

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING

DISCOVERING THOUGHTS AND INVENTING FUTURE

Revolutions
in engineering
World

July
2011

Pinnacles

Static VAR Compensator

Zanthoxylum Armatum Stem

Improved Chan-Ho Model

Multijunction Solar Cells

Volume 11
issue 5
version 1.0

GLOBAL JOURNAL OF RESEARCH IN ENGINEERING: J
GENERAL ENGINEERING

GLOBAL JOURNAL OF RESEARCH IN ENGINEERING: J
GENERAL ENGINEERING

VOLUME 11 ISSUE 5 (VER. 1.0)

GLOBAL ASSOCIATION OF RESEARCH

© Global Journal of
Researches in Engineering.
2011.

All rights reserved.

This is a special issue published in version 1.0
of "Global Journal of Researches in
Engineering." By Global Journals Inc.

All articles are open access articles distributed
under "Global Journal of Researches in
Engineering"

Reading License, which permits restricted use.
Entire contents are copyright by of "Global
Journal of Researches in Engineering" unless
otherwise noted on specific articles.

No part of this publication may be reproduced
or transmitted in any form or by any means,
electronic or mechanical, including
photocopy, recording, or any information
storage and retrieval system, without written
permission.

The opinions and statements made in this
book are those of the authors concerned.
Ultraculture has not verified and neither
confirms nor denies any of the foregoing and
no warranty or fitness is implied.

Engage with the contents herein at your own
risk.

The use of this journal, and the terms and
conditions for our providing information, is
governed by our Disclaimer, Terms and
Conditions and Privacy Policy given on our
website <http://www.globaljournals.org/global-journals-research-portal/guideline/terms-and-conditions/menu-id-260/>

By referring / using / reading / any type of
association / referencing this journal, this
signifies and you acknowledge that you have
read them and that you accept and will be
bound by the terms thereof.

All information, journals, this journal,
activities undertaken, materials, services and
our website, terms and conditions, privacy
policy, and this journal is subject to change
anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374
Import-Export Code: 1109007027
Employer Identification Number (EIN):
USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: *Global Association of Research
Open Scientific Standards*

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office,
Cambridge Office Center, II Canal Park, Floor No.
5th, **Cambridge (Massachusetts)**, Pin: MA 02141
United States

USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Association of Research, Marsh Road,
Rainham, Essex, London RM13 8EU
United Kingdom.

Packaging & Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please
email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org

Investor Inquiries: investers@globaljournals.org

Technical Support: technology@globaljournals.org

Media & Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:

22 USD (B/W) & 50 USD (Color)

Yearly Subscription (Personal & Institutional):

200 USD (B/W) & 250 USD (Color)

EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software
Engineering
Director, Information Assurance
Laboratory
Auburn University

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University,
Syracuse, New York
M.S. and B.S. Bogazici University,
Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal
Nutrition
B.A. University of Dublin- Zoology

Dr. Wenyi Feng
Professor, Department of Computing &
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems
Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS,
PhD., (University of Texas-Dallas)

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley
& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and Finance
Professor of Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of Regina
Ph.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windsor

Dr. Lynn Lim

Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Eötvös Loránd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.

Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D
Associate Professor and Research
Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical Neuroscience
Northwestern University Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at
Buffalo, School of Medicine and
Biomedical Sciences

Dr. Michael R. Rudnick

M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center,
Philadelphia
Nephrology and Internal Medicine
Certified by the American Board of
Internal Medicine

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D
Marketing
Lecturer, Department of Marketing,
University of Calabar
Tourism Consultant, Cross River State
Tourism Development Department
Co-ordinator , Sustainable Tourism
Initiative, Calabar, Nigeria

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences,
National Central University, Chung-Li,
TaiwanUniversity Chair Professor
Institute of Environmental Engineering,
National Chiao Tung University, Hsin-
chu, Taiwan.Ph.D., MS The University of
Chicago, Geophysical Sciences
BS National Taiwan University,
Atmospheric Sciences
Associate Professor of Radiology

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science &
Technology
Alfred Naccash Avenue – Ashrafieh

PRESIDENT EDITOR (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences

Denham Harman Research Award (American Aging Association)

ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization

AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences

University of Texas at San Antonio

Postdoctoral Fellow (Department of Cell Biology)

Baylor College of Medicine

Houston, Texas, United States

CHIEF AUTHOR (HON.)

Dr. R.K. Dixit

M.Sc., Ph.D., FICCT

Chief Author, India

Email: authorind@computerresearch.org

DEAN & EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),

MS (Mechanical Engineering)

University of Wisconsin, FICCT

Editor-in-Chief, USA

editorusa@computerresearch.org

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant

CEO at IOSRD, GAOR & OSS

Technical Dean, Global Journals Inc. (US)

Website: www.suyogdixit.com

Email:suyog@suyogdixit.com

Sangita Dixit

M.Sc., FICCT

Dean & Chancellor (Asia Pacific)

deanind@computerresearch.org

Pritesh Rajvaidya

(MS) Computer Science Department

California State University

BE (Computer Science), FICCT

Technical Dean, USA

Email: pritesh@computerresearch.org

Luis Galárraga

J!Research Project Leader

Saarbrücken, Germany

CONTENTS OF THE VOLUME

- i. Copyright Notice
- ii. Editorial Board Members
- iii. Chief Author and Dean
- iv. Table of Contents
- v. From the Chief Editor's Desk
- vi. Research and Review Papers

- 1. Chemical Stabilization of Expansive Clays from Algeria. **1-8**
- 2. Analysis of A Dual Band Micro strip Antenna. **9-11**
- 3. Voltage Level Improving by Using Static VAR Compensator (SVC). **13-18**
- 4. Anti-Inflammatory and Antioxidant Activities of Zanthoxylum Armatum Stem Bark. **19-21**
- 5. Prospects of Renewable Energy and Energy Storage Systems in Bangladesh and Developing Economics. **23-31**
- 6. Effective Power System Stabilization Using Non-Dominated Ranked Genetic Algorithm. **33-40**
- 7. Detection of Mechanical Deformation in Old Aged Power Transformer Using Cross Correlation Co-Efficient Analysis Method. **41-47**
- 8. Improved Chan-Ho Model For Indoor Mobile User Location Estimation Using TDOA Information. **49-54**
- 9. High Efficiency AlAs/GaAs/Ge Lattice Matched Multijunction Solar Cells. **55-58**

- vii. Auxiliary Memberships
- viii. Process of Submission of Research Paper
- ix. Preferred Author Guidelines
- x. Index

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING
Volume 11 Issue 5 Version 1.0 July 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-5861

Chemical Stabilization of Expansive Clays from Algeria

By M.K. Gueddouda, I. Goual, M. Lamara, A. Smaida, B. Mekarta

Civil Université Amar Teledji, Laghouat, Algérie

Abstracts -The occurrence of expansive clays causes serious stability problems in regions with arid climate. In these areas, the clay is so dry that a supply of a tiny quantity of water may release a fantastic energy capable of producing important damage in structure. This paper presents the chemical stabilization of three soils. In the first part, the potential swelling is estimated using indirect methods based on the geotechnical characteristics, thereafter, direct measurement of swelling parameters (magnitude and pressure of swelling) is carried out. The second part, deals with the study of the treatment of clays using several methods of stabilization (addition of NaCl salt, lime, cement, and association lime+ cement, and association lime + salt). The obtained results are very encouraging and show that for certain combinations the reduction rate in swelling potential is very important (about 90%).

Keywords : arid region, expansive clay, swelling potential, stabilization, Algeria.

GJRE-J Classification : FOR Code: 640106

Strictly as per the compliance and regulations of:

Chemical Stabilization of Expansive Clays from Algeria

M.K. Gueddouda^α, I. Goual^Ω, M. Lamara^β, A. Smaida^ψ, B. Mekarta^γ

Abstract - The occurrence of expansive clays causes serious stability problems in regions with arid climate. In these areas, the clay is so dry that a supply of a tiny quantity of water may release a fantastic energy capable of producing important damage in structure. This paper presents the chemical stabilization of three soils. In the first part, the potential swelling is estimated using indirect methods based on the geotechnical characteristics, thereafter, direct measurement of swelling parameters (magnitude and pressure of swelling) is carried out. The second part, deals with the study of the treatment of clays using several methods of stabilization (addition of NaCl salt, lime, cement, and association lime+cement, and association lime + salt). The obtained results are very encouraging and show that for certain combinations the reduction rate in swelling potential is very important (about 90%).

Keyword : arid region, expansive clay, swelling potential, stabilization, Algeria

I. INTRODUCTION

Expansive soils are those which show volumetric changes in response to changes in their moisture content. Such soils swell when the moisture content is increased and shrink when the moisture content is decreased. Consequently, expansive soils cause distress and damage to structures founded on them. Algeria has witnessed tremendous development in its infrastructure over the last three decades. The problems of expansive soils seem to be overlooked during the design and construction of some of the projects especially in arid and semi-arid region (Lamara *et al.* 2005). As a result, some of these structures in Algeria were subjected to distress and damage and in worst cases some houses and roads were demolished.

The problems associated with expansive soils in Algeria are predominantly related to the presence of smectite clay minerals in tertiary rocks and quaternary soils. Expansive materials that exhibit swelling problems include bentonite mudstones, marls and silty mudstones, argillaceous limestones and altered conglomerates. The climate in Algeria is arid, with high evaporation rates, so that there is always a moisture deficiency in soils and rocks. Supply of water from

Author ^{αΩβ} : Laboratoire de Recherche de Génie Civil Université Amar Teledji, Laghouat - Algérie E-mails : gueddouda_mk@yahoo.fr, goualid@yahoo.fr, Lrm3a_Md@yahoo.fr

Tel : +213-778-02-31-68, Fax: +213-90-29-92-00-67

Author ^{ψγ} : Laboratoire de Recherche Matériaux (LABMAT) en Génie Civil, Ecole Normale Supérieure d'Enseignement Technologique, Oran - Algérie E-mails : Smaidaali@yahoo.fr, mekertab@yahoo.fr

any source is liable to cause ground heave in any soils or rocks possessing swelling potential. Damage caused by swelling soils for buildings and structures are considerable light (Tas 1992, Derriche et Kebaili 1998, Hachichi et Fleureau 1999, Djedid *et al.* 2002, Lamara *et al.* 2006).

However, in order to limit the disturbances in buildings, various solutions based on stabilization techniques have been developed with more or less satisfactory results. Stabilized soil is change some of these properties to improve its technical performance. Recently, Extensive studies have been carried out on the stabilization of expansive soils using various additives such different types of sand (quarry sand, dune sand and beach sand) and the dune sand combination + salt (NaCl) appeared to give encouraging results (Lamara *et al.* 2006, Gueddouda *et al.* 2006-2007). These solutions have been developed to minimize the pressures on soil saturation.

The work presented in this paper is a contribution to the application of chemical stabilization techniques, by adding salt (NaCl) for different concentrations lime, cement, association lime + cement, and association of lime and salt for Three different clays, two clays belonging to different arid regions of southern Algeria and a very expansive clay known as Bentonite Maghnia (in the region of Tlemcen), where several cases were reported disorders characterized by cracks in the superstructure and the foundation level.

Initially, the chemical, physical and geotechnical properties of the untreated soils were determined. These tests were complemented by direct measurements of the swelling parameters (free swell and swell pressure). Secondly, the study examined the effects of different types of stabilization on the physical properties and the swelling parameters.

II. MATERIALS USED FOR STUDY

a) Localization of the soils

The first soil is extracted from an area located 20 km northwest of the city of Laghouat (Basis of Life, Pumping Station No. 5); this region is considered semi-arid to arid, located 400 km south of the capital Algiers (Fig. 1). From the geological point of view, this zone presents several layers of which the first is covered with a vegetable layer a thickness of approximately 30 cm

followed by a layer of silt and sandy-gritty, finally a layer of greenish and reddish marls with presence of gypsum crystals at a depth of over 1m. Our sample is extracted at a depth of 3.5 m (3rd layer). This soil is named ELG.

The second soil extracted from the In-Aménas region, this region is considered arid to very arid region located 1600 km south of the capital Algiers (Fig.1). Several studies have been conducted on this soil. The synthesis of these studies shows that the clays in this region occur along a stratigraphic fairly regular succession according to different layers. A sandy cover of about ten centimetres, an upper layer consists of silty clay material reddish color and a thickness of 1.5 m, a compact clay layer of darker color than the upper layer, and finally a layer greenish are relatively thin soil (Tas 1992, Kaoua and Derriche 1994, Derriche and Kebaili, 1998). The soil studied was extracted in the third layer. This soil will be named (EAM).

The term 'Bentonite' is now well established, and used to describe a clay material whose major mineralogical components belong to Smectite groups. As a result, bentonite is a very expansive soil. The most important bentonite mines in Algeria are situated in the western regions (Fig. 1). The bentonite used in this study is extracted from Maghnia mine (Hammam

Bouhrara, 600 km west of the capital Algiers).

b) Characterization of the soils

The physical characteristics of the untreated soil are shown in Table 1. All geotechnical tests were performed in accordance with British Standard 1377. Based on Casagrande plasticity chart, this soil ELG and EAM was classified as of high plasticity clay. These soils showed a high plasticity index 35% and 40% respectively and an activity of 1 and 0.75 respectively. The bentonite of Maghnia it is very fine clay; more than 60% of particles have a diameter less than 2 μm . The value of the liquidity limit and Plasticity Index LL = 141%, PI = 93% respectively; indicate that the bentonite of Maghnia is highly plastic clay, this is also confirmed by a large specific surface ($S_s = 462 \text{ m}^2/\text{g}$). According to the Skempton classification (Skempton 1953), based on the activity (Eq. (1)), the bentonite of Maghnia presents a high percentage of calcite Montmorillonite (Ca^{+2}).

Generally, the higher the plasticity index and activity of a soil, the higher the swelling potential. According to the Van der Merwe (1975) classification system, the soil was classified as having high swelling potential.

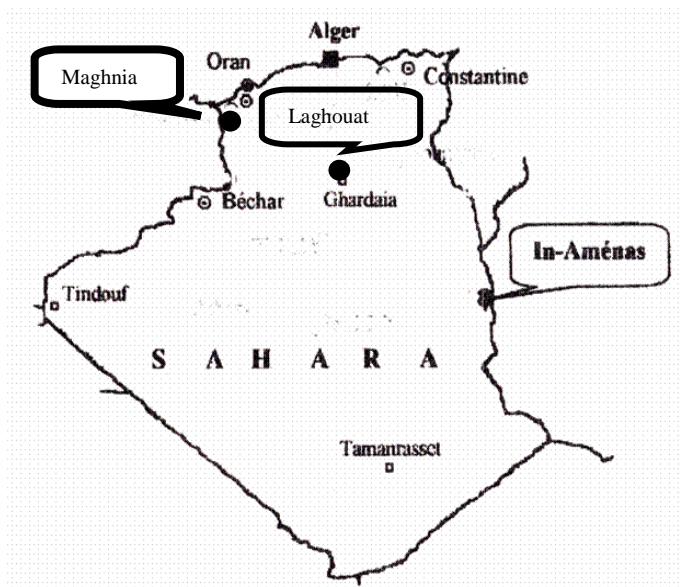


Figure 1: Localization of the soils

Table 1 : Physical characteristic of the soils

	%<2 μm	LL (%)	PI (%)	LS (%)	A	$\gamma_d (\text{kN/m}^3)$	$w_{opt} \%$	$S_s (\text{m}^2/\text{g})$
ELG	36	69	35	12	1	17.8	15	189
EAM	55	62	40	13	0.7	18	13	437
B	60	141	93	9	1.55	12	34	462

$$\text{Activity : } A = \frac{IP}{\%_{<2\mu\text{m}}} \quad (1)$$

The mineralogical and chemical of the untreated soil are shown in Table 2. From chemical analysis, the main mineralogical constituents of the three soils are silica and alumina. For soil ELG, the presence of high percentage of calcium carbonate (CaO) indicates to us that this ground belongs to the group of clays limestones. The potassium K₂O content in soil EAM confirms the presence of Illite. Moreover, we note that the three soils present percentages in SiO₂

lower than 80%, boundary value between the swelling soil and not swelling soil (Hachichi and Fleureau 1999) which predicts that these soils have a natural tendency to swell. X-ray diffraction is one of the most widely used methods for clay minerals identification and studying their crystal structure within the soils. Diffraction test carried out on bentonite, showed that the predominant clay minerals are smectic types; beside it reveals also the presence of Illite, quartz, and traces of kaolinite.

Table 2: Chemical analysis of soil

%	SiO ₂	Al ₂ O ₃	Na ₂ O	CaO	K ₂ O	MgO	Fe ₂ O ₃	M.O
ELG	58.94	10.03	0.35	17.70	2.01	0.7	1.02	9.56
EAM	56.3	15.12	2.36	2.56	2.4	1.43	7.0	12.83
Bentonite	65.2	17.25	3	5	1.7	3.1	2.1	2.65

III. STUDY OF SWELLING CLAYS

a) Estimation of swelling potential

A considerable number of empirical approaches proposed by different authors are used to evaluate the swelling potential. These approaches are based on physical characteristics of soil (LL, PL, PI, C₂); Skempton 1953, Seed *et al.* 1962, Ranganathan and Satyanaryana 1965, Vijayverjya and Ghazzaly 1973, Williams and Donaldson 1980, Mouroux *et al.* 1988, Holtz and Gibbs 1996. However, models for predicting swelling are rude. Direct measurements of swelling parameters are needed to confirmed and quantify the swelling of clay. Generally, all classifications show that soils ELG and EAM tended a high rate of swelling, while for Bentonite; it has a very high rate of swelling, which in agreement with the mineral montmorillonite is predominant.

b) Direct Measurement of swelling parameters

Many researchers have used the term swelling potential. However, a clear definition of the term has not been established. Generally, swelling potential has been used to describe the ability of a soil to swell, in terms of volume change or the pressure required to prevent swelling. Therefore, it has two components: the swell percent which is defined as the percentage increase in height in relation to the original height, and the swell pressure which is designated as the pressure required to prevent swelling.

i. Measurement of swelling potential

Swelling tests are carried out using a standard one-dimensional oedometer. Dimensions of samples are 50 mm in diameter and 20 mm in height. The test is realized according to the free swelling method (Serratrice and Soyez 1996)). The soils samples are prepared by a static compaction (velocity of 1 mm/min) for water contents and dry densities corresponding to the Optimum Proctor Conditions. The sample is placed in a cylindrical cell between two porous stones. Then, by imbibition, it is authorized to swell vertically under the pressure of the piston during several days until

stabilization. The total free swelling (G %) is computed using the following relationship (Eq. 2) :

$$G (\%) = \frac{(H_f - H_0)}{H_0} \times 100 \quad (2)$$

$$\Delta H = H_f - H_0$$

H₀: initial height (before swelling)

H_f: final height (after swelling)

ii. Measurement of swell pressure

Two methods to measure the swelling pressure to the oedometer were used:

- Method of free swelling: After the free phase of swelling under weak load (weight of the piston), the quasi saturated sample follows a way of loading until its volume returns to its initial value. The corresponding constraint is the swelling pressure (Chen 1988).

- Method of constant volume: this method is carried out according to standard ASTM D 4546-90 (American Society for Testing and Materials). It consists in neutralizing the swelling of the sample by the application of an increasing load as soon as the displacement of the comparator reaches 1/100 mm. The addition of loads was continued until deformation ceased. At this stage, the value of the load when the sample is stabilized represents the swelling pressure (Chen 1988, Serratrice and Soyez 1996).

c) Results

Figure 2 shows the evolution of free swelling (G %) according to time for the three soils. It is noted that during the imbibition, the swelling soil in a similar way. The evolution of free swelling presents two phases: primary swelling where the evolution is fast and a secondary swelling where the evolution is less slow. In general, after 7 days, the swell percent are of 20% for the soil of Laghouat (ELG) and from approximately 30% for the soil of In Amenas (EAM). The bentonite present a very important swell percent, it about 70% (Gueddouda *et al.* 2010). The obtained results show the swell character of the soils and confirm the observations obtained using the indirect methods.

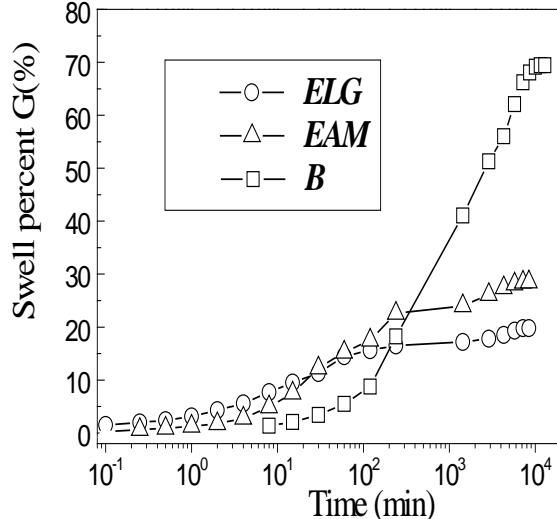


Figure 2: Swelling evolutions of soils versus time

The results of swell pressures summarized in Table 3. It is noted that the three soils develop very significant swell pressures. The bentonite of Maghnia swell pressure develops a very important; it is of the order of 900 kPa. For soils ELG and EAM, the swell pressures are about 400 and 480 kPa respectively.

Moreover, we note that the swelling pressure determined by the method of free swelling is higher than that obtained by the method of constant volume. This is consistent with the results given by Sridharan *et al.* 1986, Philipponnat and Huber 1997. This difference is attributed to the friction that develops during the recompression phase of the sample after free swelling.

Table 3 : Results of swelling parameters

	G%	Ps ₁ (kPa)	Ps ₂ (kPa)	Ps (kPa)
ELG	19.8	412.5	400	406
EAM	28.5	585	370	477
B	70	960	840	900

G% : free swell

Ps₁ : swell pressure (method of free swelling)

Ps₂ : swell pressure (method of constant volume)

Ps : Medium swell pressure

IV. CHEMICAL STABILIZATION OF SOILS

The products used for the stabilization of the three soils are: salt, Lime and cement. The salt used is NaCl. Salt solutions (distilled water + NaCl) with the following concentrations: 0.1 M, 0.5 M and 1.5 M (M is the molality of the salt solution (M = mol / liter)). The lime used is that of the region of Saida and is a hydrated lime presenting a low concentration of elements such as silicates oxides SiO₂ (< 2%), Al₂O₃ and aluminates (< 1%) and a high concentration of basic elements as a free lime CaO (< 70%). The concentrations used are: 2%, 4% and 6%. The cement used is Portland cement composed (CPJ-CEM II / A) 42.5. The cement is fabricated of M'sila and available on the market. The

concentrations used are: 2%, 4% and 6%. The preparation is made by cementing a substitution capacity of water by the percentages of lime or cement. For lime + water, the curing period is 24 hours, by contrast for cement + water is immediate. The samples were prepared by static compaction at the OPN. The swelling potential is determined by the same methods used for soil untreated with imbibition saline and hydraulic binders.

a) Stabilization of clays by salts, lime and cement

The liquid limit and plasticity index of the untreated and treated samples are shown in Table 4. Hydraulic binders (cement or lime) conduct to lower liquid limits and plasticity index. Reductions in plasticity indices are important and can reach 60% for soils EAM and ELG for a percentage of 6% lime. The effects of hydraulic binders on bentonite are lower compared with soils ELG and EAM. The limits of liquidity reach a reduction of about 25% for a percentage of 6% lime. Generally, the effects of lime and cement are similar. This behavior is attributed to the cations exchange process between the cations of the soil and those of the stabilizers. The effect of salt (NaCl) leads to greater reductions in the limits of consistencies than hydraulic binder. The reductions reach about 75% for a concentration of 1.5 M.

Swell percent and swell pressure tests were carried out on untreated samples to measure these two parameters in order to examine the effect of the various additives on the reduction of the swelling potential of the soil. Figure 3 shows the evolution of free swelling (G%) versus time for three soils with different types of stabilization. The swelling pressures of untreated and treated soils are summarized in Table 4. The swelling pressure shown is the medium of the swelling pressures obtained by two methods.

- Action of salt (NaCl) : Examination of the curves of evolution of free swelling as a function of time indicates that the reduction rate of free swelling by saline is proportional to the concentration of salt. For soils ELG and EAM and a low concentration of salt (0.1 M), reducing the swelling rate is only 20% and 18% for the swelling pressure. For a high concentration (1.5 M), reducing the swelling rate is around 60% and 80% for the swelling pressure. Moreover, we note that for a low concentration of 0.1 M, the reduction of swelling bentonite is about 40% and about 70% to swelling pressure, while for concentration of 1.5 M, reductions in swelling parameters are more important, it attains a reduction of more than 90% for the swelling pressure. It can be concluded that salt (NaCl) is more effective in reducing the swelling pressure as the rate of swell. These results are in good agreement with results obtained by Nalbantoglu 2001, Abu Baker *et al.* 2004, Bekkouche *et al.* 2007.
- Action of lime and cement : Increased percentage

of lime and cement can reduce the swelling rate. For 6% lime, reducing the swelling rate can reach 70%. Similarly for cement or reduction is greater than 60%. The effect of lime appears to be important than the effect of cement. The same findings are obtained for the swelling pressure or the reduction exceeds 80%. For the same percentage of 6% lime, the swelling pressure of bentonite from 900 kPa to 135 kPa. For the EAM ground, it decreases from 477 kPa to 81 kPa for soil ELG; it goes from 406 kPa to 40 kPa. In general, the actions of lime and cement have similar effects on soil ELG and EAM, but the action of lime seems more important than that of cement to reduce the swelling pressure of bentonite. Lime affects the electric charges located around the clay particles and modifies the electric fields between the particles. When lime is added to clay soils in the presence of water, a number of reactions occur leading to the improvement of soil properties. These reactions include cations exchange, flocculation, carbonation and

pozzolanic reaction. The cations exchange takes place between the cations associated with the surfaces of the clay particles and calcium cations of the lime. The effect of cations exchange and attraction causes clay particles to become close to each other, forming flock; this process is called flocculation. Flocculation is primarily responsible for the modification of the engineering properties of clay soils when treated with lime (Bell 1996, Al-Rawas 2002, Djedid *et al.* 2005). Cement stabilization is similar to that of lime and produces similar results. Cement stabilization develops from the cementations links between the calcium silicate and aluminate hydration products and the soil particles. When adding cement, cement powder moistened her in contact with moist soil and form a paste that coats the lumps. Cement is a cementing agent, it binds the particles together causing the stiffening of the soil and therefore it leads to reduced swelling parameters (Sherwood 1995, Nalbantoglu *et al.* 2001).

