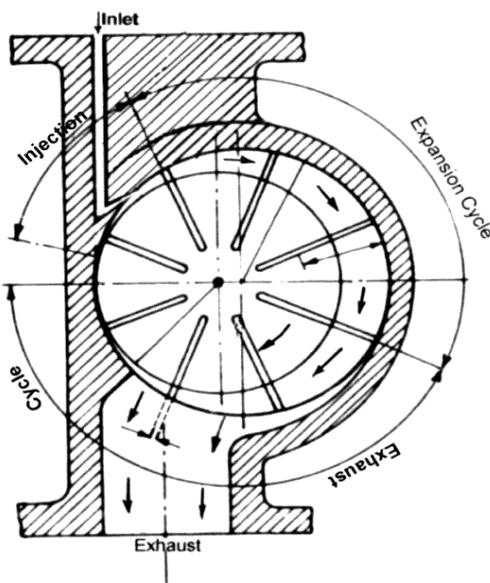



Fig.1 : Air Turbine-Model

The present objective of this study is to investigate the power output of an air turbine with different number of vanes in rotor, i.e. angle between first two consecutive vanes and the rotor/casing ratio ( $d/D$ ). The air turbine considered has capability to yield output of 5.0 to 5.6 HP at injection pressure 4-6 bar and speed of 2000-2500 rpm and is suitable to run a motorbike.

### III. MATHEMATICAL MODEL

The mathematical model shown here is already presented in author's earlier publications [22-34] and is reproduced here for maintaining the continuity and benefits to the readers\*\*1. The high pressure jet of air at ambient temperature drives the rotor in novel air turbine due to both isobaric admission and adiabatic expansion. The high pressure air when enters through the inlet passage, pushes the vane for producing rotational movement and thereafter air so collected

between two consecutive vanes of the rotor is gradually expanded up to exit passage, also contributes to the shaft out. This isobaric admission and adiabatic expansion of high pressure air both produces the total shaft power output from air turbine. Compressed air leaving the air turbine after expansion is sent out from the exit passage. It is thus noticed that the scavenging of the rotor is perfect and the work involved in recompression of the residual air is absent as seen from Fig. 1.

From Fig. 2, it is seen that work output is due to isobaric admission (E to 1), and adiabatic expansion (1 to 4) and reference 2, 3 in the figure shows the intermediate position of vanes. Thus, total work output due to thermodynamic process may be written as:

$$\text{Total work output} = [\text{Thermodynamic expansion work } (w_1)] + [\text{Exit steady flow work } (w_2)]$$

or

$$w = [(w_1) + (w_2)] \quad (1)$$

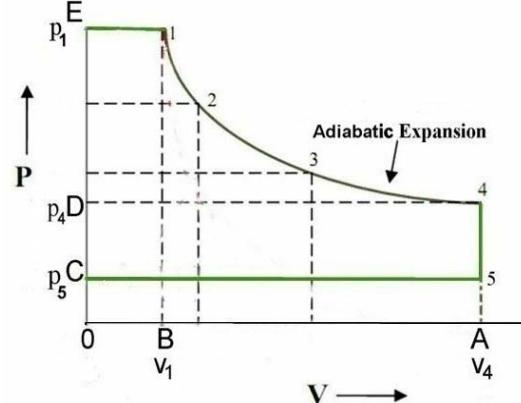



Fig.2 : Thermodynamic Processes (Isobaric, adiabatic and Isochoric Expansion)

Now thermodynamic expansion work ( $w_1$ ), considering adiabatic process between state 1 and 4, it can be written as:

$$w_1 = \left( \frac{\gamma}{\gamma-1} \right) \cdot p_1 \cdot v_1 \cdot \left\{ 1 - \left( \frac{p_4}{p_1} \right)^{\frac{\gamma-1}{\gamma}} \right\} \quad (2)$$

The process of exit flow (4-5) takes place after the expansion process (E-4) as shown in Fig. 2 and air is released to the atmosphere. In this process; till no over expansion takes place pressure  $p_4$  can't fall below atmospheric pressure  $p_5$ . Thus at constant volume when pressure  $p_4$  drops to exit pressure  $p_5$ , no physical work is seen. Since turbine is functioning as positive displacement machine and hence under steady fluid flow at the exit of the turbine, the potential work is absorbed by the rotor and flow work ( $w_2$ ), can be written as:

\*\*1 Mathematical model is reproduced here from author's earlier publications [22-34].

$$w_2 = \int_4^5 v.dp = v_4(p_4 - p_5) \quad (3)$$

Applying equations (2), (3) into equation (1), considering air turbine has  $n$  number of vanes, then shaft output [35] can be written as:

$$w_n = n \left( \frac{\gamma}{\gamma-1} \right) \cdot p_1 \cdot v_1 \left\{ 1 - \left( \frac{p_4}{p_1} \right)^{\frac{\gamma-1}{\gamma}} \right\} + n \cdot (p_4 - p_5) \cdot v_4 \quad (4)$$

where  $w_n$  is work output (in Nm), for complete one cycle.

Therefore, the total power output or work done per unit time ( $W$ ), for speed of rotation  $N$  rpm, will be:

$$W_{total} = n \cdot (N/60) \cdot \left( \frac{\gamma}{\gamma-1} \right) \cdot p_1 \cdot v_1 \left\{ 1 - \left( \frac{p_4}{p_1} \right)^{\frac{\gamma-1}{\gamma}} \right\} + n \cdot (N/60) \cdot (p_4 - p_5) \cdot v_4 \quad (5)$$

Figure 1 shows that if vanes are at angular spacing of  $\theta$  degree, then total number of vanes will be  $n = (360/\theta)$ . The variation in volume during expansion from inlet to exit (i.e.  $v_1$  to  $v_4$ ) can be derived by the variable extended length of vane as shown in Fig. 3 at every point of movement between two consecutive vanes.

From Fig. 3, shows that when two consecutive vanes at OK and OL move to position OH and OB, the extended vane lengths varies from SK to IH and LM to BG, thus the variable length BG at variable  $\alpha_i$  is assumed as  $X_{at\ variable\ \alpha}$  can be written from the geometry:

$$BG = x_{at\ variable\ \alpha} = R \cdot \cos \left[ \sin^{-1} \left\{ \left( \frac{R-r}{R} \right) \cdot \sin \alpha \right\} \right] + (R-r) \cdot \cos \alpha - r \quad (6)$$

where  $2R=D$  is diameter of casing and  $2r=d$  is diameter of rotor,  $\alpha$  is angle  $\angle BOF$ ,  $\beta$  is angle  $\angle BAF$  and  $\theta$  is angle  $\angle HOB$  or  $\angle H'OB$  or  $\angle KOL$ , between two consecutive vanes and  $\phi$  is angle  $\angle KOJ$  at which injection pressure admits to the air turbine.

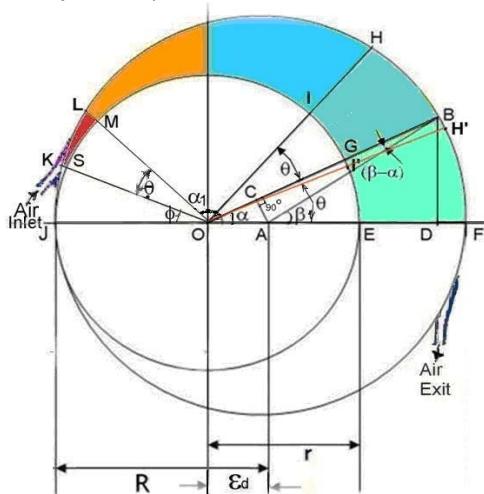



Fig.3 : Variable length BG and IH and injection angle  $\theta$

Variable volume of cuboids B-G-I-H-B can be written as:

$$v_{cuboids} = L \cdot \left\{ \frac{(X_{1i} + X_{2i})(2r + X_{1i})}{4} \right\} \cdot \sin \theta \quad (7)$$

where  $BG = X_{1i}$  and  $IH = X_{2i}$  variable length of vanes when rotate into turbine as shown in Fig. 3 and  $i$  stands for min or max length. Thus

a) The volume at inlet  $v_1$  or  $v_{min}$  will fall between angle  $\angle LOF = \alpha_{1min} = (180 - \theta - \phi)$  and angle  $\angle KOF = \alpha_{2min} = (\alpha_{1min} + \theta) = (180 - \phi)$  as seen in Fig. 3, when air is admits into turbine at angle  $\phi$ .

b) The Volume at exit  $v_4$  or  $v_{max}$  will fall between angle  $\angle BOF = \alpha_{1max} = \alpha = 0$  and angle  $\angle HOF = \alpha_{2max} = (\alpha_{1max} + \theta) = \theta$ .

Applying above conditions into equations (6), then  $LM = X_{1min}$ ,  $SK = X_{2min}$ ,  $FE = X_{1max}$ =Corresponding to BG at  $\alpha = 0$  degree and  $I'H' = X_{2max}$ =Corresponding IH at  $(\alpha + \theta) = \theta$  degree

Applying values of  $X_{1min}$  and  $X_{2min}$  to equation (7),

$$v_{min} = v_1 = L \cdot \left\{ \frac{(X_{1min} + X_{2min})(2r + X_{1min})}{4} \right\} \cdot \sin \theta \quad (8)$$

Applying values of  $X_{1max}$  and  $X_{2max}$  to equation (7),

$$v_{max} = v_4 = L \cdot \left\{ \frac{(X_{1max} + X_{2max})(2r + X_{1max})}{4} \right\} \cdot \sin \theta \quad (9)$$

Applying values of  $v_1$  and  $v_4$  from equations (8) and (9) to equation (5), the total power output available  $W_{total}$  can be written as :

$$W_{total} = n \cdot (N/60) \cdot \left( \frac{\gamma}{\gamma-1} \right) \cdot \left\{ 1 - \left( \frac{p_4}{p_1} \right)^{\frac{\gamma-1}{\gamma}} \right\} \cdot p_1 \cdot \left[ L \cdot \left\{ \frac{(X_{1min} + X_{2min})(2r + X_{1min})}{4} \right\} \cdot \sin \theta \right] + n \cdot (N/60) \cdot (p_4 - p_5) \cdot \left[ L \cdot \left\{ \frac{(X_{1max} + X_{2max})(2r + X_{1max})}{4} \right\} \cdot \sin \theta \right] \quad (10)$$

#### IV. PARAMETRIC CONSIDERATIONS AND ANALYSIS

In this study various input parameters are listed in Table 1 for investigation of performance of vane turbine at different rotor to casing diameter ratios ( $d/D$ ) with respect to different vane angle when  $D=100$  mm, injection pressure 6 bar (90 psi) and its optimization for larger shaft output.

Table 1 : Input Parameters

| Symbols     | Parameters                                                                                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|
| $d/D$ Ratio | 0.95, 0.9, 0.85, 0.80, 0.75 and 0.70 when casing diameter is kept $D=100$ mm                                                    |
| $p_1$       | 6 bar ( $\approx 90$ psi) – inlet pressures                                                                                     |
| $p_5$       | $(p_4 / 1.2) > 1.0132$ bar (atmospheric pressure)                                                                               |
| $p_4$       | $(v_1 / v_4)^{\gamma} \cdot p_1 > p_5$ assuming adiabatic expansion                                                             |
| $N$         | 2500 rpm (as total power is directly proportion to rpm)                                                                         |
| $L$         | 45 mm length of rotor (assumed minimum)                                                                                         |
| $\gamma$    | 1.4 for air                                                                                                                     |
| $n$         | Number of vanes in the rotor = $(360 / \theta)$                                                                                 |
| $\theta$    | Vane angle = $30^\circ$ (12 vanes), $36^\circ$ (10 vanes), $45^\circ$ (8 vanes), $60^\circ$ (6 vanes), and $90^\circ$ (4 vanes) |
| $\phi$      | $60^\circ$ angle at which compressed air enters through nozzle into rotor                                                       |

While actual fabrication of air turbine is carried out, it is noticed that the rotor / casing ( $d/D$ ) ratio can possibly be varied from 0.95 to 0.70 only.

## V. RESULTS AND DISCUSSION

Based on the various input parameters listed in Table-1 and mathematical model, the effects of different rotor to casing diameters ratios, at different vane angles, 2500 rpm of speed of rotation and 6 bar of injection pressure on the expansion work, exit flow work and total work output from air turbine are studied. Here the injection angle ( $\phi$ ) of the air turbine is considered to be constant at  $60^\circ$  for whole study.

The results obtained have been plotted in Figs. 4 to 9, for the rotor to casing diameter ratio ( $d/D$ ), varied as 0.95, 0.90, 0.85, 0.80, 0.75 and 0.70 at different vanes of rotor 12, 10, 8, 6, 4 (i.e. corresponding vanes angles of  $30^\circ$ ,  $36^\circ$ ,  $45^\circ$ ,  $60^\circ$ ,  $90^\circ$ ) and injection angle of  $60^\circ$  at injection pressures of 90 psi and at the speed of rotation 2500 rpm.

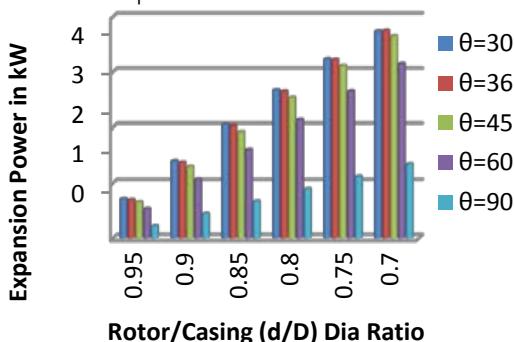



Fig.4 : Expansion power versus rotor / casing diameter ( $d/D$ ) ratio at different rotor vanes when  $D= 100$  mm, injection pressure = 6 bar and speed of rotation = 2500 rpm.

Figure 4 shows the variation of expansion power for the rotor vanes = 12 nos. ( $\theta=30^\circ$ ), 10 nos.

( $\theta= 36^\circ$ ), 8 nos. ( $\theta= 45^\circ$ ), are increasing linearly at rotor / casing ratios = 0.95, 0.90, 0.85, 0.80, 0.75 to 0.70 and it almost varies in similar values. Thus optimal performance of expansion power is seen at rotor / casing ratios = 0.70 for vanes number 12 to 8. But variation of expansion power for the rotor vanes = 6 nos. ( $\theta=60^\circ$ ), and 4 nos. ( $\theta= 90^\circ$ ), are increasing almost linearly at rotor / casing ratios = 0.95, 0.90, 0.85, 0.80, 0.75 & 0.70 and developed power values are smaller.

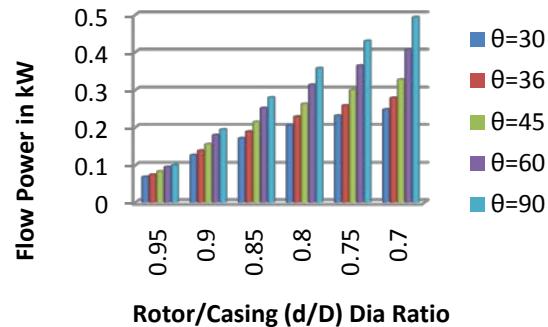
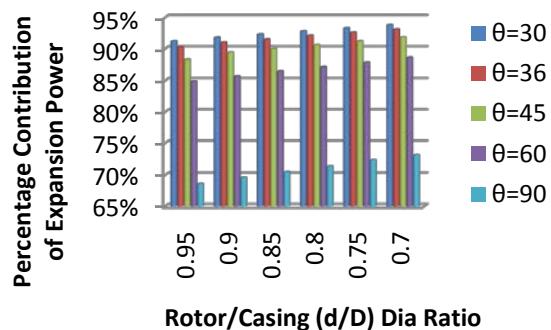
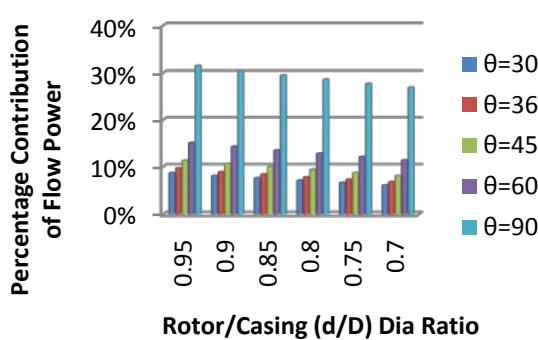



Fig.5 : Exit flow power versus rotor / casing diameter ( $d/D$ ) ratio at different vane number (vane angles) when  $D=100$  mm, injection pressure = 6 bar and speed of rotation = 2500 rpm.

Figure 5 shows the variation of flow power for the rotor vanes = 12 nos. ( $\theta=30^\circ$ ), 10 nos. ( $\theta= 36^\circ$ ), and 8 nos. ( $\theta= 45^\circ$ ), 6 nos. ( $\theta=60^\circ$ ), and 4 nos. ( $\theta= 90^\circ$ ), are increasing parabolically at rotor / casing ratios = 0.95, 0.90, 0.85, 0.80, 0.75 and 0.70 and it almost varies at different power values. It is also noticed that for the rotor vanes 6 nos. ( $\theta=60^\circ$ ), and 4 nos. ( $\theta= 90^\circ$ ) the values of power are found large.

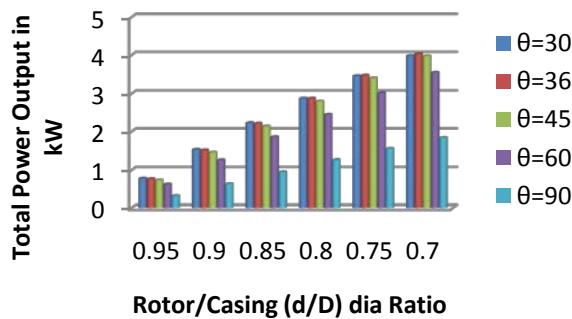
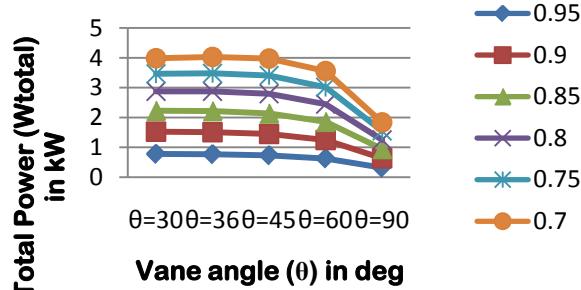


Fig.6 : Percentage contribution of expansion power versus rotor / casing diameter ( $d/D$ ) ratio at different vane number (vane angles) when  $D=100$  mm, injection pressure = 6 bar and speed of rotation = 2500 rpm

Figure 6 shows the percentage contribution of expansion power against total power output for different rotor / casing ratios = 0.95, 0.90, 0.85, 0.80, 0.75 and 0.70 at the rotor vanes = 12 nos. ( $\theta=30^\circ$ ), 10 nos. ( $\theta= 36^\circ$ ), and 8 nos. ( $\theta= 45^\circ$ ), are increasing from 91-94%, 90-93% and 88-92% respectively. But at the rotor 6 nos. ( $\theta=60^\circ$ ), and 4 nos. ( $\theta= 90^\circ$ ), it varies from 85% to 87% and from 69% to 73% respectively.



**Fig.7:** Percentage contribution of exit flow power versus rotor / casing diameter (d/D) ratio at different vane number (vane angles) when D=100 mm, injection pressure = 6 bar and speed of rotation =2500 rpm

Figure 7 shows the contribution of flow power against the total power output for different rotor / casing ratios =0.95, 0.90, 0.85, 0.80, 0.75 and 0.70 at the rotor vanes =12 nos. ( $\theta=30^\circ$ ), 10 nos. ( $\theta=36^\circ$ ), and 8 nos. ( $\theta=45^\circ$ ) are decreasing from 11% to 6% and at the rotor 6 nos. ( $\theta=60^\circ$ ), and 4 nos. ( $\theta=90^\circ$ ), it varies from 15% to 11% and from 31% to 27% respectively.




**Fig.8:** Total power output versus rotor/casing diameter (d/D) ratio at different vane angle when injection pressure = 6 bar and speed of rotation =2500 rpm

Variation of total power output is seen from Fig. 8, with respect to different vane angle = $30^\circ$  (12 vanes),  $36^\circ$  (10 vanes),  $45^\circ$  (8 vanes),  $60^\circ$  (6 vanes) and  $90^\circ$  (4 vanes) are increasing linearly at rotor / casing ratios =0.95, 0.90, 0.85, 0.80, 0.75 to 0.70 and it almost varies in similar values. Thus optimal performance of total power is seen to be 4.02 kW at rotor / casing ratios =0.70 for vanes number 10 nos. ( $\theta=36^\circ$ ). But variation of total power for the rotor vanes =6 nos. ( $\theta=60^\circ$ ), and 4 nos. ( $\theta=90^\circ$ ), are increasing linearly from rotor / casing ratios =0.95 to 0.75 and found smaller in its value than ( $d/D$ ) =0.70.

From Fig. 8, a critical study is carried out and it is observed that the total power bar lines are almost equals at vane angle  $30^\circ$ - $36^\circ$  (vanes= 12-10 nos.) for  $d/D$  ratios 0.90, 0.85, 0.80 and 0.75. The power output appears to be maximum when vane angle is  $36^\circ$  (vanes= 10 nos.) at  $d/D$  ratio=0.70. Accordingly a graph is drawn between "Total output power versus different vane angles" e.g., =  $30^\circ$  (12 vanes),  $36^\circ$  (10

vanes),  $45^\circ$  (8 vanes),  $60^\circ$  (6 vanes) and  $90^\circ$  (4 vanes) as shown in Fig. 9. It is thus observed that in the vane turbine total shaft power output is although the combined effect of the component of expansion power and exit flow power, but contribution of expansion power is predominant. The contribution of exit flow power due to steady flow in respect to total power output varies from 6.2% to 31.4% for injection pressure of 6 bar and speed of rotation at 2500 rpm.



**Fig.9:** Total power output versus vane angles (vane numbers) at different rotor / casing (d/D) ratio when injection pressure = 6 bar and speed of rotation =2500 rpm

From Fig. 9, it is obvious that the expansion power output as well as total power output is found optimum when vane angle ranges from  $30^\circ$ - $45^\circ$  (12-8 vane nos.), injection angle at  $60^\circ$  or above, at rotor/casing diameter ratio 0.70, speed of rotation at 2500 rpm and injection pressure at 6 bar and will be a deciding factor for desired shaft power output.

## VI. CONCLUSIONS

From the above investigations based on input parameters, such as; injection pressure, injection angle and speed of rotation when kept 6 bar,  $60^\circ$  and 2500 rpm respectively, following conclusions are drawn:

- 3.98 kW to 4.02 kW, when rotor to casing diameter ratio is 0.70 and vane nos. 12-8 (vane angle  $30^\circ$  -  $45^\circ$ ),
- 3.46 kW to 3.48 kW, when rotor to casing diameter ratio is kept 0.75 and vanes nos. 12-10 (vane angle  $30^\circ$  to  $36^\circ$ ),
- 2.79 kW to 2.87 kW, when rotor to casing diameter ratio is kept 0.80 and vanes nos. 12-10 (vane angle  $30^\circ$  to  $36^\circ$ ).

Thus optimum shaft power output of a novel vaned type air turbine is obtained when the design parameters for rotor diameter to casing diameter ( $d/D$ ) ratios are kept between 0.75 to 0.70 and vanes nos. 12-10 (vane angle is of  $30^\circ$  to  $36^\circ$ ) and plays an important role in designing the air turbine.

## VII. NOMENCLATURE

|            |                                                                                 |
|------------|---------------------------------------------------------------------------------|
| $d$        | diameter of rotor ( $2r$ ) in meter                                             |
| $D$        | diameter of outer ( $2R$ ) cylinder in meter                                    |
| $L$        | length of rotor having vanes in meter                                           |
| $n$        | no. of vanes = $(360/\theta)$                                                   |
| $N$        | no. of revolution per minute                                                    |
| $p$        | pressure in bar                                                                 |
| $p_1, v_1$ | pressure and volume respectively at which air strike the Turbine,               |
| $p_4, v_4$ | pressure and volume respectively at which maximum expansion of air takes place, |
| $p_5$      | pressure at which turbine releases the air to atmosphere.                       |
| $v$        | volume in cu-m                                                                  |
| $w$        | theoretical work output in Nm                                                   |
| $W$        | theoretical power output (Nm/s)                                                 |
| $X_{1i}$   | variable extended lengths of vane at point 1                                    |
| $X_{2i}$   | variable extended lengths of vane at point 2                                    |
| bar        | (1 / 1.0132) atmospheric pressure                                               |

### Subscripts

|                 |                                                         |
|-----------------|---------------------------------------------------------|
| $1, 2, 3, 4, 5$ | subscripts – indicates the positions of vanes in casing |
| e, exp          | expansion                                               |
| f, flow         | flow                                                    |
| t, total        | total                                                   |
| min             | minimum                                                 |
| max             | maximum                                                 |

### Greek symbols

|            |                                                                |
|------------|----------------------------------------------------------------|
| $\alpha$   | angle BOF                                                      |
| $\alpha_1$ | angle LOF ( $=180-\phi$ )                                      |
| $\alpha_2$ | angle KOF ( $=180-\theta-\phi$ )                               |
| $\beta$    | angle BAF                                                      |
| $\gamma$   | 1.4 for air                                                    |
| $\theta$   | angle between 2-vanes (BOH)                                    |
| $\phi$     | angle at which compressed air enters into rotor through nozzle |
| $\xi_d$    | eccentricity ( $R-r$ )                                         |

## REFERENCES RÉFÉRENCES REFERENCIAS

- Hubbert M.K., 1956, Nuclear energy and the fossil fuels; Amer. Petrol. Inst. Drilling and Production Practice, *Proc. Spring Meeting*, San Antonio, Texas. 7-25.
- Aleklett K. and Campbell C.J., 2003, The Peak and Decline of World Oil and Gas Production- *Minerals and Energy, Raw Materials Report*, Volume 18, Number 1, 2003, pp. 5-20(16).
- Singh B.R. and Singh Onkar, 2007, Use of Non-Conventional Energy for Sustainability to Fossil Fuel, *National Conference on Recent Trend on Mechanical Engineering, RAME-2007*, held on 28-29th March'2007 at Baba Sahab Dr. Bhim Rao Ambedkar College of Agricultural Engineering and Technology, Etawah-Proceedings pp.130-136.
- Singh B.R. and Singh Onkar, 2007, Uses of Wind Power as a Non-Conventional / Renewable Energy for Sustainability, *National Conference on State of Art Technology in Mechanical Engineering, STEM-2007*, held on October 29-31, 2007 at College of Technology, G.B. Pant University, Pant Nagar, UP- Proceedings pp. 503-515.
- Honton E. J., 2004, Hydrogen Fuel Cell Car, presented at *15th Annual US Conference and Hydrogen Expo*, April'2004, USA.
- Rose Robert and William J. Vincent, 2004, Fuel Cell Vehicle World Survey 2003, *Breakthrough Technologies Institute*, February' 2004, Washington, D.C.
- Singh B.R. and Singh Onkar, 2006, Necessity and Potential for Bio-Diesel Use in India, *International Conference on Bio-Fuel Vision-2015*, October'13th - 15th, 2006 at Bikaner, India- Proceedings pp.71-89.
- Singh B.R. and Singh Onkar, 2006, Study of Compressed Air as an alternative to fossil fuel for Automobile Engines, *International Conference on Challenges and Strategies for Sustainable Energy and Environment- held on 10-11th June'2006 at UPTU, Lucknow, UP-Proceedings pp. 179-191.*
- Singh B.R. and Singh Onkar, 2008, A Study on Sustainable Energy Sources and its Conversion Systems towards Development of an Efficient Zero Pollution Novel Turbine to be used as Prime-mover to the Light Vehicle, *2008 ASME International Mechanical Engineering Congress and Exposition*, held on October 31-November 6, 2008 at Boston, Massachusetts, USA- Paper No. IMECE - 2008 - 66803, DOI: 10.1115/IMECE2008-66803.
- Negre Guy and Negre Cyril, 2004, Compressed Air - The Most Sustainable Energy Carrier for Community Vehicles, Speech in front of assembly at Kultur gathered for *Fuel Cells World*, Tuesday 29th June '2004.
- Saint Hillarie G., Saint Hillarie R. and Saint Hillarie, Y., 2005, Quasiturbine zero pollution car using

gasoline. *Festival at Le Lundi, Montreal Gazette*, 26 September 2005.

12. Singh B.R. and Singh Onkar, 2008, Development of a vaned type novel Air Turbine, *International Journal of Mechanical Engineering Science* (The manuscript was received on 21<sup>st</sup> December 2007 and was accepted after revision for publication on 03<sup>rd</sup> June 2008), *International Journal of IMechE* Vol. 222 Part C, pp. 2419-2426, DOI: 10.1243/09544062JMES993
13. Knowlen C., Bruckner A. P., Mattick A.T. and Hertzberg A., 1998, High Efficiency Energy Conversion Systems for Liquid Nitrogen Automobiles, *Society of Automotive Engineers, Inc., AIAA 98-1898*.
14. Fuglsang P., Bak C. and Gunna M., 2004, Design and verification of the Ris0-B1 Airfoil-family for Wind Turbines, *Journal of Solar Energy Engg.*, ASME-Nov'2004, Vol.126, pp. 1002-1008.
15. Gorla R. and Reddy, S., 2005, Probabilistic Heat Transfer and Structural Analysis of Turbine Blade, *IJTJE*, Vol. 22, pp 1- 11.
16. Selig Michel S. and Bryan D. McGranahan, 2004, Wind Tunnel Aerodynamics Tests of Six Airfoils for use on Small Wind Turbines, *Journal of Solar Energy Engg.*, ASME-Nov'2004, Vol.126, pp986-1000.
17. Schreck S. and Robinson M., 2004, Tip Speed Ratio Influences on Rationally Augmented Boundary Layer Topology and Aerodynamic Force Generation, *Journal of Solar Energy Engg.*, ASME-Nov' 2004-Vol.126 pp1025-1033.
18. Singh B.R. and Singh Onkar, 2008, A concept for Development of a Vaned Type Novel Air Turbine, *12<sup>th</sup> International Symposium on Transport Phenomena and Dynamics of Rotating Machinery* - held on February 17-22, 2008 at Pacific Center of Thermal-Fluids Engineering, Sheraton Mohana Surfrider Hotel Honolulu, Hawaii - Paper No. ISROMAC-12-20046.
19. Singh B.R. and Singh Onkar, 2008, Energy Storage System to meet Challenges of 21<sup>st</sup> Century- an Overview, *All India Seminar on Energy Management in Perceptive of Indian Scenario*-held on October 17-19, 2008 at Institution of Engineer (India), State Centre, Engineer's Bhawan, Lucknow-Proceedings Chapter15, pp. 157-167.
20. Singh B.R. and Singh Onkar, 2008, A Study to Optimize the Output of Vaned Type Novel Air Turbine, *4<sup>th</sup> International Conference on Energy Research and Development*, held on 17-19 November, 2008 at State of Kuwait, Kuwait- Paper No. ICERD - 4 -1353.
21. Singh B.R. and Singh Onkar, 2008, Parametric Evaluation of Vane Angle on performance of Novel Air Turbine, *Journal of Science, Engineering and Management*, SITM , December, 2008,Vol. 2, pp. 7-18.
22. Singh B.R. and Singh Onkar, 2009, Analytical Study on a Vaned Type Novel Air Turbine for Different Conditions of Casing and Rotor Diameters, *2009 ASME International Conference on Energy Sustainability* - held on July 17-23, 2009, at San Francisco, California, USA, Paper No. ES - 2009 - 90207, Vol.1 (2009), pp. 699-706, DOI: 10.1115/ES2009-90207.
23. Singh B.R. and Singh Onkar, 2009, Applications of Compressed Air as an Alternative Energy to Meet Challenges of 21st Century- Global Warming, *International Conference on Engineering Congress on Alternatives Energy Applications: Option or Necessity?*, held on 3-5 November, 2009 at State of Kuwait, Kuwait- Paper No. EC2009 Kuwait-1082.
24. Singh B.R. and Singh Onkar, 2009, Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine, *International Journal of Natural Science and Engineering, IJNSE*, France, Vol. 1, Number-1(4), pp 20-27.
25. Singh B.R. and Singh Onkar, 2009, Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine , *International Journal of Natural Science and Engineering, IJNSE*, France, Vol. 1,Number-1(5), pp. 28-35.
26. Singh B.R. and Singh Onkar, 2009, Parametric Evaluations of Injection Angles and Vane Angles on Performance of a Vaned Type Novel Air Turbine, *International Journal of Mathematical, Physical and Engineering Sciences, IJMPEs*, France, Vol. 3, Number-4(38), pp. 226-233.
27. Singh B.R. and Singh Onkar, 2009, Optimization of Power Output of a Vaned Type Novel Air Turbine With Respect to Different Injection Angles-Under Ideal Adiabatic Expansion, *International Journal of Mechanical Engineering, Serials Publications, New Delhi, India*, Vol. 2 Number 2, July-December'2009, pp. 205-211.
28. Singh B.R. and Singh Onkar, 2009, Analytical Investigations on Different Air Injection Angles to Optimize Power Output of a Vaned Type Air Turbine, *International Journal of Power and Energy* (The manuscript was received on 11<sup>th</sup> June' 2009 and was accepted after revision for publication on 07<sup>th</sup> October' 2009), *Proceedings of IMechE Part A*, Vol. 224, 2010, pp. 305-310, DOI: 10.1243/09576509JPE837.
29. Singh B.R. & Singh Onkar, 2010, Study of Influence of Vane Angle on Shaft Output of a Multi Vane Air Turbine, *International Journal of Renewable and Sustainable Energy*, AIP, New York, USA.ISSN:1941-7012;(The manuscript received on October 24, 2009, accepted April 09, 2010, and Published on May 6, 2010 ), Vol.2 Number 3,2010, pp. 033101-16, DOI:10.1063/1.3424712

30. Singh B.R. & Singh Onkar, 2010, Study of Effect of Rotor Vanes to Rotor-Casing Dimensions on Performance of a Zero Pollution Vane Type Novel Air Turbine, International Journal of the Physical Sciences, 5170-00200, Nairobi-73023 Victoria Island, Lagos, ISSN: 1992-1950; (The manuscript IJPS-10-038 was received on February 01, 2010 and accepted on April 28, 2010)- Vol.5(5), 2010, pp. 547-556.
31. Singh B.R. & Singh Onkar, 2010, Study of Influence of Different Rotor to Casing Diameter Ratios with Optimal Vane and Injection Angles on Shaft Output of a Multi-Vane Air Turbine, International Journal of Energy & Power, Inventi Journals Pvt. Ltd., SDX 33, Minal Residency, JK Road, BHOPAL, 462023, MP, India, ISSN: 2229-7774; (The manuscript EEP-10-03 was accepted on September 15, 2010), Vol.1(1), 2010, eep003.
32. Singh B.R. & Singh Onkar, 2011, Performance Investigations for Power Output of a Vaned Type Novel Air Turbine, MIT- International Journal of Mechanical Engineering, Moradabad, India, ISSN :2230-7699; (Accepted: Dec. 17, 2010; Published: Jan 11. 2011), Vol.1(1), 2011, pp. 9-16.
33. Singh B.R. & Singh Onkar, 2011, Study of the Influence of Vane Angle on Shaft Output of a Multivane Air Turbine (II. Different rotor to casing diameter ratios with optimal injection angle), International Journal of Renewable and Sustainable Energy AIP, New York, USA, ISSN:1941-7012; (The Manuscript was received on Oct 10, 2010, accepted on April 7, 2011 and published on May 24, 2011); Vol.3, Number 3, pp. 033102-17 DOI: 10.1063/1.3583647.
34. Singh B.R. & Singh Onkar, 2011, Analysis of the effect of rotor-to-casing diameter ratio on the power output of a vaned-type air turbine (Part-II), *Research Journal of Applied Sciences, Engineering and Technology*, Maxwell Scientific Publishing, 74 Kenelm Road, B10 9AJ, Birmingham Small Heath, UK, ISSN:2040-7459; (The Manuscript received on March 11, 2011, accepted on April 16, 2011 and published on May 25, 2011) Vol.3(5), pp. 415-425.
35. Singh Onkar, 2009, Reciprocating and Rotary Compressor, Applied Thermodynamics, *New Age International (P) Ltd., Publishers, New Delhi, India*, ISBN: 978-81-224-2583-3, Feb2009, pp. 727-728



GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING  
MECHANICAL AND MECHANICS ENGINEERING  
Volume 11 Issue 5 Version 1.0 August 2011  
Type: Double Blind Peer Reviewed International Research Journal  
Publisher: Global Journals Inc. (USA)  
Online ISSN: 2249-4596 Print ISSN: 0975-5861

# Study on Algorithms of Graphic Element Recognition for Precise Vectorization of Industrial Computed Tomographic Image

By Fenglin Liu , Bing He ,Bi Bi  
*Chongqing University, Chongqing, China*

**Abstract** - Circle, line and circular arc are the common basic graphic elements in industrial computed tomography (ICT) image. The algorithm of recognizing such elements is the key to industrial CT image precise vectorization. An industrial CT image vectorization system has been studied, including different recognition methods for these elements. Firstly, based on facet model, the sub-pixel edge of an industrial CT image is extracted. Then, the circles are recognized by an improved algorithm based on probability of existence map, while the lines are recognized with the set intersection algorithm of fitting a straight line, and the circular arcs are recognized by the combination of the perpendicular bisector tracing algorithm and least squares function. Finally, the graphic element parameters are measured according to recognition results, and the drawing exchange file (DXF) is produced and transmitted into the computer aided design (CAD) system to be edited and consummated. The experimental results show that these methods are capable of recognizing graphic elements in industrial CT image with an excellent accuracy, besides, the absolute errors of circles are less than 0.1 mm, and the relative errors are less than 0.5%. It can satisfy the industrial CT vectorization requirements of higher precision, rapid speed and non-contact.