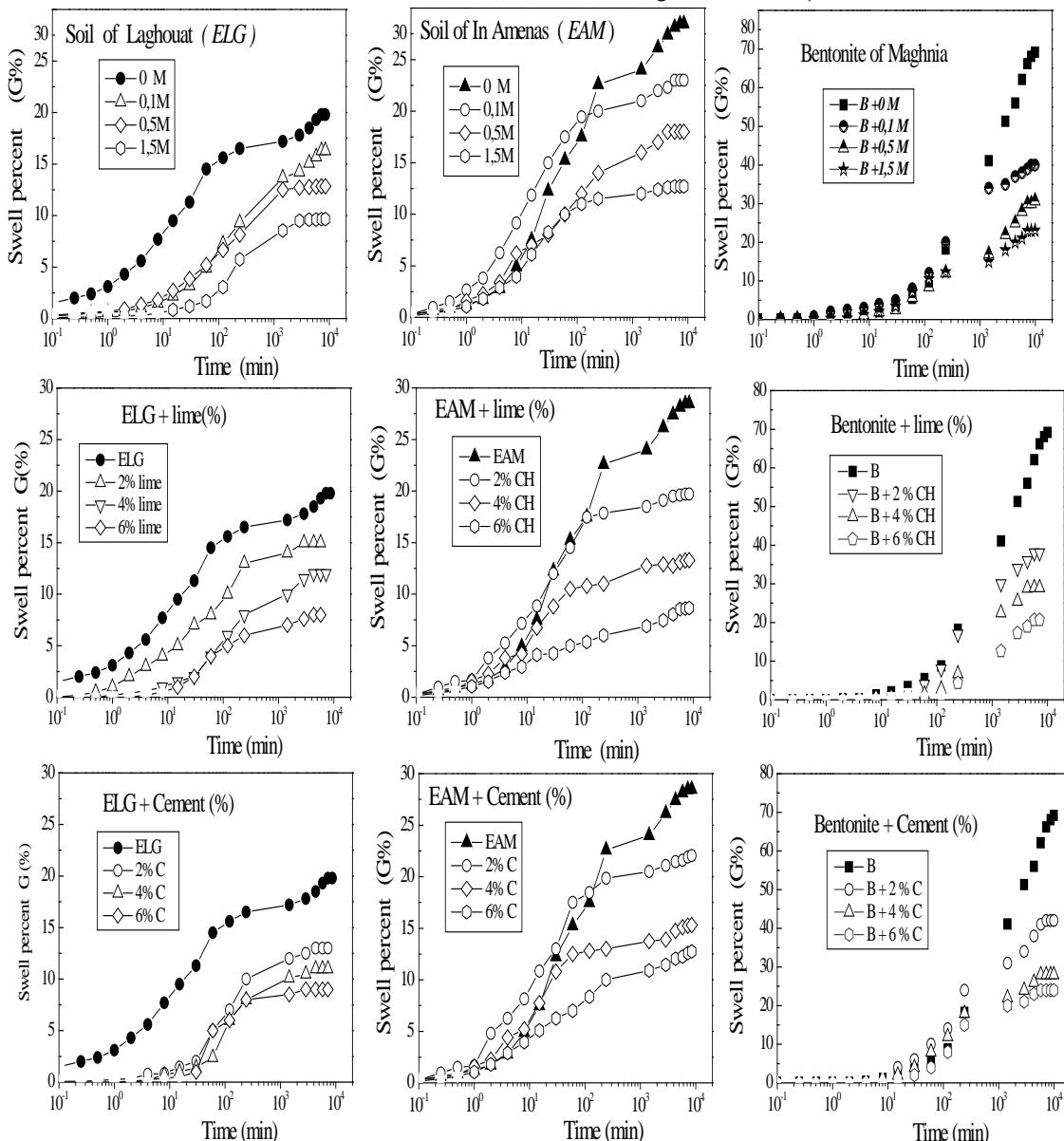


Figure 3 : Evolution of free swelling (G %) versus time for three soils with different types of stabilization

Table 4 : Geotechnical results of the treated samples

		LL	PI	G (%)	$\Delta G /G (%)$	Ps (kPa)	$\Delta Ps/Ps(%)$
	B	141	93	70	---	900	---
	EAM	62	40	29	----	477	---
	ELG	69	35	20	---	406	---
Salt (NaCl)	B + 0.1 M	70	38	40	42	260	70
	B + 0.5 M	65	34	30	57	180	80
	B + 1.5 M	50	25	23	67	80	91
	EAM + 0.1 M	58	34	23	20	390	18
	EAM + 0.5 M	41	21	18	38	228	52
	EAM + 1.5 M	20	15	13	56	120	75
	ELG + 0.1 M	55	32	16	20	335	17
	ELG + 0.5 M	38	20	12	40	170	58
	ELG + 1.5 M	22	11	8	60	88	80
Lime	B + 2 %	134	88	38	45	700	21
	B + 4 %	108	59	29	58	485	65
	B + 6 %	103	53	21	70	135	85
	EAM + 2 %	53	35	20	31	286	40
	EAM + 4 %	37	22	13	56	133	72
	EAM + 6 %	24	12	9	70	81	83
	ELG + 2 %	63	23	15	25	250	37
	ELG + 4 %	32	8	12	40	80	81
	ELG + 6 %	20	6	8	60	40	90
Cement	B + 2 %	124	82	42	40	800	11
	B + 4 %	115	73	28	60	504	44
	B + 6 %	110	59	24	66	324	64
	EAM + 2 %	50	32	22	25	340	28
	EAM + 4 %	39	24	15	48	130	72
	EAM + 6 %	31	14	13	56	85	82
	ELG + 2 %	45	25	13	35	280	31
	ELG + 4 %	32	19	11	45	77	81
	ELG + 6 %	29	10	9	55	57	86

b) Combination Stabilization

The Combination soil stabilization used is the combination of lime and cement for different percentage (2% Lime + 2% Cement; 2% Lime + 6% Cement; 6% Lime + 2% Cement; 6% Lime + 6% Cement). Figure 4 shows the evolution of free swelling (G %) versus time for three soils for different types of stabilization

combined. The effect of combining lime + cement on the swelling ratio is shown in Fig. 5. Reducing the rate of swelling is around 70% for a combination of 6% lime and 6% cement. In general, the action of the combination of lime and cement conduit to effects similar to those of one lime or cement alone. This result is in good agreed with those found by Al-Rawas *et al.* 2005.

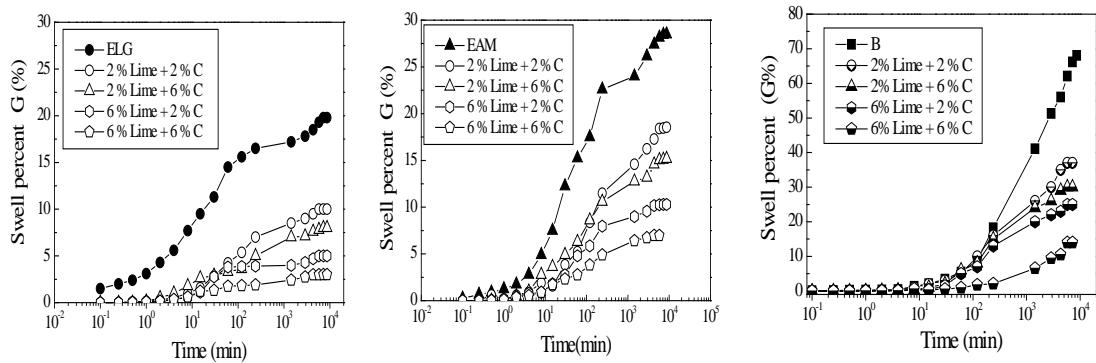


Figure 4 : Evolution of free swelling (G %) versus time for three soils with different types of stabilization Combination

A second type of Combination stabilization has been used for bentonite. It is the combination of lime and salt NaCl. The different combinations are used: 2 % Lime + 0.1 M ; 2 % Lime + 1.5 M ; 6 % Lime + 0.1 M; 6 % Lime + 1.5 M. Figure 5 shows the evolution of free swelling (G%) versus time. For a combination of 2% + 0.1 M CH, reducing the swelling rate is around 50%. For a combination of 6% Lime + 1.5 M, the reduction is about 80%. Figure 6 shows the evolution of swelling pressure versus time by the method of constant volume. For a combination of 6% Lime + 1.5 M, swelling pressure passes for 900 kPa to 50 kPa, a reduction is more than 95%. This stabilization method seems more effective in reducing the swelling pressure as the free swell.

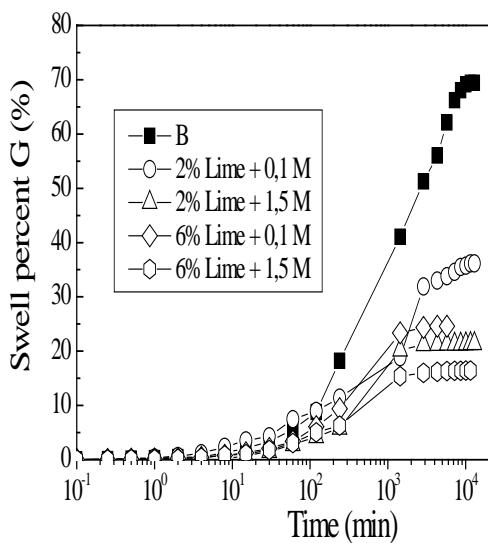


Figure 5 : Evolution of free swelling (G %) versus time for three soils with different types of stabilization Combination (lime + salt)

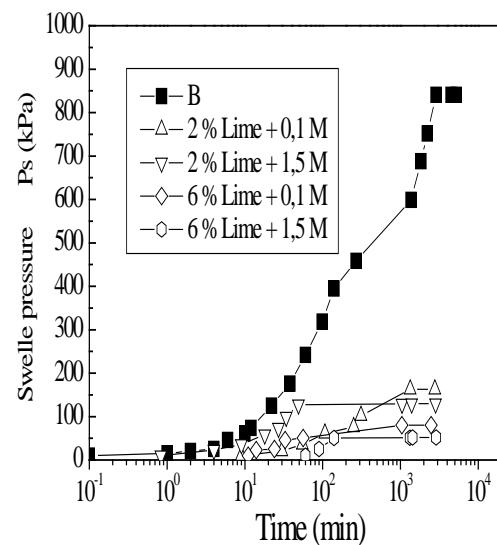


Figure 6 : Evolution of swelling pressure (Ps) versus time for three soils with different types of stabilization Combination (lime + salt)

V. CONCLUSIONS

This paper evaluated the effect of salt, lime, cement, combinations of lime and cement, and combinations of lime and salt on the swelling potential of Algeria expansive soil. Addition of lime to clay soil reduces the liquid limit, plasticity index and swelling potential. Cement stabilization is similar to that of lime and produces similar results. Chemical stabilization by saline containing NaCl seems less effective. For a 1.5 M concentration, reducing the swelling potential is less than 70%. The salts are more effective in reducing the swelling pressure as the magnitude of swelling. Stabilization combined lime + cement gives satisfying results when the reduction of swelling parameters can attain 70%. The action of the combination of lime and cement conduit to effects similar to those of alone lime or cement alone. Stabilization combined lime + salt, the results is better than the combined lime + cement stabilization. For a combination of 6% lime + 1.5 M, reduction of swelling parameters is of the order of 80 for the free swell and more than 95% for the swelling pressure.

Generally, all stabilizers caused a reduction in both swell pressure and swell percent. Finally, the abundance of the two materials (lime and salt) at reasonable prices in the region. We can advance of the technique of combined stabilization (lime + salt) an alternative economical and effective for the treatment of swelling clays.

REFERENCES REFERENCES REFERENCIAS

1. Aboubeker N & Sidi Mohamed A.M (2004) , "Stabilization of swelling soils using salts". *Conférence internationale de géotechnique*, Beyrouth, pp.1-6
2. Al-Rawas A.A, A.W.hago., Hilal Al-Sarmi. (2005), "Effect of lime, cement and Sarooj(artificial pozzolan) on the swelling potential of an expansive soil from Oman". *Elsevier.Building and Environment*, N°40, pp.681-687.
3. Al-Rawas AA, Taha R, Nelson JD, Beit Al-Shab T, Al-Siyabi H. (2002),"A comparative evaluation of various additives used in the stabilization of expansive soils", *Geotechnical Testing Journal, GTJODJ, ASTM*, 25(2):199–209.
4. Bekkouche A, Azzouz F.Z, Aissa Mimoune S.M, (2007), « Salt Stabilization of expansive clays from Tlemcen région, Algeria », *Col. Int .sols et matériaux à problèmes*. Tunisie .9-11/02/2007, pp19-26.
5. Bell FG, (1996), "Lime stabilization of clay minerals and soils". *Engineering Geology* 1996, 42:223–37.
6. Bental, (2002), « Projet de développement des gisements d'argile bentonitique du district de Hammam Boughrara, Maghnia, (Tlemcen), Algérie.
7. British Standard 1377, (1990)," Methods of test for soils for civil engineering purposes". *London: British Standard Institution*.
8. Chen. F.H. (1988),"Foundations on expansive soil", *Developments in Geotechnical Engineering*, Vol 54. Elsevier Publishing Co. Amsterdam, 464 pages.
9. Gueddouda M.K, Lamara M, Aboubekr N, Goual I, (2007), "Characterization and stabilization of expansive soils, effect dune sand and salt association for swelling potential". *Col. Int .sols et matériaux à problèmes*. Tunisie .9-11/02/2007. pp27-34.
10. Gueddouda M.K, Lamara M, Hachichi A, Goual I, (2006), " effect dune sand for swelling potential of clays swelling" *revue technologique et scientifique .COST*. N°4, pp .15-22
11. Gueddouda M. K; Lamara M; Abou-bekr. N; Taibi. S, (2010), « Hydraulic behaviour of dune sand – bentonite mixtures under confining stress». *Geomechanics and Engineering*, Vol. 2, N° 3, 213-227.
12. Hachichi A & Fleureau J.M. (1999), "Characterization and stabilization for swelling soils from Algeria". *Revue Française de Géotechnique*, N° 86, pp 37-51.
13. Holtz W.G., & Gibbs H.J. (1956), « Engineering properties of expansive soils». *Trans of ASCE, Vol. 121*,1956, pp .641-679.
14. Lamara M, Gueddouda M.K, Goual I. (2005), « expansive soil stabilisation by addition dune sand région of Laghouat ». *2ème Journées d'études sur les sols gonflants. Tlemcen*. Algérie 13-14 /11/2005. pp.129-139.
15. Lamara M, Gueddouda M.K, Benabed.B. « Physical and chemical stabilisation of expansive soil », *Revue Française de Géotechnique*, N° 115, 2006, pp 25-35.
16. Nalbantoglu Z, Guçbilmez E.(2001), « Improvement of calcareous expansive soils in semi-arid environments ». *Journal of Arid Environments* ,47(4):453–63.
17. Ranganatham B.V & Satyanarayana B. (1965),"A rational method of preding swelling potential for compacted expansive clays". *Proc of the 6th I.C.S.M.F.E*. Montreal.1965.
18. Sherwood PT.(1995)," Soil stabilization with cement and lime: state-of-the- art review". *Transport Research Laboratory, London: Her Majesty's Stationery Office*; 1995. 153 p.
19. Seed H.B., Woodward R.J., Lundgren R. (1962), « Prediction of swelling potential for compacted clays ». *Journal of the soil Mechanics and foundations division. ASCE*, vol 88, N° SM4, pp.107-131.
20. Serratrice J..F and B.Soyez, (1996), « test swelling ». *laboratory of ponts et chaussées*.204.Juillet – Août 1996-réf .4082, pp 65-85.
21. Skempton A.W. (1953), « The colloidal activity of clays ». *Proceedings of the Third International Conference on Soil Mechanics and Foundations Engineering*,vol.1,pp 57-61.
22. Sridharan A, Rao A.S, & Sivapullaiah P.V. (1986), « Swelling pressure of clays ». *Geotech.test, J.G.T.J.D.J*, Vol 9 N° 1, pp. 24-33.
23. Van der Merwe DH. (1975), "Contribution to specialty session B, current theory and practice for building on expansive clays". *Proceedings of the sixth regional conference for Africa on soil mechanics and foundation engineering*, Durban, vol. 2, p. 166–7.
24. Vijayvargiya V.N., Ghazzaly D.I,(1973)," Prediction of swelling potential for natural clays", *Proc. of the 3rd I.C.E.S*, Haifa, pp. 227-236.
25. Williams A.B., Donaldson G.W. (1980), " Developements related to building on expansive soils in South Africa : 1973-1980 ». *Proc. 4th Int. Conf. On Expansive Soils*, Denver, vol. 2, 1980, pp. 834-844.

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

Analysis of A Dual Band Micro strip Antenna

By S B Kumar

Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi

Abstracts - In modern wireless communication systems and increasing other wireless applications, wider bandwidth, multiband and low profile antennas are in great demand for both commercial and military applications. Since the microstrip antenna has its various advantages like low profile, small size, inexpensive cost and ability to be integrated with VLSI design. The current paper proposes a simple, methodical approach to design a microstrip antenna. Where the antenna behaviors are investigated. Simulation result of this antenna shows a dual band with little wider band width. From the return loss plot, it is concluded that a single antenna has two resonance frequencies, which are at 5.2Ghz and 7.69Ghz. Operating frequency of proposed antenna is 5.2 Ghz. Traditionally, each antenna operates at a single or multi frequency bands, where different antenna is needed for different applications. In addition to the theoretical design procedure, numerical simulation was performed using Methods of Moments and IE3D software.

Index Terms : Microstrip antenna, VSWR, Return loss, Radiation pattern.

GJRE-J Classification : FOR Code: 100501

Strictly as per the compliance and regulations of:

Analysis of A Dual Band Micro strip Antenna

S B Kumar

Abstract - In modern wireless communication systems and increasing other wireless applications, wider bandwidth, multiband and low profile antennas are in great demand for both commercial and military applications. Since the microstrip antenna has its various advantages like low profile, small size, inexpensive cost and ability to be integrated with VLSI design. The current paper proposes a simple, methodical approach to design a microstrip antenna. Where the antenna behaviors are investigated. Simulation result of this antenna shows a dual band with little wider band width. From the return loss plot, it is concluded that a single antenna has two resonance frequencies, which are at 5.2Ghz and 7.69Ghz. Operating frequency of proposed antenna is 5.2 Ghz. Traditionally, each antenna operates at a single or multi frequency bands, where different antenna is needed for different applications. In addition to the theoretical design procedure, numerical simulation was performed using Methods of Moments and IE3D software.

Index Terms : Microstrip antenna, VSWR, Return loss, Radiation pattern.

I. INTRODUCTION

The first idea to use micro strip antenna begin since beginning of 1950's and design concept introduce by Deschamps. Several years later, Gutton and Baissinot have patent the basic micro strip antenna. It was first published in 1952 by Grieg and Englemann. Figure 1.1 show the basic structure of micro strip antenna which consists of radiating patch, dielectric substrates and ground plane. Bottom layer of dielectric substrate is fully covered by conductors that act as a ground plane[1]. The thickness of substrates layer can increase the bandwidth and efficiency, but unfortunately it will generate surface wave with low propagation that cause lost of power. There are several approaches to analyze micro strip antenna. Among the favorite are transmission line, cavity model, and full-wave analysis. Transmission line model are the simplest way of analysis and the most precisely method for analysis is full-wave model, but it need to go through difficult process.

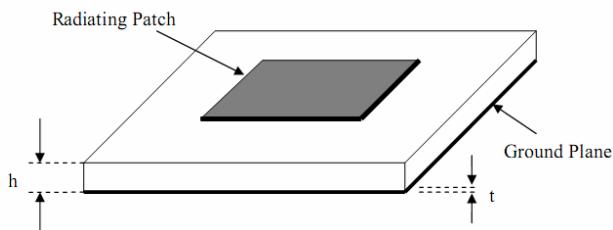


Figure 1.1: Basic structure of micro strip antenna.

Author : Department of Electronics and Communication Engg. Bharati Vidyapeeth's College of Engineering A-4 Paschim Vihar, New Delhi-110063 M: 09911374343
E-mails : shashi_ece2002@yahoo.com, sbkumar2010@gmail.com

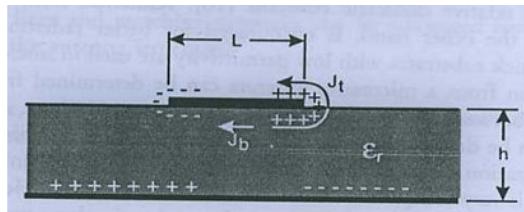


Figure 1.2: Charge distribution and current density on a micro strip antenna

When a micro strip antenna is connected to a microwave source, it is energized. The charge distribution will establish on the upper and lower surfaces of the patch, as well as on the surface on the ground plane[2]. The positive and negative charge distribution then arises. Micro strip antennas have got high intention because of their good characteristics like : Light Cheap

Easily to integrate with other circuit Can be used widely in many applications both in commercial or military. Not needed complicated part.

However there are several weaknesses or disadvantages of using micro strip antennas :

Narrow bandwidth

Low gain

Surface wave excitation

Low efficiency

Low power handling capacity

a) Antenna Properties

The performance of the antenna is determined by several factors that also called antenna properties as follows.

i. Input Impedance

Generally, input impedance is important to determine maximum power transfer between transmission line and the antenna. This transfer only happen when input impedance of antenna and characteristic impedance of the transmission line are matched. Otherwise reflected wave will be generated at the antenna terminal and travel back towards the energy source, reducing system efficiency. The input impedance is given by

$$Z_{in} = Z_0 \left(\frac{1 + S_{11}}{1 - S_{11}} \right)$$

ii. VSWR

Voltage Standing Wave Ratio (VSWR) is the ratio between the maximum voltage and the minimum

voltage along transmission line. The VSWR, which can derive from the level of reflected and incident waves, is also an indication of how closely or efficiently an antenna's terminal input impedance is matched to the characteristic impedance of the transmission line. Increasing in VSWR indicates an increase in the mismatch between the antenna and the transmission line. A decrease VSWR means good matching with minimum VSWR is one. The VSWR is given by:

$$VSWR = \frac{1 + S_{11}}{1 - S_{11}}$$

iii. Bandwidth, BW

The term bandwidth simply defines the frequency range over which an antenna meets a certain set of specification performance criteria. The important issue to consider regarding bandwidth is the performance tradeoffs between all of the performance properties described above. There are two methods for computing an antenna Bandwidth. An antenna is considered broadband if $f_H/f_L > 2$.

Narrowband by %

$$BWp = \frac{f_H - f_L}{f_o} \times 100 \%$$

Broadband by ratio

$$BWB = \frac{f_H}{f_L}$$

Where f_o = operating frequency

f_H = higher cut - off frequency

f_L = lower cut - off frequency

iv. Polarization

The polarization of an antenna describes the orientation and sense of the radiated wave's electric field vector i.e behavior of electromagnetic wave.

There are three types of basic polarization:

linear polarization

elliptical polarization

circular polarization

Generally most antennas radiated with linear or circular polarization. Antennas with linear polarization radiated at the same plane with the direction of the wave propagate. For circular polarization, the antenna must radiate in circular form.

v. Radiation Pattern

The radiation patterns of an antenna provide the information that describes how the antenna directs the energy it radiates. All antennas, if are 100% efficient, will radiate the same total energy for equal input power regardless of pattern shape. Radiation patterns are generally presented on a relative power dB scale. It can

be shown on 360 degree polar plot. Example of radiation pattern is shown in Figure 2.2.1. In many cases, the convention of an E-plane and H-plane pattern is used in the presentation of antenna pattern data. The E-plane is the plane that contains the antenna's radiated electric field potential while the H-plane is the plane that contains the antenna's radiated magnetic field potential. These planes are always orthogonal.

II. ANTENNA DESIGN

In this paper, a microstrip transmission line feeding patch antenna design is presented. This antenna has basic parameters Dielectric Constant, $\epsilon_{r,s} = 3.2$, operating frequency $f_o = 5.2$ GHz, thickness of substrate $h = 1.57$ mm and loss tangent equal to 0.001. Simulation for the basic patch with transmission line feeding resulted in antenna size of length 15.04mm and width 20.85 mm. Proposed antenna was design using ie3d software.

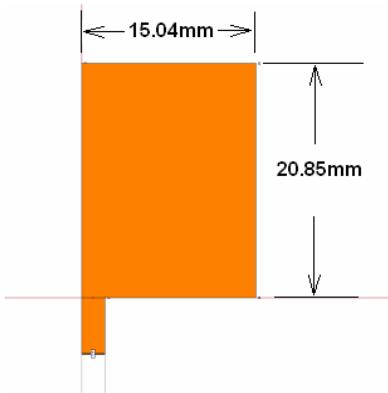


Figure 2: Microstrip transmission line feed patch antenna.

Figure 2 shows simple patch antenna of transmission line feeding which has resonance $f_o = 5.2$ GHz.

a) Simulation Results

i. Return loss Result

When the basic patch the dimensions as mentioned in Figure 2. when the Sierpinski Carpet Antenna is simulated. The simulation results with a feed of 2mm width by 5mm length are as shown by the Figure 2.2.1,

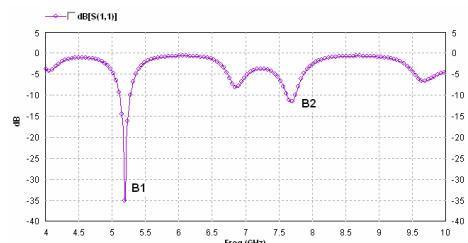


Figure 2.1.1 : Return loss of the patch

Band	f (GHz)	S_{11} (dB)	BW (MHz)	Antenna Efficiency (%)
B1	5.20	- 35.2	173.44	78.41
B2	- 7.69	11.69	146.09	56.36

Table 2.1.1 : Return loss of the patch

There exist two possible frequency bands for operation that have return loss less then 10dB; one centered at 5.2GHz and another at 7.7GHz. The band B2 does not has good return loss but has a quit wide bandwidth below -10dB or VSWR less then 2.

b) Radiation Patterns

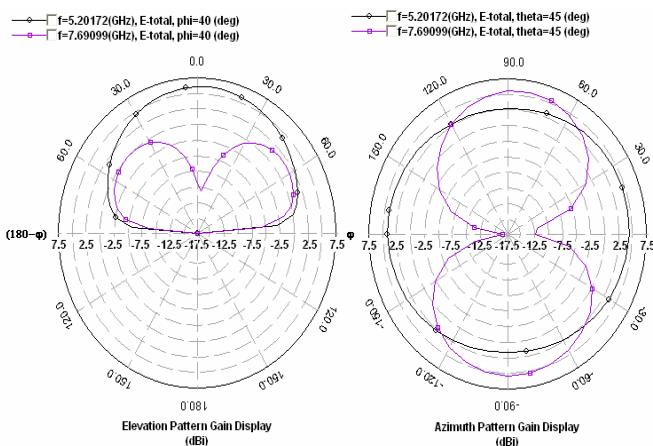


Figure 2.3.1 : Radiation pattern for dual band microstrip antenna at B1 & B2.

III. CONCLUSION

From results and discussions, it can be concluded that: We can define the microstrip antenna with transmission line feed. A single antenna work on two band as shown in the simulated result. With this property, simulated antenna is called dual band antenna. This work can be extended to the multi –band behavior of the antenna using fractal shape.

REFERENCES REFERENCIAS

1. Waterhouse, R. B., Targonski, S. D., and Kokotoff, D. M., 1998, "Design and Performance of small Printed Antennas," *IEEE Trans. Antennas and Propagation*, vol. 46, pp. 1629-1633,.
2. S.D.Targonski,R.B Waterhouse,D M Pozer,"Design a wide band aperture stacked microstrip patch antenna",*IEEE Trans on A&P* ,Vol- 46, No- 19 ,PP- 1245-1250,SEP 1998.
3. Kumar, G. and Ray, K. P. 2003, *Broadband Microstrip Antennas*, Artech House, Inc.
4. Pozar and Schaubert 1992, "Microstrip Antennas," *Proceedings of the IEEE*, vol. 80.
5. C. A. Balanis 1997, *Antenna Theory : Analysis & Design*, John Wiley & Sons, Inc.

This page is intentionally left blank

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

Voltage Level Improving by Using Static VAR Compensator (SVC)

By Md M. Biswas, Kamol K. Das

Bangladesh University of Engineering and Technology (BUET), Bangladesh

Abstracts - This paper presents the potential applications of flexible AC transmission system (FACTS) controllers, such as the static VAR compensator (SVC), using the latest technology of power electronic switching devices in the fields of electric power transmission systems with controlling the voltage and power flow, and improving the voltage regulation. Again, the static VAR compensators are being increasingly applied in electric transmission systems economically to improve the post-disturbance recovery voltages that can lead to system instability. A SVC performs such system improvements and benefits by controlling shunt reactive power sources, both capacitive and inductive, with high-tech power electronic switching devices. This work is presented to solve the problems of poor dynamic performance and voltage regulation in an 115KV and 230KV transmission system using SVC.

Keywords : *Static VAR compensator (SVC), thyristor controlled reactor (TCR), automatic voltage regulator (AVR), voltage regulation, Simulink.*

GJRE-J Classification : *FOR Code: 090699*

Strictly as per the compliance and regulations of:

Voltage Level Improving by Using Static VAR Compensator (SVC)

Md M. Biswas^a, Kamol K. Das^Ω

Abstract - This paper presents the potential applications of flexible AC transmission system (FACTS) controllers, such as the static VAR compensator (SVC), using the latest technology of power electronic switching devices in the fields of electric power transmission systems with controlling the voltage and power flow, and improving the voltage regulation. Again, the static VAR compensators are being increasingly applied in electric transmission systems economically to improve the post-disturbance recovery voltages that can lead to system instability. A SVC performs such system improvements and benefits by controlling shunt reactive power sources, both capacitive and inductive, with high-tech power electronic switching devices. This work is presented to solve the problems of poor dynamic performance and voltage regulation in an 115KV and 230KV transmission system using SVC.

Keywords : *Static VAR compensator (SVC), thyristor controlled reactor (TCR), automatic voltage regulator (AVR), voltage regulation, Simulink.*

I. INTRODUCTION

Day by day, demands on the transmission network are increasing because of the increasing number of non utility generators and heightened competition among utilities themselves. Increased demand on transmission system, absence of long term planning and the necessity to provide open access to power generating companies and customers; all together have created tendencies toward a reduction of security and decreased quality of supply.