**Keywords** : *Computed tomography, facet model, edge detection, vectorization.*

**GJCT Classification** : I.4.9



*Strictly as per the compliance and regulations of:*



# Study on Algorithms of Graphic Element Recognition for Precise Vectorization of Industrial Computed Tomographic Image

Fenglin Liu<sup>a</sup>, Bing He<sup>a</sup>, Bi Bi<sup>b</sup>

**Abstract** - Circle, line and circular arc are the common basic graphic elements in industrial computed tomography (ICT) image. The algorithm of recognizing such elements is the key to industrial CT image precise vectorization. An industrial CT image vectorization system has been studied, including different recognition methods for these elements. Firstly, based on facet model, the sub-pixel edge of an industrial CT image is extracted. Then, the circles are recognized by an improved algorithm based on probability of existence map, while the lines are recognized with the set intersection algorithm of fitting a straight line, and the circular arcs are recognized by the combination of the perpendicular bisector tracing algorithm and least squares function. Finally, the graphic element parameters are measured according to recognition results, and the drawing exchange file (DXF) is produced and transmitted into the computer aided design (CAD) system to be edited and consummated. The experimental results show that these methods are capable of recognizing graphic elements in industrial CT image with an excellent accuracy, besides, the absolute errors of circles are less than 0.1 mm, and the relative errors are less than 0.5%. It can satisfy the industrial CT vectorization requirements of higher precision, rapid speed and non-contact.

**Keywords** : Computed tomography, facet model, edge detection, vectorization.

## I. INTRODUCTION

There has been remarkable research achievement in developing and applying computerized tomography (CT) technology for medical and industrial applications, particularly in the industrial area, such as aerospace, aviation, military, machinery and automobile. Industrial CT is not only effective to detect the inner construction and flaws of an object, but also necessary to nondestructively measure the size of

**Author<sup>a</sup>** : Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing University, Chongqing 400030, China. College of Mechanical Engineering, Chongqing University, Chongqing 400030, China. \*Address correspondence to this author at the ICT Research Center, Chongqing University, Chongqing, 400030, China; Tel: +86-23- 86394817 (office), +86-13983075766 (Mobile); Fax: +86-23-65103562.

E-mail : ict\_llf@yahoo.com.cn, hebing\_ict@126.com

**Author<sup>a</sup>** : College of Mechanical Engineering, Chongqing University, Chongqing 400030, China.

**Author<sup>b</sup>** : Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing University, Chongqing 400030, China.

workpiece [1, 2]. However, the two dimensional slice images acquired by the 3rd generation ICT device can't be edited in the existing computer aided design (CAD) system. And most industrial CT images are the workpieces' dislocation images, which have many geometrical elements, such as lines, circular arcs and circles. Several conventional vectorization methods, applied in engineering drawings and maps, come with disadvantages, including noise sensitivity, computational complexity and low accuracy. These shortcomings make it difficult to accurately measure the size of workpieces' inner construction. In order to overcome these problems, in this paper we investigate methods of industrial CT images precise vectorization.

Since the research of image vectorization started in the early 1970s, numerous approaches have been developed [3, 4]. Broadly, these algorithms can be divided into several groups: thinning algorithm, contour tracking, Hough Transform (HT), dynamic window method and global recognition algorithm. The main advantage of thinning algorithm is that it holds a better reservation of image topology information, and its processing data points are decreased. Nevertheless, it is sensitive to noise. As a solution of this problem, the contour tracking method is provided. Its processing rate is high, and the impact of the air bubble and burr defects on the vectorization effect is reduced. However, the recognition accuracy is low since the vector image is discontinuous. In terms of accuracy and robustness, the HT and its variants have been successfully used in image vectorization. These methods are robust against outlier and occlusion, but computationally expensive. Dynamic window vectorization algorithm was proposed as a relatively novel method. A major advantage of this method presents at its high recognition accuracy to crossing point. Unfortunately, the window is changing continually, so the robustness is not enough. With the vectorization technology improving, some researchers have presented global recognition method. In process of vectorization, the line width can be obtained. Meanwhile, the corresponding tracking mode is adopted for reducing the impact of line fracture and missing data. But the accuracy of crossing point should be further improved.

In view of the disadvantages of the current image vectorization methods, the key contribution of this paper is to investigate a vectorization system for industrial CT image. In this system, the sub-pixel edge of an industrial CT image is extracted based on facet model. Its execution time is reduced significantly by removing invalid data points. Then, the circles, lines and circular arcs are recognized respectively with the corresponding recognition algorithms. These algorithms improve recognition accuracy. Also, in the process of recognition, the obtained elements parameters are dynamically saved in the corresponding linked lists. Hence, the required computation storage space is much cheaper than the previous methods.

## II. SYSTEM OVERVIEW

In the process of industrial CT image vectorization, it is critical to detect edges in the image which is an important stage as the quantity and quality of edge data will affect greatly the vectorization performance of the system. The sub-pixel edge contour is extracted by the edge detection algorithm based on facet model, after the pre-processing as Gaussian filter, binarization. For this contour, the recognition algorithms of graphic elements are implemented. Firstly, determine whether the contour is a circle by calculating the center's probability. If it is a circle, the improved fast algorithm of circle detection based on probability of existence map is utilized to recognize it. The obtained circle parameters by the least squares function (LSF) are saved in the circle chained list. Reversely, if it is not a circle, the contour curve is fitted into many short line segments by adopting the improved set intersection algorithm of fitting a straight line. Then, merge the short line segments into the long line segments. Finally, the perpendicular bisector tracing algorithm is adopted to find the long line segments which can be fitted into circular arcs. And the merged circular arcs' parameters are derived from the least squares function. These parameters are saved in the circular arc linked list. Another long line segments' parameters are saved in the line linked list. After recognizing these elements, their parameters are outputted for vector graph. The system architecture is summarized in Fig. (1).

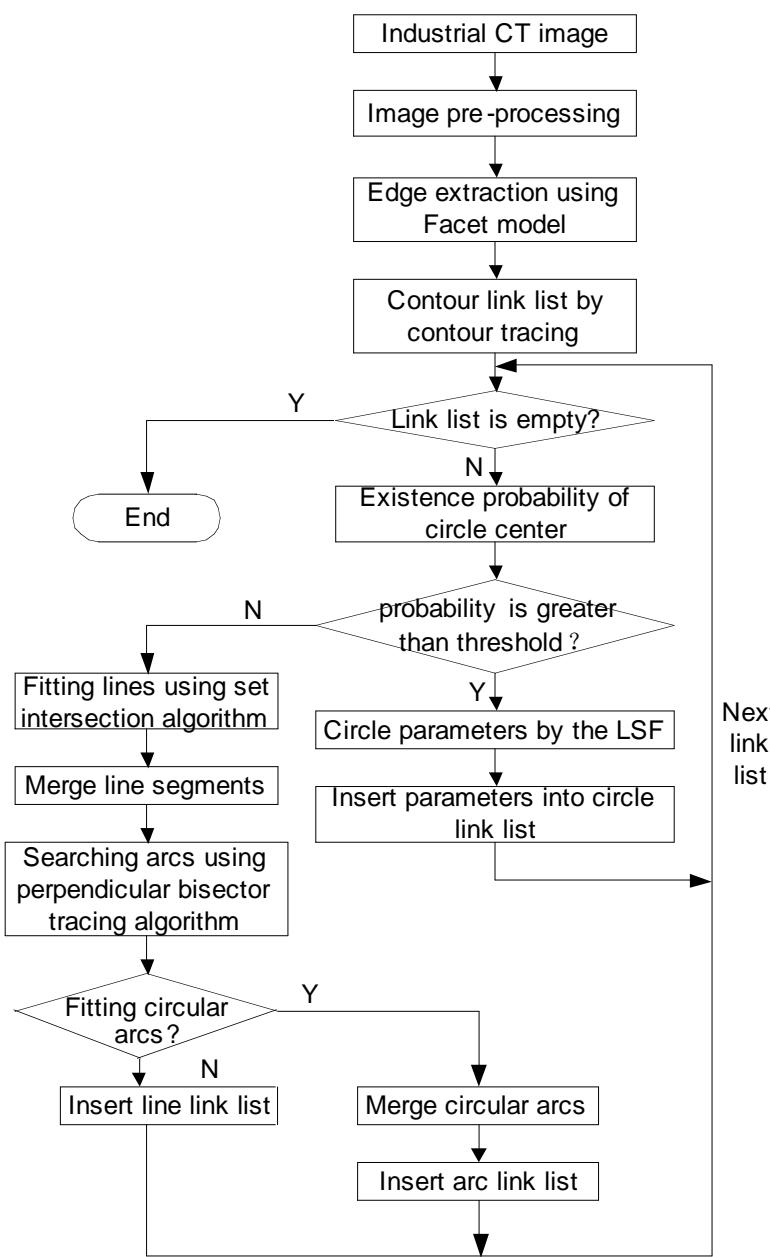



Fig. 1: Architecture of system.

### III. EDGE DETECTING ALGORITHM BASED ON FACET MODEL

The exact location of edge is obtained by using the edge detection algorithm based on facet model. Through calculating the second-ordered directional derivative, edge point is defined as the zero-crossing point of facet model along the gray gradient direction [5]. Third-ordered facet model of the pixel  $(x, y)$  in  $5 \times 5$  regions can be expressed as follows:

$$\begin{aligned} f(r, c) = & k_1 + k_2 r + k_3 c + k_4 r^2 + k_5 r c + k_6 c^2 + k_7 r^3 \\ & + k_8 r^2 c + k_9 r c^2 + k_{10} c^3 \end{aligned} \quad (1)$$

$r, c \in [-2, -1, 0, 1, 2]$ .

Where  $(r, c)$  is the coordinate of any point in this pixel's neighborhood;  $k_1 \sim k_{10}$  are the coefficients which are obtained by the least square method [6]. So

$$\sin \alpha = k_2 / \sqrt{k_2^2 + k_3^2}, \cos \alpha = k_3 / \sqrt{k_2^2 + k_3^2} \quad (2)$$

Define  $r = \sqrt{\sin^2 \alpha + \cos^2 \alpha}$ ,  $c = \tan \alpha$  ( $\rho$  is the distance between edge point and the center of pixel), the first-ordered, second-ordered and third-ordered partial derivatives of the model can be expressed as follows:

$$\left\{ \begin{array}{l} f'(\rho) = m_1 + 2m_2\rho + 3m_3\rho^2 \\ f''(\rho) = 2m_2 + 6m_3\rho \\ f'''(\rho) = 6m_3 \end{array} \right. \quad (3)$$

The edge point is the location of local extremum of the first-ordered derivative in local fitting surface; meanwhile it is the zero-crossing point of the second-ordered derivative as well.  $(r, c)$  is the edge point, if we can obtain  $\rho_0$  ( $\rho_0$  is within the  $5 \times 5$  sub-region whose center is  $(r, c)$ ) which satisfies (4), and the third-ordered partial derivative negative, as in (5).

$$f''(\rho) = 2m_2 + 6m_3\rho = 0 \Rightarrow |m_2/3m_3| = \rho_0 \quad (4)$$

$$f'''(\rho) < 0 \Rightarrow m_3 < 0 \quad (5)$$

Adopting this algorithm, the subtle image detail is located. The edge detection accuracy is high enough, and the image noise is restrained to some extent.

### IV. RECOGNITION OF GRAPHIC ELEMENTS

#### a) Recognition of Circle

##### i. Existence Probability of Circle

Circles in the X-Y plane can be completely represented by the following quadratic equation with three parameters  $(u, v, r)$  as other 2nd order curves can be.

$$(x - u)^2 + (y - v)^2 = r^2 \quad (6)$$

In order to obtain the size and position of circles in industrial CT image, the method based on probability of existence map is applied [7].  $P_e$  is the existence

probability of the circle whose center is  $(u, v)$  and radius is  $r$ . It is given by:

$$P_e = A(r) / 2\pi r \quad (7)$$

Where  $A(r)$  is the amount of edge points, whose distance from the center equals  $r$ ;  $2\pi r$  is the amount of discrete pixels of the circle with radius  $r$ .

Every pixel  $(x, y)$  in the image is regarded as the center, the existence probability  $P_e$  is calculated and saved in the two dimensional array  $\{P(x, y)\}$ . The probability of existence map is produced, and the radius  $r$  is saved in the two dimensional array  $\{R(x, y)\}$ . Each peak in probability of existence map represents that a circle may exist in this image, taking the peak coordinates as the center and  $r$  as the radius.  $P_e$  is the probability of such existence. Fig. (2) is an industrial CT image with a circle. The existence probability of the center point is calculated, and the probability map is shown in Fig. (3). The following information can be obtained : Center point (139,139),  $r = 42.4946$ ,  $P_e = 0.8996$

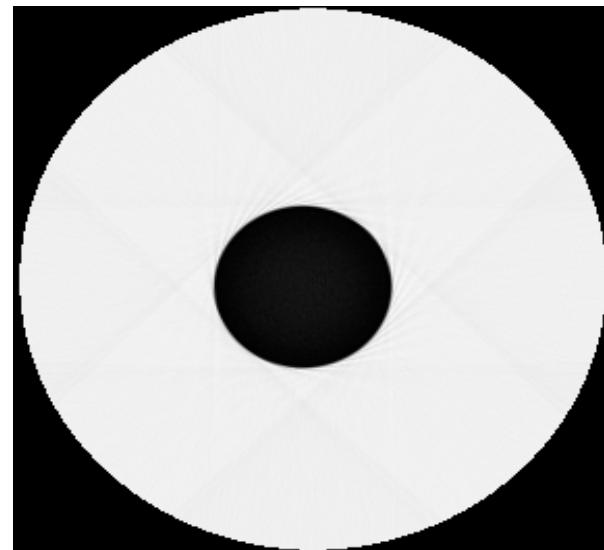



Fig. 2: Industrial CT image.

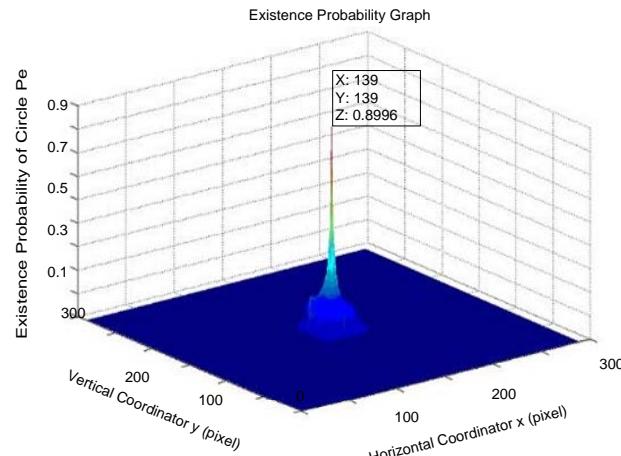



Fig. 3: Probability map of circle.

ii. *Improved Algorithm of Existence Probability*

The above algorithm regards each pixel in the image as the center of a circle, but most pixels in the image are not the center of the circle actually. As a result, the computation is complicated and the required computational storage is expensive. The center of the circle should lie in a mini-realm in the target region, thus, we improve the above algorithm by decreasing the select range of circle center to the square  $C$  [8]. If a closed curve has been recognized as a circle, the maximum distance of two points on the circle is defined as diameter, and the middle point of the diameter is the circle center. As illustrated in Fig. (4), for every closed contour, we first have to find the nethermost point  $A$ , then, calculate all distances from  $A$  to the other points. The point  $B$  that has the maximum distance  $D$  is the endpoint of the diameter. The midpoint  $O$  of the diameter is approximately regarded as the centroid of the closed contour. Therefore, a square  $C$  is obtained, whose center and sides are the centroid  $O$  and  $D \times w$  ( $D = 100$ ,  $w = 0.1$ ), respectively. The square  $C$  is the area within which the potential circle center will be sought. In this way, the improved method constrains the search for potential circle center only in the specified small range and thereby reduces the computational cost.

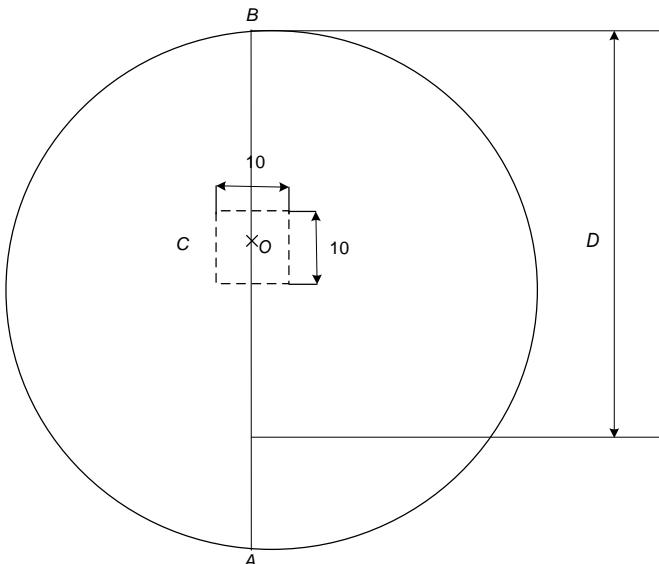



Fig. 4 : Select range of circle center.

Besides, we improved the storage mode for saving memory space as well. Circle parameters, such as the coordinates of the circle center, radius and existence probability, are stored by a series of two dimensional arrays in the previous algorithm, which has to allocate memory beforehand. Thus, different types of images require different memory size. If the allocated memory is oversize, the memory space will be wasted; on the contrary, if undersized, memory space will cause data overflow. In this paper, we store the above parameters using the chained-list, referred to as the

mode of allocating memory is dynamic, not beforehand. There is no need for this rule to redefine the memory size, even though the image size is different. As described in the following, the constructed list structure is effective in that it influences not only memory allocation, but also the recognition efficiency of a circle.

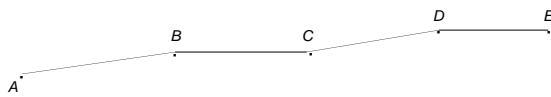
typedef struct

{int x; // x-coordinate of circle center  
int y; // y-coordinate of circle center} Point;

struct NODE

{Point point; // coordinates of circle center  
float r; // radius of circle  
int k; // number of edge points  
float p; // existence probability of circle  
NODE \*next; // the pointer of next node};

b) *Recognition of Line*


After recognizing the circles in industrial CT image, the remaining contours are fitted into short line segments by an improved method of fitting a straight line. Based on the set intersection algorithm of fitting a straight line [9], the method makes use of least square technique [10] to get line segment parameters. Generally, the procedure of the method is as follows:

As shown in Fig. (5a). For a contour, the starting point is  $P_0$ , the current point is  $P_c$ . At the beginning of fitting,  $P_c = P_0$ . First, determine whether the next field of  $P_c$  is empty. If the next field is empty, end tracking the current line, get the line segment  $P_0P_c$ . If the next field isn't empty, judge whether the following point  $P_n$  belongs to the current line. If  $P_n$  is in the current line, then  $P_n \rightarrow P_c$ , and continue determining the following one. Or else, terminate tracking the current line, and get the line segment  $P_0P_c$ . Next, let  $P_n$  be the new starting point, and continue recognizing other line segments of the contour. After finishing a contour recognition, the above process is repeated for another contour of industrial CT image.

| $y_4$ |       |       | $P_n$ |       |       |
|-------|-------|-------|-------|-------|-------|
| $y_3$ | $P_0$ | $P_c$ | ■     | ■     |       |
| $y_2$ | ■     | ■     |       |       |       |
| $y_1$ |       |       |       |       |       |
| $y_0$ |       |       |       |       |       |
|       | $x_0$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ |

Fig.5(a) : Sketch map of straight line fitting

Due to low image quality and improper image preprocessing, the straight line may be mistaken as a series of short line segments, which we should merge into the long segments. The merging condition of two adjacent short line segments: the difference of slopes between two line segments must fall within the prescribed limits; and the distance between the endpoint of line segment and the merged long segment should be less than the specified value. As illustrated in Fig. (5b), if the angular difference between the adjacent line segments  $AB$  and  $CD$  is less than the prescribed value (using the angle value to represent the slope of line segment; here we choose  $10^\circ$ ); and the distance from the point  $B$  to the line segment  $AC$  is less than the specified value (here 3 is appropriate), we will merge the short line segments  $AB$  and  $BC$  into the long segment  $AC$ . Then, determine whether the distance between the point  $C$  and the line segment  $AD$  is less than 3, and determine whether the angle difference between the line segment  $CD$  and the line segment  $AC$  is less than  $10^\circ$ . If the above two conditions are both met, get the long line segment  $AD$ . Or else, insert the merged line segment  $AC$  into the merged line link list, then, let  $CD$  be the new starting line segment, and continue merging the subsequent line segments.



*Fig. 5 (b) :* Sketch map of merging line segment.

c) *Recognition of Circular Arc*

The obtained short line segments by implementing the above strategy are merged into the long line segments. These long line segments are fitted into circular arcs by means of the perpendicular bisector tracing algorithm [11]. The basic idea of the algorithm is that the perpendicular bisector of any chord on a circle passes through the circle center, and every endpoint of the chord is at an equal distance from the circle center.

As illustrated in Fig. (6a), any obtained line segment may be an approximation of an arc. We first consider the obtained line segment  $L_o$  as seed arc, its perpendicular bisector  $P_o$  is constructed. For every line segments  $L_i$  ( $i = 1, 2 \dots N$ ), we then construct its perpendicular bisector  $P_i$ , and calculate the intersection  $C_i$  of  $P_i$  and  $P_o$ . Due to errors, the intersection  $C_i$  is not unique. However, all  $C_i$  are located along the line  $P_o$ . We define the point  $C_{\min}$  is the nearest point from  $L_o$ , and the point  $C_{\max}$  is the farthest point from  $L_o$ . Therefore, a rectangle  $C$  is obtained, whose length is the distance between  $C_{\min}$  and  $C_{\max}$ , and whose width is equal to the length of  $L_o$  and is bisected by  $P_o$ . The rectangle  $C$  is the area within which the potential arc center is sought.

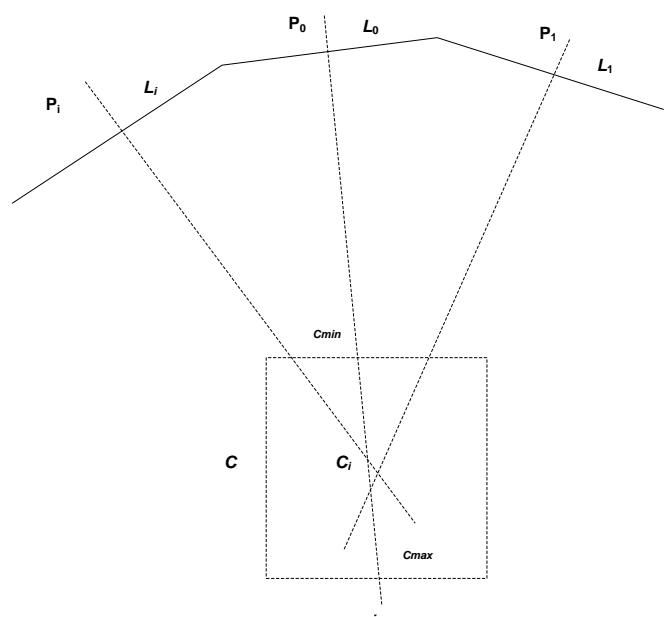



Fig. 6 (a) : Sketch map of circular arc fitting.

Having determined the potential center area, we check every pixel within it as a center candidate  $c(x, y)$ , the distances  $R_i(x, y)$  between  $c(x, y)$  and endpoints of line segments are gained. Then, we calculate the average radius  $R(x, y)$  and the mean square error  $ASD(x, y)$ , using (8) and (9), respectively.

$$R(x, y) = \frac{1}{N+1} \sum_{i=0}^N R_i(x, y) \quad (8)$$

$$ASD(x, y) = \frac{1}{N+1} \sum_{i=0}^N (R(x, y) - R_i(x, y))^2 \quad (9)$$

The point whose  $ASD(x, y)$  is minimal is taken as the circle center of circular arc, and the corresponding  $R(x, y)$  is the radius of circular arc. The long circular arc may be recognized as some short circular arcs by using the perpendicular bisector tracing algorithm, so we merge these short circular arcs into the long circular arc. As shown in Fig. (6b), the merging condition of two adjacent short circular arcs: the coordinate difference between the circle centers  $O_1$  and  $O_2$  must fall within the prescribed limits (5 is fine); the radius difference between the radius  $R_1$  and the radius  $R_2$  should be less than the specified value (also 5 is enough); and the angular difference between the ending angle  $\alpha_2$  of the first circular arc and the starting angle  $\alpha_3$  of the second circular arc should be less than the threshold value (the threshold value is  $3^\circ$ ). If there are two circular arcs meeting the above-mentioned three conditions, they can be merged into a new longer circular arc. The new circle center coordinates of this longer arc can be defined by the average value of the circle center coordinates of the two shorter arcs, and the

radius of this new longer arc can be replaced by the average value of the radius of the two shorter ones. Also, the starting angle and ending angle of this new arc are substituted with the starting angle  $\alpha_1$  of the first arc and the ending angle  $\alpha_4$  of the second arc, respectively.

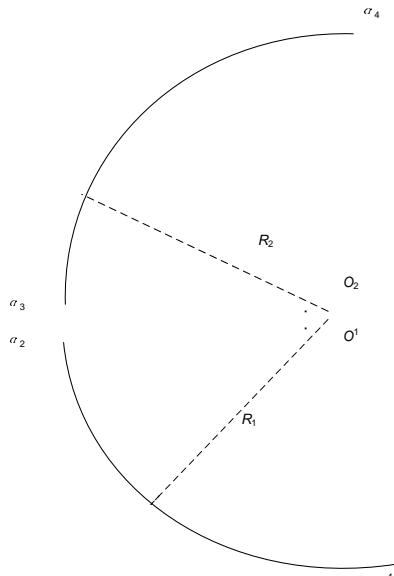



Fig. 6 (b) : Sketch map of merging circular arc.

## V. EXPERIMENTAL RESULTS AND EVALUATION

### a) Recognition of Circle

In this section, the performance of the proposed algorithms has been tested with the real industrial CT images. The algorithms are implemented in C++ with MS Visual C++ 6.0 compiler on a desktop PC with AMD 64 processor 1.81GHZ and 512MB RAM. The vectorization system for industrial CT image is designed, which provides the platform for our experiments. Fig. (7a) is an original industrial CT image of a socket set by the ICT system of CD-650BX in Chongqing University ICT Research Center. The technical indexes of the ICT system are as follows: the ray source is a 6/9MeV electron linear accelerator, the spatial resolution is 2.0lp/mm, the density resolution is better than 0.5%, the diameter of field of view is 398.872mm, the size of image is 800pixel\*800pixel. Fig. (7b) is the sub-pixel edge image of circles in Fig. (7a); Fig. (7c) is the probability map of circles in Fig. (7a).

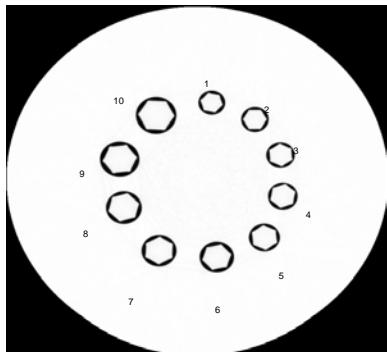



Fig. 7 (a) : Industrial CT image of a socket set

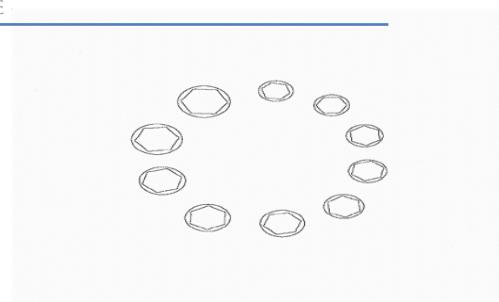



Fig. 7 (b) : Sub-pixel edge image

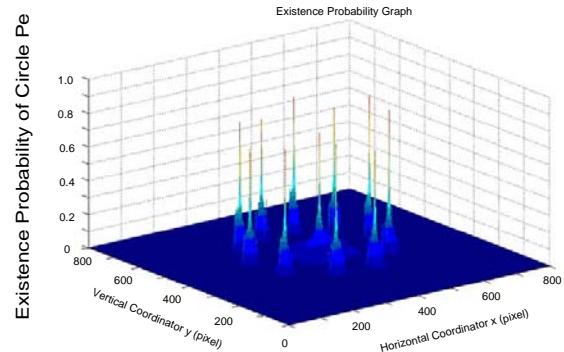



Fig. 7 (c) : Probability map of circles.

### b) Measurement of Circle Parameters

The results of our algorithms on the industrial CT image of the socket set are summarized in Table 1. While in Table 2, we list the absolute error  $e$  between the true and measured values of a parameter, and we evaluate the relative error  $er$  as well. As can be seen from Table 2, our algorithms are able to achieve good accuracy. The absolute errors  $e$  of radius are less than 0.10mm, and the relative errors  $er$  are less than 0.5%.

Table 1 : Measurement Results of Circles

| Number | Circle Center (pixel) | Radius (pixel) | Radius (mm) | $P_e$ |
|--------|-----------------------|----------------|-------------|-------|
| 1      | (430, 576)            | 27.798         | 13.860      | 0.867 |
| 2      | (520, 538)            | 28.452         | 14.186      | 0.919 |
| 3      | (573, 455)            | 29.520         | 14.718      | 0.908 |
| 4      | (578, 360)            | 30.635         | 15.274      | 0.774 |
| 5      | (540, 264)            | 32.172         | 16.040      | 0.870 |
| 6      | (440, 219)            | 35.642         | 17.770      | 0.785 |
| 7      | (320, 233)            | 36.254         | 18.076      | 0.847 |
| 8      | (246, 333)            | 37.170         | 18.533      | 0.729 |
| 9      | (237, 445)            | 40.871         | 20.378      | 0.841 |
| 10     | (314, 547)            | 42.133         | 21.007      | 0.877 |

Table 2 : Measurement Errors of Circles

| Number | True Value (mm) | Measured Value (mm) | Error (mm) | Relative Error (%) |
|--------|-----------------|---------------------|------------|--------------------|
| 1      | 13.925          | 13.860              | -0.065     | 0.467              |
| 2      | 14.240          | 14.186              | -0.049     | 0.379              |
| 3      | 14.780          | 14.718              | -0.062     | 0.419              |
| 4      | 15.350          | 15.274              | -0.076     | 0.495              |
| 5      | 16.075          | 16.040              | -0.035     | 0.218              |
| 6      | 17.810          | 17.770              | -0.040     | 0.225              |
| 7      | 18.125          | 18.076              | -0.049     | 0.270              |
| 8      | 18.590          | 18.533              | -0.057     | 0.307              |
| 9      | 20.420          | 20.378              | -0.042     | 0.206              |
| 10     | 21.230          | 21.007              | -0.023     | 0.109              |

c) Vectorization Results of Whole industrial CT image

In addition, we evaluate the vectorization performance on two complicated images shown in Figs. (8a and 9a). Fig. (8a) displays an original industrial CT image of a car engine. Based on facet model, its edge image is extracted and shown in Fig. (8b). As seen from the edge image, the contour is clear and intact. Also, all small contours are extracted correctly. Fig. (8c) is the vector graph of the car engine by our algorithms; it is edited and perfected in AutoCAD2008. In this experiment, a threshold is set for determining whether the closed graphic element is circle. As observed in Fig. (8c), setting the threshold is 0.7, our algorithms not only detect these four large circles correctly, but also fit them with good accuracy. The sizes of circles are marked in AutoCAD2008. Nevertheless, the small circles and slight contours can't be detected completely. If we decrease the threshold value appropriately, these small circles and slight contours will be detected. But the vectorization accuracy may be dropped.

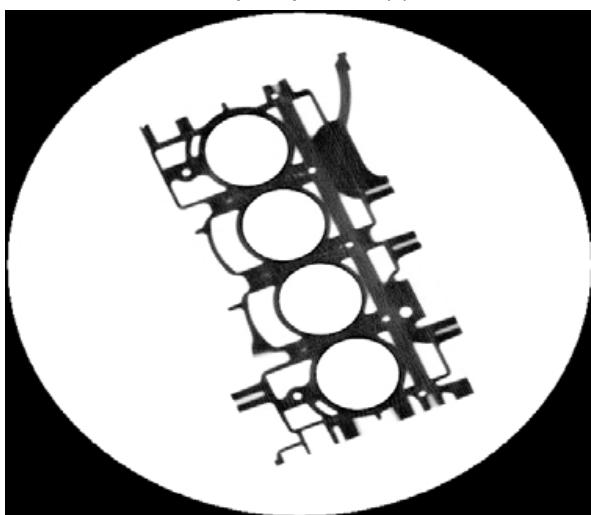



Fig.8 (a) : Industrial CT image of car engine

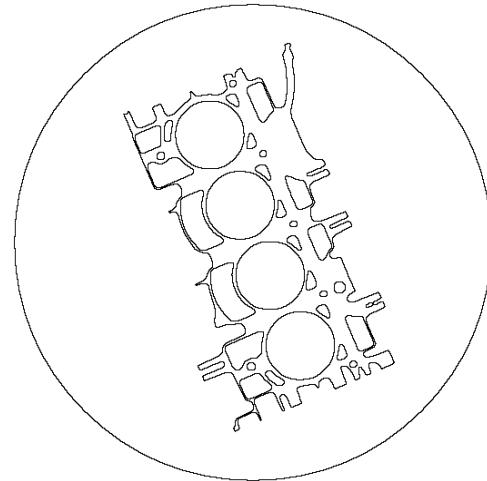



Fig. 8 (b) : Sub-pixel edge image of car engine

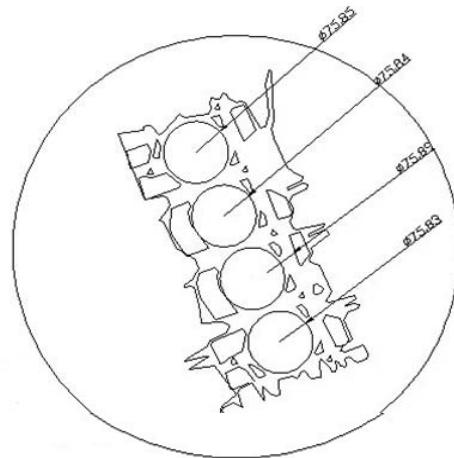



Fig. 8 (c) : Vector graph of car engine

Fig. (9a) shows an original industrial CT image of a gearbox cover. Unlike the previous industrial CT image of the car engine, this image has relative complex contours. In the top left corner are several small contours, which are difficult to be detected correctly. Despite this, its edge map is extracted completely and shown in Fig. (9b). Of particular interest is the vector graph of the gearbox cover in Fig. (9c) which evaluates our algorithms, and it is edited in AutoCAD2008. As shown in this picture, all circles are detected. Furthermore, several small circles are also detected and fitted correctly. Notice that the left isolated circle, which has the inner and outer concentric contours, is detected correctly. Also, the line contour can be fitted with ideal precision. However, Fig. (9c) also shows the limitation of our algorithms in the slight and complicated details of image. The circle with diameter of 16.55mm is nonexistent, it should not be found. And some contours are not with respect to the original contours ideally. For instance, the circular arc is represented by the irregular arc segments and curves. The following work will aim to resolve these problems.

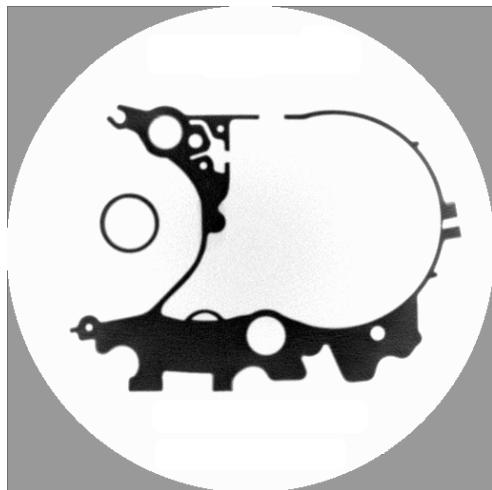



Fig. 9 (a): Industrial CT image of gear box cover

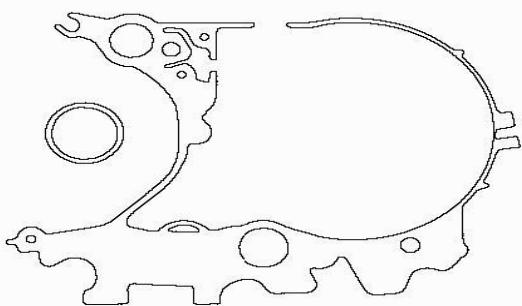



Fig. 9 (b): Industrial CT image of gear box cover

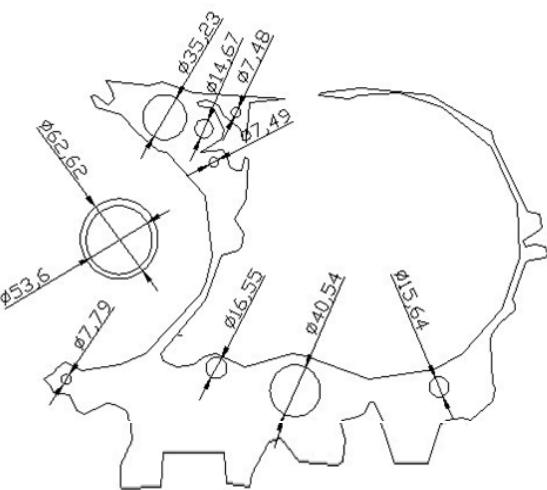



Fig. 9 (c): Industrial CT image of gear box cover

## VI. CONCLUSIONS

In this paper, an algorithm for sub-pixel edge detecting based on facet model is adopted for the pre-processed industrial CT image. For the obtained contour, we can calculate the parameters of circle using the improved fast algorithm based on probability of existence map. Then, a set intersection algorithm of fitting a straight line is applied for recognizing the line. Finally, use the perpendicular bisector tracing algorithm and the least squares function to recognize circular arc. Thus, a vectorization system of industrial CT image is designed, which provides the platform for our experiments. Experimental results show indeed that our algorithms are capable of recognizing the circle, line and circular arc with an excellent accuracy. Furthermore, the vectorization performance for the whole image is preferable. It can satisfy the industrial CT image vectorization requirements of higher precision, rapid speed and non-contact. In the future, we will focus on extending this work by recognizing the relative complex graphic elements as ellipse, regular polygon.