The AC power transmission system has diverse limits, classified as static limits and dynamic limits [1]-[3]. These inherent limits restrict the power transaction, which lead to the under utilization of the existing transmission resources. Traditionally, fixed or mechanically switched shunt and series capacitors, reactors and synchronous generators were being used to solve much of these problems. However, there are some restrictions as to the use of these conventional devices. Desired performance was being unable to achieve effectively. Wear and tear in the mechanical components and slow response were the major problems. As a result, it was needed for the alternative technology made of solid state electronic devices with

fast response characteristics. The requirement was further fuelled by worldwide restructuring of electric utilities, increasing environmental and efficiency regulations and difficulty in getting permit and right of way for the construction of overhead power transmission lines [4]. This, together with the invention of semiconductor thyristor switch, opened the door for the development of FACTS controllers.

The path from historical thyristor based FACTS controllers to modern technologically advanced voltage source converters based FACTS controllers, was made possible due to rapid progress in high power semiconductors switching devices [1]-[3]. A static VAR compensator (SVC) is an electrical device for providing fast-acting reactive power compensation on high voltage transmission networks and it can contribute to improve the voltages profile in the transient state and therefore, in improving the quality performances of the electric services. A SVC is one of FACTS controllers, which can control one or more variables in a power system [5]. The dynamic nature of the SVC lies in the use of thyristor devices (e.g. GTO, IGCT) [4]. The thyristor, usually located indoors in a "valve house", can switch capacitors or inductors in and out of the circuit on a per-cycle basis, allowing for very rapid superior control of system voltage.

The compensator studied in the present work is made up of a fixed reactance connected in series to a thyristor controlled reactor (TCR) based on bi-directional valves- and a fixed bank of capacitors in parallel with the combination reactance-TCR. The thyristors are turned on by a suitable control that regulates the magnitude of the current.

II. STATIC VAR COMPENSATOR

a) Configuration of SVC

SVC provides an excellent source of rapidly controllable reactive shunt compensation for dynamic voltage control through its utilization of high-speed thyristor switching/controlled devices [6]. A SVC is typically made up of coupling transformer, thyristor valves, reactors, capacitance (often tuned for harmonic filtering).

b) Advantages of SVC

The main advantage of SVCs over simple mechanically switched compensation schemes is their near-instantaneous response to change in the system

Author ^a : Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1200, Bangladesh. E-mail : multan_eee@stamforduniversity.edu.bd.

Author ^Ω : Department of Electrical and Electronic Engineering, Stamford University of Bangladesh, Dhaka-1217, Bangladesh. E-mail : kamol_d@yahoo.com.

voltage. For this reason they are often operated at close to their zero-point in order to maximize the reactive power correction [7]-[10]. They are in general cheaper, higher-capacity, faster, and more reliable than dynamic compensation schemes such as synchronous compensators (condensers). In a word:

- 1) Improved system steady-state stability.
- 2) Improved system transient stability.
- 3) Better load division on parallel circuits.
- 4) Reduced voltage drops in load areas during severe disturbances.
- 5) Reduced transmission losses.
- 6) Better adjustment of line loadings.

c) Control Concept of SVC

An SVC is a controlled shunt susceptance (B) as defined by control settings that injects reactive power (Q) into the system based on the square of its terminal voltage. Fig. 1 illustrates a TCR SVC, including the operational concept. The control objective of the SVC is to maintain a desired voltage at the high-voltage bus. In the steady-state, the SVC will provide some steady-state control of the voltage to maintain it at the high-voltage bus at a pre-defined level.

If the high-voltage bus begins to fall below its set point range, the SVC will inject reactive power (Q_{net}) into thereby increasing the bus voltage back to its net

desired voltage level. If bus voltage increases, the SVC will inject less (or TCR will absorb more) reactive power, and the result will be to achieve the desired bus voltage. From Fig. 1, $+Q_{cap}$ is a fixed capacitance value, therefore the magnitude of reactive power injected into the system, Q_{net} , is controlled by the magnitude of $-Q_{ind}$ reactive power absorbed by the TCR. The fundamental operation of the thyristor valve that controls the TCR is described here. The thyristor is self-commutates at every current zero, therefore the current through the reactor is achieved by gating or firing the thyristor at a desired conduction or firing angle with respect to the voltage waveform [11].

III. THE THYRISTOR CONTROLLED REACTOR

The basis of the thyristor-controlled reactor (TCR) is shown in Fig. 2. The controlling element is the thyristor controller, shown here as two oppositely poled thyristors which conduct on alternate half-cycles of the supply frequency. If the thyristors are gated into conduction precisely at the peaks of the supply voltage, full conduction results in the reactor, and the current is the same as though the thyristor controller were short-circuited.

a) Principle of Operation

The current is essentially reactive, lagging the voltage by nearly 90° . It contains a small in-phase component due to the power losses in the reactor, which may be of the order of 0.5-2% of the reactive power. Full conduction is shown by the current waveform in Fig. 3(a). If the gating is delayed by equal amounts on both thyristors, a series of current waveforms is obtained, such as those in Fig. 3(a) through 3(d). Each of these corresponds to a particular value of the gating angle α , which is measured from a zero-crossing of the voltage. Full conduction is obtained with a gating angle of 90° . Partial conduction is obtained with gating angles between 90° and 180° . The effect of increasing the gating angle is to reduce the fundamental harmonic component of the current. This is equivalent to an increase in the inductance of the reactor, reducing its reactive power as well as its current. So far as the fundamental component of current

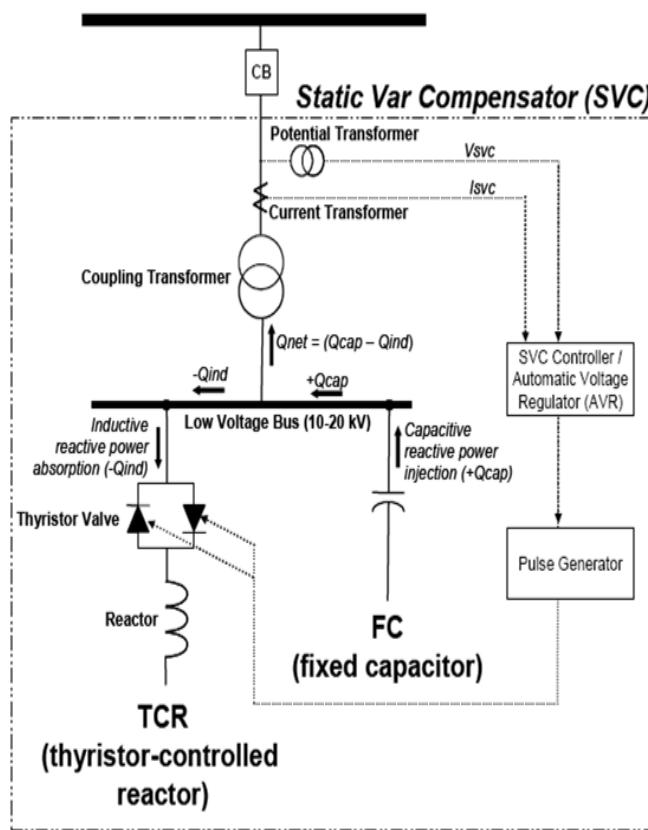


Fig. 1 : SVC with control concept.

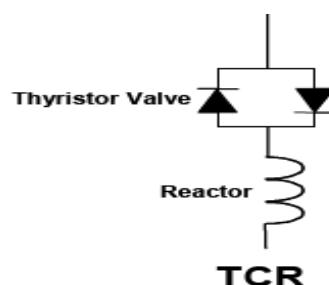


Fig. 2 : Elementary thyristor-controlled reactor (TCR).

is concerned, the thyristor-controlled reactor is a controllable susceptance, and can therefore be applied as a static compensator.

The instantaneous current i is given by,

$$i = \frac{\sqrt{2}V}{X_L} (\cos\alpha - \cos\omega t) \quad \alpha < \omega t < \alpha + \pi \quad (1)$$

Where V is the rms voltage, $X_L = \omega L$ is the fundamental-frequency reactance of the reactor (in ohms), $\omega = 2\pi f$, and α is the gating delay angle. The time origin is chosen to coincide with a positive-going zero-crossing of the voltage. The fundamental component is found by Fourier analysis and is given by,

$$I_f = \frac{\sigma - \sin\alpha}{\pi X_L} V \quad (2)$$

Where, σ is the conduction angle, and $\alpha + \sigma/2 = \pi$. We can write (2) as,

$$I_f = B_L(\sigma)V \quad (3)$$

Where $B_L(\sigma)$ represents an adjustable fundamental-frequency susceptance, which is controlled by the conduction angle according to the law,

$$B_L(\sigma) = \frac{\sigma - \sin\alpha}{\pi X_L} \quad (4)$$

This control law is shown in Fig. 4. For the full conduction in the thyristor controller that is with $\sigma = \pi$ or 180° , the maximum value of B_L is obtained as $1/X_L$. The

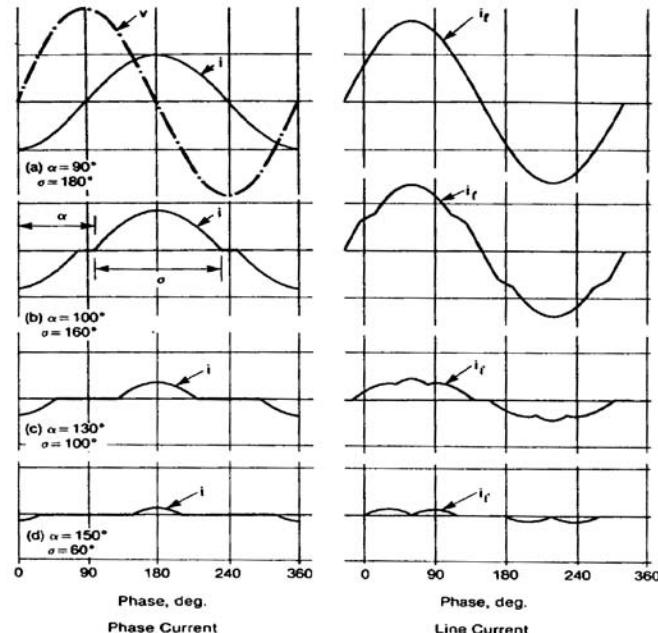


Fig. 3 : Phase and line current waveforms in delta-connected TCR.

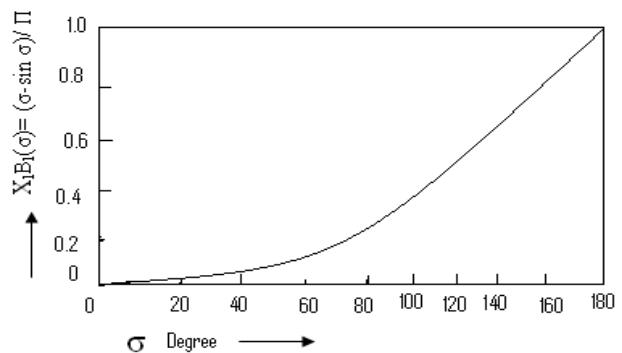


Fig. 4 : Control law of elementary TCR.

minimum value is obtained with $\sigma = 0$ ($\alpha = 180^\circ$) as zero. This control principle is called phase control.

IV. PERFORMANCE ANALYSIS OF SVC CONTROLLER

a) Modeling for Dynamic Performance Analysis with SVC Applications

When studying system dynamic performance and voltage control, system modeling is an important aspect especially in and around the specific area of study. It is typical for many electric utilities to share large system models made up of thousands of buses representing the interconnected system. Details on modeling "system" elements such as transformers, generators, transmission lines, and shunt reactive devices (i.e. capacitors, reactors), etc., for short-term stability analysis are discussed. A significant and continually debated modeling aspect is the "load" model. For short-term stability analysis, loads are modeled with both static (e.g. real power, reactive power) and dynamic characteristics [12]. The automatic voltage regulator (AVR) control block is an important part of SVC models that operates on a voltage error signal. The generic AVR control block is defined by the transfer function as shown in Fig. 5.

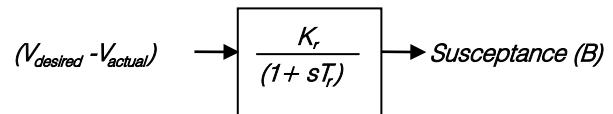
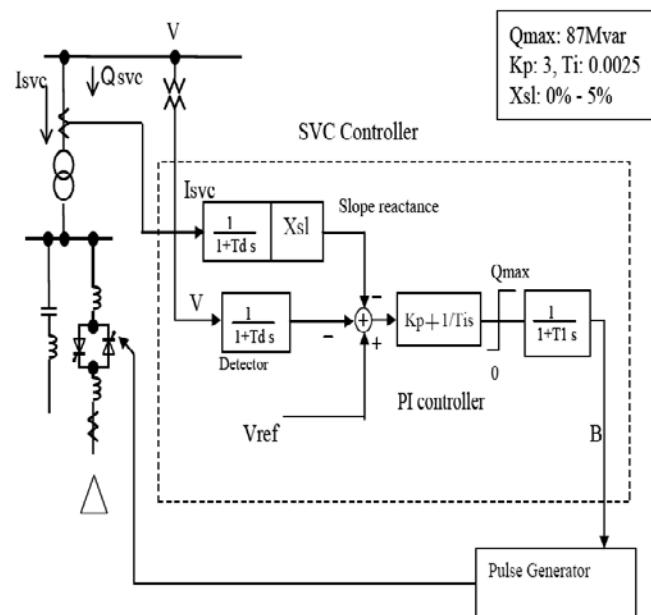


Fig. 5 : Transfer function of AVR control block.


Where K_r and T_r denotes the gain and time constant, respectively. The slope setting, maximum and minimum susceptance limits, thyristor firing transport lag, voltage measurement lag, etc are the additional commonly used control block functions of SVC dynamic models.

b) Controller Design Analysis

The SVC is operated as a shunt device to provide capacitance for voltage support or inductance to reduce the bus voltage. The fixed capacitors are

tuned to absorb the harmonics which are generated by the TCR operation. Although the SVC is capable of providing support for short-term stability and power oscillation damping, its major function is to provide voltage support and dynamic reactive power. A SVC in principle is a controlled shunt susceptance (+/-B) as defined by the SVC control settings that injects reactive power (+Q) or removes reactive power (-Q) based on the square of its terminal voltage. The block diagram is shown in Fig. 6.

In this application $Q=B \times V^2$, and L and C are components which are sized such that $Q \geq 0$ is the only operating range. The AVR in the form of proportional and integral control, operates on a voltage error signal

$$V_{error} = V_{ref} - V - (I_{svc} X_{sl}) \quad (5)$$

There are also measurement lags (T_d) and thyristor firing transport lag (T_f). The output B of this control block diagram feeds into the pulse generator controller that generates the required thyristor firing signal for the light-triggered TCR.

c) Performance Criteria of SVC Operation

The control objective is to maintain the system voltage at 115 kV bus at 1.01 p.u. voltage. If the bus begins to fall below 1.01 p.u., the SVC will inject reactive power (Q) into the system (within its controlled limits), thereby increasing the bus voltage back to its desired 1.01 p.u. voltage according to its slope setting, X_{sl} . On the contrary, if bus voltage increases, the SVC will inject less (or TCR will absorb more) reactive power (within its controlled limits), and the result will be the desired bus voltage at bus [9]-[10]. The Simulink block diagram of SVC controller is given in Fig. 7.

The SVCs steady-state response will follow the voltage-current (V-I) characteristic curve shown in Fig. 8. The VI characteristic is used to illustrate the SVC rating and steady-state performance with the typical steady-state operating region being based primarily on the V_{ref} , X_{sl} setting, and the impedance of the system.

d) Typical Parameters of SVC

Table I: Typical parameters for SVC model

Parameter	Definition	Typical value
T_d	Time constant	.001-.005
T_f	Firing delay	.003-.006
X_{sl}	Slope reactance	.01-.05 pu

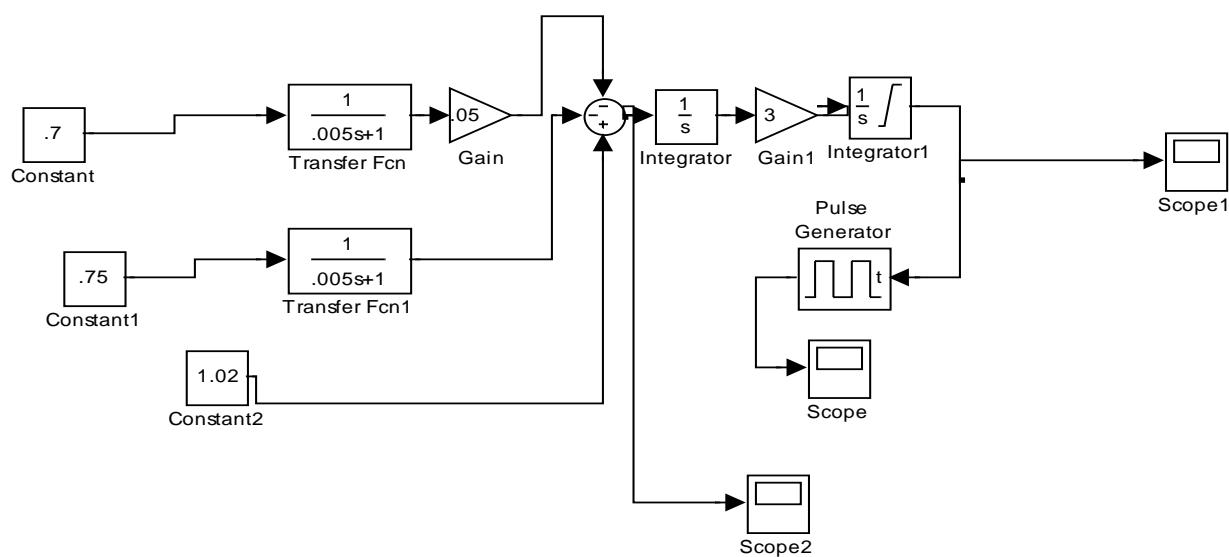


Fig. 7: Simulink block diagram of SVC controller.

Scope 2: The voltage error signal.

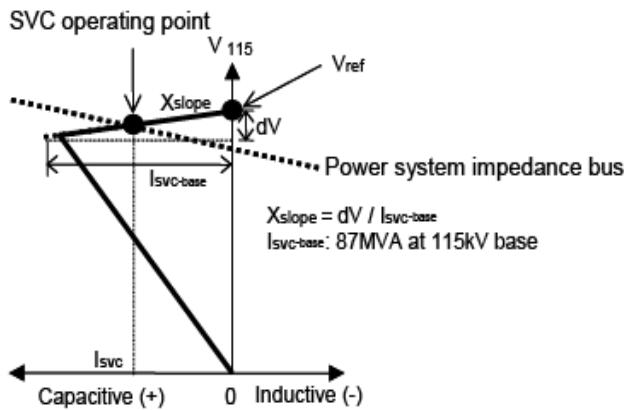
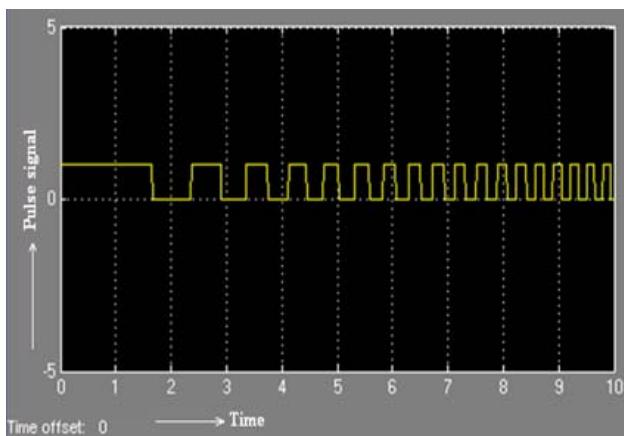
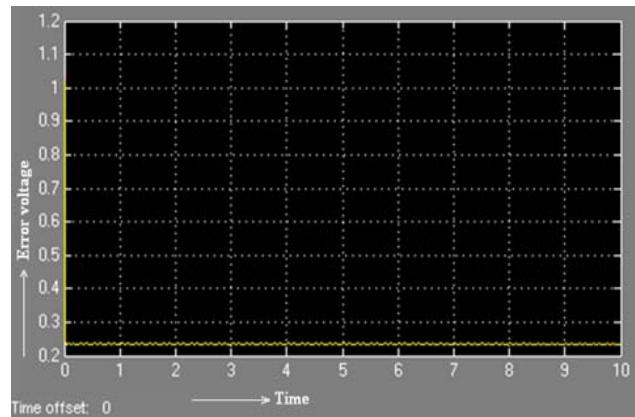
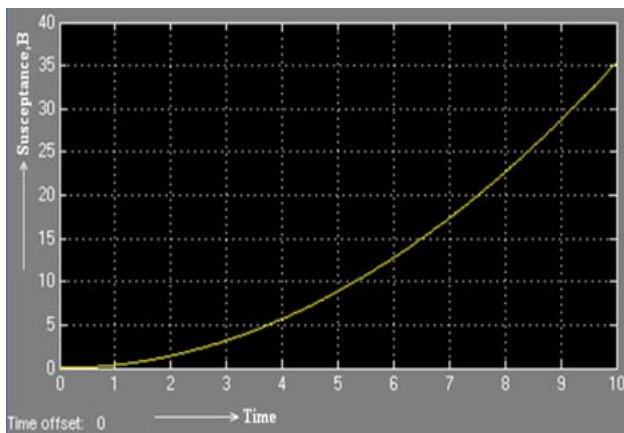
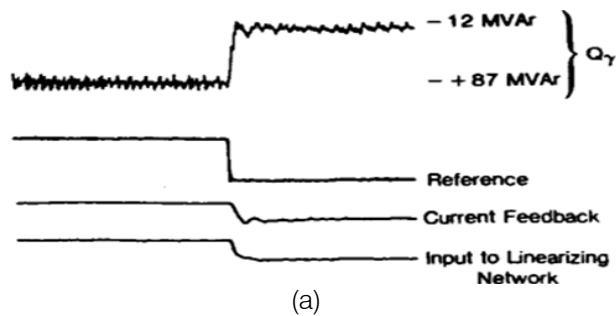





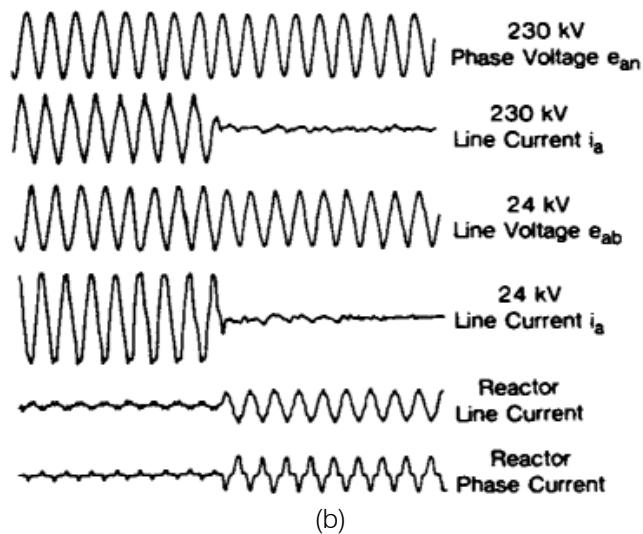
Fig. 8 : Steady state volt-current (V-I) characteristic of a SVC.

Scope: The required pulse.

Scope 1: The susceptance which is increased due to drop of the bus voltage.


V. MODERN STATIC VAR COMPENSATOR

In modern thyristor-controll edstatic compensator, the Rimouski compensator is installed on the transmission network of Hydro Quebec at 230 KV [6]-[7]. The compensator is typical of many such installations on high voltage transmission systems, but many of its design features are reproduced in load compensators also, particularly in supplies to electric arc furnaces. The Hydro Quebec system has many long distance, high voltage transmission lines. Prior to 1978 synchronous condensers were installed to provide reactive compensation. Planning studies, which considered various alternative forms of compensation, led to the decision to install two static compensators for performance evaluation, at locations not on the Baie James system [13]. One of these was installed near Rimouski, Quebec, on the 230-KV system of the Gaspe region. It was commissioned in 1978 and serves as a representative example of a transmission system compensator.


a) Performance Testing

An extensive series of tests was made during and after commissioning to check the performance of the compensator. These tests included measurements of regular transfer function. The performance results are given below:

Case-1: Sudden change of - 99MVAR in response to a step change in reference signal as shown in Fig 9(a).

Case-2: Voltage and current waveforms as shown in Fig. 9(b).

Case-3: Energizing the capacitor bank producing a sudden change of MVAR as shown in Fig. 9(c).

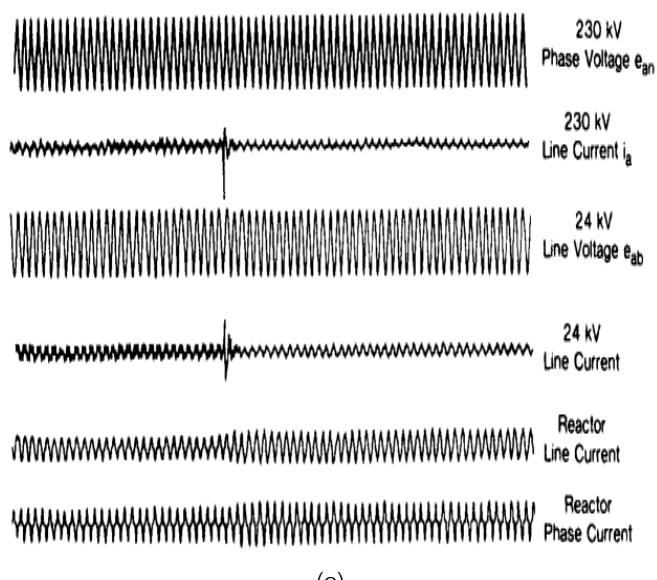


Fig. 9: Compensator performances for different cases.

VI. CONCLUSION

This research demonstrated that modern transmission static VAR compensator can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation in a 115 KV and 230 KV transmission systems. Transmission SVCs and other FACTS controller will continue to be applied with more frequency as their benefits make the network "flexible" and directed towards an "open access" structure. Since SVC is a proven FACTS controller, it is likely that utilities

will continue to use the SVC's ability to resolve voltage regulation and voltage stability problems. In some cases, transmission SVCs also provides an environmentally-friendly alternative to the installation of costly and often unpopular new transmission lines. Dynamic performance and voltage control analysis will continue to be a very important process to identify system problems and demonstrate the effectiveness of possible solutions. Therefore, continual improvements of system modeling and device modeling will further ensure that proposed solutions are received by upper management with firm confidence.

REFERENCES RÉFÉRENCES REFERENCIAS

1. N.G. Hingorani, and L. Gyugyi, "Understanding FACTS: concepts and technology of flexible ac transmission systems," *IEEE Press*, NY, 1999.
2. Y. H. Song, and A. T. Johns, "Flexible AC transmission system (FACTS)," *IEE Power and Energy Series 30*, London, U.K., 1999.
3. "FACTS application," FACTS application task force, *IEEE Power Engineering Society*, 1998.
4. J. J. Paserba, "How FACTS controllers benefit AC transmission systems," *IEEE Power Engineering Society General Meeting*, Denver, Colorado, 6-10 June 2004.
5. T.J.E. Miller, *Reactive Power Control in Electric Systems*. Wiley & Sons, New York, (1982).
6. P. Lips, "Semiconductor power devices for use in HVDC and FACTS controllers," *CIGRE Technical Brochure 112*, Paris, France, April 1997.
7. A.E. Hammad, "Comparing the voltage control capabilities of present and future VAR compensating techniques in transmission systems," *IEEE Trans. Power Delivery*, vol.11, no.1, pp. 475-484, Jan. 1996.
8. J. Verseille, Convenor, CIGRE task force 39.02, "Voltage and reactive control," *Electra No.173*, pp. 115-143, Aug. 1997.
9. C. Taylor, *Power System Voltage Stability*. Textbook ISBN 0-07-113708-4, McGraw Hill, 1994.
10. P. Kundur, *Power System Stability and Control*. Textbook ISBN 0-07-0359580-X, McGraw Hill, 1994.
11. R.J. Koessler, "Dynamic simulation of SVC in distribution systems," *IEEE Trans. Power System*, vol.7, no.3, pp. 1285-1291, Aug. 1992.
12. D. J. Sullivan, J.J. Paserba, G.F. Reed, T. Croasdaile, R. Pape, R., D.J. Shoup, et. Al., "Design and application of a static VAR compensator for voltage support in the Dublin, Georgia Area," *FACTS Panel Session, IEEE PES T&D Conference and Exposition*, Texas, May 2006.
13. T. Petersson, "Analysis and optimization of SVC use in transmission system," *CIGRE Technology Brochure 77*, Paris, France, April, 1993.