## VII. ACKNOWLEDGMENTS

This research has been supported by the National High Technology Research and Development Program 863 (Project No. 2006AA04Z104). All industrial CT images are provided by ICT Research Center of Chongqing University.

## REFERENCES RÉFÉRENCES REFERENCIAS

1. F. L. Liu, G. F. Qiao and B. Zou, "Precise measurement of circles in industrial computed tomographic images", *Optics Precision Eng.*, vol. 17, no. 11, pp. 2842-2848, 2009.
2. N. Y. Lee, S. H. Jung and J. B. Kim, "Evaluation of the measurement geometries and data processing algorithms", *Appl. Radiat. Isot.*, vol. 67, pp. 1441-1444, 2009.
3. B. Cheng, S. S. Zhang and Y. F. Shi, "Research on Vectorization and Recognition for Engineering Drawings: a Survey", *J. Eng. Graph.*, vol. 29, no. 6, pp. 7-12, 2008.
4. Nagasamy and N. A. Langrana, "Engineering drawing Processing and vectorization system", *Comput. Vis. Graph. Image Proc.*, vol. 49, no. 3, pp. 379-397, 1990.
5. J. W. Tian, Y. Shu, D. P. Tian and Y. X. Huang, "Image sub-pixel feature location algorithm on vision measurement system", *Chin. J. Mech. Eng.*, vol. 42, no. 11, pp. 75-80, 2006.
6. S. Zheng, J. W. Tian and J. Liu, "Efficient facet-based edge detection approach", *Opt. Eng.*, vol. 44, no. 4, pp. 1-10, 1990.
7. Y. C. Zhang, H. M. Wang, Z. Z. Liang, M. Tan, W. B. Ye and B. Lian, "Existence Probability Map Based Circle Detection Method", *Comput. Eng. Appl.*, no. 29, pp. 49-51, 2006.

8. F. L. Liu and G. F. Qiao, "A Fast Algorithm of Circle Detection for Industrial CT Images Based on Probability of Existence", *China Mech. Eng.*, vol. 19, no. 19, pp. 2335-2339, 2008.
9. Q. H. Li, D. Q. Wang and Z. Y. Chen, "Research on Image Vectorization Methods and Algorithms", *Appl. Res. Comput.*, no. 6, pp. 9-12, 1995.
10. H. Y. Guan, J. Q. Zhang, Q. Hu and L. Zhong, "Line Extraction of industrial parts based on least square template matching," *Proc. - Int. Congr. Image and Signal Processing (CISP 08)*, IEEE Press, July 2008, pp. 696-700.
11. D. Dori and W. Y. Liu, "Stepwise Recovery of Arc Segmentation in Complex Line Environment", *Int. J. Doc. Anal. Recog.*, vol. 1, no. 1, pp. 62-71, 1998.

This page is intentionally left blank



GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING  
MECHANICAL AND MECHANICS ENGINEERING  
Volume 11 Issue 5 Version 1.0 August 2011  
Type: Double Blind Peer Reviewed International Research Journal  
Publisher: Global Journals Inc. (USA)  
Online ISSN: 2249-4596 Print ISSN: 0975-5861

## Numerical Computation of Economic Cooling Water rate for Two-stage Azeotropic Refrigerating systems

By D.V. Mahindru, Priyanka Mahendru

**Abstract** - With a view to conserve energy, the use of azeotropes in a multistage refrigerating system is quite timely. Depending upon the requirement, such a system incorporates conventionally either a water cooled or air cooled condenser. The total operating cost of a refrigerating system with a water cooled condenser comprises the cost of water and the cost of electricity needed to drive the compressor(s). There is enough potential for research in finding out the ways to achieve maximum coefficient of performance and the least operating cost simultaneously for multi-stage azeotropic refrigerating system. However, to avoid overloading of sewage facilities and to comply with municipal codes for the use of water, the water flow rate required in refrigerating system should be minimized.

In the present investigation, economic water rates for two stage refrigerating systems, operating on most commonly used azeotropes R-500 and R-502, have been searched out over a wide range of operating limits. Such economic rates, if followed, would produce maximum COP and consume minimum power. The effects of controlling variables, e.g. approach, cost ratio etc have also been studied on the heat transfer to condenser, optimum condensing temperature and economic water rate. The results have been presented in tabular form only.

**Keywords** : Azeotropes ,Multi – Stage , Refrigeration , Condenser, Thermodynamic Concept.

**GJRE- C Classification** : FOR Code: 091307, 091502



*Strictly as per the compliance and regulations of:*



# Numerical Computation of Economic Cooling Water rate for Two-stage Azeotropic Refrigerating systems

D.V. Mahindru<sup>a</sup>, Priyanka Mahendru<sup>Q</sup>

**Abstract** - With a view to conserve energy, the use of azeotropes in a multistage refrigerating system is quite timely. Depending upon the requirement, such a system incorporates conventionally either a water cooled or air cooled condenser. The total operating cost of a refrigerating system with a water cooled condenser comprises the cost of water and the cost of electricity needed to drive the compressor(s). There is enough potential for research in finding out the ways to achieve maximum coefficient of performance and the least operating cost simultaneously for multi-stage azeotropic refrigerating system. However, to avoid overloading of sewage facilities and to comply with municipal codes for the use of water, the water flow rate required in refrigerating system should be minimized.

In the present investigation, economic water rates for two stage refrigerating systems, operating on most commonly used azeotropes R-500 and R-502, have been searched out over a wide range of operating limits. Such economic rates, if followed, would produce maximum COP and consume minimum power. The effects of controlling variables, e.g. approach, cost ratio etc have also been studied on the heat transfer to condenser, optimum condensing temperature and economic water rate. The results have been presented in tabular form only.

**Keywords :** Azeotropes ,Multi – Stage , Refrigeration , Condenser, Thermodynamic Concept.

## I. DESCRIPTION

The total cost of a multistage refrigerating system with water cooled condenser comprises the cost of power required to run the compressors and the cost of water needed in the condensing unit to make the system work in a closed and continuous cycle. To minimize the total operating cost, the power consumed by compressors may be reduced by properly selecting their compression ratio, while cost on water can be diminished by consuming cooling water as low as possible. The compression ratio of a compressor gets affected, if either the condensing pressure or inter-stage pressure is changed. The quality of cooling water gets controlled by the quantity of heat to be transferred to the condenser. It is evident that larger is the water flow rate through a condenser, the lower will be the condensing temperature resulting in lower compression ratio for high pressure (HP) compressor and hence lower cost for

compressor power, but more cost on water. To the contrary, if the lower quantity of water is used, condensing temperature would be higher and thereby expenditure on water decreases while that on compressor power increases. Hence it calls for a compromise between condensing temperature and cooling water rate to achieve minimum total operating cost. The cooling water rate that minimizes the total operating cost is usually termed as *Economical Cooling Water Rate*.

## II. REVIEW OF PREVIOUS WORK

To cope with the existing energy shortages and the need to conserve the expended energy to the maximum possible extent, attempts have been made by Macharnen and Chapman (4) and Downing (5) on various refrigerants and their mixtures. Among the mixtures of refrigerants, R-500 and R-502 have become very common. These are known as azeotropes. An azeotrope, by definition, is the mixture of refrigerants that does not separate into their original components with pressure/temperature changes. It has fixed thermodynamic properties unlike those of their components.

**Azeotrope R-500** consists of 73.8% R-12 and 26.2% R-152. Its normal boiling point is about 3.5°C lower than that of R-12. It produces refrigerating effect per unit of swept volume about 18% more than that of R-12. A Freon-12 system designed for 60 cycle current can be shifted to 50 cycle current by using azeotrope R-500. It would result in approximately the same refrigerating capacity and evaporator and condenser conditions.

**Azeotrope R-502** is a mixture of 48.8% refrigerant R22 and 51.2% refrigerant R-115. It boils at a temperature of about 4.8°C lower than that of R-22. Significantly lower discharge temperatures and lower winding temperatures are realized because of the higher capacities and lower values of compression ratio associated with R-502. Further R-502 decreases the swelling or softening effect on the common electrical insulating materials caused by the presence of R-115. The inter-stage pressure for the two stage refrigerating system is conventionally selected as the geometric mean of operating pressure limits to minimize the total compression work. But it has been established

*Author<sup>a</sup>* : Professor Mech Engg Department SRMGPC, Tewari Ganj, Lucknow-227105, U.P. (India).

*Author<sup>Q</sup>* : Sr.Lecturer, EI Deptt. SRMGPC, Tewari Ganj, Lucknow-227105, U.P. (India).

in (6) that if power input to the system is to be minimized, the inter-stage pressure should be optimized with coefficient of performance (COP) as the objective function.

### III. THERMO DYNAMIC CONCEPT

In general, one may write the heat rejected to condenser for a refrigerating system as :

$$\dot{Q}_h = P(1+COP) \quad 1.1$$

But  $\dot{Q}_h$  per unit of cooling is expressed by :

$$\dot{Q}_h/\dot{Q}_c = P(1+COP)/\dot{Q}_c = (1+1/COP) \quad 1.2$$

Further, for a two stage refrigerating system, COP becomes maximum if inter-stage pressure is optimized for minimum power input. Equation 1.2 may be written as :

$$\dot{Q}_h/\dot{Q}_c = (1+1/COP) \quad 1.3$$

As  $COP_o > COP$ , We get

$$\dot{Q}_{ho} < \dot{Q}_h \text{ from equations 1.2 and 1.3}$$

"It means that heat rejection to condenser would be minimum and hence minimum quantity of cooling water would be required for given condenser when a two stage system operates with optimum inter-stage pressure/temperature as decided on the basis of minimum power input."

*Thus the problem of finding out economical cooling water rate for a two stage refrigerating system is coupled optimization problem, that is, first the system needs to be optimized for its minimum power consumption, and then optimum condensing temperature is to be searched out to minimize the total operating cost.*

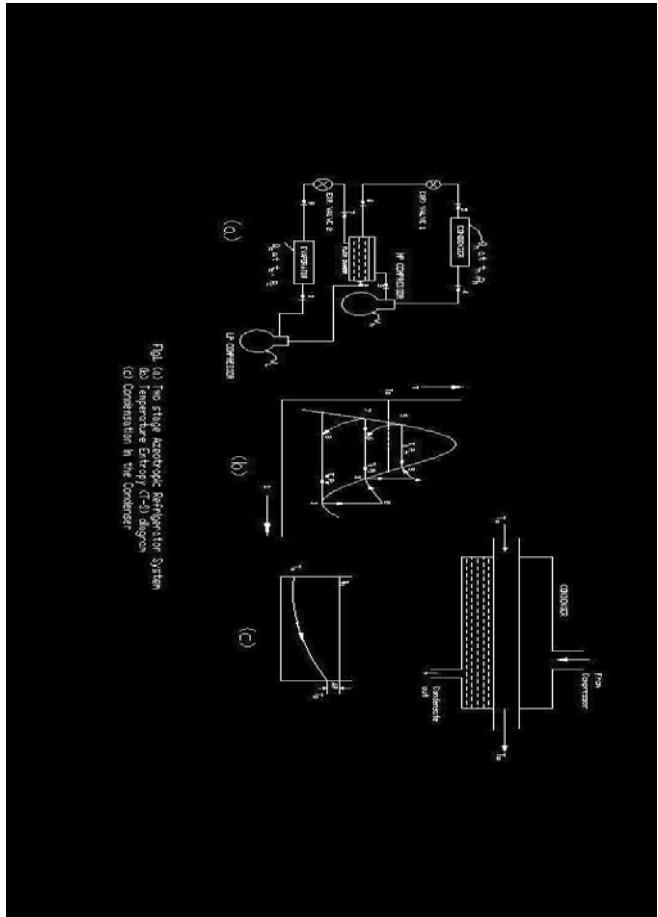
### IV. PRESENT WORK

In the present investigation, azeotropes R-500 and R-502 have been selected as the working fluids for two stage refrigerating system. Economic water rates that minimize the total operating cost and maximum COP are searched out over a wide range of operating temperature limits. Optimum design quantities of interest are presented in the form of tables. Effects of operating variables on the design quantities are also displayed through tables.

### V. SYSTEM ANALYSIS

#### a) System Employing Water Cooled Condenser

Figure -1(a) shows the schematic of idealized two stage refrigeration system. The various heat and work quantities and pressure levels are indicated in the figure. The following simplifying assumptions are made for this system analysis :


i. The thermodynamic cycle of the system is a standard one comprising isentropic compression, isentropic expansion and absence of superheating of

the suction vapour and sub cooling of the high pressure (HP) condensate.

ii. The pressure drop in evaporator, compressor valves, condenser piping etc are neglected.

iii. Entire condensation of HP gas inside the condenser takes place at a fixed temperature ( $T_h$ ).

Referring to fig-1(b), one may write refrigerant mass flow through LP compressor on per ton-hour basis as :



By energy balance on the flash chamber, refrigerant mass flow through HP compressor turns out to be :

$$\dot{M}_3 = \dot{M}_1 (h_2 - h_1) / (h_3 - h_6) = 12,600 (h_2 - h_1) / (h_1 - h_5) (h - h_5) \quad 5.2a$$

If we consider that refrigerant mass flow through LP compressor is unit kg, then mass flow through HP compressor based on similar lines, would be :

$$\dot{M}_3 = (h_2 - h_1) / (h_3 - h_6) \quad 5.2b$$

and, total compression work shall be :

$$W_T = (h_2 - h_1) + \dot{M}_3 ((h_4 - h_3)) \quad 5.3a$$

However, on the basis of per ton hour, the total compression work may be written as :

$$W = W_1 + W_2 = \dot{M}_1 (h_2 - h_1) + \dot{M}_1 (h_4 - h_3) \quad 5.3b$$

power consumption of the system :

$$P = W / (3600) \quad 5.4$$

For preliminary design purposes, the enthalpies per unit mass of superheated vapour at points 2 and 4 can be approximately related to the enthalpies per unit mass of the saturated vapours at points 3 and 4, respectively as:

$$h_2 = h_3 + T_i (s_1 - s_3) \quad 5.5$$

$$h_4 = h_9 + T_h (s_3 - s_9) \quad 5.6$$

saturated properties of both the azeotropes are estimated from the correlations available in reference (10)

The coefficient of performance of system shall be :

$$COP = \dot{Q}_c / W = 12,600 / W \quad 5.7$$

Economic water rate expression as developed in ref (7,8) per unit ton of refrigeration, when total operating costs are minimized, is given by :

$$M_{we} = 15.45 (\dot{Q}_h \Delta P_c / cW)^{0.5} \quad 5.8$$

When  $\dot{Q}_h$  is heat rejection to condenser per ton per hour and is given as :

$$\dot{Q}_h = \dot{M} (h_4 - h_5) \quad 5.9$$

$\Delta P$  is the increase in power 'P' per degree rise in condensing temperature.

Optimum condensing temperature is expressed as :

$$T_{ho} = T_{wi} + DT_o \quad 5.10$$

$$\text{Where } DT_o = 0.1545 (\dot{Q}_h / P \cdot C_w \cdot C)^{0.5} + AP \quad 5.11$$

With AP as the approach, Fig 1(c) representing the end temperature difference.

It is evident that the expressions given in equation 5.4 and 5.7 to 5.9 can be expressed in temperature alone. An explicit expression has not been attempted at as it becomes extremely involved. Moreover, it serves no useful purpose because We can directly feed the above expressions in computer program to evaluate the objective function. The governing performance quantities in terms of operating parameters/variables can be expressed as:

$$P = P(T_i, T_h, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.12$$

$$\Delta P = P(T_h + 1, T_i, T_e, T_{wi}, AP, \dot{Q}_c) - P(T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.13$$

$$\dot{Q}_h = \dot{Q}_c (T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.14$$

$$\dot{M}_{we} = \dot{M}_{we} (T_h, T_i, T_e, T_{wi}, AP, Q_c, C_w) \quad 5.15$$

$$COP = (T_h, T_i, T_e, T_{wi}, AP, \dot{Q}_c) \quad 5.16$$

### b) Objective Function And Optimization

For case 1, the objective function is the total operating cost together with the COP as given by equations (5.15) and ( 5.16) above. The total operating costs are to be minimized producing maximum COP as well. Since total operating costs have been minimized while deriving expressions for economic water rate ( $\dot{M}_{we}$ ).from equations 5.15 and 5.16, it is clear that  $\dot{M}_{we}$

and COP depend upon interstage and condensing temperatures ( $T_i$  and  $T_h$ ) if other parameters are kept fixed. It leads to a two dimensional maximization problem with the two decision variables ( $T_i$  and  $T_h$ ) subject to the constraints:

$$T_e < T_i < T_h \quad 5.17$$

And

$$T_h > T_{wi} + AP \quad 5.18$$

### c) Solution Technique

To find  $T_{ho}$ , where total operating cost is minimum together with the optimum system performance, initially some convenient  $T_h > T_a$  was assumed. With the help of this  $T_h$  and given values of evaporator temperature(  $T_e$ ) subroutine maximises the COP and transfers required optimum quantities ( $\dot{M}_3$  and  $P$ ) to the main program. Now  $T_h$  is increased by unit degree and the above process is repeated.  $P$  is determined.  $\dot{Q}_h$  is found from equation 5.9 in the main program. Thereafter,  $DT_o$  is estimated from equation 5.11 to determine  $T_{ho}$  from equation 5.10. With this new value of  $T_{ho}$ , the above computations are repeated till two successive values of  $T_{ho}$  differ by  $\pm 0.1\%$  . Condensing temperature , thus predicted , is the required optimum condensing temperature (  $T_{ho}$ ) because it produces minimum operating cost for maximum COP. Finally, at  $T_{ho}$  ,  $\dot{M}_{we}$  is determined from equation 5.8, Fig 1.2(a) and 1.2(b).

Different ranges of various operating parameters considered for the azeotropic systems are based upon practical considerations and their commonly adopted values. They are as follows:

- a) Evaporator temperature : 5 to -50°C
- b) Ambient/Cooling Water Temperature : 15 to 75
- c) Approach Temperature : 2 to 5°C
- d) Cost ratio : 0.5 to 10

## VI. RESULTS AND DISCUSSIONS

### SYSTEM WITH WATER COOLED CONDENSER

Besides the direct use of Tables 6-1 to 6-3 for preliminary optimum design of the systems, they also exhibit the quantitative effects of operating variables on the design quantities for a specified set of operating parameters. Not only this, the feasible operating conditions can also be achieved with the help of the figures achieved. The approach (AP) has been kept at 3°C. For a fixed set of  $R_c$ , AP,  $t_a$  and  $t_e$  values,  $t_{ho}$  for  $R-500$  is found to be slightly higher than that of  $R-502$ . On the other hand, economic water rate and heat rejection to condenser  $\dot{Q}_{ho}$  are seen to be higher in case of  $R-502$  for given  $R_c$  (except equal to 10) .AP,  $t_a$  and  $t_e$  refer Tables 6.1 to 6.3, the detailed graphical presentation is available in reference-11 ( page 27 to 44).

*COP's of R-500 system is observed to be higher than that of R-502 systems (Ref. Tables 6.1 to 6.3)*

| Azeotrope  |            | R-502         |               |                           |                           |         |               | R-500         |                           |                           |         |  |  |
|------------|------------|---------------|---------------|---------------------------|---------------------------|---------|---------------|---------------|---------------------------|---------------------------|---------|--|--|
| $t_a$ (°C) | $t_e$ (°C) | $t_{lo}$ (°C) | $t_{ho}$ (°C) | $\dot{M}_{we}$ (Kg/ton-h) | $\dot{Q}_{ho}$ (KJ/ton-h) | $COP_o$ | $t_{lo}$ (°C) | $t_{ho}$ (°C) | $\dot{M}_{we}$ (Kg/ton-h) | $\dot{Q}_{ho}$ (Kg/ton-h) | $COP_o$ |  |  |
| 20         | -50        | -7.66         | 30.34         | 595.01                    | 18,289.2                  | 2.21    | -12.25        | 31.13         | 527.79                    | 18096.5                   | 2.29    |  |  |
|            | -40        | -3.01         | 30.53         | 547.61                    | 17,280.1                  | 2.69    | -3.38         | 30.95         | 512.50                    | 17067.8                   | 2.82    |  |  |
|            | -30        | 1.73          | 30.73         | 506.17                    | 16,392.8                  | 3.32    | 1.46          | 31.11         | 477.37                    | 16215.0                   | 3.49    |  |  |
|            | -20        | 6.55          | 30.93         | 469.5                     | 15,602.9                  | 4.20    | 6.27          | 31.27         | 446.45                    | 15462.3                   | 4.40    |  |  |
| 40         | -50        | 4.12          | 49.72         | 725.90                    | 20,435.5                  | 1.61    | 2.91          | 49.94         | 680.87                    | 19808.5                   | 1.75    |  |  |
|            | -40        | 8.55          | 49.92         | 662.23                    | 19,193.4                  | 1.91    | 7.43          | 50.8          | 628.80                    | 18663.4                   | 2.08    |  |  |
|            | -30        | 13.06         | 50.12         | 606.87                    | 18,106.1                  | 2.29    | 12.28         | 50.22         | 583.64                    | 17663.9                   | 2.49    |  |  |
|            | 20         | 17.56         | 50.33         | 558.34                    | 17,143.3                  | 2.77    | 16.95         | 50.36         | 544.00                    | 16784.4                   | 3.01    |  |  |
| 60         | -50        | 16.17         | 69.13         | 911.86                    | 23,414.2                  | 1.17    | 15.10         | 69.32         | 831.87                    | 22028.1                   | 1.34    |  |  |
|            | -40        | 20.27         | 69.32         | 824.51                    | 21,817.0                  | 1.37    | 19.69         | 69.47         | 761.94                    | 20659.7                   | 1.56    |  |  |
|            | -30        | 24.45         | 69.51         | 749.28                    | 20,429.9                  | 1.614   | 24.27         | 69.63         | 700.83                    | 19458.9                   | 1.84    |  |  |
|            | -20        | 28.71         | 69.71         | 683.87                    | 19,210.3                  | 1.91    | 28.81         | 69.79         | 647.39                    | 18404.9                   | 2.17    |  |  |

*Table 6.2:* Effect of approach on the optimum design quantities for two-stage azeotropic refrigerating system incorporating water cooled condenser  
 Design Parameters :  $R_c = 3.0$   $t_a = 30^\circ C$

| Azeotrope |            | R-502         |               |                           |                           |         |               | R-500         |                           |                           |         |  |  |
|-----------|------------|---------------|---------------|---------------------------|---------------------------|---------|---------------|---------------|---------------------------|---------------------------|---------|--|--|
| $AP$ (°C) | $t_e$ (°C) | $t_{lo}$ (°C) | $t_{ho}$ (°C) | $\dot{M}_{we}$ (Kg/ton-h) | $\dot{Q}_{ho}$ (KJ/ton-h) | $COP_o$ | $t_{lo}$ (°C) | $t_{ho}$ (°C) | $\dot{M}_{we}$ (Kg/ton-h) | $\dot{Q}_{ho}$ (Kg/ton-h) | $COP_o$ |  |  |
| 2         | -50        | -2.44         | 39.10         | 645.29                    | 19,184.6                  | 1.91    | 2.57          | 40.29         | 527.79                    | 18096.5                   | 2.01    |  |  |
|           | -40        | 2.10          | 39.30         | 591.51                    | 18,081.3                  | 2.30    | 2.02          | 40.57         | 512.50                    | 17067.8                   | 2.42    |  |  |
|           | -30        | 6.72          | 39.50         | 544.63                    | 17,113.0                  | 2.79    | 6.83          | 40.74         | 477.37                    | 16215.0                   | 2.94    |  |  |
|           | -20        | 11.43         | 39.71         | 503.26                    | 16,252.9                  | 3.45    | 11.63         | 40.91         | 446.45                    | 15462.3                   | 3.63    |  |  |
| 4         | -50        | -1.32         | 41.03         | 658.27                    | 19,397.3                  | 1.85    | -1.82         | 41.90         | 680.87                    | 19808.5                   | 1.97    |  |  |
|           | -40        | 3.34          | 41.23         | 602.83                    | 18,271.2                  | 2.22    | 2.86          | 42.09         | 628.80                    | 18663.4                   | 2.37    |  |  |
|           | -30        | 7.87          | 41.44         | 554.58                    | 17,283.0                  | 2.69    | 2.69          | 42.23         | 583.64                    | 17663.9                   | 2.88    |  |  |
|           | -20        | 12.50         | 41.65         | 512.05                    | 16,405.7                  | 3.31    | 3.31          | 42.39         | 544.00                    | 16784.4                   | 3.54    |  |  |
| 6         | -50        | -0.71         | 42.0          | 665.00                    | 19,505.8                  | 1.82    | -1.41         | 42.72         | 831.87                    | 22028.1                   | 1.95    |  |  |
|           | -40        | 3.86          | 42.20         | 608.76                    | 18,367.9                  | 2.18    | 3.30          | 42.89         | 761.94                    | 20659.7                   | 2.34    |  |  |
|           | -30        | 8.50          | 42.41         | 559.74                    | 17,359.5                  | 2.64    | 8.14          | 43.03         | 700.83                    | 19458.9                   | 2.84    |  |  |
|           | -20        | 13.03         | 42.62         | 516.64                    | 16,483.5                  | 3.24    | 12.85         | 42.7          | 647.39                    | 18404.9                   | 3.49    |  |  |

## VII. CONCLUSIONS

| Azeotrope<br>R <sub>c</sub> | t <sub>e</sub> (°C) | t <sub>o</sub> (°C) | t <sub>h</sub> (°C) | R-502                         |                                          |                  | R-500               |                     |                               |
|-----------------------------|---------------------|---------------------|---------------------|-------------------------------|------------------------------------------|------------------|---------------------|---------------------|-------------------------------|
|                             |                     |                     |                     | M <sub>we</sub><br>(Kg/ton-h) | Q <sup>h<sub>o</sub></sup><br>(KJ/ton-h) | COP <sub>o</sub> | t <sub>o</sub> (°C) | t <sub>h</sub> (°C) | M <sub>we</sub><br>(Kg/ton-h) |
| 0.5                         | -50                 | 3.92                | 49.48               | 295.59                        | 20,407.2                                 | 1.61             | 2.90                | 50.013              | 277.90                        |
|                             | -40                 | 8.57                | 49.94               | 270.49                        | 19,198.4                                 | 1.91             | 7.54                | 50.34               | 257.40                        |
|                             | -30                 | 13.2                | 50.41               | 248.71                        | 18,138.0                                 | 2.28             | 12.43               | 50.67               | 239.05                        |
|                             | -20                 | 17.82               | 50.89               | 229.41                        | 17,196.7                                 | 2.74             | 17.29               | 51.01               | 223.10                        |
| 5.0                         | -50                 | -2.78               | 38.51               | 828.24                        | 19,121.7                                 | 1.93             | -2.96               | 39.62               | 679.22                        |
|                             | -40                 | 1.73                | 38.67               | 759.07                        | 18,020.7                                 | 2.32             | 1.62                | 39.87               | 617.21                        |
|                             | -30                 | 6.42                | 38.83               | 698.75                        | 17,054.8                                 | 2.83             | 6.42                | 40.02               | 572.77                        |
|                             | -20                 | 11.00               | 38.99               | 645.65                        | 16,196.9                                 | 3.50             | 11.2                | 40.17               | 534.11                        |
| 10.0                        | -50                 | -3.75               | 36.92               | 1153.26                       | 18,953.4                                 | 1.98             | -4.83               | 36.49               | 1271.04                       |
|                             | -40                 | 0.82                | 37.03               | 1057.20                       | 17,865.8                                 | 2.39             | 0.11                | 36.82               | 1098.81                       |
|                             | -30                 | 5.38                | 37.15               | 973.64                        | 16,912.1                                 | 2.92             | 4.54                | 37.39               | 904.37                        |
|                             | -20                 | 10.02               | 37.26               | 899.93                        | 16,065.0                                 | 3.64             | 9.41                | 36.79               | 998.34                        |

Table 6.3: Effect of Cost Ratio on the optimum design quantities for two-stage azeotropic refrigerating system incorporating water cooled condenser  
Design Parameters : AP = 3.0 (°C) t<sub>a</sub> = 30°C

- For a preliminary design of two stage azeotropic refrigerating system, the Tables 6-1 to 6-3 presented can directly be used.
- Economic water rate and heat transfer to condenser turns out to be relatively lower in case of R-500 for a given set of condenser, evaporator, ambient and approach temperatures and cost ratio.
- R-500 system produces comparatively higher COP than R-502 system for specified operating conditions.
- The effect of approach temperature is more pronounced on the economic water rate than the other quantities. It should be selected quite carefully.
- Though, the initial investment in case of R-500 system turns out to be more than R-502 system, it would get compensated over a small span of time because of lower operating cost of the R-500 system.

## REFERENCES RÉFÉRENCES REFERENCIAS

- Buchler,Leon, Economical use of condense water for Amonia Compression refrireration systems, Ic and Refrig, January,1947.
- Bochmer,Andrew P., Condenser pressure for Air Conditioning,Heating,Piping and air-Cond., p77 and 94,1946.
- Buchler,Leon, Andrew P., economical of condenser water in compression refrigeration system, journal ASRE, 57,pp. 251-254 March,1949.
- Mcharness,R.C. and chapman, D.D., Refrigerating capacity and performance data,ASRE J., pp 49-58, January,1962.
- Downing, R.C. Mixed refrigerants, Service Manual RT-38, El. Du Pont Nemours company., Wilmington, Delaware U.S.A.
- Gupta, V.K and Prasad, Manohar, Numerical Estimation of main parameters for realistic Two stage ammonia refrigerating systems, J. Indian Innstitute of Science Bangalore,64,10,pp.219-227,1983.
- Jordan ,R.C. and Priester, G.B.refrigeration and Air conditioning, Prentice-Hall of India, New delhi,1969.
- Prasad, Manohar, Refrigeration and air Conditioning, Wiley Eastern, New Delhi,1983.
- Gupta, V.K., Thermodynamic design data for optimum performance of Two Stage Azeotropic Refrigerating systems, J.Heat Recovery Systems (U.K)
- Kern,D.Q., Process Heat Transfer, Mv Graw-Hill, Kogakusha, Tokyo,1960.

11. Mahindru, D.V., Economic Water rate and Optimum Performance of Two Stage Azeotropic Refrigerating Systems, a Thesis submitted to Kanpur University in partial fulfillment of the requirements for the degree of Master of Technology, Mechanical Engineering (Design) ,1985.

### VIII. NOMENCLATURE

AP : Approach °C

$C_1$  : Cost of Electricity (Rs/kw-h).

$C_w$  : Cost of Water (Rs/k- litre).

$COP_o$  : Maximum co-efficient of performance.

$h_x$  : Enthalpy per unit mass at state condition 'x' (kJ/kg).

$\dot{M}_1$  : Refrigerant mass flow through LP compressor 9kg/ton-h).

$\dot{M}_3$  : Refrigerant mass flow through HP compressor (kg/ton-h).

$\dot{M}_{we}$  : Economic water rate ( kg/ton -h).

$M_3$  : Refrigerant mass flow through HP compressor per unit mass flow through Lp compressor( kg/kg).

P : Power 9kw/ton).

$P_o$  : Minimum power (kw/ton).

$\Delta P$  : Power increase per ton per degree rise in condensing Temperature ( kw/ton -°C).

$P_h$  : Condensing pressure (bar).

$P_e$  : Evaporating pressure (bar).

$P_{io}$  : Optimum inter -stage pressure (bar).

$\dot{Q}_h$  : Heat transfer to condenser ( kJ/ton -h).

$\dot{Q}_{ho}$  : Heat transfer to condenser pertaining to minimum operating cost and maximum COP (kJ/ton-h).

$\dot{Q}_c$  : cooling effect per unit mass flow through LP compressor (kJ/kg).

$r_1$  : Compression ratio ( $P_{io}/P_e$ ) of LP compressor.

$r_2$  : Compression ratio ( $P_h/P_{io}$ ) of HP compressor.

$R_c$  : Cost ratio ( $c/c_w$ ).

$s_x$  : Entropy per unit mass at state condition( kJ/kg-k).

$t_a, T_a$  : Ambient temperature (°C,K).

$t_{w1}, T_{w1}$  : Inlet water temperature (°C,K).

$t_h, T_h$  : condensing temperature (°C,K).

$t_e, T_e$  : evaporating temperature (°C,K).

$t_{ho}, T_{ho}$  : Optimum condensing temperature(°C,K).

$t_i, T_i$  : Interstage temperatures (°C,K).

$t_o, T_o$  : Outlet water temperature (°C,K).

$t_{io}, T_{io}$  : Optimum interstage temperature( °C,K).

$V_1$  : Minimum volume flow through LP compressor per unit mass flow through LP compressor (m<sup>3</sup>/kg).

$V_3$  : Minimum volume through HP compressor per unit mass flow through LP compressor(m<sup>3</sup>/kg).

$W_1$  : compression work of LP compressor (kJ/ton-h).

$W_2$  : compression work of HP compressor(kJ/ton-h).

$W$  : Total compression work (kJ/ton-h).

$W_T$  : Total compression work (kJ/ton-h).



GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING  
MECHANICAL AND MECHANICS ENGINEERING  
Volume 11 Issue 5 Version 1.0 August 2011  
Type: Double Blind Peer Reviewed International Research Journal  
Publisher: Global Journals Inc. (USA)  
Online ISSN: 2249-4596 Print ISSN: 0975-5861

## Dynamic Programming and Taguchi Method Optimization of Water-Treatment-Plant Design

By Khezri-S.M, Dadras-P, Dadvar-E

**Abstract** - System and process optimization are both necessary for overall system design in system optimization models, the objective is to determine the optimal system configuration while assuming the design and operating parameters of each individual process. In process optimization models the objective is to find the design and operating parameters of individual processes. The major disadvantages of GP and NLP algorithms are that global optima is not assured and they can not be directly used for system optimization because of the presence of discrete decision variables and required high computer storage [Dharmappa 1994] [Desmond F. Lawler. 2005] Using DP solely for large problems requires very high computer time for Data Processing [Mhaisalkar 1993]. The model of this research is DP model that employs Taguchi Experimental Design Method, whereupon the time of model analysis has reduced considerably. . Case study showed the capability of model in savings of roughly 9.5% in capital and annualized costs, compared to the conventional design besides the software has capability to performing sensitivity analysis and showing interactions between various Decision variables.

**Keywords** : Optimization of water Treatment - Plants, Process Optimization -Taguchi Design of Experiments.

**GJRE - A Classification** : FOR Code: 030301, 090401



DYNAMIC PROGRAMMING AND TAGUCHI METHOD OPTIMIZATION OF WATER-TREATMENT-PLANT DESIGN

*Strictly as per the compliance and regulations of:*



# Dynamic Programming and Taguchi Method Optimization of Water-Treatment-Plant Design

Khezri-S.M<sup>a</sup>, Dadras-P<sup>Q</sup>, Dadvar-E<sup>B</sup>

**Abstract** - System and process optimization are both necessary for overall system design in system optimization models, the objective is to determine the optimal system configuration while assuming the design and operating parameters of each individual process. In process optimization models the objective is to find the design and operating parameters of individual processes. The major disadvantages of GP and NLP algorithms are that global optima is not assured and they can not be directly used for system optimization because of the presence of discrete decision variables and required high computer storage [Dharmappa 1994] [Desmond F. Lawler. 2005] Using DP solely for large problems requires very high computer time for Data Processing [Mhaisalkar 1993]. The model of this research is DP model that employs Taguchi Experimental Design Method, whereupon the time of model analysis has reduced considerably. . Case study showed the capability of model in savings of roughly 9.5% in capital and annualized costs, compared to the conventional design besides the software has capability to performing sensitivity analysis and showing interactions between various Decision variables.

**Keywords:** Optimization of water Treatment- Plants, Process Optimization- Taguchi Design of Experiments.

## I. INTRODUCTION

The water Industry is one of the principal industries in every country. The total expenditure for water supply, including operation and maintenance, accounts to nearly 6 billion dollars per year in the U.S alone, of this approximately 15% is spent on actual water treatment (Wiesner, 1985). This massive investment requirement calls for more economical system design to allow for an efficient use of public funds. This objective can be achieved using "Optimization". Because in many cases pilot scale studies are conducted prior to full-scale plant construction, the use of an optimization model can greatly reduce the time and money spent on the pilot scale study.