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

Anti-Inflammatory and Antioxidant Activities of Zanthoxylum Armatum Stem Bark

By S. C. Sati, M. D. Sati, Rakesh Raturi, P. Badoni, Harpreet Singh

HNB Garhwal Central University Srinagar Garhwal, UK

Abstracts - The present study is an endeavour to evaluate anti inflammatory and antioxidant activities of ethanolic extract of stem bark of *Zanthoxylum armatum*. In vivo anti inflammatory activity was evaluated in wistar species of rats by using carrageenin induced paw edema, where as in vitro antioxidant activity was performed by DPPH free radical method. The plant extract exhibited significant anti-inflammatory and antioxidant activities.

Keywords : *Zanthoxylum armatum, anti inflammatory, antioxidant, DPPH*

GJRE-J Classification : FOR Code: 090499

ANTI-INFLAMMATORY AND ANTIOXIDANT ACTIVITIES OF ZANTHOXYLUM ARMATUM STEM BARK

Strictly as per the compliance and regulations of:

Anti-Inflammatory and Antioxidant Activities of Zanthoxylum Armatum Stem Bark

S. C. Sati^α, M. D. Sati^Ω, Rakesh Raturi^β, P. Badoni^Ψ, Harpreet Singh[¥]

Abstract - The present study is an endeavour to evaluate anti-inflammatory and antioxidant activities of ethanolic extract of stem bark of *Zanthoxylum armatum*. In vivo anti-inflammatory activity was evaluated in wistar species of rats by using carrageenin induced paw edema, whereas in vitro antioxidant activity was performed by DPPH free radical method. The plant extract exhibited significant anti-inflammatory and antioxidant activities.

Keywords : *Zanthoxylum armatum*, anti-inflammatory, antioxidant, DPPH

I. INTRODUCTION

Inflammation is considered as a primary physiologic defense mechanism that helps body to protect itself against infection, burn, toxic chemicals, allergens or other noxious stimuli, an uncontrolled and persistent inflammation may act as an etiologic factor for many of these chronic illnesses (Kumar et al., 2004). Although it is a defense mechanism, the complex events and mediators involved in the inflammatory reaction can easily be induced (Sosa et al., 2002). The side effects of the currently available anti-inflammatory drugs pose a major problem during their clinical uses (Mattison et al., 1998). Therefore, the development of newer and more potent anti-inflammatory drugs with lesser side effects is necessary. Reactive oxygen species (ROS) are responsible for variety of pathological conditions (Aruoma, 1998). Innate defense system of human body may not be sufficient for curing the damage caused by continued oxidative stress. Thus there is need to supply the antioxidants exogenously to balance their level in the human body. Many synthetic antioxidant, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) antioxidants (Yesilyurt et al., 2008). Therefore recently there has been an upsurge of interest in natural products as antioxidants, as they can inhibit the free radical reaction and protect the human body from various diseases.

Zanthoxylum armatum DC [syn. *Z. alatum* Roxb.] (Rutaceae) is extensively used in the Indian system of medicines as a carminative, stomachic, and anthelmintic. The bark is pungent, and sticks prepared from it are used for preventing toothache. The fruits and

seeds are employed as an aromatic tonic in fever, dyspepsia, and expelling roundworms (Wealth of India, 1976). Phytochemical examinations of *Z. armatum* have afforded volatile oil consisting mainly linalool (Ramidi, 1998). Mono terpenetriol-3, 7-dimethyl 1-octane 3,6,7-triol, trans cinnemic acid, nevadensin umbelliferone, β -sitosterol and its glucoside (Talapatra, et al., 1989), 3,5, dihydroxy-7,8,4' trimethoxyflavone (tamblin) and tambulatin (Nair et al., 1982), 3-methoxy-11-hydroxy-6,8-dimethylcarboxylate biphenyl, 3,5,6,7-tetrahydroxy-3',4'-dimethoxyflavone-5- β -D-xylopyranoside (Akhtar et al., 2009), aramatamide, lignans, asarinin and fragesin, α and β -amyrins lupeol, and β -sitosterol β -D-glycoside (Kalia, et al., 1999) have been reported from the plant previously. Antihelmentic (Mehata et al., 1981), antiproliferative (Kumar et al., 1999), antifungal (Dikshit et al., 1984) and anti-insecticidal activities (Tiwary et al., 2007) have also been studied with different plant parts.

II. MATERIALS AND METHODS

a) Chemicals

Butylated hydroxytoluene (BHT), 2,2 diphenyl-1-picrylhydrazyl and carrageenin were purchased from HiMedia Lab. Pvt. Ltd. Mumbai, India. All other chemicals and reagents used were of analytical grade.

b) Animals

Male wistar rats (130-160g) kept the animal house of the IIM Jammu. The animal were housed under standard environmental conditions. All experiment were carried out after getting the approval from the committee for the purpose of control and supervision of experimental animals (CPCSEA) having the registration number is 67/CPCSEA/99.

c) Effect of *Z. armatum* extract on carrageenin induced rat paw edema:

Screening for anti-inflammatory activity of *Z. armatum* extract was done with a carrageenin induced paw edema model (Winter et al., 1962). Administration of carrageenin in the sub-plantar region of rat's hind paw leads to the formation of edema in situ due to localized inflammation. About half an hour prior to the administration of carrageenin solution, experimental animals received test materials and standard anti-inflammatory drug at appropriate doses. The volume of rat paw was measured each hour up to four hours by means of mercury displacement method in traveling

Author ^{α Ω} : Department of Chemistry, HNB Garhwal Central University Srinagar Garhwal, UK, India.

Author ^{β Ψ} : Department of Chemistry, HNB Garhwal Central University Campus Pauri Garhwal, UK, India.

Correspondence Author E-Mail : sati_2009@rediffmail.com

microscope assembly (Roy et al., 1980). The average percent increase in paw volume with time was calculated and compared against the control group. Percent inhibition was calculated using the formula

$$\% \text{ inhibition} = \frac{V_c - V_t}{V_c} \times 100$$

Where V_c and V_t represent average paw volume of control and treated animals respectively.

Nine experimental animals were randomly selected and divided into three groups denoted as Group I, Group II and Group III, consisting of 3 rats in each group. Each group received a particular treatment i.e. control, standard drug and the dose of the extract. Prior to any treatment, each rat was weighed properly and the doses of the test samples and control materials were adjusted accordingly. Group I received the crude extract orally at the doses of 250 mg/kg of body weight respectively. Group II received intraperitoneal administration of ibuprofen as standard anti-inflammatory drug at a dose of 10mg/kg body weight while Group I was kept as control giving 1% tween 80 in normal saline water. After one hour of drug administration, 0.1 ml of 1% (w/v) carrageenin solution in sterile saline solution was injected through 26-gauge needle into the sub-planter surface of the right hind paw of each rat of every group. Paw volumes were measured up to a fixed mark by mercury displacement as viewed by traveling microscope at 1, 2, 3 and 4 hours after the administration of the standard drug and test extracts.

III. DPPH FREE RADICAL METHOD

In order to measure antioxidant activity DPPH free radical scavenging assay was used. This assay measures the free radical scavenging capacity of the extract under investigation.

DPPH is a molecule containing a stable free radical. In the presence of an antioxidant, which can donate an electron to DPPH, the purple color which is typical for free radical decays and the absorbance was measured at 517nm using a double beam UV-VIS spectrophotometer (Brand et al., 1995). The extract was dissolved in ethanol and various concentrations (10, 20, 50 and 100 $\mu\text{g/ml}$) of extract were used. The assay mixture contained in total volume of 1 ml, 500 μl of extract, 125 μl prepared DPPH and 375 μl solvent (ethanol). After 30 min of incubation at 250C, the decrease in absorbance was measured. The radical scavenging activity (RSA) was calculated as a percentage of DPPH using a discoloration using the equation

$$\% \text{ RSA} = [(A_0 - A_s) / A_0] \times 100$$

Where A_0 and A_s are the absorbance of control and test sample respectively

IV. PLANT MATERIAL AND EXTRACT

Stem bark of *Zanthoxylum armatum* were collected from, Singoli Tehri Garhwal Uttarakhand, India and identified from the Plant Identification Laboratory, Department of Botany, H.N.B. Garhwal University Srinagar. A voucher specimen (GUH 3802) was deposited in the Department for future records. The bark was dried under shade and made to powder.

The 2 kg dried powdered bark of plant was exhaustively extracted with ethanol for 72 hour. The solvent were evaporated under reduced pressure in a rotary vacuum evaporator and dried in vacuum. The dried extract obtained was used directly for the assessments of anti inflammatory and antioxidant activities.

V. RESULTS AND DISCUSSION

The anti-inflammatory activity of extract *Z. armatum* was evaluated by carrageenin-induced paw edema method in wistar specie of rats. The plant extract at dose 250mg/kg caused inhibition of paw edema by 19.12%, 4 hours after carageenin administration hour (Table I). The 1st, 2nd and 3rd hours results were not significant so we take only 4th hour reading. The carrageenin-induced paw edema in rats is believed to be biphasic (Vinegar et al., 1969). The first phase is due to the release of histamine or serotonin, and the second phase is caused by the release of bradykinin, protease, prostaglandin, and lysosome (Crunkhorn and Meacock, 1971). Therefore, it can be assumed that the inhibitory effect of the extract of plant on carrageenan-induced inflammation could be due to the inhibition of the enzyme cyclooxygenase, leading to the inhibition of prostaglandin synthesis (Biswa Nath Das et al., 2009).

Table 1: Anti-inflammatory activity of *Zanthoxylum armatum* stems bark

Treatment	Edema volume (ml)* 4 th hour	% inhibition
Control	1.26 \pm 0.120	
ZA (250/kg)	1.02 \pm 0.120	19.02
Ibuprofen (5mg/kg)	0.76 \pm 0.066	39.68

* value are mean \pm SE, n=3, P>0.01, ZA-Z.armatum

The ethanolic extract of plant showed an effective free radical scavenging in DPPH (2, 2 diphenyl-1-picryl hydrazyl) assay (Table-2). The extract of the plant exhibit a remarkable antioxidant effect at low concentration. When the extract of the plant was tested for DPPH radical scavenging activity, it was found that 50 $\mu\text{g/ml}$ and 100 $\mu\text{g/ml}$ of the extract lowered the DPPH radical levels above 57% and 94% respectively. Inhibition of DPPH radicals 50% considered as significant antioxidant properties of any compound (Sanchez-Moreno et al., 1998).

Table 2: Antioxidant activity of *Zanthoxylum armatum* stem bark

Concentration (g/ml)	DPPH Free radical Scavenging
50	7.06
100	14.22
200	27.33
500	64.58

REFERENCES REFERENCIAS REFERENCIAS

1. *Dikshit and A. Husain*, 1984 *Fitoterapia* 55: 171.
2. G. R. Nair, G.A. Nair and C. P. Joshua. 1982 *Phytochemistry* 21:483.
3. Anonymous, the wealth of India, A Dictionary of Indian Raw Materials and Industrial Products (CSIR/PID, New Delhi, 2003), Vol. XXI, pp. 17-21.
4. Aruoma O I. 1998 *J. Oil Chem. Soc.* 75: 199-212.
5. Biswa Nath Das, Achinto Saha and Muniruddin Ahmed, 2009 *Bangladesh J. Pharmacol*, 4:76-78.
6. Brand W. W., Cuvelier H. E. and Berset C. 1995 *Food Sci. Technol.*, 82: 25-30.
7. Crunkhorn P, Meacock SC. 1971. Mediators of the inflammation induced in the rat paw by carrageenin. *Br J Pharmacol.*, 42: 392-402.
8. Gaur, R.D. Flora of Garhwal North West Himalaya. Trans Media: Srinagar Garhwal, India, 1999; pp. 382.
9. Kinsella J. E., Frankel E., German B. and Kanner J. 1993 *Food Tech.* 47: 85-89.
10. Kumar V, Abbas AK, Fausto N (eds.) In: *Robbins and Cotran pathologic basis of disease*. 7th ed. Philadelphia, Elsevier Saunders, 2004, pp 47-86.
11. M. B. Mehata, M.D. Kharya, R. Srivastava and K. C. Verma. 1981. *Indian Perf.*, 25:19.
12. M. Tiwary, S.N. Naik, D. K. Tiwari, P. K. Mittal and S. Yadav, *J. Vect. Brone Dis.* 2007, 44, 198.
13. Mattison N, Trimble AG, Lasagna I. New drug development in the United States, 1963 through 1984. *Clin Pharmacol Ther.* 1998; 43: 290-301
14. Narendra K. Kalia, Bikram Singh and Ram P. Sood, 1999. *J. Nat. Prod.*, 62 : 311-312.
15. Nidha Akhtar, Mohammad Ali and Mohammad Sarwar Alam. 2009. *J. of Asian Natural Products Research*, 11:91-95.
16. R. Ramidi and M. Ali, 1998. *J. Essent. Oil Res.*, 3: 467.
17. Ronaldo AR, Mariana LV, Sara MT, Adriana BPP, Steve P, Ferreira SH, Fernando QC. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. *Eur J Pharmacol.* 2000; 387: 111-18.
18. Roy A, Roy SM, Gupta JK, Lahiri SC. A simple device for rapid measurement of rat paws edema for evaluation of anti-inflammatory activity. *Indian J Physiol Pharmacol.* 1980; 24: 269-72.
19. S. Kumar and K. Miller, *Phytother. Res.* 1999, 13, 214.
20. S.K. Talapatra, C. D. Sambhu and B. Talapatra, *Indian J. Chem.* 1989, 28B, 356.
21. Sanchez-Moreno C., Larrauri J.A. and Saura-Calixto F. (1998). Bishen Singh Mahendra Pal Singh Publication, New Delhi pp. 123-129.
22. Sosa S, Balicet MJ, Arvigo R, Esposito RG, Pizza C, Altinier GA. Screening of the topical anti-inflammatory activity of some Central American plants. *J Ethanopharmacol.* 2002; 8: 211-15.
23. The Wealth of India: Raw Materials; PID, Council of Scientific and Industrial Research (CSIR): New Delhi, 1976; Vol. II, pp 18-19.
24. Vinegar R, Schreiber W, Hugo R. Biphasic development of carrageenan edema in rats. *J Pharmacol Exp Ther.* 1969; 166: 96-103.
25. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paws of the rat as an assay for anti-inflammatory drugs. *Proc Soc Exp Biol Med.* 1962; 111: 544-47.
26. Yesilyurt V, Halfon B, Ozturk M and Topcu G. 1993 *Food Chem.* 108: 31-39.

This page is intentionally left blank

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

Prospects of Renewable Energy and Energy Storage Systems in Bangladesh and Developing Economics

By Md M. Biswas, Kamol K. Das, Ifat A. Baqee, Mohammad A. H. Sadi,
Hossain M. S. Farhad

Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

Abstracts - Bangladesh is facing daunting energy challenges that are merely likely to deteriorate over the next few years. Further, over fifty percent of Bangladesh's inhabitants live without electricity, and the grid expansion rate to connect rural areas is threatened by the looming capacity shortage. By acknowledging the potential of renewable energy technologies (RETs) and associated energy storage, Bangladesh could possibly meet its unprecedented energy demand, thus increasing electricity accessibility for all and as well as financial growth. This paper represents a baseline overview of prospects of renewable energy resources, and a survey on energy storage systems related to RETs, and estimates the potential for commercial applications of these resources now and in the future. All the latest information regarding renewable energy and associated energy storage systems have been collected from different government and private sectors including NGOs which are working with solar home systems (SHSs), wind power generation, biomass and biogas energy, hydro energy and battery as energy storage. The paper concludes that the RETs create income-generating activities for village people while reducing environmental problems, like deforestation and indoor air pollution from cooking with poor quality fuels.

Keywords : *Bangladesh, power generation, renewable energy, solar home systems (SHSs), energy storage system, economic development.*

GJRE-J Classification : *FOR Code: 091499*

Strictly as per the compliance and regulations of:

Prospects of Renewable Energy and Energy Storage Systems in Bangladesh and Developing Economics

Md M. Biswas^a, Kamol K. Das^Ω, Ifat A. Baqee^β, Mohammad A. H. Sadi^Ψ, Hossain M. S. Farhad[¥]

Abstract - Bangladesh is facing daunting energy challenges that are merely likely to deteriorate over the next few years. Further, over fifty percent of Bangladesh's inhabitants live without electricity, and the grid expansion rate to connect rural areas is threatened by the looming capacity shortage. By acknowledging the potential of renewable energy technologies (RETs) and associated energy storage, Bangladesh could possibly meet its unprecedented energy demand, thus increasing electricity accessibility for all and as well as financial growth. This paper represents a baseline overview of prospects of renewable energy resources, and a survey on energy storage systems related to RETs, and estimates the potential for commercial applications of these resources now and in the future. All the latest information regarding renewable energy and associated energy storage systems have been collected from different government and private sectors including NGOs which are working with solar home systems (SHSs), wind power generation, biomass and biogas energy, hydro energy and battery as energy storage. The paper concludes that the RETs create income-generating activities for village people while reducing environmental problems, like deforestation and indoor air pollution from cooking with poor quality fuels.

Keywords : Bangladesh, power generation, renewable energy, solar home systems (SHSs), energy storage system, economic development.

I. INTRODUCTION

Bangladesh is situated in north-eastern part of south Asia and shares its longest border (4000 km) with neighbouring country India. Myanmar is the extreme southeast neighbour of Bangladesh and the Bay of Bengal is the southern boundary of it. With a land area of 147,570 km² and population of 162.20 million in 2011, Bangladesh is among the world's most densely populated nations (1099 people/km² in 2010) [1]. Bangladesh is one of the least urbanized nations with 72% people living in rural areas. Again, it is one of the poorest nations in the whole world with gross domestic

product (GDP) per capita of US \$1,700 in 2010 and average annual growth of GDP is to be 6% [2].

Energy, and more explicitly electricity, is a prerequisite for the technological development, higher economic growth and poverty reduction of a nation. The future economic development of Bangladesh is likely to result in a rapid growth in the demand for energy with accompanying shortages and problems. The country has been facing a severe power crisis for about a decade [3]. Known reserves (e.g., natural gas and coal) of commercial primary energy sources in Bangladesh are limited in comparison to the development requirements of the nation.

By acknowledging the potential of renewable energy resources, Bangladesh could possibly meet its unprecedented energy demand, thus enhancing electricity accessibility to all and increasing energy security through their progression. The country has modest hydrocarbon resources and rich renewable energy sources particularly in the form of traditional energy resources [1]. Appropriate integration of renewable energy technologies (RETs) in the power sector through national energy planning would be, therefore, the right direction, not only for sustainable development of the country but also as the responsibility of Bangladesh toward the global common task of environmental protection from pollution [3]. RETs have become multi-billion dollar industry from the realm of laboratories in recent years. At present, most of the large international oil companies have started serious business with renewable energies [4].

Renewable energy technologies (RETs) offer developing countries like Bangladesh some prospect of self-reliant energy supplies at national and domestic levels, with potential economic, social, ecological, and security benefits. Some RET models have already been implemented in rural areas in Bangladesh. However, these models do not specifically allow the poorest peasant control over RETs and the income generated by them. The major sources of renewable energy in Bangladesh include solar, wind energy, biomass and biogas, and hydro [5]. Other minor renewable energy sources are bio-fuels, gasohol, geothermal, river current, wave and tidal energy. Potentialities of these minor sources are yet to be explored.

Author ^a [¥]: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1200, Bangladesh. E-mails : multan_eee@stamforduniversity.edu.bd, hmsfarhad@gmail.com.

Author ^Ω ^β ^Ψ: Department of Electrical and Electronic Engineering, Stamford University of Bangladesh, Dhaka-1217, Bangladesh. E-mails : kamol_d@yahoo.com, ifat_eee@stamforduniversity.edu.bd, ashraf.sadi@gmail.com.

The existing circumstances in the electricity market in Bangladesh may offer unique opportunities for energy storage technologies, predominantly in combination with renewable energy generation, in which a few seconds to a few hours of electricity can be stored for use at a later time [6]. These systems can be positioned near the generator, transmission line, distribution substation, or the consumer's premise, depending on the application they are addressing. Storage can play a flexible, multi-function role in the electricity supply system to manage resources efficiently. Electric energy storage promises other benefits unrelated to renewable energy, such as superior grid reliability and stability, deferral of new generation and transmission investments, and other grid benefits [7]. In combination with renewable energy resources, energy storage systems (ESS) can increase the value of photovoltaic (PV) and wind generated electricity, by making supply coincident with periods of peak consumer demand [8].

This paper is organized as follows: First, a brief overview of current power situation in Bangladesh is presented in Section II to initiate the required impression throughout this paper. This is followed by a review of leading renewable energy resources available in Bangladesh in Section III, which have already found potential applications in different sectors. Section IV covers a brief surveillance on upcoming renewable energy based power generation projects. Energy storage system contributing renewable energy sectors such as battery is reviewed in Section V. Finally, in Section VI, possible economic developments using the RETs for rural people are discussed elaborately, which is followed by concluding remarks in Section VII.

II. PRESENT POWER SCENARIO IN BANGLADESH

Bangladesh is experiencing intimidating energy challenges: Security concerns over growing fuel imports, limited domestic energy resources for power generation. At present the power demand in Bangladesh is about 6000MW, whereas the generation ranges only 4000-4600 MW. The generation capacity is 5936MW [9]. As a result of power shortage causes excessive load shading throughout the whole year. Bangladesh relies greatly on fossil fuels for its energy, but the present reserve would be depleted by the year of 2015 [10]. Here, coal is still the major fuel for power generation. Bangladesh has adequate high quality coal resources. But the coal mining has not been started effectively. Exploration and development of natural gas resource has almost reduced to zero. Also the exploration of coal continues to remain uncertain. Consequently, the shortage of power can be met by renewable energy resources which are abundant in nature.

Table 1: Present Power Scenario in Bangladesh

Sl. No.	Items	Status (2011) [9]
1	Electricity Growth	10 % in FY-2010 (Av. 7 % since 1990)
2	Total Consumer	12 Million
3	Transmission Line	8,500 km
4	Distribution Line	2,70,000
5	Distribution Loss	13.1%
6	Per Capita Generation	236 kWh (incl. Captive)
7	Access to Electricity	48.5 %
8	Present Generation Capacity	5936MW
9	Present Demand	6000MW
10	Present Available Generation	4000 – 4600 MW
11	Recent Maximum Generation s	4699 MW (20 August 2010)
12	Maximum Load Shedding in FY-10	1500 MW (during hot summer days)

III. LEADING RENEWABLE ENERGY RESOURCES IN BANGLADESH

Renewables are an almost unlimited source of energy if one considers the energy necessary by mankind, compared with the huge amount of energy we receive from the sun. Gradually renewable energy and its different energy conversion technologies have become economically viable, capable of competing with fossil-fuelled technologies in the energy market. The size and economic potential of the renewable energy resources (e.g., solar energy, wind power, biomass and biogas etc.) in Bangladesh are yet to be determined and the capacity of renewable energy development is presently low. Although investment costs of renewables are generally higher compared to fossil fuel alternatives, this option becomes economically viable when all externalities (e.g. environmental cost, health hazards etc.) and lower operating cost are taken into consideration [11].

a) Solar Energy

The energy from sunlight reaching the earth is a huge potential that can be exploited and used for generating electricity. Among a number of available technologies, solar photovoltaic (PV) is the most promising. PV technology converts sunlight into direct current (DC) electricity. When light falls on the active surface of the solar cell, electrons become energized and a potential difference is established, which drives a current through an external load. The central issue for the PV technology is cost. The unit cost of PV has sunk in several orders of magnitude while the efficiency is continuously being improved. Solar PV is becoming more and more popular due to high modularity, no

requirement for additional resource (e.g., water and fuel), no moving parts, and low maintenance needed. Over the last two decades, the cost of manufacturing and installing solar PV system has decreased by about 20 % for every doubling of installed capacity [12]. In the

Fig. 1: Installing a solar PV system in a rural area.

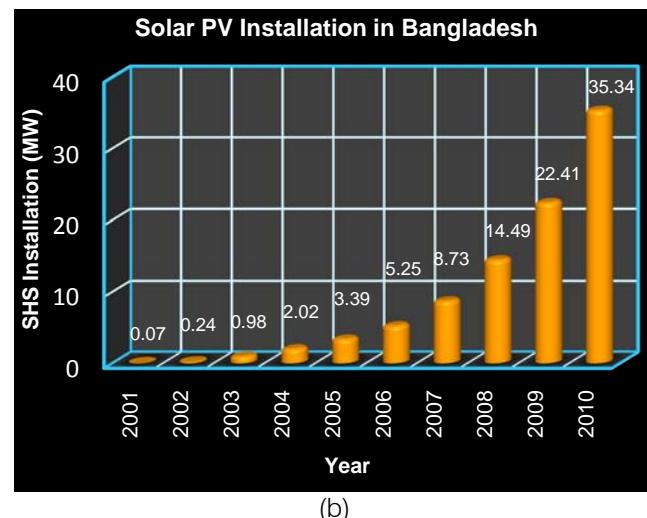
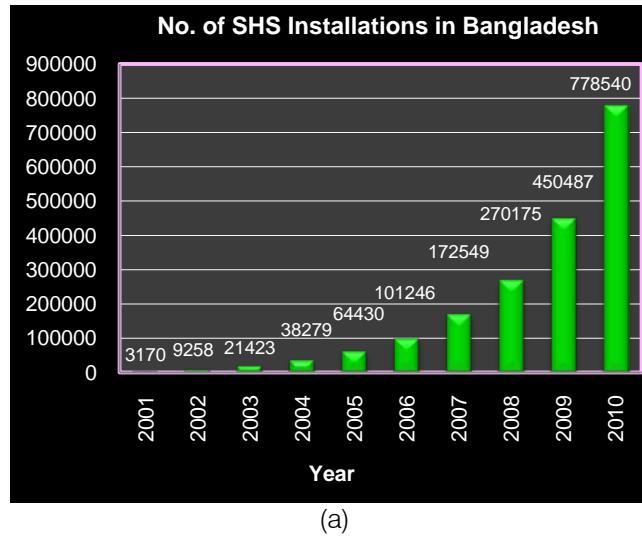



Fig. 2: SHS Installation in Bangladesh [16]: (a) number and (b) equivalent power.

whole world solar power generating capacity grew by 70 % in 2008 and 47% in 2009, but still fast enough to leave global solar capacity at the end of 2009 more than twice as high as it was at the end of 2007. The solar industry has grown at a rate of 35 % per year over the last ten years [13].

Bangladesh is located between 20.30 - 26.38 degrees north latitude and 88.04 - 92.44 degrees east which is an ideal location for solar energy utilization. Here, the daily average solar radiation varies between 4 to 6.5 kWh per square meter [4]. Maximum amount of radiation is available on the month of March-April and minimum on December-January.

Infrastructure development company limited (IDCOL) has supported NGOs in installation of solar home systems (SHSs) and a total of 801,358 SHSs having capacity of about 36.5 MW have been installed upto January 2011 [14]. Fig. 1 shows the installation of a solar PV system on the roof of a village house in Bangladesh. The number of SHS installed in Bangladesh is shown in Fig. 2 (a) and the equivalent power in Fig. 2 (b). It demonstrates that the rate of SHS installation is increasing significantly per year.

Bangladesh power development board (BPDB) has implemented an excellent Solar PV electrification project in the Chittagong hill tracts region. The Solar PV electrification has emerged as the most appropriate technological option for the electrification of these areas [15]. A 10 kW central AC solar PV system has been installed in one selected market in each of the three Rangamati district's sub-districts (Fig. 3). With these systems, the shops of that market have been electrified with normal AC electricity.

b) Wind Energy

The energy from continuously blowing wind can be captured using wind turbines that convert kinetic energy from wind into mechanical energy and then into electrical energy. Electricity generated by wind turbines can feed to the central grid or be locally consumed using small stand-alone wind turbines. Gradually

Fig. 3: Solar Arrays of 10 kW centralized AC market electrification systems at Barkal, Rangamati.

Fig. 4: Wind turbines of 1000 kW capacity WBHPP at Kutubdia Island, Cox's Bazar district (Bay of Bengal).

Generation of electricity from wind energy becomes very much promising where speed and wind power density is sufficiently high [3]. Wind power generating capacity growth accelerated to 31% in 2009 through the whole world, with capacity increasing by a record 38 GW to reach 160 GW by the end of 2009. This was the sixth consecutive year of accelerating growth, a remarkable achievement in a year of global economic recession. Wind turbines for grid-connected systems are the most highly demanded on the market and the rate of capacity growth is 28% per year between 1999 and 2009 [17].