A water treatment system is a combination of several unit processes. Design of such a system is a

difficult task and the least cost design is most difficult of all. The principal unit process in a conventional water-treatment system includes coagulation-flocculation, sedimentation, filtration and disinfection. The performance of each treatment unit affects the efficacy of the subsequent units. Ideally, therefore, the design decisions should be made with regard to the interaction between various unit operations. So for very few works have been done on the optimization of a water treatment system. Letterman & Iyer (1977) analyzed the effects of selected process decision variables on overall system cost and performance. The authors used simplified process models (mostly empirical relationships). One comprehensive work is that of Wiesner et. al(1978)which is an important step towards the optimal design of water treatment system. The authors have provided a number of optimization models for integral analysis and economic optimization of the components of a water treatment plant. Mhiasalkar(1993) has developed a mathematical model incorporating the Performance relationships and cost functions for the component units of conventional water treatment system, and an algorithm using dynamic programming has described by them for functional and minimal cost design of the system. The last and one of the comprehensive models in this ground belongs to Dharmappa et. al (1994). The authors believe the incorporation of particle size distribution (PSD) is necessary for optimal process design and selection. In this context this works includes not only all three levels of system design but also process design and selection using PSD and the Algorithm they have used was a GP and NLP programming.

The major disadvantages of GP and NLP algorithms are that, global optima is not assured and they can not be directly used for system optimization because of the presence of discrete decision variables and requirement high computer storage. Using Dynamic Programming solely for large problems requires very high computer storage. Accordingly, this paper addresses it self to the development of a model for minimal cost and Energy design of a conventional water treatment plant using dynamic programming and Taguchi Design Of Experiments methods optimization model. The scope of this research was restricted to the economic optimization of conventional water treatment system for turbidity removal comprising four water treatment processes, which are listed in table 1.

**Author<sup>a</sup>** : Asistant professor,Department of Environment and Energy,Science and research Branch,Islamic Azad University,Tehran,Iran .E-mail : khezri@sharif.edu.

**Author<sup>Q</sup>** : Department of Environment and Energy,Science and research Branch,Islamic Azad University,Tehran,Iran.

**Author<sup>B</sup>** : Master of Science student,Department of Environment and Energy,Science and research Branch,Islamic Azad University,Tehran,Iran.

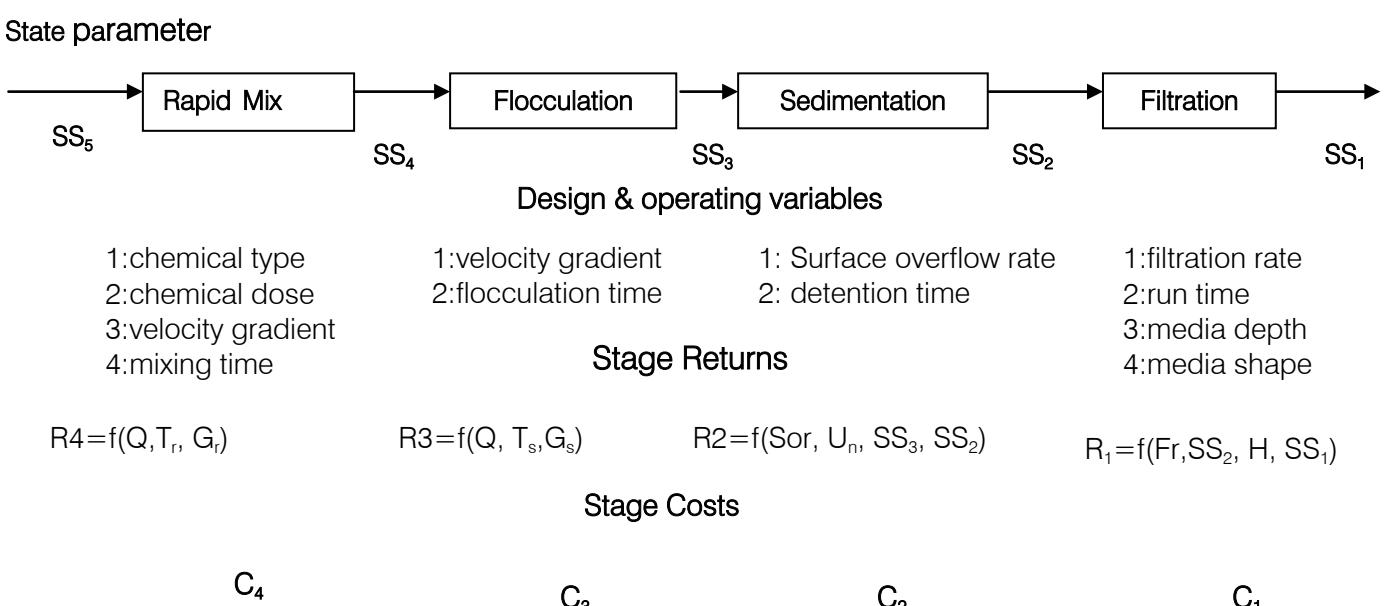
**Table 1:** Conventional water treatment processes considered in this study

1. Rapid Mixing (back Mix)
2. Flocculation (Horizontal)
3. Sedimentation (Rectangular)
4. Granular filtration (Downflow & constant Rate)

(Note: Specific type considered is given in parenthesis)

The serial and interactive nature of the various unit processes favors application of Dynamic Programming for minimal cost design. Dynamic Programming is a mathematical technique often useful for making a sequence of interrelated decisions. It provides a systematic procedure for determining the combination of decisions that maximizes overall effectiveness [Hillier 1967]. Deterministic dynamic programming can be described diagrammatically, as shown in Fig. 1

**Fig.1:** The basics structure for deterministic dynamic programming.


Thus at stage  $n$  the process will be in some state  $S_n$ . Making policy decision  $X_n$  then moves the process to some state  $S_{n+1}$  at stage  $(n+1)$ . From that point onward the objective function value for the optimal policy has been previously calculated to be  $f^*_{n+1}(S_{n+1})$ . Conventional water Treatment systems can be considered as a multistage process, with the stages

represented by various unit processes. The states represented by the levels of water quality parameters such as turbidity and suspended solids. The decision variables are design parameters depending on the type of unit.

Traditionally, measuring nonspecific parameters like turbidity units (Tu) suspended solids (SS); etc assesses the performance of water treatment plants. Though their parameters describe the important aspects regarding the water quality of the effluent from the treatment processes (AWWA: water 1990). Insofar as turbidity is used as a measure of the efficiency of the removal of particulate matter throughout the purification process of water, low turbidity in the finished water is an indication of effectiveness of unit processes (Guidelines 1984). Because mathematical models of water treatment describe the behavior of systems in relation to the removal of mass concentration of suspended solids. And we can in some ways correlate turbidity measurements with suspended solids data, suspended solids has been used as a state parameter to indicate the effectiveness of the system at various stages of treatment. Fig. 2 Show the sequence of stages and the stage return for each input-decision combination.

## II. TAGUCHI METHOD

Taguchi approach to parameter design provides the design engineer with a systematic and efficient method for determining near optimum design parameters for performance and cost (Kackar, 1985; phadke, 1989; Taguchi, 1986). In this research we have used orthogonal arrays from design of Experiments theory to study a large number of variables with a Small number of experiments. Whereupon the time of DP model analysis reduced considerably.

**Fig.2 :** Unit sequences & Return of Conventional Water Treatment system

a) *Functional relationships of units*

Functional relationships for each unit process, linking input and output states parameters with a characteristic loading parameter, have been established based on the mechanics of unit process. These relationships are largely empirical models. Table 2 shows these relationships and key assumptions for each of the process models.

### III. COST FUNCTIONS

Since the present study seeks to incorporate multiple design criteria in the optimization, there are three design criteria to be evaluated from the cost functions:

1. Annualized Capital Cost (ACC)
2. Operation & Maintenance cost (O & M)
3. Energy requirement (ER)

There is a substantial literature on cost functions for water treatment plant component (Hinomoto, 1977; Clark, 1982). The annualized capital and operation and maintenance cost functions are most taken from Clark (1982). Some changes have been made by Dharmappa (1994) so as to make them more general. Capital cost functions as presented by Clark (1982) were based on the annualization factor 0.102 (interest 8% and amortization 20 years). There were modified to incorporate a general annualization factor, of, which can be calculated by (assuming zero salvage value):

$$a_f = \left( \frac{i(1+i)^n}{(1+i)^n - 1} \right)$$

Where  $a_f$  = annualization factor;  
 $i$  = interest rate, Fraction; and  
 $n$  = amortization period, years.

Table 2: Relationships and keys Assumption for each of the process models.

|                   |         | Functional Relationships Unit processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit              | Process | Relationships                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rapid Mix         |         | $SS_5 + K \cdot A = SS_4$<br>A : alum dose<br>K : Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flocculation      |         | $SS_4 = SS_3$<br>$d_f = 26.88 G_s^{-0.91}$<br>$T_s G_s^{2.8} = \frac{44 \times 10^5}{A}$<br>Ts: detention time<br>Gs: applied velocity gradient<br>d <sub>f</sub> : average diameter of the floc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sedimentation     |         | $V_s = \frac{g}{18} (S_s - 1) \frac{d_f^2}{v}$<br>$\frac{SS_3 - SS_2}{SS_3} = 1 - [1 + n \frac{V_s}{Q/A}]^{-1/n}$<br>Q/A: surface overflow rate<br>n: coefficient basin performance<br>Vs: surface overflow rate for ideal basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rapid sand filter |         | $\frac{SS_2 - SS_1}{SS_2} = P_c$<br>$Y = 0.725 \cdot Fr^{0.29} d^{0.62} t$<br>$R = \frac{4/55 \cdot d^{2/5} H}{Fr^{1/2} SS_2}$<br>$\log\left(\frac{U}{13/3L}\right) = -0.208 + 1.950 \log\left(\frac{Y}{(13/3L)^{1/2}}\right) - 0.645 \left[\log\left(\frac{Y}{(13/3L)^{1/2}}\right)\right]^2$<br>$\log\left(\frac{R}{13/3L}\right) = -3.250 + 1.013 \log\left(\frac{Y}{(13/3L)^{1/2}}\right) - 0.036 \left[\log\left(\frac{Y}{(13/3L)^{1/2}}\right)\right]^2$<br>$P_c = \sum_{j=0}^{(t/2-1)} \frac{e^{(-u/2)} (u/2)^j}{j!}$<br>SS <sub>1</sub> : influent suspension concentration<br>H: increase in head loss at the end of t<br>d: diameter of sand grain<br>t: filter run time<br>Fr: filtration rate |

The relationships for energy requirement are developed from Gumerman et al. (1979). Cost functions for unit processes (extracted and compiled from Clark, 1982, with Dharmappa (1994) modifications are listed in Table 3.

In this table PR; DHR, PPI are: Power cost, Direct Hourly wages Rate and Producer Price Index respectively.

Table 3 : Cost function for various unit processes

| Unit processes       | Annual Construction Cost(ACC)<br>Operation and Maintenance Cost ( O & M)                                                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rapid mix            | $ACC = 0.08507(Q \times Tr)^{0.79} (CCI)^{0.988} (1.0007)^{Gr} (a_f)$<br>$OM = 1.56947(Q \times Tr)^{0.799} (PR)^{0.717} (DHR)^{0.181} (1.00251)^{Gr}$   |
| Alum dry stock       | $ACC = 0.0197(A \times Q)^{0.656} (CCI)^{0.994}$<br>$OM = 3.30366 \times 10^{-4} (A \times Q)^{0.849} (PR)^{0.1847} (PPI)^{0.0259} (DHR)^{0.743}$        |
| Flocculation         | $ACC = 642.48(Q \times Ts)^{0.6916} (CCI)^{0.992} (1.00383)^{Gs} (a_f)$<br>$OM = 0.040581(Q \times Ts)^{0.785} (PR)^{0.357} (PPI)^{0.399} (1.0081)^{Gs}$ |
| Clarifier            | $ACC = 1872.527(A_c)^{0.701} (CCI)^{0.993} (U_n)^{1.00047} (a_f)$<br>$OM = 53.487(A_c)^{0.969} (PPI)^{0.181} (DHR)^{0.756} (U_n)^{1.006}$                |
| Filter structure     | $ACC = 13317.11(A_f)^{0.671} (CCI)^{0.989} (a_f)$<br>$OM = 913.377(A_f)^{0.549} (PR)^{0.147} (PPI)^{0.183} (DHR)^{0.61}$                                 |
| Filter Media(single) | $ACC = 71.3413(A_f)^{0.9336} (CCI)^{0.996} (a_f)$<br>$OM = 0$                                                                                            |
| Filter backwash      | $ACC = 108.127(6.1A_f)^{0.59} (ACC)^{0.966} (a_f)$<br>$OM = 747.398(6.1A_f)^{0.65} (PR)^{0.543} (PPI)^{0.219} (DHR)^{0.137}$                             |
| Filter surface wash  | $ACC = 568.4533(A_f)^{0.801} (CCI)^{0.982} (a_f)$<br>$OM = 204.732(A_f)^{0.7146} (PR)^{0.526} (DHR)^{0.315}$                                             |

#### IV. MODEL OPTIMIZATION

There are a number of designs that satisfy water quality standards. The objective, therefore, is to minimize the system cost satisfying all constraints. The bounds used in the optimizations are given in table 4. The general form of objective function is expressed as.

$$\text{Opt} \cdot \sum_{i=1}^4 [R_i]$$

Design variables

Where: R= Stage Returns

*Table 4 :* bounds on variables used in optimizations

| Variable                         | Units              | Symbol           | Lower bound | Upper bound |
|----------------------------------|--------------------|------------------|-------------|-------------|
| Velocity Gradient                | s <sup>-1</sup>    | G <sub>r</sub>   | 400         | 1000        |
| Mixing Time                      | S                  | T <sub>r</sub>   | 10          | 50          |
| Velocity Gradient                | s <sup>-1</sup>    | G <sub>s</sub>   | 20          | 70          |
| Flocculation time                | min                | T <sub>s</sub>   | 10          | 60          |
| Settling Time                    | hr                 | T <sub>c</sub>   | 2           | 4           |
| Settling Efficiency              | -                  | -                | 0           | 0.95        |
| Surface Overflow Rate            | M hr <sup>-1</sup> | SOR              | 0.9         | 2.0         |
| Filter Area                      | m <sup>2</sup>     | A <sub>f</sub>   | 1           | ∞           |
| Filter run time                  | hr                 | T <sub>f</sub>   | 8           | 100         |
| Filtration Rate                  | hr <sup>-1</sup>   | F <sub>r</sub>   | 3           | 15          |
| Backwash fraction                | -                  | B                | 0           | 0.15        |
| Time for backwash                | Hr                 | T <sub>b</sub>   | 0.33        | 0.33        |
| Terminal head loss               | m                  | H                | 0           | 2.5         |
| Filtrate mass Concentration      | mg/L               | C <sub>max</sub> | 0           | 2           |
| Clarifier effluent Concentration | mg/L               | C <sub>e</sub>   | 2           | 20          |

## V. RECURSIVE EQUATIONS

For deriving Recursive equations it is necessary the Return functions for

*Table 5 :* Economic data used in Return function

| Item                             | Value                                               |
|----------------------------------|-----------------------------------------------------|
| Power(PR)                        | 0.04\$/kWh                                          |
| Labor Wage Rate(DHR)             | 11.00\$/hr                                          |
| Construction Cost Index/100(CCI) | 3.25                                                |
| Producer Price Index/100(PPI)    | 2.44                                                |
| Alum                             | 140\$/tone                                          |
| Polymer                          | 400\$/ tone                                         |
| Polymer demand                   | 6*10 <sup>-8</sup> moles/m <sup>2</sup> of particle |
| Polymer molecular weight         | 5*10 <sup>4</sup>                                   |

each unit process be prepared with economic data. The values of parameters for determining Return functions that are used in the optimizations, as well as the

assumed chemical costs are listed in Table 5. The Return functions for all unit processes are given in table 6

*Table 6 :* Return Equations of different unit processes

| Units                            | Return Equation of units                                                                                                                               |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sand Filter</b>               | $R_1 = 8636.59(A_f)^{671} + 4688.94(A_f)^{546} + 46.877(A_f)^{9336} + 293.847(A_f)^{59} + 2006.13(A_f)^{65} + 363.86(A_f)^{801} + 119.195(A_f)^{7146}$ |
| <b>Sedimentation Tank</b>        | $R_2 = 1223.52(A_c)^{701}(U_n)^{1.00047} + 599.165(A_c)^{469}(U_n)^{1.006}$                                                                            |
| <b>Flocculation</b>              | $R_3 = 1.45443(Q.T_s)^{6916}(1.00383)^{G_s} + 0.0345(Q.T_s)^{785}(1.0081)^{G_s}$                                                                       |
| <b>Alum feed &amp; Rapid mix</b> | $R_4 = .54067(Q.T_r)^{.79}(10007)^{G_r} + 0.3817(Q.T_r)^{.794}(1.00251)^{G_r} + 0.12662(A.Q)^{.656} + 0.00160934(A.Q)^{.849}$                          |

Now by using these Return functions we can derive the Recursive equations for all of the unit processes. The general forms of recursive equations for unit processes are given in table 7.

Table 7: Recursive equations of different unit processes

| Units         | Recursive equations of Units                                            |
|---------------|-------------------------------------------------------------------------|
| Filter        | $f_1^*(SS_2) = \text{opt.}[R_1]$<br>$A_f, Q$                            |
| Sedimentation | $f_2^*(SS_3) = \text{opt.}[R_2 + f_1^*(SS_2)]$<br>$A_c, Q, G_s$         |
| Flocculation  | $f_3^*(SS_4) = \text{opt.}[R_3 + f_2^*(SS_3)]$<br>$G_s, T_s, Q$         |
| Rapid mix     | $f_4^*(SS_5) = \text{opt.}[R_4 + f_3^*(SS_4)]$<br>$A, Q, G_s, T_r, G_r$ |

## VI. OPTIMIZATION ALGORITHM

The sequential structure of serial systems can be exploited to transform the N-decision, one-state problems. This is accomplished by the procedure called dynamic programming, due to Richard Bellman (1957). The DP algorithm for functional and minimal cost design of water treatment system was developed in this research. The major inputs required are the design data on flow; raw-water suspended-solids concentration; alum dose; water temperature; and effective size, uniformity coefficient, and depth of filter sand. Data on unit costs of excavation, plain and reinforced cement concrete, steel, filter sand and appurtenances are also necessary. Data on discount rate, and chemical costs are required for economic evaluation. The algorithm involves four stages in DP programming, and the optimal function of the previous stage is implemented in the next stage. In each stage in addition to the previous optimal function, the return function concerning to the current stage is also used to optimize the existing stage.

This procedure will be followed until the last stage. The solution of this system is computed by backward form. With this parametric solution of stages, we can derive the optimal objective function in a parametric form. This parametric form includes all design parameters of the water treatment system. This objective function could be optimized by appropriate software based on the Taguchi Design of Experiments again could be calculated.

## VII. CASE STUDY

The application of the optimization algorithm is illustrated for a 6250-m<sup>3</sup>/hr conventional water treatment plant. The optimal results of this model have been compared with EPA traditional water Treatment plant. Design criteria and cost calculation of EPA conventional water treatment plant exists in EPA Documents Gumerman et al. (1979). The optimal design results in saving of 9.5% in capital and Annualized cost. The comparison is presented in table 8.