In Bangladesh, especially at coastal areas there are some islands and inlands where wind energy can play a very important role to progress the economy of the country. BPDB installed a 160 feet tower at the Muhuri Dam site in the Feni district in May 2003. Two high resolution anemometers were installed on this tower, one anemometer at 80 feet and the other at 160 feet height. One wind vane has been installed at 80 feet height. The average wind speed, till to date, at the Muhuri Dam areas is found to be as 6.50 m/s and the wind power density varies from 100 to 250 Watt/m² in the coastal regions of Bangladesh [18]. For the financial viability of the grid connected wind turbines, the required annual average wind speed is 6 m/s. So, the wind speeds are encouraging for the grid connected wind energy projects in the areas of the Muhuri Dam, Feni [19]. This site is large enough for the larger wind energy projects.

BPDB implemented a 1000 kW capacity wind battery hybrid power project (WBHPP) at the Kutubdia Island (Bay of Bengal) in the Cox's Bazar district (Fig. 4). Under this project, total 50 nos. of 20kW capacity stand alone type wind turbines are being installed. The total capacity of all the wind turbines is 1 MW. The wind turbines producing electricity is being stored in battery bank. WBHPP was officially started on March 30, 2008. In another project, BPDB has implemented a 0.90 MW capacity of the grid connected wind energy (GCWE) at the Muhuri Dam areas in the Feni district in 2004. The installation, commissioning and erection works of 4 units

of the 225 kW GCWE turbines at this site had been completed in 2004. This is the first ever GCWE project in Bangladesh. Thus generating electricity from wind in the coastal areas can be transmitted to other regions of the country through the high voltage transmission lines [19]. Very little operation and maintenance will be required during the whole life time of wind turbines and no fuel will be required for generating electricity from wind.

c) *Biomass and Biogas*

Biomass is the fourth largest source of energy worldwide and provides basic energy requirements for cooking and heating of rural households in developing countries. Biomass covers all kinds of organic matter from fuel wood to marine vegetation. Energy generation using biomass offers a promising solution to environmental problems by reducing the emission of common greenhouse gases. There have several technologies for conversion of biomass into energy such as heat energy and electrical energy. Two widespread technologies are direct combustion and gasification. Direct combustion involves the oxidation of biomass with excess air, producing hot flue gases which in turn produce steam, which is used to generate electricity [20]. Gasification involves conversion of biomass to produce a medium or low calorific gas. The gained gas is then used as fuel in combined cycle power generation plants. Being produced in combined cycle power plants, electricity from this technology has higher efficiency and is more competitive than that from a steam turbine. Electrical conversion efficiencies up to 40% are possible on a scale of about 30 MW on the short term [21]. Anaerobic digestion of biomass has been demonstrated and applied commercially for a variety of feedstock, such as organic domestic waste, organic industrial waste, manure, sludge, etc.

Biogas is a mixture of CH₄ (40 – 70 %), CO₂ (30 – 60 %) and other gases (1 – 5 %) produced from animal dung, poultry droppings, and other biomass wastes in specialized bio-digesters. This gas is combustible and can be used to generate electricity [22]. Biogas can be applied for cooking and power generation. Biogas mainly from animal and municipal wastes may be one of the promising renewable energy resources of Bangladesh. It is a potential source to harness basic biogas technology for cooking and rural and peri-urban electrification to provide electricity during periods of power shortfalls.

Biomass is the most significant energy source in Bangladesh which accounts for 70% of the total final energy consumption [4]. This technology can be disseminated on a larger scale for electricity generation. IDCOL financed a 250 kW Biomass based power plant at Kapasia, Gazipur. The plant uses locally available agricultural residues i.e. rice husk as fuel for power generation. Being located in an unelectrified area, the plant is expected to supply environment friendly grid

Fig. 5 : Construction of a biogas plant in a rural area of Bangladesh.

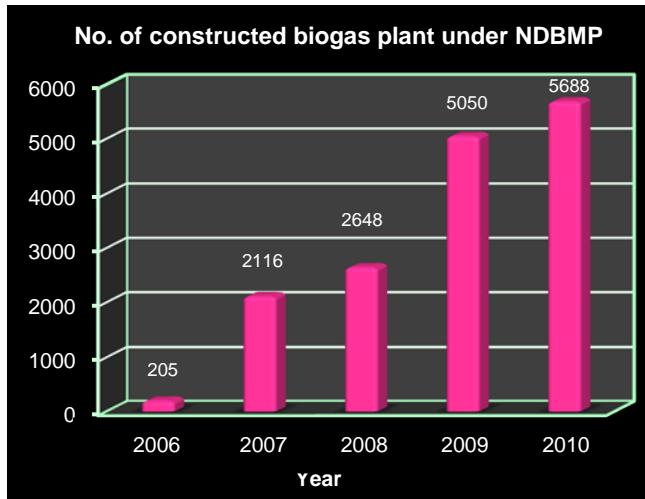


Fig. 6 : Biogas plants construction in Bangladesh under NDBMP [25]-[26].

quality power to 300 households and commercial entities of that area [23].

There are three million potential household with adequate cattle or poultry. In Bangladesh biogas is being used mainly for cooking purpose. From 1971 to October 2009 About 41000 biogas plants has been constructed by different NGOs, under national domestic biogas and manure programme (NDBMP) of IDCOL, sustainable energy for development (SED) program of German technical cooperation (GTZ), and other government organizations e.g. local government engineering department (LGED), Bangladesh council of scientific and industrial research (BCSIR) [24]. Under NDBMP of IDCOL, 5688 biogas plants have been constructed in Bangladesh in the year of 2010 (Fig. 6).

d) Hydro Energy

Kinetic energy from flowing or falling water is exploited in hydropower plants to generate electricity. Hydropower plants are classified into two categories: 1) Large hydropower plants (>10 MW), usually with reservoirs, that cannot only produce electrical energy

Continuously, but also are able to adjust their output according to electricity demand and 2) small hydropower plants (<10 MW) that are less flexible with respect to load or demand fluctuation due to their dependence on the water resource [3]. Hydropower technologies are mature and widely available.

In Bangladesh about 1.4 trillion cubic meters (m^3) of water flows through the country in an average water year. Major rivers of the country have a high rate of water flow of about 5 to 6 months during monsoon season, which is substantially reduced in winter season. More than 90% of Bangladesh's rivers originate outside the country, due to which proper planning of water resource is difficult without neighboring countries cooperation. Downstream water sharing with India is a highly contentious issue for Bangladesh. The annual average rainfall is about 2,300 mm, which varies from 1,200 mm in the north-west to 5,800 mm in the north-east. Most of the rainfall (about 80%) occurs during the months of May/June to September/October [4]. At present only 230 MW of hydro power is utilized in Karnaphuli, Rangamati hydro station, which the only hydro-electric power plant operated by BPDB [27]. Microhydro and minihydro have limited potential in Bangladesh, with the exception of Chittagong and the Chittagong hill tracts. Hydropower assessments have identified some possible sites from 10 kW to 5 MW but no appreciable capacity has yet been installed [5].

IV. RENEWABLE ENERGY BASED POWER PLANTS: FUTURE PLAN

Development of renewable energy in Bangladesh is insufficient. Besides the conventional energy, in order to promote the renewable energy the activities of sustainable energy development authority (SEDA) have been accelerated in Bangladesh. As per approved renewable energy policy 5% of the total generation (450 MW) would be added by 2015 and 10% of the total generation (1600 MW) would be added by 2020 from renewable sources [28].

With an average annual direct normal irradiance (DNI) of 2,000kWh/m², the area required to generate 100MW of electricity is about 2km². Bangladesh receives an average annual DNI of nearly 1,900kWh/m² which is adequate to operate a concentrating solar power (CSP) plant [29]. On March 14, 2011, Bangladesh has set a target to produce 500 MW of electricity installing solar home systems to reduce greenhouse emissions and ensure sustainable development in energy sector [30]. It also plans to install solar irrigation system to cut diesel cost.

BPDB established a wind resource assessment station (WRAS) at the Moghnama Ghat, Cox's Bazar. The installation, commissioning, erection, testing etc. works of this WRAS have been completed in December 2003. So far wind resource data of this site have been

gathered and these data shows the clear viability of grid connected wind energy at this site [19]. Another WRAS installation at Kuakhata, Patuakhali is under process to measure the wind potential at that location.

In Bangladesh, about 8-9 million metric tons of rice husk is produced annually. So, theoretically there is a potentiality to generate 400 MW biomass gasification based electricity. Again, there are three millions of potential households with adequate cattle or poultry and it reveals the potentiality of 800MW biogas based electricity plant [24]. BPDB is considering extension of Karnaphuli hydro station to add an additional 100 MW electricity, which will be effective to operate it as a peaking power plant [4]. The additional energy will be generated during the rainy season when most of the year water is spilled.

V. ENERGY STORAGE IN RENEWABLE ENERGY SECTORS

Energy storage improves the efficiency and reliability of the electric supply system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient base load generation, and allowing greater use of intermittent renewable energy technologies. Energy storage can help to increase energy security, reduce the environmental impact of electricity generation, transmission and use, and broaden the diversification opportunities for utilities by adding more generation options to their portfolios [21]. Energy storage

Table II : Renewable Energy Projects [9], [23], [31]

SI No.	Location of the Project	Capacity (MW)	Type of Project
1	Parki Beach, Chittagong	100-200	Wind Power
2	Mognamogha, Cox's Bazar	10	Wind Power
3	Hatia, Sandwip, and Monpura Islands	4	Wind Power
4	Bazitpur, Kishoreganj	18	Grid Connected Solar PV
5	Kaptai, Rangamati	5	Grid Connected Solar PV
6	Sarishabari, Jamalpur	2-4	Grid Connected Solar PV
7	RTC, Rajshahi	1	Grid Connected Solar PV
8	Rajabarihat, Rajshahi	2-4	Grid Connected Solar PV
9	St. Martin Island	1.5	Wind and Solar Hybrid
10	Chilarong, Thakurgaon	0.4	Biomass

technologies include batteries, flywheels, ultracapacitors and superconducting magnetic energy storage (SMES) for short term storage and pumped hydropower, compressed air energy storage for long term storage [32].

Lead-acid batteries are mainly used as energy storage systems in the renewable energy sectors in Bangladesh. Here, two types of industrial batteries are produced: tubular plate batteries, and flat type batteries. Because of the higher durability, consumption of tubular plate battery is higher than the flat type. Most of the tubular plate battery is now locally manufactured with a total capacity of 201,000 per year [16]. Major manufacturers include Rahimafrooz, Rimso, Hamko, Navana, Pannaand, and few others (Fig. 7). In terms of cost, 70% of the raw materials are imported and the major raw materials include lead, separators, casing etc.

Rahimafrooz batteries limited (RBL) is the largest lead-acid battery manufacturer in Bangladesh and offers an extensive range of automotive and specialised industrial battery. The company manufactures over 300 different types of automotive and industrial batteries. It has technical collaboration

Battery Manufacturing Industry in Bangladesh

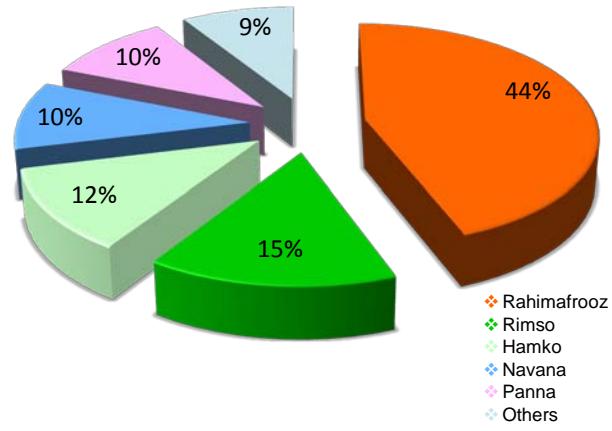


Fig. 7: Tubular battery manufacturers in Bangladesh[16].

Fig. 8: Battery bank of 1000 kW capacity WBHPP at Kutubdia Island, Cox's Bazar.

Agreements with UK-based Lucas Battery Company, technical support group, Hawker batteries, Invensys and Hawker batteries, Eltek of Norway, and AEES of France, to ensure the quality of the battery [33].

The wind turbines using at Kutubdia Island, Cox's Bazar produce electricity and charges the batteries at battery banks as shown in Fig. 8, which consisting of 1000 numbers of 200AH with capacity of 12VDC [34]. The stored electrical power from the battery banks is converted to AC by using inverters and distributed to the consumers through overhead power cable.

VI. ECONOMIC DEVELOPMENT THROUGH RENEWABLE ENERGY

Access to energy has become essential to the functioning of modern economics. To alleviate poverty in the face of resource limitations and high population density, Bangladesh requires an economic growth rate of more than 7%. In order to achieve this growth rate electricity growth need to be achieved by 10%. Commercial energy in Bangladesh is dominated by natural gas, particularly in power generation. This is supplemented by imported liquid fuel; indigenous coal is yet to make any significant impact in the energy scenario. While sustained energy supply is a prerequisite for economic development, current information indicates that the existing gas reserves will be able to meet the gas demand (at 7% per annum) up to 2016 though with the present production capacity it cannot meet the existing demand [28].

In Bangladesh the natural trend towards teledensity is growing. Moreover, the government is trying to implement a digital superhighway facility for the nation. Consequently, the need for communication equipment is of the first priority. It is therefore essential for the telecommunication operators to ensure a continuous power supply economically at the time of crisis. Solar energy can be the most suitable solution for alternate more reliable sources of energy. This will improve the the coastal region wind solar hybrid system

Can ensure service of the telecom companies, and also allow them to cover off grid areas and thus contributing the rural inhabitants' financial development. Renewable energy technologies (RETs) could be selectively applied to various rural applications, potentially generating income, improving health and educational quality, and increasing labour productivity. However, such potential benefits arising from RETs may be realized only through a process that appropriately harnesses the social and financial context of village life. There are practical implementations of RETs in other rural situations that have succeeded in catalysing endogenous development, including job creation. Fig. 9 represents a model for addressing benefits of sustainable development of the rural poor using RETs.

VII. CONCLUSION

The summery demonstrates that there is considerable opportunity for Bangladesh to meet its future power demand and thus economic growing through renewable energy. Bangladesh already has experienced with sustainable energy projects and certain renewable energy project approaches. Though these initiatives are at initial stage of development and implementation, the potential of these initiatives is high. There are many possible ways in which these goals can be carried out in Bangladesh; through combinations of different renewables technologies, grid based generation and micro-renewables, and energy efficiency. In Bangladesh, diffusion of renewable energy technologies has gained momentum in recent years via evolution of relevant policies, institutional facilitation and learning-by-doing experience. Renewable energy policy has been adopted by the government of Bangladesh on December 18, 2008. Sustainable energy development agency (SEDA) will coordinate activities related to the development of renewable energy technologies and financing mechanisms in the country.

Bangladesh has got ample solar insolation throughout the country. Daily average solar radiation varies from 4 to 6.5 kWh/m². There is intense prospect of

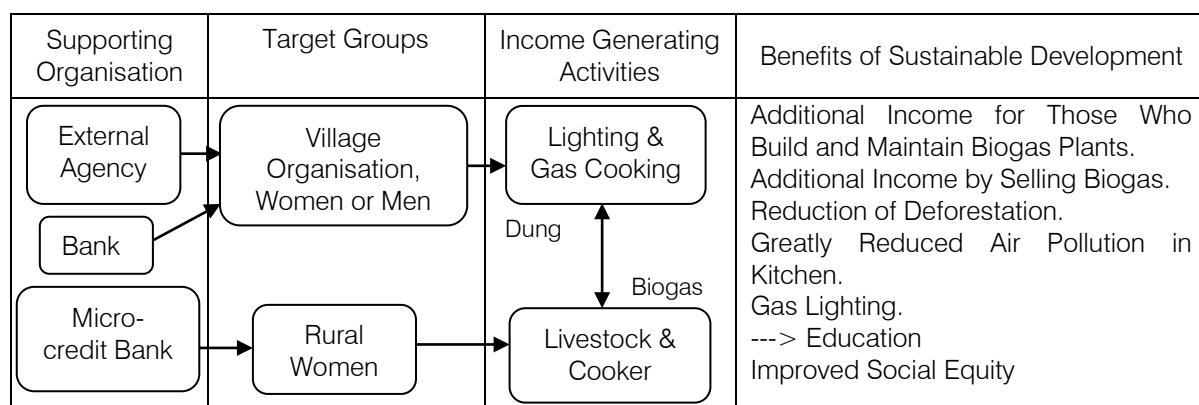


Fig. 9 : Simplified system using biogas.

Solar photovoltaic and solar thermal systems in the rural as well as urban areas of the country. BPDB's established WRAS is expected to provide more valuable information regarding wind energy potential for larger projects in Bangladesh. Bangladesh consists of diverse potentials of biomass and biogas energy. Many waste-to-energy projects have proven budding applications of biomass and biogas which will not only provide electricity, but also reduce the unpleasant waste disposal problems of metropolitan cities of the country. There is limited potential of small hydro power plants in country. BPDB and Bangladesh water development board (BWDB) are presently working together to implement a pilot project at any of the prospective regulating structures of Tista Canal system.

Among the different energy storage technologies only batteries have found potential application in renewable energy sectors in Bangladesh and it shows a bright prospect in storage of electricity generated by renewables. This survey has been accomplished by the information available at the present time and more detailed statistics on energy use in Bangladesh. Finally a model has been developed in which it is shown that RETs, using appropriately, may improve the quality of life of rural people and provide income-generating opportunities with redressing social inequities and environmental impacts in Bangladesh.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Country report Bangladesh, Rabobank Economic Research Department, Jan. 2011.
2. CIA - The World Factbook: Bangladesh, (2011, March). URL : <https://www.cia.gov/library/publications/the-world-factbook/geos/bg.html>
3. M. A. H. Mondal, "Implications of renewable energy technologies in the Bangladesh power sector: Long-term planning strategies," Ph.D. dissertation, Dept. of Ecology and Natural Resources Management, ZEF, University of Bonn, Germany, Jul. 2010.
4. A. K. Azad (2011), "A Review on Renewable Power Sources: Prospects of Bangladesh and Scotland," EBook, St. Andrew's University, Scotland, UK. Available: <http://pdfmio.com/download/renewable-power>
5. Renewable Energy Policy of Bangladesh, Power Division, Ministry of Power, Energy and Mineral Resources, Bangladesh, Nov. 2008.
6. W. V. Hassenzahl, "Energy Storage in a Restructured Electric Utility Industry," Report on EPRI Think Tanks I and II, Report EPRI TR-108894, Sep. 1997.
7. Pew Center's report on Electric Energy Storage, May 2009.
8. H.W. Zaininger, and P.R. Barnes, "Applying Wind Turbines and Battery Storage to Defer Orcas Power and Light Company Distribution Circuit Upgrades," Oak Ridge National Laboratories, Oak Ridge, TN, Report ORNL-Sub/96-SV115/1, Mar. 1997.
9. M. E. Haq, "Bangladesh's Power Sector: Investment Opportunities," Ministry of Power, Energy & Mineral Resources, Bangladesh, Presented in London, Mar. 2011.
10. "Bangladesh Energy Crisis: Soul Searching," Energy Bangladesh, (2011, March). URL: <http://www.energybangla.com/index.php?mod=article&cat=SomethingtoSay&article=2051>
11. M. J. Khan, M. T. Iqbal, and S. Mahboob, "A wind map of Bangladesh," Renewable Energy, vol. 29, no. 5, pp. 643-660, Apr. 2004.
12. J. Brown and C. Hendry, "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, vol. 37, no. 7, pp. 2560-2573, Jul. 2009.
13. British Petroleum official website under renewable energy, solar energy, (2011, March). URL: <http://www.bp.com/sectiongenericarticle.do?categoryld=9023789&contentId=7044135>
14. Renewable energy projects, IDCOL solar energy program, (2011, March). URL: <http://www.idcol.org/prjshsm2004.php>
15. Renewable energy information network, Solar interventions in Bangladesh (2011, March). URL: <http://www.lged-rein.org/bpdb.php>
16. S. Islam, IDCOL, "An off grid lighting solution in Bangladesh," International Renewable Energy Conference, Delhi, Oct. 2010.
17. British Petroleum official website under renewable energy, wind energy, (2011, March). URL: <http://www.bp.com/sectiongenericarticle.do?categoryld=9023790&contentId=7044134>
18. M. S. Kaiser, M. A. Rahman, M. M. Rahman, and S. A. Sharna, "Wind energy assessment for the coastal part of Bangladesh," Journal of Engineering and Applied Sciences, vol. 1, no. 2, pp. 87-92, 2006.
19. Renewable energy information network, Wind energy programme in Bangladesh (2011, March). URL: <http://www.lged-rein.org/database.php?pageid=67>
20. Renewable energy technology characterizations, TR-109496, Topical Report, U.S. Department of Energy, and Electric Power Research Institute (EPRI), Dec. 1997.
21. Renewable Energy Projects Handbook, World Energy Council, Apr. 2004.
22. U. Rehling, Small biogas plants. Sustainable energy systems and management (SESAM), University of Flensburg, Germany, 2001.
23. IDCOL Renewable Energy Projects, Bangladesh, (2011, March). URL: <http://www.idcol.org/energyProject.php>
24. S. Islam, IDCOL, Renewable Energy Development in

Bangladesh, presented at Madrid, Spain, Oct. 2009.

25. SNV Domestic biogas newsletter, issue 2, Jan. 2010.
26. SNV Domestic biogas newsletter, issue 4, Jan. 2011.
27. S. Moury, and R Ahshan, "A feasibility study of an on-grid solar home system in Bangladesh," Proc. of the IEEE ICDRET, Dhaka, Dec. 2009.
28. Energy and Power, Bangladesh Development Forum 2010, Ministry of Power, Energy and Mineral Resources, Dhaka, Bangladesh, Feb. 2010.
29. N. Noor, and S. Muneer, "Concentrating Solar Power (CSP) and its prospect in Bangladesh," Proc. of the IEEE ICDRET, Dhaka, Dec. 2009.
30. Energy Bangla, Green Page (2011, March). URL: <http://www.energybangla.com/index.php?mod=article&cat=GreenPage&article=6481>
31. Energy Bangla, Green Page (2011, March). URL: <http://www.energybangla.com/index.php?mod=article&cat=GreenPage&article=4912>
32. P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, "Energy Storage Systems for Advanced Power Applications," Proc. of the IEEE, vol. 89, no. 12, pp. 1744-1756, Dec. 2001.
33. The Daily Star, Newspaper, Bangladesh. (2010, Jan. 8). Available: <http://www.thedailystar.net/newsDesign/news-details.php?nid=120956>
34. Reed Consulting (BD) Ltd., Case Study, Rahimafrooz Batteries limited, (2011, March) URL: http://reedconsultingbd.com/index.php?option=com_content&view=article&id=140:case-study-on-rahimafrooz-batteries-limited&catid=50:case-study&Itemid=201

This page is intentionally left blank

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING
Volume 11 Issue 5 Version 1.0 July 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-5861

Effective Power System Stabilization Using Non-Dominated Ranked Genetic Algorithm

By V.Ravi, Dr. K.Duraiswamy

KSR College of Engineering, Tiruchengode, India

Abstracts - Power system stabilizers (PSS) should be accomplished with suitable stabilization signals over a wide range of operating environment and disturbances. With the enormous electric power need and requirement to function the power system in a faster and highly flexible way in the deregulated competitive situation, modern power systems can achieve stressed conditions very easily than the old systems. These make unbalanced or badly damped oscillations that have been seen more frequently in power systems across the world. In modern days, stabilizing control techniques for the multi-machine power system with the help of intelligent methods have been developed. The basis for the reduction of stability analysis is because of the complexity of the power systems. In addition, industry will be unwilling to acknowledge controller design if stability is not be assured. To deal with those problems, intelligent techniques are used. The optimal sequential design for multi-machine power systems is very essential. As a result, serious consideration is now being given on the concern of power system stabilization control. In recent times, the utilization of optimization techniques becomes possible to deal with control signals in power system. Most widely used optimization technique is Genetic Algorithm (GA). However, GA takes more time in optimization and lack in accuracy. To overcome those difficulties, this paper uses Non-Dominated Ranked Genetic Algorithm (NRGA) for optimization. Simulation results suggest that the proposed technique is better for power system stabilization when compared to the conventional techniques.

Keywords : Power System Stabilization, Genetic Algorithm, Non-Dominated Ranked Genetic Algorithm.

GJRE-J Classification : FOR Code: 090607

Strictly as per the compliance and regulations of:

Effective Power System Stabilization Using Non-Dominated Ranked Genetic Algorithm

V.Ravi^a, Dr. K.Duraiswamy^Ω

Abstract - Power system stabilizers (PSS) should be accomplished with suitable stabilization signals over a wide range of operating environment and disturbances. With the enormous electric power need and requirement to function the power system in a faster and highly flexible way in the deregulated competitive situation, modern power systems can achieve stressed conditions very easily than the old systems. These make unbalanced or badly damped oscillations that have been seen more frequently in power systems across the world. In modern days, stabilizing control techniques for the multi-machine power system with the help of intelligent methods have been developed. The basis for the reduction of stability analysis is because of the complexity of the power systems. In addition, industry will be unwilling to acknowledge controller design if stability is not be assured. To deal with those problems, intelligent techniques are used. The optimal sequential design for multi-machine power systems is very essential. As a result, serious consideration is now being given on the concern of power system stabilization control. In recent times, the utilization of optimization techniques becomes possible to deal with control signals in power system. Most widely used optimization technique is Genetic Algorithm (GA). However, GA takes more time in optimization and lack in accuracy. To overcome those difficulties, this paper uses Non-Dominated Ranked Genetic Algorithm (NRGA) for optimization. Simulation results suggest that the proposed technique is better for power system stabilization when compared to the conventional techniques.

Keywords : Power System Stabilization, Genetic Algorithm, Non-Dominated Ranked Genetic Algorithm.

I. INTRODUCTION

Highly complicated power systems have been constructed to deal with the increasing demand.

The development in electric power production is focused on the interconnected network of transmission lines linking generators and loads into huge integrated systems which helps in better supply of power. This huge venture of providing electrical energy suffers various engineering difficulties that afford the engineer with a range of challenges. The systems that are developed according to this are highly complicated in its planning, construction, and operation. The stabilization of the power systems is the foremost issue that should be taken into account.

Author ^a : Associate Professor, Department of EEE, KSR College of Engineering, Tiruchengode, India.

Author ^Ω : Dean, Department of CSE, K.S.R College of Technology, Tiruchengode, India.

The field of power system dynamic stability has become a wide area of research due to large scale interconnection of the power system. This research area involving the power system stability has been gaining more and more importance since 1920 because of the problems occurring due to the instability in the power systems. Moreover, requirement for consumption of energy has been amplified extensively because of the industrial revolution. The stability issue in a power system is considered as one of the most important and essential concepts of power systems quality.

Dynamic stability is a phenomenon that deal with the approach the system adapts with a novel state following a disturbance [4]. These disturbances are mainly caused due to switching-off a load or a change in the mechanical input to the system. These variations cause oscillations in the system which could ultimately become larger and makes the synchronous generators to go out of step and lose synchronism. The application of fast static excitation system, while offering a gain in stability limits, can lead to poor system damping under certain loading conditions [5].

Power system stabilizers (PSS) [17-19] have been used for a long time to enhance the power system damping. Traditionally, lead-lag structures have been used as power system stabilizers. Much has been published on the ways to tune the parameters of the lead lag controller. These controllers have previously been tuned for both single and multiple operating points of the power system [5]. The methods used for tuning range from pole placement, to the more recent one using the heuristic optimization algorithms like the genetic algorithms [5] and particle swarm optimization [2].

The highly complex, dynamic behavior and nonlinearity of power systems, together with their almost continuously time varying nature, have posed a great challenge to power system control engineers for decades. A crucial issue encountered at the generating plant level is to maintain stability or synchronism of synchronous generators when subjected to severe disturbances at various operating conditions. An effective and economical means to enhance the power system stabilization is a major concern in the present scenario. Generally, the dynamic interaction effects among various modes of the machines are found to

have significant influence on the stabilizer to one machine at a time may not finally lead to an overall optimal choice of PSS parameters. Moreover, the stabilizers designed to damp one mode can create adverse effects in other modes. The optimal sequential design for multi-machine power systems available in the literature suffer from several drawbacks. This section provides better technique for stabilizing the power system. Genetic Algorithm techniques have been used to enhance the stabilization of the power systems [15, 16].

Genetic Algorithms (GAs) are global optimization techniques that utilize concurrent search from multiple-points rather than from a single-point. GA is independent of the problem complexity. The main necessity of the GA is to specify the objective function and to place finite bounds on the parameters. GA is widely used for robust Power System Stabilization [5-9]. Various approaches like self-adaptive GA operators [10-12] and parallel GAs [13-14] are present in the literature to enhance the GA performance in searching for the global optimum. Significant performance can be obtained by these techniques. But, if the searched global optimum is being existed outside the proposed search space of the problem, these techniques cannot allow Genetic Algorithm to find this optimum.

Generally, the application of GA in large scale and complex projects needs high computational effort to estimate individuals and this makes it difficult to maintain large populations. Various approaches have been proposed to calculated fitness of individuals instead of evaluating them directly [7]. It can be assumed that individuals are somehow genetically related with each other. In such case, large population size can be handled by clustering the population into groups of similar individuals [5].

Optimization using GA techniques [23] are widely applied in many real world problems such as image processing, pattern recognition, classifiers, machine learning. There are various forms of GA for different purposes. This proposed approach uses Non-Dominated Ranked Genetic Algorithm for the stabilization of power systems.

II. LITERATURE SURVEY

Several researches have been done in the field of power system to provide stability. Various techniques are proposed by several researchers which have its advantages and disadvantages. Some of the techniques are discussed below.

Shahab *et al.*, [1] proposed power system stabilization using adaptive neural network-based dynamic surface control. The power system with an excitation controller is denoted as a class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-feedback form. Consequently, Dynamic Surface Control (DSC)-based adaptive Neural Network

(NN) controller is intended to solve the repeated differentiation of the control input that is observed in the traditional back-stepping technique. The approximation of the unknown subsystem and the interconnection dynamics is used by the neural networks. With the help of the new online NN weight update laws with quadratic error terms, the closed-loop signals are found to be locally asymptotically stable via Lyapunov stability analysis, even in the presence of neural network approximation errors. This is in contrast with other neural network approaches where a bounded stability is normally assured. The performance efficiency of the proposed approach in damping oscillations that occur after disturbances is obtained by the simulation results on the IEEE 14-bus power system with generator excitation control. The result is a nonlinear decentralized adaptive state-feedback excitation controller for damping power systems oscillations in the presence of uncertain interconnection terms.

A robust decentralized controller based on optimal sequential design is proposed by Yoshitaka *et al.*, [2]. The inter-area oscillation mode on design phase can be directly considered by the proposed controller. Moreover, the sequential process is applied to design for robust controllers. The best design sequence of the controller is determined by using the condition number. The performance of the proposed controller is illustrated by comparing it with traditional controllers. Damping of many oscillations for a multi-machine power system is illustrated via simulations, which regard as a three line-to-ground fault for power system disturbance [20,21].

Dynamic stability problems are usually overcome through the application of Power System Stabilizers. Vournas *et al.*, [3] proposed presented an alternative technique for power system stabilization [25] based upon the tuning of the existing generator controllers, both governors and A.V.R.'s. The sensitivities of the eigenvalues to the controller parameters are estimated and an optimization approach is designed to maximize the dynamic stability. A significant approach to stabilize a number of unstable oscillatory modes by relatively small parameter variations is by the application of the parameter optimization technique on a realistic model of the Hellenic Interconnected System. The results are tested with a nonlinear simulation program and the stabilization obtained as given by the rotor angle swings is very efficient.

The acceptance of fuzzy logic within the power industry has seen very a few successes because of the requirement for prior information about an extremely complex system. Soon *et al.*, [4] proposed a Fuzzy Logic Controller (FLC) for decentralized stabilization of multi-machine power systems. The authors presented a unique, largely analytical technique for design of robust Multi-Input-Single-Output (MISO) FLC for enhancing damping and stability of an electrical power system without affecting the voltage regulation. The proposed

decentralized FLC uses a systematic analytical approach based on a performance index in order to bypass the need for prior knowledge about the system. The proposed FLC tracks speed deviations to zero in order to stabilize the power output of the generator, while, at the same time, it controls and stabilizes the terminal voltage of the generator. FLC successfully stabilizes both voltage and power oscillations following small and large disturbances in a power system. A multi-machine power system, which includes a four-machine and a ten-machine (New England) system is used for the simulation of the FLC technique. The simulation results clearly showed the effectiveness of designed FLCs in stabilizing the system. The result of the FLC technique is compared with the classical Power System Stabilizers (PSSs) [22, 24] tuned by a conventional linear sequential tuning method (LSM) and optimization-based method.

Yagami *et al.*, [5] provides a power system stability improvement technique with the help of grouping of fault current limiter and thyristor controlled braking resistor. The fault current limiter functions for restriction of fault currents, improvement of the power system stability and containment of turbine shaft torsional oscillations. Next, the thyristor controlled braking resistor functions with the intention of quick managing of generator disturbances. The success of both devices has been illustrated with the help of 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Simulation results represent a better power system stability improvement and also the damping turbine shaft torsional oscillations with permitted level of temperature rise.

III. METHODOLOGY

The power system dynamic stability characteristic acts as a forever growing field of research because of the large scale interconnection of the power system. This field has been recognized as a significant problem for secure system operation from the 1920's [27]. There were various most important collapses resulted by the instability of a power system that indicates the significance of this trend [26]. The stability maintenance in a power system is considered as one of the highly important and necessary factor of power systems quality.

a) Power System Modeling

The model of multi-machine power system considered for this proposed approach is shown in figure 1. The multi-machine consists of 3 machine nine bus system. G_1 , G_2 and G_3 are machine present in the multi-machine taken into consideration.

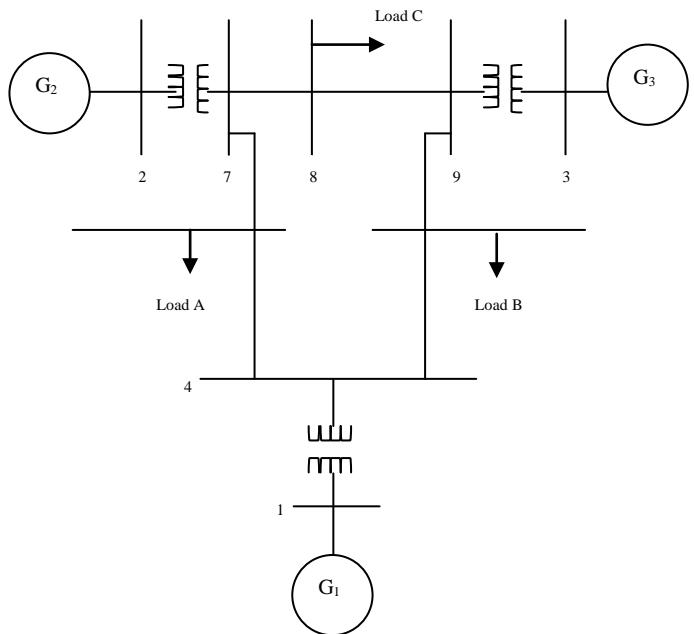


Figure 1: Single-line diagram of three-machine nine-bus system

b) System Model and PSS Structure

A power system can be modeled by a set of nonlinear differential equation as:

$$\dot{X} = f(X, U)$$

Where X is the vector of the state variables and U is the vector of input variables. In this study, $X = [\delta, \omega, E'_q, E_{fd}]^T$ and U is the PSS output signals.

In the design of PSSs, the linearized incremental models around an equilibrium point are usually employed [28, 29]. Hence, the state equation of a power system with n machines and n_{PSS} stabilizers can be written as:

$$\Delta \dot{X} = A \Delta X + B U$$

Where A is a $4n \times 4n$ matrix equals $\partial f / \partial X$, while B is $4n \times n_{PSS}$ matrix and equals $\partial f / \partial U$. Both A and B are evaluated at the equilibrium point. ΔX is a $4n \times 1$ state vector while U is $n_{PSS} \times 1$ input vector.

A widely used conventional lead-lag PSS is considered in this study. It can be described as [29, 30].

$$U_i = K_i \frac{sT_w}{1 + sT_w} \frac{(1 + sT_{1i})}{(1 + sT_2)} \frac{(1 + sT_{3i})}{(1 + sT_4)} \Delta \omega_i$$

Where T_w the washout time is constant, U_i is the PSS output signal at the i th machine, and $\Delta \omega_i$ is the speed deviation of this machine. The time constant T_w , T_2 and T_4 are usually prespecified [30]. The stabilizer gain K_i and time constants T_{1i} and T_{3i} still need to be optimized.

c) Objective function and PSS tuning

To increase the system damping to electromechanical modes, an objective function J defined below is considered.

$$J = \max\{\operatorname{Re}(\lambda_i), i \in \text{set of electromechanical modes}\}$$

Where $\operatorname{Re}(\lambda_i)$ is the real part of the i th eigen value associated with electromechanical modes. This objective function is proposed to shift these eigenvalues to the left of s-plane in order to improve the system damping factor and setting time and insure some degree of relative stability.

The problem constraints are the optimized parameter bounds. Therefore, the design problem can be formulated as the following optimization problem.

Minimize J

Subject to

$$K_i^{\min} \leq K_i \leq K_i^{\max}$$

$$T_{1i}^{\min} \leq T_{1i} \leq T_{1i}^{\max}$$

$$T_{3i}^{\min} \leq T_{3i} \leq T_{3i}^{\max}$$

Typical ranges of these parameters are [0.01-50] for K_i and [0.01-1.0] for T_{1i} [1]. The time constants T_w , T_2 and T_4 are set as 5, 0.05 and 0.05 s respectively [31].

The proposed approach employs NRGA algorithm to solve this optimization problem and search for optimal set of PSS parameters, $\{K_i, T_{1i}, T_{3i}, i = 1, 2, \dots, n_{PSS}\}$.

Genetic Algorithm

The genetic algorithm (GA) is an optimization and stochastic global search technique based on the principles of genetics and natural selection. A GA allows a population composed of many individuals to evolve under specified selection rules to a state that maximizes the "fitness" (i.e., minimizes the cost function). The method was developed by John Holland (1975) over the course of the 1960s and 1970s and finally popularized by one of his student, David Goldberg (1989) [7-8]. Generally in GA, there are three basic operations like reproduction, crossover and mutation.

a) Reproduction

it is a process in which a new generation of population is formed by selecting the fittest individuals in the current population. This is the survival of the fittest mechanism. Strings selected for reproduction are copied and entered to the mating pool.

b) Crossover

Mating is the creation of one or more offspring from the parents selected in the pairing process. The current members of the population limit the genetic makeup of the population. The most common form of mating involves two parents that produce two offspring. The new offspring may replace the weaker individuals in the population. With the cross over operation, GA is able to acquire more information with the generated individuals and the search space is thus extended and more complete.

c) Mutation

Random mutations alter a certain percentage of the bits in the list of chromosomes. Mutation is the second way a GA explore a cost surface. It can introduce traits not in the original population and keeps the GA from converging too fast before sampling the entire cost surface.

Recent research has identified some drawbacks in GA performance [32]. Limitations of genetic Algorithm in power system stabilization

- Slow convergence
- It lacks rank based fitness function

So the proposed approach uses the non dominated ranked genetic algorithm for the optimization purpose. The main advantages of using non dominated ranked genetic algorithm are that it converges very significantly than GA. Moreover, it is provides rank based fitness function and it is quicker than GA.

Non-Dominated Ranked Genetic Algorithm

At first, a random parent population P is formed. The sorting of the population is in accordance with the non-domination. Every solution is allocated a fitness (or rank) equivalent to its non-domination level. Non-domination level of 1 represents the best level, 2 represents the next-best level, etc.

Therefore, minimization of fitness is implicit. Initially, the normal Ranked accorded Roulette wheel choosing, recombination, and mutation operators are applied to generate an offspring population Q of size N . As elitism is initiated by contrasting present population with earlier obtained best nondominated results, the process is varied after the starting generation. Initially the i th generation of the presented algorithm as shown in below is explained.

The algorithm represents that Non-Dominated Ranked Genetic is simple and straightforward. Initially, a combined population $P \cup Q$ is created. The mixed population is of size $2N$ then obtained; the mixed population is sorted based on the non-domination. As every previous and present population members are incorporated in the mixed population elitism is guaranteed. This process will choose N solutions out of $2N$.

The new population of size N is utilized for choosing. Next, two tiers ranked dependent roulette wheel selection is used, one tier to choose the front and the other to choose solution from the front, here the results obtained for the finest nondominated set F_1 have the higher probabilities to be chosen. Therefore, results from the set F_2 are selected with small probability than results from the set F_1 and so on. After that crossover and mutation are used to generate a new population P of size N . The diversity between non-dominated results is established by the second tier of ranked dependent roulette wheel selection that ranks the results according to their crowding distance. The results with lesser

crowding distance will have the higher probabilities.

As solutions contend with their crowding distance, no extra niching attribute is needed. Even though the crowding distance is computed in the objective function space, it can also be obtained in the parameter space, if required. The objective function space niching is utilized in this proposed approach. The NRGA algorithm is shown in figure 2.

Algorithm NRGA

```

1 : Initialize Population P
2 : { Generate random population – size N
3 : Evaluate Objective Values
4 : Assign Rank (level) Based on Pareto dominance
Sort
5 : }
6 : { Ranked based Roulette Wheel Selection
7 : Recombination and Mutation }
8 : for i=1 to g do
9 : for
(PUQ) do
10 : Assign Rank (level) based on Pareto-sort
11 : Generate sets of non-dominated fronts
12 : Calculate the crowding distance between
members of each front
13 : end for
14 : (elitist) Select the members of the combined
population based on least dominated N solution ti
make the population of the next generation. Ties are
resolved by taking the less crowding distance
15 : Create next generation
16 : { Ranked based Roulette Wheel Selection
17 : Recombination Mutation}
18 : end for

```

Figure 2 : Non-Dominated Ranked Genetic Algorithm

This proposed NRGA provides significant convergence and stabilization for the multi-machine power system.

IV. EXPERIMENTAL RESULTS

The evaluation for the power system stabilization is presented in this section. The power system stabilization using proposed optimization technique is evaluated by comparing with the power system stabilization using Genetic Algorithm. The controller parameters such as lower bound and upper bound are altered to 0 and 60 respectively.

Table 1 shows the loading of the generators G1, G2 and G3 in the proposed multi-machine power system.

Table 1 : Generator loading in pu

Gen	Case 1		Case 2		Case 3	
	P	Q	P	Q	P	Q
G ₁	0.71	0.25	2.19	1.06	0.34	1.10
G ₂	1.62	0.07	1.92	0.55	2.00	0.56
G ₃	0.84	-0.10	1.28	0.36	1.51	0.38

Table 2 shows the loads used in A, B and C for the proposed multimachine power system stabilization approach.

Table 2 : Generator loading in pu

Load	Case 1		Case 2		Case 3	
	P	Q	P	Q	P	Q
A	1.24	0.51	2.01	0.80	1.50	0.91
B	0.90	0.30	1.81	0.61	1.21	0.81
C	1.00	0.34	1.51	0.60	1.00	0.52

Table 3 : Electromechanical Mode Eigen Values

Case 1			Case 2			Case 3		
Without PSS	GA	NRGA	Without PSS	GA	NRGA	Without PSS	GA	NRGA
- 0.011 ±j9.068	- 0.023± j8.921	- 0.045 ±j7.745	- 0.021± j8.907	- 0.034 ±j8.441	- 0.064 ±j8.042	0.377 ±j8.865	0.287 ±j7.925	0.201 ±j7.120
- 0.778 ±j13.86	- 0.845± j13.45	- 0.845 ±j13.16	- 0.519± j13.83	- 0.651 ±j13.01	- 0.651 ±j12.17	- 0.336 ±j13.69	- 0.636 ±j12.02	0.699 ±j11.22

Table 3 shows the electromechanical mode eigen values. The table shows the comparison of the eigen values without PSS, GA and proposed NRGA multimachine power system stabilization approach. It is observed from the table that the proposed NRGA approach has very less electromechanical mode eigen values in all the three cases when compared with the GA approach. Thus the proposed NRGA approach provides significant performance.

Figure 3 shows the comparison of the objective function of the GA and the proposed NRGA approach. It is observed from the figure that the convergence of the NRGA is better than GA. Thus the proposed NRGA is very significant when compared with the traditional GA approach.

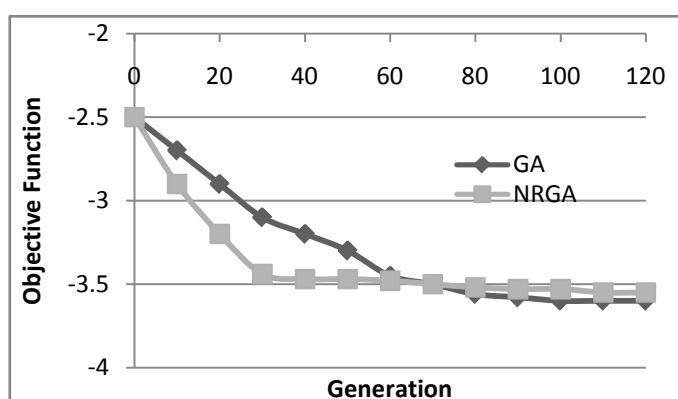


Figure 3 : Comparison of Objective Function

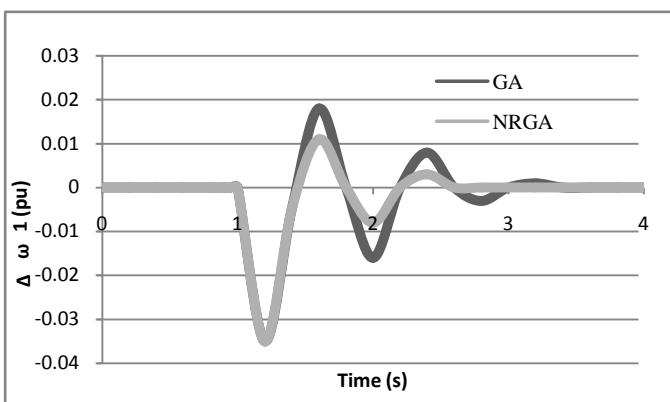


Figure 4 : System Response under fault disturbance for $\Delta\omega_1$

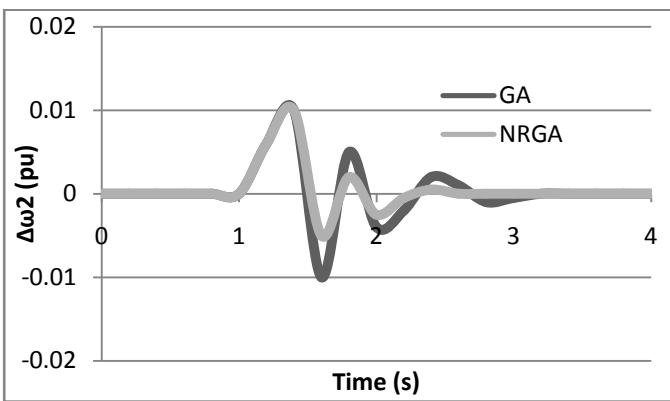


Figure 5 : System Response under fault disturbance for $\Delta\omega_2$

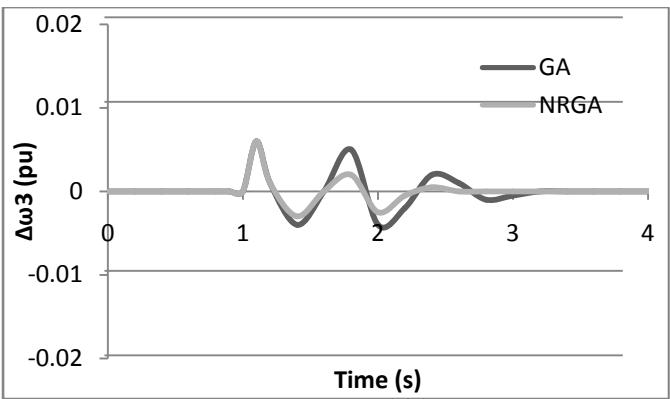


Figure 6 : System Response under fault disturbance for $\Delta\omega_3$

$\Delta\omega_1$, $\Delta\omega_2$ and $\Delta\omega_3$ deviations that occur in power system because of the introduction of 5 % load disturbance are provided in figure 4, 5 and 6 respectively. The figure depicts the stabilization behavior for using GA and NRGA for optimizing stability

parameters. From the figure, it can be observed that initially the system is stable until 1 second, after that the system becomes unstable because of load disturbances. The usage of GA for stabilizing takes around 4 seconds for making the system stable, whereas, only around 3 second is required for the proposed technique to stabilize the system.

V. CONCLUSION

For several years Stabilization of the multi-machine power systems has been one of the most essential problems in the research area. All the existing techniques for the multi-machine power system stabilization have own advantages and disadvantages as well. The mostly used technique for stabilization is Genetic Algorithm. But, GA lacks accuracy and takes more time for convergence. To overcome those issues, this paper focuses on the use Non-Dominated Ranked Genetic Algorithm for solving power system stabilization control issues. NRGA has better convergence than the GA technique. The simulation results indicate that the proposed technique results in better stabilization than the existing techniques. The objective functions for the multi-machine power system taken into consideration shows better convergence with proposed NRGA approach. The future scope of this approach would be to use better optimization techniques which can provide a better performance.

REFERENCES REFERENCIAS REFERENCIAS

1. Shahab Mehraeen, Sarangapani Jagannathan and Mariesa L. Crow, "Power System Stabilization Using Adaptive Neural Network-Based Dynamic Surface Control", IEEE Transactions on Power Systems, 2010.
2. Yoshitaka Miyazato, Tomonobu Senju, Ryo Kuninaka, Naomitsu Urasaki, Toshihisa Funabashi and Hideomi Sekine, "Multi-Machine Power System Stabilization Control by Robust Decentralized Controller Based on Optimal Sequential Design", PSCE, 2006.
3. Vournas C. D. Papadias B. C., "Power System Stabilization via Parameter Optimization - Application to the Hellenic Interconnected System", IEEE Transactions on Power Systems, Vol. 2, No. 3, 2007.
4. Soon Kiat Yee; Milanovic, J.V., "Fuzzy Logic Controller for Decentralized Stabilization of Multimachine Power Systems", IEEE Transactions on Fuzzy Systems, Vol. 16, No.4, Pp. 971-981, 2008.
5. Yagami, M.; Tamura, J.; "Power System Stabilization by Fault Current Limiter and Thyristor Controlled Braking Resistor", IEEE Energy Conversion Congress and Exposition (ECCE), Vol. 1, Pp. 335 – 338, 2009.

6. Li Zhengguo; Yang Guanghong; Wen Changyun; Xie Wenxiang, "Stabilization of Power Systems by Switched Controllers", Chinese Control Conference (CCC), Pp. 756-760, 2007.
7. Folly, K.A.; Magidimisa, M., "Power Systems Stabilization Considering System Uncertainties", IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, Pp. 249 – 255, 2005.
8. Li Xiaohua; Wu Wenbo, "Research on Robust Decentralized Connective Stabilization Control for Power Systems Expanded Capacity on Line", 2010 8th World Congress on Intelligent Control and Automation (WCICA), Pp. 3404 – 3409, 2010.
9. Hiyama, T.; Kawakita, M.; Ono, H., "Multi-Agent Based Wide Area Stabilization Stability Evaluation Agent Control of Power Systems Using Power System Stabilizer", International Conference on Power System Technology, Vol.2, Pp. 1239 – 1244, 2004.
10. Qing Hui; Wei Qiao,; "Stabilization of Multimachine Power Systems Via Hybrid Control", American Control Conference (ACC '09), Pp. 2110 – 2115, 2009.
11. Ngamroo, I.; Supriyadi, A.N.C.; Dechanupaprittha, S.; Mitani, Y.; "Stabilization of Tie-Line Power Oscillations by Robust SMES in Interconnected Power System with Large Wind Farms", Transmission & Distribution Conference & Exposition: Asia and Pacific, Pp. 1 – 4, 2009.
12. Hiyama, T.; Hara, Y.; "Multi-agent based Stabilization Control of Power System on Energy Capacitor System", Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Vol. 1, Pp. 188 – 193, 2004.
13. Li Wu; Zhixin Wang; "A Basic Study of Fuzzy-Logic-Based Power System Stabilization with Doubly-Fed Asynchronous Machine", CES/IEEE 5th International Power Electronics and Motion Control Conference (IPEMC), Vol. 3, Pp. 1-5, 2006.
14. Takagi, M.; Yamaji, K.; Yamamoto, H.; "Power System Stabilization by Charging Power Management of Plug-in Hybrid Electric Vehicles with LFC Signal", IEEE Vehicle Power and Propulsion Conference (VPPC '09), Pp. 822 – 826, 2009.
15. Zhijian Hu; Milanovic, J.V. "The Effectiveness of WAM Based Adaptive Supervisory Controller for Global Stabilization of Power Systems", 2007 IEEE Lausanne Power Tech, Pp. 1652 – 1659, 2007.
16. Haruni, A.M.O.; Gargoom, A.; Haque, M.E.; Negnevitsky, M.; "Voltage and Frequency Stabilisation of Wind-Diesel Hybrid Remote Area Power Systems", Power Engineering Conference (AUPEC), Pp. 1 – 6, 2009.
17. Senju, T.; Kuninaka, R.; Urasaki, N.; Fujita, H.; Funabashi, T.; "Power System Stabilization based on Robust Centralized and Decentralized Controllers", The 7th International Power Engineering Conference, (IPEC), Vol. 2, Pp. 905 – 910, 2005.
18. Sansawatt, T.; Ngamroo, I.; "Sliding Mode Control Design of TCSC for Robust Power System Stabilization Using Dynamic Compensation Observer Technique", Proceedings of the 41st International Universities Power Engineering Conference (UPEC '06), Vol. 2, Pp. 447 – 451, 2006.
19. Hassan, L.H.; Moghavvemi, M.; Mohamed, H.A.F.; "Power System Stabilization based on Artificial Intelligent Techniques; A review", International Conference for Technical Postgraduates (TECHPOS), Pp. 1 – 6, 2009.
20. N. S. D. Arrifano; V. A. Oliveira; R. A. Ramos; N. G. Bretas; R. V. Oliveira; "Fuzzy Stabilization of Power Systems in a Co-Generation Scheme Subject to Random Abrupt Variations of Operating Conditions", IEEE Transactions on Control Systems Technology, Vol. 15 , No. 2, Pp. 384 – 393, 2007.
21. Senju, T.; Hayashi, D.; Omine, E.; Yona, A.; Funabashi, T.; Sekine, H.; "Stabilization Control for Remote Power System by Using H_{∞} Decentralized Controllers", IEEE Power Engineering Society General Meeting, Pp. 1 – 8, 2007.
22. H. M. Soliman, A.L. Elshafei, A.A. Shaltout and M. F. Morsi, "Robust Power System Stabilizer", IEE Proc. Electr. Power Appl., Vol. 147, No. 5, 2000.
23. Y.L. Abdel-Magid, M. Bettayeb, M.M. Dawoud, "Simultaneous Stabilization of Power Systems using Genetic Algorithms" in IEE Proceedings Generation Transmission Distribution, Vol. 144, No. 1, Pp. 39-44, 1977.
24. Alcalde, V.H.C., Fernandes, A.A., Soares, L.R., "Electrical Power Systems Stabilization through Series Compensation by using Variable Structure Control", International Workshop on Variable Structure Systems, VSS'06, Pp. 98 104, 2006.
25. M. H. Khammash, V Vittal and C.D. Pawloski, "Analysis of Control Performance for Stability Robustness of Power Systems", IEEE Trans. on Power Systems, Vol. 9, No. 4, 1994.
26. C. Bayliss, B. Hardy, Transmission and Distribution Electrical Engineering, 3rd edition, Newnes, Pp. 28, 2007.
27. M. Soliman, E. H. E. Bayoumi, M. F. Hassan, "PSO - Based Power System Stabilizer for Minimal Overshoot and Control Constraints", Journal of Electrical Engineering, Vol. 59, No. 3, Pp. 153-159, 2008.
28. Sauer PW, Pai MA. Power system dynamics and stability. Englewood Cliffs, NJ: Prentice Hall, 1988.
29. deMello FP, Concordia C. Concepts of synchroonous machine stability as affected by excitation control, IEEE Trans PAS, Vol 88, pp.316-329, 1969.