Table 8: Comparison of Total Annualized Cost with EPA and Model 6250 m<sup>3</sup>/hr

| Water treatment Plant<br>Items | EPA WaterTreatment Plant | Suggested Model Water Treatment Plant |
|--------------------------------|--------------------------|---------------------------------------|
| Total Annualized Cost(\$)      | 1046570                  | 955757                                |
| Reduction(%)                   | 9.5                      |                                       |

## VIII. SENSITIVITY ANALYSIS

One particularly important feature of this model is the ease with which a sensitivity analysis can be carried out. This technique analyzes the sensitivity of the optimal solution to changes in various decision variables without re-solving the problem for each new value. It is highly unlikely that cost data of sufficient accuracy will ever be available (Walski 1991). Therefore, variation in total Annualized cost was also studied. The results of this analysis have been presented in table 9.

Table 9 : Optimum cost versus 3 more sensitive variables.

| Parameter       | Change in parameter over base value(%) | Optimal Design Value |                 |                |                |                | Change in total annualized cost (%) |
|-----------------|----------------------------------------|----------------------|-----------------|----------------|----------------|----------------|-------------------------------------|
|                 |                                        | SS <sub>2</sub>      | SS <sub>3</sub> | G <sub>r</sub> | T <sub>r</sub> | T <sub>s</sub> |                                     |
| Flow            | +10                                    | 7.5                  | 150             | 400            | 20             | 20             | +6.8                                |
|                 | +20                                    | 7.5                  | 150             | 400            | 20             | 20             | +12.6                               |
|                 | -10                                    | 7.5                  | 150             | 400            | 20             | 20             | -7.5                                |
|                 | -20                                    | 7.5                  | 150             | 400            | 20             | 20             | -15.2                               |
| Alum dose       | +10                                    | 7.5                  | 150             | 400            | 20             | 20             | +3.6                                |
|                 | +20                                    | 7.5                  | 150             | 400            | 20             | 20             | +7.1                                |
|                 | -10                                    | 7.5                  | 150             | 400            | 20             | 20             | -3.76                               |
|                 | -20                                    | 7.5                  | 150             | 400            | 20             | 20             | -7.9                                |
| Filter Headloss | +10                                    | 7.5                  | 150             | 400            | 20             | 20             | -1.5                                |
|                 | +20                                    | 7.5                  | 150             | 400            | 20             | 20             | -2.95                               |
|                 | -10                                    | 7.5                  | 150             | 400            | 20             | 20             | +1.6                                |
|                 | -20                                    | 7.5                  | 150             | 400            | 20             | 20             | +3.39                               |

The results signifies the objective function is more sensitive to Design flow rate (Q), alum dose (A) and gravity sand filter head loss (H) respectively. If the design flow is varied in the range of  $\pm 20\%$ , the total annualized cost will vary +12.6% and 15.2 %

A practical approach to analyzing either uncertain or variable situation is to test the sensitive of the optimal design to variation in key system parameters.

## IX. CONCLUSION

So far very few works have been done on the optimization of a water treatment system. The scope of this research was restricted to the economic optimization of conventional water treatment systems for turbidity removal, comprising four water treatment processes (viz.-rapid mix, flocculation, sedimentation, and rapid sand filters). Mathematical models describing the performance relationships and cost functions for component units of a conventional water-treatment system have been formulated. By combining these models, an algorithm using Dynamic programming and Taguchi Design of Experiments methods software was developed for functional and minimal design of the system. The proposed approach is tested with a case study. The conclusions are listed as follows:

- The computer times requirements for this model is very less than other similar model doing the same task.
- The optimal design results in savings of roughly 9.5% in capital and annualized cost compared to the conventional design.
- The sensitivity analysis results signifies the objective function is more sensitive to design flow rate (Q), alum dose (A) and gravity sand filter head loss (H), respectively.

Suspension characteristics such as particle size and distribution are of significance in the overall process of water treatment. There are some shortcomings in major requirements for the successful incorporation of

PSD in the process design and selection. (Dharmappa, 1994). Future research dynamic programming & Taguchi methods optimization of water treatment plant design may be directed to test the feasibility of considering PSD and molecular particle size distribution in water and further research in the field of software development with more levels for control factors.

## REFERENCES REFERENCES REFERENCIAS

1. Dharmappa, H.B., Fujiwara, O., Verink, J., and Vingneswaran, S. (1994 a), "water treatment system design for turbidity removal" II; optimization, *j. Envir. Engrg.*, ASCE 120 (4), 921- 942
2. Mhaisalkar V.A. Bassin, K. Paramasivam, and P. Khanna (1993), "Dynamic programming optimization of water treatment plant design" *J. Envir. Engrg.* 119 (6), 1175 – 1185.
3. Wiesner,M.R. (1985). "Optimal water treatment plant configuration: effect of raw water characteristics, "Ph.D. thesis, Johns Hopkins University, Baltimore, Md.
4. Wiesner, M.R. (1987), "Optimal water treatment plant design". *Journal of Environmental Engineering division*, ASCE, Vol. 113, No. 3, PP. 567- 584.
5. Letterman, R.D., and Iyer, D.R. (1977). "Process model application in potable water treatment." *Proc. Engrg. Foundation Conf. On theory, Practice, and process principles. For physical separation*, pacific Grove, Calif., 667- 703.
6. Hillier, F. S, Operations Research. Holden-Day, Inc. Second Edition,1974.
7. ASCE, AWWA & CSSE (1990), water treatment plant design, American water work association, Inc., New York.
8. Guidelines for Drinking Water Quality; Vol. 2. (1984). "Health criteria and other supporting information." World Health Organization (WHO), Geneva, Switzerland, 309.



9. Kackar , Raghu, 1985, "Off-Line Quality Control, Parameter Design, and the Taguchi method" , journal of Quality Technology, Vol. 17 , No.4, pp. 176-188.
10. Phadke, S. M., 1989. Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs, N.J.
11. Taguchi, G., 1986. Introduction to Quality Engineering, Asian Productivity Organization (Distributed by American Supplier Institute Inc., Dearborn, Mi.).
12. Hinomoto, H. (1977). "Capital cost functions of a surface water treatment plant and its components" water resour. Res., 13 (6), 873 – 876.
13. Clark, R.M. (1982). "Cost estimating for conventional water treatment". J. Envir. Engrg. Div., ASCE, 108 (5), 819- 834.
14. Gumerman, R. C., Clup, R.L., and Hansen, S.P. (1979). Estimating water treatment costs; cost curves applicable to 1 to 200 mgd treatment plants. Vol. 2, Municipal Environmental Research Laboratory, U.S. Environmental Protection Agency ,Cincinnati, Ohio.
15. Bellman, R. (1957). Dynamic programming. Princeton university press, Princeton, N.J.
16. Walski, T. M. (1991). "Discussion of preliminary optimal design model for wastewater quality and treatment ". A handbook of community water supplies. (1990). 4th Ed., F. W. Pontius, ed., Mc Graw-Hill Book Co. , Inc. , New York , N.Y. , 177.
17. Li, X.-Y., and Logan, B. E. \_2000\_. "Settling and coagulating behavior of fractal aggregates." Water Sci. Technol., 42\_3\_, 253-258.
18. Eldred, M. S., Giunta, A. A., Wojtkiewicz, S. F., Jr., and Trucano, T. G. \_2002\_. "Formulations for surrogate-based optimization under uncertainty." Proc., 9th AIAA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, Atlanta, Paper AIAA-2002-5585.
19. Desmond F. Lawler \* and Jeffrey A. Nason "Integral Water Treatment Plant Modeling: Improvements for Particle Processes" Environ. Sci. Technol., 2005, 39 (17), pp 6337–6342.

# GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2011

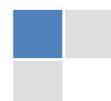
---

WWW.GLOBALJOURNALS.ORG

## FELLOWS

### **FELLOW OF INTERNATIONAL CONGRESS OF ENGINEER (FICE)**

- 'FICE' title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'FICE' can be added to name in the following manner


e.g. **Dr. Andrew Knoll, Ph.D., FICE**

**Er. Pettar Jhone, M.E., FICE**

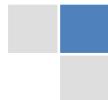
- FICE can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- **Free unlimited Web-space** will be allotted to 'FICE' along with subDomain to contribute and partake in our activities.
- **A professional email address** will be allotted free with unlimited email space.
- FICE will be authorized to receive e-Journals -GJRE for the Lifetime.
- FICE will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJRE (FREE of Charge).
- FICE will be Honorable Guest of any gathering held.

### **ASSOCIATE OF INTERNATIONAL CONGRESS OF ENGINEER (AICE)**

- AICE title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICE' can be added to name in the following manner:  
eg. Dr. Thomas Herry, Ph.D., AICE
- AICE can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'FICE' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICE will be authorized to receive e-Journal GJRE for lifetime.



## AUXILIARY MEMBERSHIPS


---

### ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJMBR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

### PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.



## PROCESS OF SUBMISSION OF RESEARCH PAPER

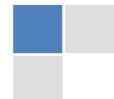
---

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (\*.DOC, \*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:

**(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.**


**(II) Choose corresponding Journal.**

**(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.**

**(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.**

**(C) If these two are not convenient, and then email the paper directly to [dean@globaljournals.org](mailto:dean@globaljournals.org).**

**Offline Submission:** Author can send the typed form of paper by Post. However, online submission should be preferred.



# PREFERRED AUTHOR GUIDELINES

## **MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)**

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

**You can use your own standard format also.**

### **Author Guidelines:**

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

### **1. GENERAL**

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

#### **Scope**

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

## **2. ETHICAL GUIDELINES**

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

**Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission**

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

- 1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
- 2) Drafting the paper and revising it critically regarding important academic content.
- 3) Final approval of the version of the paper to be published.

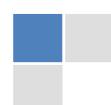
All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

**Acknowledgements:** Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

**Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.**

**Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.**

Please mention proper reference and appropriate acknowledgements wherever expected.


If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

## **3. SUBMISSION OF MANUSCRIPTS**

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.



To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

#### **4. MANUSCRIPT'S CATEGORY**

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

#### **5. STRUCTURE AND FORMAT OF MANUSCRIPT**

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

**Papers:** These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

- (a) Title should be relevant and commensurate with the theme of the paper.
- (b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
- (c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
- (d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
- (e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
- (f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
- (g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
- (h) Brief Acknowledgements.
- (i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.



The Editorial Board reserves the right to make literary corrections and to make suggestions to improve brevity.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

## **Format**

*Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.*

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than  $1.4 \times 10^{-3}$  m<sup>3</sup>, or 4 mm somewhat than  $4 \times 10^{-3}$  m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

## **Structure**

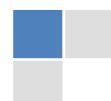
All manuscripts submitted to Global Journals Inc. (US), ought to include:

**Title:** The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

*Abstract, used in Original Papers and Reviews:*

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.


Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:



- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

**Numerical Methods:** Numerical methods used should be clear and, where appropriate, supported by references.

**Acknowledgements:** *Please make these as concise as possible.*

#### References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

#### Tables, Figures and Figure Legends

**Tables:** *Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.*

**Figures:** *Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.*

#### Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.



**Color Charges:** It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

**Figure Legends:** *Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.*

## **6. AFTER ACCEPTANCE**

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

### **6.1 Proof Corrections**

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded

(Free of charge) from the following website:

[www.adobe.com/products/acrobat/readstep2.html](http://www.adobe.com/products/acrobat/readstep2.html). This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

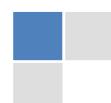
Proofs must be returned to the dean at [dean@globaljournals.org](mailto:dean@globaljournals.org) within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

### **6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)**

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

### **6.3 Author Services**


Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

### **6.4 Author Material Archive Policy**

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

### **6.5 Offprint and Extra Copies**

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: [editor@globaljournals.org](mailto:editor@globaljournals.org).



the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

**2. Evaluators are human:** First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

**3. Think Like Evaluators:** If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

**4. Make blueprints of paper:** The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

**5. Ask your Guides:** If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

**6. Use of computer is recommended:** As you are doing research in the field of Computer Science, then this point is quite obvious.

**7. Use right software:** Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

**8. Use the Internet for help:** An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

**9. Use and get big pictures:** Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

**10. Bookmarks are useful:** When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

**11. Revise what you wrote:** When you write anything, always read it, summarize it and then finalize it.

**12. Make all efforts:** Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

**13. Have backups:** When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

**14. Produce good diagrams of your own:** Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

**15. Use of direct quotes:** When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.



**16. Use proper verb tense:** Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

**17. Never use online paper:** If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

**18. Pick a good study spot:** To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

**19. Know what you know:** Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

**20. Use good quality grammar:** Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.

**21. Arrangement of information:** Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

**22. Never start in last minute:** Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

**23. Multitasking in research is not good:** Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

**24. Never copy others' work:** Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

**25. Take proper rest and food:** No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

**26. Go for seminars:** Attend seminars if the topic is relevant to your research area. Utilize all your resources.

**27. Refresh your mind after intervals:** Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

**28. Make colleagues:** Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

**29. Think technically:** Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

**30. Think and then print:** When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

**31. Adding unnecessary information:** Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grown readers. Amplification is a billion times of inferior quality than sarcasm.

**32. Never oversimplify everything:** To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

**33. Report concluded results:** Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

**34. After conclusion:** Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

## INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

### Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

### Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

### General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

· Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page

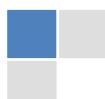


- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

#### **Title Page:**


Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

#### **Abstract:**

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to



shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

**Introduction:**

The **Introduction** should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

**Procedures (Methods and Materials):**

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic



principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

#### Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

#### Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

#### Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

#### What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

#### Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

#### Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

#### What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.



- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

#### Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

#### Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

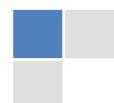
#### Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

#### Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.


### ADMINISTRATION RULES LISTED BEFORE SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

**Segment Draft and Final Research Paper:** You have to strictly follow the template of research paper. If it is not done your paper may get rejected.



- The **major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- **Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)**
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.



**CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)**  
**BY GLOBAL JOURNALS INC. (US)**

**Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).**

| Topics                        | Grades                                                                                                                                                                                 |                                                                                                     |                                                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                               | A-B                                                                                                                                                                                    | C-D                                                                                                 | E-F                                                            |
| <i>Abstract</i>               | Clear and concise with appropriate content, Correct format. 200 words or below                                                                                                         | Unclear summary and no specific data, Incorrect form<br>Above 200 words                             | No specific data with ambiguous information<br>Above 250 words |
|                               | Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited | Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter | Out of place depth and content, hazy format                    |
| <i>Introduction</i>           | Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads                                                              | Difficult to comprehend with embarrassed text, too much explanation but completed                   | Incorrect and unorganized structure with hazy meaning          |
| <i>Methods and Procedures</i> | Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake                                         | Complete and embarrassed text, difficult to comprehend                                              | Irregular format with wrong facts and figures                  |
| <i>Result</i>                 | Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited                                               | Wordy, unclear conclusion, spurious                                                                 | Conclusion is not cited, unorganized, difficult to comprehend  |
| <i>Discussion</i>             | Complete and correct format, well organized                                                                                                                                            | Beside the point, Incomplete                                                                        | Wrong format and structuring                                   |
| <i>References</i>             |                                                                                                                                                                                        |                                                                                                     |                                                                |



# INDEX

---

## A

---

Access · 8, 2, 52, 55, 62  
Advancement · 38  
Aes · 8, 7, 8, 9, 10, 11  
Algorithms · 13, 30, 31, 32, 47, 48, 49, 58, 59, 61, 63, 69, 70, 87, 95, 96, 98  
Alleviating · 76  
Analysis · 5, 37, 38, 40, 41, 42, 43, 45, 47, 50, 51, 59, 74, 78, 86, 87, 90, 95, 96  
Approximating · 31, 108, 111  
Adiabatic · 1, 2, 4  
Algorithms · 9, 10, 14, 15, 16  
Ambient · 2, 21, 24  
Approximately · 12, 18, 19  
Architecture · 10  
Assumptions · 19  
Atmospheric · 1, 2, 4, 6  
Azeotropic · 18, 20, 21, 22, 23, 24  
Architecture · 3, 4, 14, 32, 35, 62, 63  
Assessing · 42, 44  
Attacks · 32, 33, 35, 58  
Attainable · 4  
Authority · 4, 33, 35  
Automata · 98, 99, 100, 102, 103, 107

---

## B

---

Binarization · 10  
Bayes · 46, 57, 58, 59, 60, 61  
Beauty · 18, 107  
Biometric · 69, 72, 73  
Bluetooth · 51, 52, 53, 54, 56

---

## C

---

Calculate the · 16  
Coefficient · 18, 19  
Compensated · 24  
Complicated · 12, 15, 16  
Compressed · 1, 4, 6  
Computation · 10, 12  
Conceptualizing · 2  
Conditioning · 24  
Consecutive · 2, 3  
Consumptions · 1  
Contribution · 5, 10  
Conventionally · 18

---

## D

---

Derivative · 11  
Detection · 9, 10, 11, 17  
Dimensional · 9, 11, 12, 20

---

## E

---

Enthalpies · 19

---

## F

---

Fabrication · 4  
Feasibility · 2

---

## G

---

Graphical · 20

---

## I

---

Intersection · 9, 10, 12, 13, 16  
Investigation · 18, 19  
Investigations · 6  
Investigations · 7, 8  
Isentropic · 19

---

## L

---

Lubricator · 1

---

## M

---

Maximization · 20  
Mechanical · 1, 6, 7, 8, 9, 25  
Multistage · 18

---

## O

---

Optimization · 4, 19  
Optimum · 1, 6, 18, 19, 20, 21, 22, 23, 24

---

**P**

Parabolically · 4  
Perpendicular · 9, 10, 13, 16  
Pollution · 1  
Potential · 2, 12, 13, 18  
Probability · 9, 10, 11, 12, 14, 16  
Probability · 11, 12, 14, 17

---

**Q**

Quantities · 1, 19, 20, 21, 22, 23, 24

---

**R**

Recognition · 9, 10, 12  
Recognition · 9, 11, 12, 13, 14, 17  
Refrigerating · 18, 19, 21, 22, 23, 24  
Refrigeration · 19, 24

---

**S**

Summarized · 10, 14  
Superheated · 19  
Sustainability · 6, 7

---

**T**

Terminate · 12  
Thermodynamic · 2, 18, 19  
Tomography · 9  
Turbine · 1, 2, 3, 4, 5, 6, 8

---

**V**

Vectorization · 9, 10, 14, 15, 16, 17

A 3D white figure stands at the bottom center, looking up at a large globe. The globe is mostly grey with a prominent green continent (representing South America) in the center. The figure has its arms raised, as if reaching for the globe.

**Global Journal of Researches in Engineering**

Visit us on the Web at [www.GlobalJournals.org](http://www.GlobalJournals.org) | [www.EngineeringResearch.org](http://www.EngineeringResearch.org)  
or email us at [helpdesk@globaljournals.org](mailto:helpdesk@globaljournals.org)

ISSN 9755861

9 70116 58698 2 61427 >

© 2011 by Global Journals