30. Lim CM, Elangovan S. Design of stabilizers in multimachine power system, IEEE Proc 1985, Vol 132, No. 3, pp 543-551.
31. Abel-Magid YL, Abido MA, Ai-Baiyat S, Mantawy AH. Simultaneous stabilization of multimachine power systems via genetic algorithms. IEEE Trans PERS 1999, vol 14, no 4, pp 1428-1439.
32. Fogel DB, Evolutionary computation toward a new philosophy of machine intelligence, New York, IEEE Press, 1995.

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

Detection of Mechanical Deformation in Old Aged Power Transformer Using Cross Correlation Co-Efficient Analysis Method

By Asif Islam, Aminul Hoque

Bangladesh University of Engineering & Technology, Dhaka, Bangladesh

Abstracts - Detection of minor faults in power transformer active part is essential because minor faults may develop and lead to major faults and finally irretrievable damages occur. Sweep Frequency Response Analysis (SFRA) is an effective low-voltage, off-line diagnostic tool used for finding out any possible winding displacement or mechanical deterioration inside the Transformer, due to large electromechanical forces occurring from the fault currents or due to Transformer transportation and relocation. In this method, the frequency response of a transformer is taken both at manufacturing industry and concern site. Then both the response is compared to predict the fault taken place in active part. But in old aged transformers, the primary reference response is unavailable. So Cross Correlation Co-Efficient (CCF) measurement technique can be a vital process for fault detection in these transformers. In this paper, theoretical background of SFRA technique has been elaborated and through several case studies, the effectiveness of CCF parameter for fault detection has been represented.

Keywords : Sweep Frequency Response Analysis, Mechanical Displacements, Radial Deformation, Axial Deformation, Core Damage, Cross Correlation Co-efficient, Power Transformer.

GJRE-J Classification : FOR Code: 090607

Strictly as per the compliance and regulations of:

Detection of Mechanical Deformation in Old Aged Power Transformer Using Cross Correlation Co-Efficient Analysis Method

Asif Islam^a, Aminul Hoque^a

Abstract - Detection of minor faults in power transformer active part is essential because minor faults may develop and lead to major faults and finally irretrievable damages occur. Sweep Frequency Response Analysis (SFRA) is an effective low-voltage, off-line diagnostic tool used for finding out any possible winding displacement or mechanical deterioration inside the Transformer, due to large electromechanical forces occurring from the fault currents or due to Transformer transportation and relocation. In this method, the frequency response of a transformer is taken both at manufacturing industry and concern site. Then both the response is compared to predict the fault taken place in active part. But in old aged transformers, the primary reference response is unavailable. So Cross Correlation Co-Efficient (CCF) measurement technique can be a vital process for fault detection in these transformers. In this paper, theoretical background of SFRA technique has been elaborated and through several case studies, the effectiveness of CCF parameter for fault detection has been represented.

Keywords : Sweep Frequency Response Analysis, Mechanical Displacements, Radial Deformation, Axial Deformation, Core Damage, Cross Correlation Co-efficient, Power Transformer

I. INTRODUCTION

Nowadays, reliability is an inevitable part of power system studies and operation, due to significant increase in the number of industrial electrical consumers. Power transformer is one of the major and critical elements in power system [1] in the area of reliability issue, since their outage may result in costly and time - consuming repair and replacement. Power transformers are specified to withstand the mechanical forces arising from both shipping and subsequent in-service events, such as faults and lightning. Once a transformer is damaged either heavily or slightly, the ability to withstand further incidents or short circuit test [2] becomes reduced. There is clearly a need to effectively identify such damage. A visual inspection is

costly and does not always produce the desired results or conclusion [3]-[5]. During a field inspection, the oil has to be drained and confined space entry rules apply. Often, a complete tear down is required to identify the problem. An alternative method is to implement field-diagnostic techniques that are capable of detecting damage such as Frequency Response Analysis (FRA) [6]-[10].

There are basically two techniques used for FRA measurements on power transformers; Low Voltage Impulse (LVI) based FRA and Sweep Frequency Response Analysis (SFRA) [11]. The two techniques are also termed FRA-I (impulse method) and FRA-S (swept-frequency method) [12]. The common strategy for both methods [13] is that the transformer impedance is measured at several different frequencies. The impedance will vary from one frequency to another due to the internal constitution of the transformer.

II. SFRA THEORY

When a transformer is subjected to FRA testing, the leads are configured in such a manner that four terminals are used. These four terminals can be divided into two unique pairs [14], one pair for the input and the other pair for the output. These terminals can be modeled in a two-terminal pair or a two-port network configuration. Figure 1 illustrates a two-port network where z_{11} , z_{22} , z_{12} and z_{21} are the open-circuit impedance parameters.

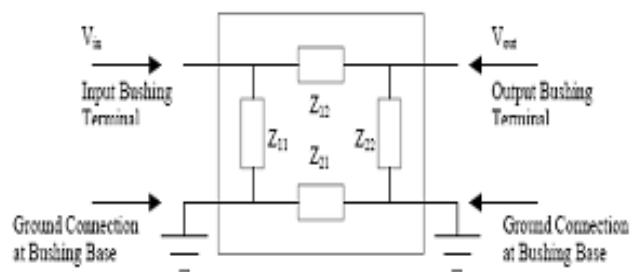


Figure 1 : Two port network

Author ^a : Energypac Engineering Ltd. 10 Dilkusha C/A, Dhaka, Bangladesh. E-mail : asif038@gmail.com

Tel : +880-2-9137316; Fax: +880-6-82251798

Author ^a : Department of Electrical & Electronic Engineering Bangladesh University of Engineering & Technology, Dhaka, Bangladesh. E-mail : aminulhoque@eee.buet.ac.bd

Tel : +880-2- 9674344; Fax: +880-2-8613046

The transfer function of this network [15] is represented in the frequency domain and is denoted by the Fourier variable $H(j\omega)$, where $(j\omega)$ denotes the presence of a frequency dependent function and $\omega = 2\pi f$. The Fourier relationship for the input/output transfer function is given by Equation 1

$$H(j\omega) = \frac{V_{output}(j\omega)}{V_{input}(j\omega)} \quad (1)$$

When a transfer function is reduced to its simplest form, it generates a ratio of two polynomials. The main characteristics, such as half-power and resonance of a transfer function occur at the roots of the polynomials. The roots of the numerator are referred to as "zeros" and the roots of the denominator are "poles" [16]. Zeros produce an increase in gain while poles cause attenuation.

The goal of FRA is to measure the impedance model of the test specimen. When the transfer function $H(j\omega)$ is measured, it does not isolate the true specimen impedance $Z(j\omega)$. The true specimen impedance $Z(j\omega)$ is

the RLC network which is positioned between the instrument leads and it does not include any impedance supplied by the test instrument. Figure 2 illustrates the RLC circuit with shunt resistor.

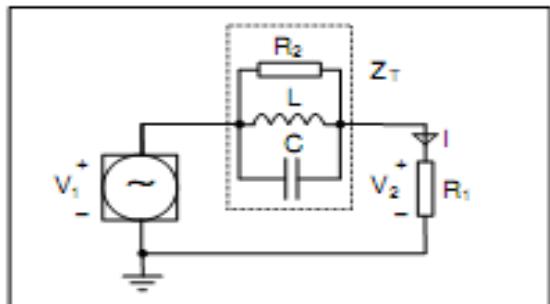


Figure 2: RLC circuit and shunt resistor

From the figure, Voltage division formula gives

$$V_2(j\omega) = V_1(j\omega) \cdot \frac{R_1}{R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{j\omega L} + j\omega C}}$$

The transfer function is :

$$\begin{aligned} H(j\omega) &= \frac{V_2(j\omega)}{V_1(j\omega)} = \frac{R_1}{R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{j\omega L} + j\omega C}} = \frac{R_1 \left(\frac{1}{R_2} + \frac{1}{j\omega L} + j\omega C \right)}{R_1 \left(\frac{1}{R_2} + \frac{1}{j\omega L} + j\omega C \right) + 1} \cdot \frac{j\omega L}{j\omega L} \\ &= \frac{R_1 \left(j\omega \frac{L}{R_2} + 1 - \omega^2 LC \right)}{R_1 \left(j\omega \frac{L}{R_2} + 1 - \omega^2 LC \right) + j\omega L} \end{aligned}$$

If R_2 would be removed from the circuit then the term $j\omega \frac{L}{R_2}$ disappears from the expressions above. It is

now easy to see where the resonant frequency must occur : $1 - \omega_r^2 LC = 0 \Rightarrow \omega_r = \frac{1}{\sqrt{LC}}$

At resonant frequency the transfer function is

$$H(j\omega_r) = \frac{R_1 \left(j \frac{L}{R_2 \sqrt{LC}} + 1 - 1 \right)}{R_1 \left(j \frac{L}{R_2 \sqrt{LC}} + 1 - 1 \right) + j \frac{L}{\sqrt{LC}}} = \frac{\frac{R_1}{R_2}}{\frac{R_1}{R_2} + 1} = \frac{R_1}{R_1 + R_2}$$

What is really measured over the shunt resistor R_1 is the current I . So, the transfer function describes the admittance : $Y = \frac{I}{V_1}$. The impedance is thus : $Z = \frac{V_1}{I}$

The impedance at resonance (including the shunt resistor) is $Z(\omega_r) = \frac{R_1 + R_2}{R_1}$

The preferred method of engineers is to use the Bode Diagram. The Bode Diagram plots the magnitude and phase as follows:

$$A(\text{dB}) = 20 \log_{10}(H(j\omega))$$

$$A(\Theta) = \tan^{-1}(H(j\omega))$$

The Bode Diagram [17] takes advantage of the asymptotic symmetry by using a logarithmic scale for frequency. It is more advantageous to plot $H(s)$ logarithmically over large frequency spans. The logarithmic plot helps to maintain consistent resolution. Plots ranging from 10 Hz to 10 MHz can be displayed as a single plot if they are formatted logarithmically. Fig. 3 shows a typical response for a high voltage star connected winding. The frequency range of interest is between 20 Hz and 2 MHz.



Figure 3 : Frequency Analysis Bands

Region	Frequency Sub-Band	Component	Failure Sensitivity
1.	< 2 kHz	Main core bulk and winding inductance	Core deformation, open circuits, shorted turns and residual magnetism
2.	2 kHz to 20 kHz	Bulk component and shunt impedances	Bulk winding movement between windings and clamping structure
3.	20 kHz to 400 kHz	Main windings	Deformation within the main or top windings
4.	400 kHz to 1 MHz	Main windings, top windings and internal leads	Movement of the main & top winding, ground impedance variations

Table 1 : Frequency sub-band sensitivity

III. MEASUREMENT PROCEDURE

The FRAX "Generator" (Gen.) generates a sinusoidal voltage at a selected frequency and measures the input voltages, amplitude and phase, on two input channels "Reference" (Ref.) and "Measure" (Meas.). The instrument stores "Amplitude" and "Phase" data for both "Reference" channel and "Measure" channel as well as the ratio "Measure" divided by "Reference". The values can be plotted and exported as Magnitude, Phase, Impedance, Impedance-Phase, Admittance and more. The "Custom models" function makes it possible to calculate almost any parameter based on the measured/stored data. FRAX uses the sine correlation technique [19]. This means that the input voltages are multiplied by a sine and a cosine, and then averaged over an integer multiple of the interval of time. The sine, cosine and the voltage applied have exactly the same frequency. The sine correlation technique is well known and is suitable for Sweep Frequency Response Analysis (SFRA) measurements. Since the signals on the two input channels are treated the same way, the phase resolution between these two channels is very high. The rejection of DC offset and harmonics - referred to as the applied voltage - are in theory infinite. By increasing the integration cycles, the rejection gradually improves.

Experience has shown that different sub-bands are dominated [18] by different internal components of the transformer and are subsequently more sensitive to different types of failures, as summarized in Table 1. Measurements above 2 MHz tend to be dominated by variations in grounding practices for test leads.

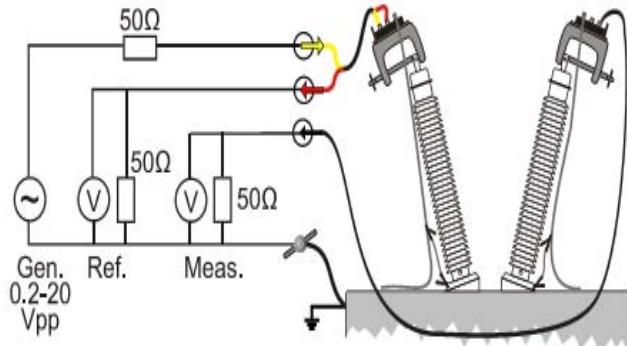


Figure 4 : SFRA Terminal Connection

The IF Bandwidth is commonly used as a parameter defining the bandwidth around the applied signal analyzed. An IF bandwidth of 10% of the active frequency is equivalent to 12 cycles of integration. When considering SFRA measurements, winding measurements realistically consist of three categories. The winding categories are high-voltage, low-voltage, inter winding.

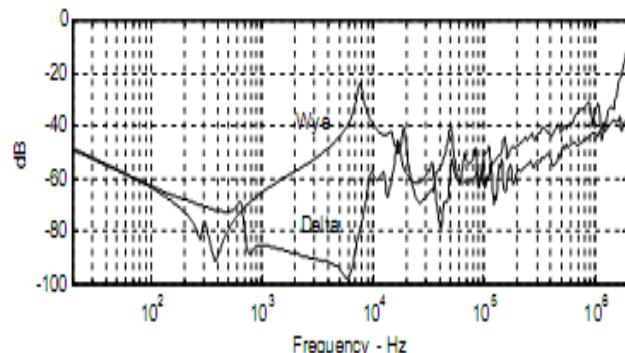


Figure 5 : HV winding response

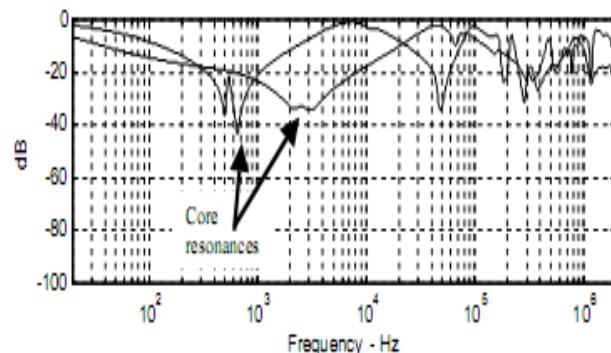


Figure 6 : LV winding response

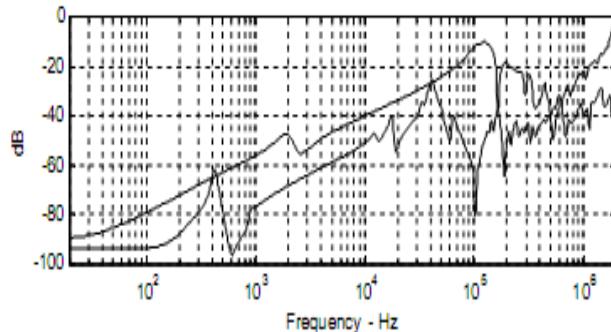


Figure 7 : Inter winding response

Figure 8 presents a high-voltage winding trace, a low-voltage winding trace and an inter-winding trace together from a common test specimen. This illustrates their general relationship.

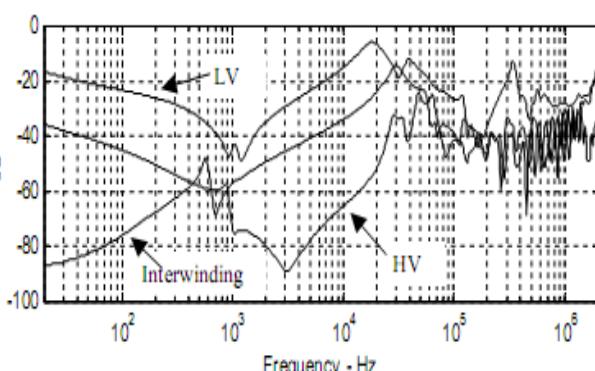


Figure 8 : Complete response

IV. RESPONSE ANALYSIS

For the analysis of a measured response, the response is compared with one of the following:

- An earlier result [20] for the same phase tested with the same tap changer position.
- If no earlier result is available then another phase [18] of the same transformer, tested at the same occasion.
- The same phase, same tap changer position but on a unit believed to be of the same design group and made at the same factory

It is found that Cross Correlation [20] coefficient (CCF) is the most reliable statistical indicator to extract information from comparison method. The CCF is defined as:

$$CCF = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 * \sum (Y_i - \bar{Y})^2}}$$

Where X_i and Y_i are the two series (or trace in the case of SFRA) being compared at each individual frequency 'i' and \bar{X} and \bar{Y} are the means.

Equation 1 assumes two real series. In the case of signal processing the math becomes a little more involved, but the end results is still a coefficient between 1 and -1. In SFRA analysis negative CCF are not common but they do occur on occasion. Regardless, negative correlation coefficients are not considered acceptable when trying to look for deviations between traces.

Decision	CCF
Good match	0.95 – 1.0
Close match	0.90 – 0.94
Poor match	≤ 0.89
No or very poor match	≤ 0.0

Table 2 : Outcome of CCFs value

Normalizing the results to the individual power spectrums is what allows this resulting waveform to be expressed in a simple single coefficient. Table 2 helps provide a rough estimate of what the CCF means in simple language.

Case	Capacity MVA	HT Voltage kV	LT Voltage kV	Year of manufacture
1	41.67	132	33	1998
2	14	33	11.6	1991

Table 3 : Case study of Fault condition

a) 41.67 MVA, 132/33 kV, 3 ϕ Power Transformer at 132 kV Substation

The results here are from a three phase 25/41.67 MVA, 132/33 kV (vector group Dyn-1) power transformer manufactured by EMCO Transformers Ltd. (Maharashtra, India) at 1998 for Bangladesh Power Development Board (BPDB) 132 kV sub-station. The transformer had tripped out of service on protection. No reference factory results were available for this unit. The phase-to-phase HV results didn't show typical variations from standard HV delta winding response. An overall look at the LV winding has showed several shifts between 200 kHz and 2 MHz. This is shown in figure 9 where it is clear that H3-H0 has consistently shifted at higher frequencies with respect to H2-H0 and H1-H0.

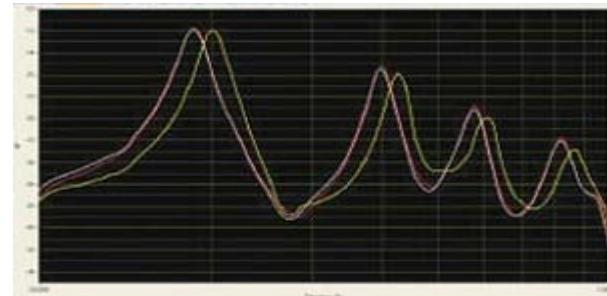


Figure 9: Close zoom of LV winding response (100 kHz-1 MHz)

This is an indication of axial winding movement at X3 (Blue/C phase) phase. From CCF analysis method results (Table-4), this prediction can be more confirmed.

Frequency Sub-band	CCF results		
	X1-X0, X2-X0	X2-X0, X3-X0	X3-X0, X1-X0
0 – 2 kHz	0.9981	0.9925	0.9954
2 kHz – 20 kHz	0.9943	0.9868	0.9736
20 kHz – 400 kHz	0.9853	0.7263	0.7681
400 kHz – 1 MHz	0.9892	0.9475	0.9424

Table 4: Test result of LV winding keeping HV open

From the table, it is clearly visible that CCF values of phase A and phase B fulfill "Good Match" criteria in all 4 frequency sub-band regions. CCF values of phase C both with phase A or phase B meet up either "Good Match" or "Close Match" criteria in all bands except region 3. At region 3, both CCF values of phase C (0.7263 and 0.7681) drops down vigorously at "Poor Match" level.

Figure 10: Damaged LV (phase-C) coil

Removing the transformer top cover, the active part was brought out and after a through physical inspection, the prediction became true with damage of LV (phase C) coil.

b) 14 MVA, 33/11.6 kV, 3 ϕ Power Transformer at 33 kV Substation

The subjected transformer was running at Dhaka Power Distribution Company (DPDC). It is a 10/14 MVA, 33/11.6 kV (vector group - YNd11) power

transformer manufactured by Brush Transformers Ltd. (Loughborough, England) at 1991. Due to its age of 20 years, frequency response of this transformer was taken to predict its aging effect. At first, test was carried on HV side keeping LV side open followed by LV side shorted. Corresponding Bode Plot response has been shown in figure 11 and 12.

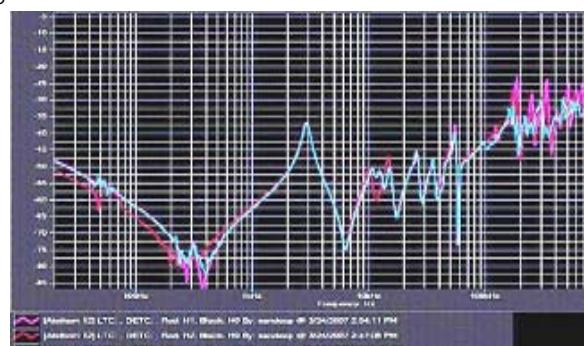


Figure 11: HV winding response (LV open)

Figure 12: HV winding response (LV short)

Frequency Sub-band	CCF results		
	X1-X0, X2-X0	X2-X0, X3-X0	X3-X0, X1-X0
0 – 2 kHz	0.7981	0.7825	0.9914
2 kHz – 20 kHz	0.9743	0.9841	0.9736
20 kHz – 400 kHz	0.9523	0.9267	0.9081
400 kHz – 1 MHz	0.8394	0.8975	0.8427

Table 5 : CCF of HV winding keeping LV open

Frequency Sub-band	CCF results		
	X1-X0, X2-X0	X2-X0, X3-X0	X3-X0, X1-X0
0 – 2 kHz	0.9981	0.9925	0.9954
2 kHz – 20 kHz	0.9743	0.9861	0.9786
20 kHz – 400 kHz	0.9354	0.9283	0.9217
400 kHz – 1 MHz	0.8113	0.8671	0.8039

Table 6 : CCF of HV winding keeping LV open

From the CCF result (Table-5), it is easily viewable that the matching is very poor at low frequency region (0-2 kHz). This may be due to core deformation as a result of axial stress because the transformer is running for a long time (20 years). Again, poor matching at higher region (400 kHz-1 MHz) indicates main coil deformation either by radial stress or by axial stress. This deformation is more severe for A phase (Red phase).

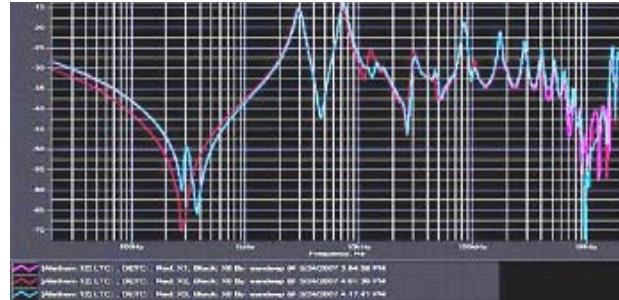


Figure 13 : LV winding response (HV open)

Frequency Sub-band	CCF results		
	X1-X0, X2-X0	X2-X0, X3-X0	X3-X0, X1-X0
0 – 2 kHz	0.8381	0.8325	0.9907
2 kHz – 20 kHz	0.9943	0.9921	0.9936
20 kHz – 400 kHz	0.9825	0.9867	0.9781
400 kHz – 1 MHz	0.8493	0.9275	0.8027

Table 7 : CCF of LV winding keeping HV open

From LV winding response (Figure 13) and corresponding CCF calculation (Table 7), the previous assumption becomes stronger. Poor matching at low frequency region (0-2 kHz) and high frequency region (400 kHz-1 MHz) again spans the prediction of core damage and main winding movement firmly. After replacing the transformer from the system, it was dissected and both the prediction became true.

VI. CONCLUSION

Sweep frequency response analysis method has been applied to a number of three phase and single phase power transformers of different vector groups. This method is also applicable for mechanical deformation and damage diagnosis in distribution

transformers. The parameter Cross Correlation Coefficient (CCF) is found to vary significantly and consistently with mechanical displacements taken place in transformers. So it can be considered as the most effective indicator to predict the internal physical condition of the active part of a transformer.

ACKNOWLEDGEMENT

The authors would like to acknowledge the contributions made by Mr. Rashiduzzaman Bulbul, Assistant Engineer (Testing, Transformer), Energypac Engineering Ltd. for his logistic and data support. They are also grateful to Energypac Engineering Ltd. for frequent high voltage instruments using facility.

REFERENCES REFERENCIAS

1. T. McGrail, "Transformer Frequency Response Analysis: An Introduction", Feature Article NETA WORLD, Spring 2005
2. M. Darveniza, D. J.T. Hill, T.T.Le and T.K.Saha, "Investigations into Effective Methods for Assessing the Condition of Insulation in Aged Power transformers", IEEE Trans. Power delivery, Vol 13, pp.1214-1223, 1998.
3. Kuechler, F. Huellmandel, K. Boehm, C. Neumann, N. Koch, K. Loppach, C. Krause and J.-J. Alff, "Condition Assessment of Aged Transformer Bushing Insulations", Paper A2-104, CIGRE, Paris, France, pp. 1-10. 2006.
4. M. de Nigris et. al., "Application of Modern Techniques for the Condition Assessment of Power Transformers", Cigré Session 2004, Paper No.A2-207.
5. Brian Richardson, "Diagnostics and Condition Monitoring of Power Transformers" IEE, ABB Power Transformer Research and Development Ltd, 1997.
6. S. Ryder, "Diagnosing Transformer faults using frequency response analysis: Results from fault simulations". IEEE/PES Summer Meeting, Chicago, 2002, pp.399-404.
7. S. M Islam, "Detection of Shorted Turns and Winding Movements in Large Power Transformers Using Frequency Response Analysis", IEEE Power Society, Winter Meeting, Singapore, 2000, vol.3, pp.2233-2238.
8. J. A. Lapworth and T J Noonan, "Mechanical condition assessment of power transformers using frequency response analysis" Proceedings of the 1995 International client conference, Boston, MA, USA.
9. Larry Coffeen, Jeffrey Britton and Johannes Rickmann, "A New Technique to Detect Winding Displacements in Power Transformers Using Frequency Response Analysis", IEEE PowerTech Conference, June 23-26, Bologna, Italy, 2003.
10. Luwendran Moodley, Brian de Klerk "Sweep Frequency Response Analysis as A Diagnostic tool to Detect Transformer Mechanical Integrity", eThekwini Electricity pp.1-9, 1978
11. S. Tenbohlen, S. A. Ryder, "Making Frequency Response Analysis Measurements: A Comparison of the Swept Frequency and Low Voltage Impulse Methods", XIIIth International Symposium on High Voltage Engineering, Netherlands 2003, Smit (ed), © 2003 Millpress, Rotterdam, ISBN 90-77017-79-8.
12. M. Wang, A. J. Vandermaar, K. D. Srivastava, "Transformer Winding Movement Monitoring in Service—Key Factors Affecting FRA Measurements", IEEE Electrical Insulation Magazine, Vol. 20, No. 5, pp 5-12, 2004.
13. S. Tenbohlen and S. A. Ryder "Making Frequency Response Analysis Measurements, a Comparison of the Swept Frequency and LV Impulse Methods". 13th International Symposium on HV Engineering, Netherlands, 2003.
14. J. Bak-Jensen, B. Bak-Jensen, and S. D. Mikkelsen, "Detection of Faults and Aging Phenomena in Transformers by Transfer Functions", IEEE Transactions on Power Delivery, vol.10, no.1, January 1999.
15. Jin Zhijian, Li Jingtao, Zhu Zishu, "Diagnosis of Transformer Winding Deformation on the Basis of Artificial Neural Network", Proceedings of The 6th International Conference on Properties and Applications of Dielectric Materials The 21-26,2000, Xi'an Jiaotong University, Xi'an, China.
16. Saha, T. K., Prasad, A., Yao, Z. T., "Voltage Response Measurements for the Diagnosis of Insulation Condition in Power Transformer", International Symposium on High Voltage Engineering, Bangalore, India, August 19-25, 2001, Paper 6-8.
17. Dorf, R.C. and Bishop, R.H. (2005). "Modern Control Systems" 10th ed. Dorling Kindersley, New Delhi, 869p.
18. N.D. Cogger, R.V.Webb, "Frequency Response Analysis", Solartron Analytical, Technical Report 10, 1997.
19. Saha, T.K., Purkait, P., "An Attempt to Correlate Time & Frequency Domain Polarisation Measurements for the Insulation Diagnosis of Power Transformer" , Proceedings of the IEEE Power Engineering Society General Meeting, Denver, Colorado, USA , June 6-10 2004.
20. S. Ryder, "Methods for comparing frequency response analysis measurements". IEEE, Int. Symp. Electrical Insulation, Boston, 2002, pp.187-190.

This page is intentionally left blank

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

Improved Chan-Ho Model For Indoor Mobile User Location Estimation Using TDOA Information

By B R Jadhavar, T R Sontakke

Siddhant College of Engineering Pune, India

Abstracts - The indoor location detection technology based on TDOA is one of the key technologies in 3G telecommunication for researchers. In this work, TDOA positioning method based on modified Chan-Ho algorithm for mobile network is proposed. The performance of Chan-Ho method is totally dependent on distance between base station and mobile station. Here mathematical model of TDOA is established for closed environment of having size 750m x 750m. This method makes use of TDOA to minimize the error in positioning of mobile station. The proposed method uses extra term to estimate accurate distance as compared with original Chan-Ho method. Our simulation results shows that the error is less and has advantage over other methods.

Keywords :*Time difference of arrival (TDOA) , Chan-Ho, user location, Hyperbolic, Mobile station, Home base station.*

GJRE-J Classification :*FOR Code: 100504, 100501*

Strictly as per the compliance and regulations of:

Improved Chan-Ho Model For Indoor Mobile User Location Estimation Using TDOA Information

B R Jadhavar^a, T R Sontakke^Q

Abstract - The indoor location detection technology based on TDOA is one of the key technologies in 3G telecommunication for researchers. In this work, TDOA positioning method based on modified Chan-Ho algorithm for mobile network is proposed. The performance of Chan-Ho method is totally dependent on distance between base station and mobile station. Here mathematical model of TDOA is established for closed environment of having size 750m x 750m. This method makes use of TDOA to minimize the error in positioning of mobile station. The proposed method uses extra term to estimate accurate distance as compared with original Chan-Ho method. Our simulation results shows that the error is less and has advantage over other methods.

Keywords : Time difference of arrival (TDOA) , Chan-Ho, user location, Hyperbolic, Mobile station , Home base station.

I. INTRODUCTION

The positioning systems that are used to track and determine the users location in 3G telecommunication systems have gained increasing interest. In indoor location systems global positioning system (GPS) is not efficient due to obstruction and shielding of satellite signals. In indoor environment, there are many positioning systems based on different technologies such as received signal strength, ultrasound and Infrared, video surveillance. The basic characteristics of signals are utilized such as received signal strength (RSS), angle of arrival (AOA) estimation, time of arrival (TOA) estimation and time difference of arrival (TDOA). In the past, time delay estimation has been proposed and implemented by Knapp and Carter (1976) and Aarabi (2001) [10].

Different techniques have been proposed with different complexity and restrictions. Carter's focused on beam forming [1], requires a search over a set of possible target locations. Hahn's method [2] assumes distant source. Abel and Smith [3] provide an explicit solution that can achieve the Cramer -Rao Lower Bound (CRLB) in the small error region. The situation is more

complex when sensors are distributed arbitrarily. Here emitter position is determined from the intersections of a set of hyperbolic curves defined by TDOA estimates. Solution is not easy as the equation are non linear. Fang [4] gave an exact solution when number of TDOA measurements are equal to number of unknowns. This solution cannot make use of extra measurements, available when there are extra sensors, to improve position accuracy. The more general situation with extra measurements was considered in [5, 6, 8, 9]. The divide and conquer (DAC) method [7] by Abel can achieve optimum performance, but it requires sufficiently large information. To obtain a precise position estimate at reasonable noise levels, the Taylor-series method is commonly employed. It is an iterative method. It starts with an initial guess and improves the estimate at each step by determining the local linear least-squares (LS) method. Selection of such a starting point is not simple in practice. Moreover, convergence of the iterative process is not assured. It is also computationally intensive as LS computation is required in each iteration.

The AOA requires antenna arrays at each node which increases the complexity of the existing system, and performs worse in multipath environment. In this case accurate estimation of TOA from received communication signals are required. Indoor multipath interference is the main factor that limits deploying indoor positioning systems, the multipath is sever and complex which leads to inaccurate estimate of the TOA using conventional techniques.

TOA (Time of Arrival) method is to calculate a position using a measured value of an arrival time of electric wave and TDOA method uses an arrival time lag of electric waves that are sent from different base stations (BSs). Among these, TOA and TDOA are widely used methods in positioning system.

TDOA estimates the difference in arrival times of the signals between synchronized reference nodes. In TDOA absolute time of transmission is not important but only synchronization of nodes is necessary. Each range determines a hyperbola. For this technique at least three nodes are required for positioning in two dimension plane. The intersection points of three hyperbolas give the position of moving object. Chan-Ho algorithm [12]

Author ^a : Department of Electronics & Telecommunication Siddhant College of Engineering Pune : 412109, India.

E-mail : brjadhavar@yahoo.co.in

Author ^Q : Department of Electronics & Telecommunication Siddhant College of Engineering Pune : 42109, India.

E-mail : trsontakke@gmail.com

is effective technique in locating object based on intersections of hyperbolic curves defined by the time differences of arrival of signal received at number of sensors is proposed. This can achieve high accuracy however it cannot work efficiently if the measurement has large NLOS errors.

Both TOA and TDOA are technologies in radio location systems based on cellular networks. TOA is implemented by calculating the time of signal arrival from mobile station and base transceiver station directly. However TDOA calculates the time difference of signal arrival between two base stations. The cross-correlation of the two versions of the signal at pairs of base stations is done and the peak of the cross-correlation output gives the time difference for the signal arrival at those two base stations. This method offers many advantages over other competing techniques. Since, all the processing takes place at the infrastructure level, no modifications are needed in the existing handsets. In this work we present modified location method based on Chan-Ho algorithm to solve hyperbolic equations which results in reduced positioning error.

This paper is organized as follows. In section two, mathematical model for hyperbolic TDOA equations is explained. in section three proposed improved Chan-Ho model is described. In section four simulation method and conclusion in section five is given.

II. MATHEMATICAL MODEL FOR HYPERBOLIC TDOA EQUATIONS

This is general model for two dimensional location position estimation of source having M base stations. Referring all TDOAs to the first base station (BS), which is assumed to be base station controlling the call and first to receive transmitted signal. Assuming real coordinates of source be (x, y) and that of i^{th} base station to be (X_i, Y_i) .Therefore the distance between source and BSi is

$$R_i = \sqrt{(X_i - x)^2 + (Y_i - y)^2} \quad (1)$$

$$= \sqrt{X_i^2 + Y_i^2 - 2X_i x - 2Y_i y + x^2 + y^2}$$

The difference between base stations with respect to the base station where the signal arrives first is

$$R_{i,1} = cd_{i,1} = R_i - R_1 \quad (2)$$

$$= \sqrt{(X_i - x)^2 + (Y_i - y)^2} - \sqrt{(X_1 - x)^2 + (Y_1 - y)^2} \quad (3)$$

Where c is speed of propagation of signal, $R_{i,1}$ is range difference between first base station and i^{th} base station, R_1 is the distance between first base station and source and $d_{i,1}$ is the estimated TDOA between first base station and i^{th} base station. This

defines the set of nonlinear hyperbolic equations whose solution gives 2-D co-ordinates of the source. The solution of nonlinear equations is difficult hence these equation must be linearized [14]. Nonlinear equations can be transformed into another set of equations. Rearranging (3) into

$$R_i^2 = (R_{i,1} + R_1)^2 \quad (4)$$

Equation (1) can be rewritten as

$$R_{i,1}^2 + 2R_{i,1}R_1 + R_1^2 = K_i^2 - 2X_i x - 2Y_i y + x^2 + y^2 \quad (5)$$

$$\text{Where, } K_i^2 = X_i^2 + Y_i^2$$

At $i = 1$, subtracting (1) from (5), results in

$$R_{i,1}^2 + 2R_{i,1}R_1 + R_1^2 = X_i^2 + Y_i^2 - 2X_{i,1}x - 2Y_{i,1}y + x^2 + y^2 \quad (6)$$

$$\text{Where, } X_{i,1} = X_i - X_1 \text{ and } Y_{i,1} = Y_i - Y_1$$

The set of equations (6) are nonlinear with source location (x, y) and range of first receiver to source R_1 is unknowns and can be easily handled.

These are nonlinear equations whose solution gives (x, y) . These equations are difficult to solve. Linearizing (2) by Taylor series method of expansion and solving them iteratively is one way. With the set of TDOA estimates $d_{i,1}$, the method starts with initial position guess (x_0, y_0) and compute position deviation [8] [9].

In next iteration, x_0, y_0 are then set to $x_0 + \Delta x$ and $y_0 + \Delta y$. The whole procedure is repeated until Δx and Δy are sufficiently small. This method has difficulty of requiring close enough starting and large computations. Again convergence is not guaranteed. An alternative method [5] [6] is to first transform equation (2) into another set of equations.

Taylor series method linearizes set of equations in (3), this method begins with initial guess and improves estimates at each iteration by determining linear least-square solution. However, it requires good initial guess and requires large computations. Fang's method [4] provides exact solution to equation (6) and his solution does not make use of redundant measurements made at additional receivers to improve position accuracy. This method has ambiguity due to inherent squaring operations.

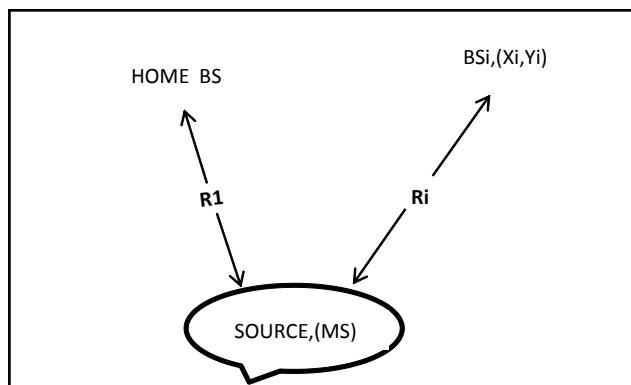


Figure 1

III. THE IMPROVED CHAN-HO MODEL

Chan-Ho [12] gives non-iterative solution to hyperbolic position estimation problem which give optimum performance for arbitrarily placed sensors.

It gives solution in closed form. Furthermore, it provides explicit solution form that is not available in Taylor series method. This was developed for three sensors which gives two TDOA's.

From equation (1) for $i = 1$, gives

$$R_1^2 = X_1^2 + Y_1^2 - 2X_1x - 2Y_1y + x^2 + y^2 \quad (7)$$

Now combining (7) and (5), we get

$$R_{i,1}^2 2R_{i,1}R_1 = K_i^2 - K_1^2 - 2(X_i - X_1)x - 2(Y_i - Y_1)y \quad (8)$$

And finally we get

$$R_{i,1}^2 2R_{i,1}R_1 = K_i^2 - K_1^2 - 2X_{i,1}x - 2Y_{i,1}y \quad (9)$$

In Chan's algorithm for $M=3$. Then equation (9) becomes

$$-2X_{2,1}x - 2Y_{2,1}y = 2R_{2,1}R_1 + R_{2,1}^2 - K_2^2 - K_1^2 \quad (10)$$

$$-2X_{3,1}x - 2Y_{3,1}y = 2R_{3,1}R_1 + R_{3,1}^2 - K_3^2 - K_1^2 \quad (11)$$

and (10) and (11)

can be represented in the form of the following matrices:

$$-2 \begin{bmatrix} X_{2,1} & Y_{2,1} \\ X_{3,1} & Y_{3,1} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2 \begin{bmatrix} R_{2,1} \\ R_{3,1} \end{bmatrix} R_1 + \begin{bmatrix} R_{2,1}^2 & K_2^2 & K_1^2 \\ R_{3,1}^2 & K_3^2 & K_1^2 \end{bmatrix} \quad (12)$$

Or

$$\begin{bmatrix} x \\ y \end{bmatrix} = - \begin{bmatrix} X_{2,1} & Y_{2,1} \\ X_{3,1} & Y_{3,1} \end{bmatrix}^{-1} \times \left\{ \begin{bmatrix} R_{2,1} \\ R_{3,1} \end{bmatrix} R_1 + \frac{1}{2} \begin{bmatrix} R_{2,1}^2 & K_2^2 & K_1^2 \\ R_{3,1}^2 & K_3^2 & K_1^2 \end{bmatrix} \right\} \quad (13)$$

Here (x, y) represents location of source R_1 is obtained from (7), and we get $R_{2,1}, R_{3,1}$ from (9), assuming that :

$$K_1^2 = X_1^2 + Y_1^2$$

$$K_2^2 = X_2^2 + Y_2^2 \quad (14)$$

$$K_3^2 = X_3^2 + Y_3^2$$

After getting first set of prediction of x, y it can be recalculated for better improvement. Generally this requires 2 to 5 cycles. From equation (13) it can be noted that values of x, y are dependent on R_1 , which is distance between source and BS1 and the process is iterative. To improve accuracy of location of original Chan-Ho method, we adapt new term which improves accuracy. This new value uses different values resolved from two base stations to estimate right distance.

This new term specifies error on vertical and horizontal to the distance obtained.

$\frac{(x_i - xo_1)}{R_i}$; for the x-axis ratio, and

$\frac{(y_i - yo_i)}{R_i}$; for the y-axis ratio.

Where (xo_i, yo_i) is obtained coordinates of source by each BS, (x_i, y_i) coordinates of i^{th} BS. From this we get two ratios,

$$Z = \begin{bmatrix} \frac{(x_i - xo_1)}{R_1} & \frac{(x_2 - xo_2)}{R_2} \\ \frac{(y_1 - yo_1)}{R_1} & \frac{(y_2 - yo_2)}{R_2} \end{bmatrix} \quad (15)$$

To create a symmetrical matrix, we will multiply the matrix by its transpose. Then we will obtain the eigenvalues, by calculating the trace; which leads to the nearest accurate solution. The final value obtained will be corrected by taking the square root of the arithmetic mean of the trace, as following:

$$\Omega = \sqrt{\frac{tr(Z \cdot Z)}{2}} \quad (16)$$

This yields new calculation system as given below.

$$\begin{bmatrix} x \\ y \end{bmatrix} = - \begin{bmatrix} X_{2,1} & Y_{2,1} \\ X_{3,1} & Y_{3,1} \end{bmatrix}^{-1} \times \left\{ \begin{bmatrix} R_{2,1} \\ R_{3,1} \end{bmatrix} \Omega + \frac{1}{2} \begin{bmatrix} R_{2,1}^2 & K_2^2 & K_1^2 \\ R_{3,1}^2 & K_3^2 & K_1^2 \end{bmatrix} \right\} \quad (17)$$

With this method it is possible to reduce error in position.

IV. SIMULATION AND ANALYSIS

This simulation utilizes timing information from source to base stations only in reverse link. The simulation set up is as shown in fig. 2, having coordinates of three base stations (0, 0), (750, 433), (750, -433). The source is assumed at (100, 100). Each base station has its own radio coverage. BS1 is home base station.

Simulation setup co-ordinates					
x1	y1	x2	y2	x3	y3
0	0	750	433	750	433

Table 1

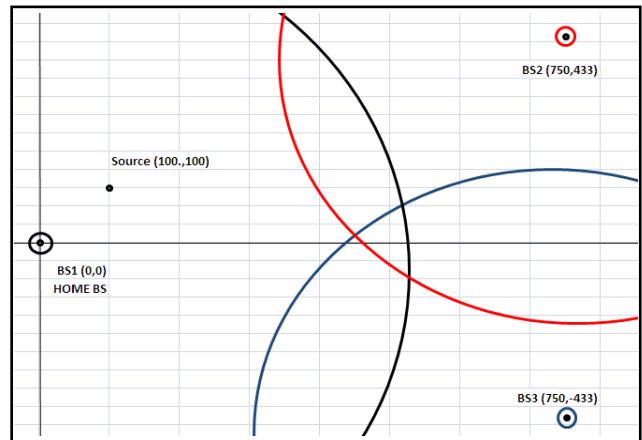


Figure 2

TDOA position location system can be implemented in two different ways. Either by subtracting the time of arrival at two BTSs, which requires the implementation of the absolute TOA mechanism or by cross-correlating the received signals from the two BTSs. Here we use cross-correlation method is used. Let $s(t)$ be the signal generated by source.

$s(t) = u(t)e^{j\omega t}$ [13] The received signal at BS from ith path is

$$s_i = r_i u(t - \tau_i) e^{j[(\omega_0 + \omega_{1i} + \omega_{2i})(t - \tau_i) + \phi_i]} \quad (18)$$

Where ω_0 = RF carrie, r_i = Rayleigh-distributed random variable, ϕ_i = uniformly distributed random phase, τ_i = time delay on ith path and ω_{1i} = Doppler shift of transmitting mobile unit on ith path, ω_{2i} =Doppler shift of BS which is stationary here.

The signals generated by at two base stations can be modeled as [11]

$$s_1(t) = s \left\{ \frac{t+D_1}{b_2} \right\} \text{ and } s_2(t) = s \left\{ \frac{t+D_2}{b_2} \right\}, \text{ here } D_1 \text{ and } D_2$$

Corresponds to propagation time from source to two base stations and b_1, b_2 are time scales resulting from relative motion between source and receiver. The signals at two receivers will be $x_1(t) = s(t) + \phi(t)$ and $x_2(t) = s \left\{ \frac{t+D}{a} \right\} + \psi(t)$, where $\phi(t)$ and $\psi(t)$, are additive white Gaussian noise with zero mean. Above equations takes in to account the relative velocity between source and receiver. If $\tau = \Delta t_2 - \Delta t_1$, then TDOA can be calculated from the maximum value of cross-correlation

$$R_{x_1 x_2}(\tau) = \int_{-\infty}^{+\infty} x_1(\tau) x_2(t - \tau) dt \quad (19)$$

Test point		Ts	0.5
X	100	Num	10
Y	100	vx,vy	10
Num	x_predict	y_predict	Error
1	110.5532	96.4175	10.2224
2	112.75	90.067	20.1218
3	112.1963	118.3225	4.3474
4	112.655	128.2435	11.041
5	132.895	107.2847	19.3949
6	72.1096	178.2374	75.3534
7	78.974	182.8584	73.684
8	140.7444	139.0545	1.2034
9	136.6439	154.5825	12.7141
10	145.9833	154.826	6.2789
Mean Square Error		24.9043	
Normalised MSE		0.036	

Table 2

In original Chan-Ho method the term R_1 is used and that was obtained from BS1 and modified term Ω is obtained from BS1 and BS2. Results obtained from our simulation method are much better than Chan-Ho

method.

All estimated points are in the range of home base station located at (0,0). We calculated MSE which indicates higher performance. The source position was assumed to (100,100). Values of V_x and V_y are changed from 5 to 15. And we obtain x, y predicted values and error is found. This indicates that MSE is less for smaller values of V_x and V_y . These are indicated in tables 2 to 5.

The simulation is done in MATLAB. We get results as shown in fig. 3, fig. 4 and fig. 5. Finally cumulative probability distribution function (CDF) of absolute position error between original position and obtained values can be calculated by

$$\Delta d = \sqrt{(x - x_0)^2 + (y - y_0)^2} \quad (20)$$

Test point		Ts	0.9
X	100	Num	10
Y	100	vx,vy	5
Num	x_predict	y_predict	Error
1	112.1236	104.7796	5.2506
2	91.3624	143.3303	36.7585
3	134.2383	115.5469	13.5486
4	25.3137	231.6768	146.3062
5	147.528	141.6894	4.1654
6	151.4806	157.0849	3.9829
7	121.5537	203.5833	58.0069
8	170.7211	173.6032	2.0508
9	182.9053	178.5213	3.1264
10	201.1724	172.8173	20.4956
Mean Square Error		32.049	
Normalised MSE		0.0704	

Table 3

Test point		Ts	0.6
X	100	Num	10
Y	100	vx,vy	15
Num	x_predict	y_predict	Error
1	108.2665	94.9721	9.6012
2	79.8407	130.1446	35.5987
3	75.0657	138.977	45.2786
4	85.3848	136.9084	36.4527
5	39.0348	169.6687	93.5916
6	94.5704	140.7746	32.6746
7	59.391	169.8236	78.6092
8	131.6413	105.875	19.6699
9	127.3928	126.5056	0.6314
10	132.7981	126.3026	4.6368
Mean Square Error		38.5715	
Normalised MSE		0.0794	

Table 4

Test point		Ts	0.1
X	100	Num	10
Y	100	vx,vy	15
Num	x_predict	y_predict	Error
1	101.4991	101.5011	0.0014
2	107.5732	96.3458	8.0742
3	43.9985	149.4084	75.3472
4	105.7579	85.5612	20.4403
5	94.7848	120.6955	18.3248
6	69.0601	142.9913	52.4462
7	82.4949	136.3488	38.1109
8	92.7415	131.0388	27.0807
9	112.6631	114.5245	1.3229
10	90.782	138.2347	33.5614
Mean Square Error		30.5232	
Normalised MSE		0.0543	

Table 5

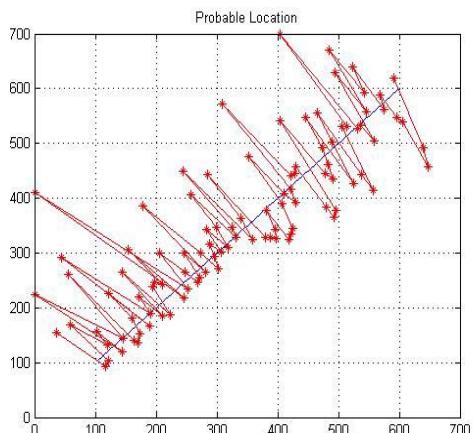


Figure 3

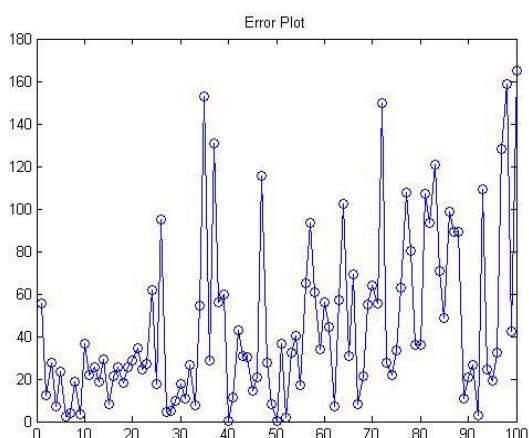


Figure 4

Figure 5

V. CONCLUSION

From the above table we conclude that Chan's TDOA algorithm improves the computation of mobile user locator. We perform various experiment with setting up fix mobile user location i.e. $x=100$, $y=100$ in the area of 750×750 plane, with two base stations at BS1 & BS2. The distance between mobile user and BS1, BS2 is calculated. We predict the probable movement of mobile user and calculate the error for each sample location and estimates its error occurred for same mobile user.

From above experiments we found that this is best set up to achieve less error in the distance calculation. We predicted Vx , Vy to be 10 and $Ts=0.5$. With these parameters we found that MSE is less i.e. 24.9043.

So, finally this experiments for Chan-Ho algorithm for mobile user location is less time consuming & estimates accurately its location.

REFERENCES REFERENCIAS

1. P. Bahl and V. Padmanabhan " RADAR: An in-built R. F. based user location and tracking system" IEEE INFOCOM: The conf. in Comp. Commn. Pp. 775-784, 2000.
2. W. R. Hahn, "Optimum signal processing for passive sonar range and bearing estimation" Journal Acoustic. Soc. Am, vol. 58. Pp. 201-207 July, 1975.
3. J. S. Abel and J. O. Smith, "Source range and depth estimation from multipath range difference measurements" *IEEE Transactions Acoustic speech signal processing* , vol. 37, pp. 1157-1165, Aug. 1989.
4. B. T. Fang, "A simpal solutions for hyperbolic and related position fixes" *IEEE Trans. Aerosp. Electron. Syst*, vol. 26, pp. 748-753, Sept. 1990.
5. B. Friedlander, "A passive locatio algorithm and its accuracy analysis" *IEEE J. Ocean. Engg*, vol. OE-12, pp. 234-245, Jan. 1987.
6. J. S. Abel and J. O. Smith, "The spherical interpolation method for closed form passive source

localization using range difference measurements" in proc. ICASSP-87, pp. 471-474.

- 7. J. S. Abel, "A divide and conquer approach to least-square estimation" IEEE Trans. Aerosp. Electron. Syst., vol. 26, pp. 423-427 Mar. 1990.
- 8. W. H. Foy, "Position-location solutions by Taylor-series estimation" IEEE Trans. Aerosp. Electron. Syst. Vol. 26, pp. 423-427, Mar. 1990.
- 9. D. J. Torrieri, "Statistical theory of passive location systems" IEEE Trans. Aerosp. Electron. Syst. Vol. AES-20, pp. 183-198, Mar. 1984.
- 10. C. H. Knapp and G. C. Carter, "The generalized correlation method for estimation of time delay" IEEE Trans. Acoust. Speech. Signal processing, vol. ASSP-24, pp. 320-327, Apr. 1976.
- 11. Y. T. Chan and K. C. Ho, "Joint Time-Scale and TDOA estimation analysis and fast approximation" IEEE Trans. On Signal Processing, vol. 53, No. 8, pp. 2625-2634, 2005.
- 12. Y.T. Chan and K.C. Ho, "A simple and efficient estimator for hyperbolic location" *signal processing* *IEEE Transactions on*, vol. 42, no. 8 pp. 1905-1915, 1994.
- 13. W.C. Lee, Mobile cellular telecommunications: Analog and Digital Systems, 2nd edition McGraw-Hill Professional, Feb, 1995.
- 14. W. H. Foy, "Position location solution by Taylor series estimation" IEEE Trans. Aerosp. And electron. Syst. Vol. AES- 12, No. 2, pp- 187-194, Mar. 1976

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: J
GENERAL ENGINEERING

Volume 11 Issue 5 Version 1.0 July 2011

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 0975-5861

High Efficiency AlAs/GaAs/Ge Lattice Matched Multijunction Solar Cells

By Md. Jahirul Islam, Md. Habibullah, Sk. Hasan Hafizul Haque, Md. Mottaleb Hossain, Md. Rejvi Kaysir

Khulna University of Engineering & Technology (KUET) Khulna, Bangladesh

Abstracts - This paper reports on the theoretical design and performance analysis of the AlAs/GaAs/Ge based triple junction solar cells. The efficiency of the lattice matched solar cells has been evaluated considering the effect of reflection coefficient. The efficiency is also compared with the lattice mismatched triple junction solar cells. The current matching is done by varying the thickness. The effect of depletion width has been taken into account in order for accuracy. However, no significant change has been observed between the results without and with considering the depletion width. The efficiency of the proposed solar cells has been found to be $\sim 43.5\%$. The effect of reflection coefficient has also been considered. The efficiency is found to be 23% to 37% considering reflection loss. This simulated model shows that the proposed model can improve the efficiency with increasing the number of junctions.

Keywords : Solar cells, Multifunction, AlAs/GaAs/Ge, Lattice matched, Minority carrier lifetime, Depletion width.

GJRE-J Classification : FOR Code:090605

Strictly as per the compliance and regulations of:

High Efficiency AlAs/GaAs/Ge Lattice Matched Multijunction Solar Cells

Md. Jahirul Islam^a, Md. Habibullah^Q, Sk. Hasan Hafizul Haque^B, Md. Mottaleb Hossain^W, Md. Rejvi Kaysir^Y

Abstract - This paper reports on the theoretical design and performance analysis of the AlAs/GaAs/Ge based triple junction solar cells. The efficiency of the lattice matched solar cells has been evaluated considering the effect of reflection coefficient. The efficiency is also compared with the lattice mismatched triple junction solar cells. The current matching is done by varying the thickness. The effect of depletion width has been taken into account in order for accuracy. However, no significant change has been observed between the results without and with considering the depletion width. The efficiency of the proposed solar cells has been found to be $\sim 43.5\%$. The effect of reflection coefficient has also been considered. The efficiency is found to be 23% to 37% considering reflection loss. This simulated model shows that the proposed model can improve the efficiency with increasing the number of junctions.

Keywords : Solar cells, Multifunction, AlAs/GaAs/Ge, Lattice matched, Minority carrier lifetime, Depletion width.

I. INTRODUCTION

The photovoltaic solar cell is becoming widespread and very important as a clean and gentle energy source for the earth [1]. However, the efficiency of conventional and commercially available solar cells is still very low. To be competitive with the conventional energy source the efficiency of photovoltaic cell must be improved. Researchers are looking for the highly efficient photovoltaic cells from the beginning of this decade. Attempts have been made to fabricate photovoltaic cells with materials other than silicon and with no lattice mismatch. At the same time modifications in design are being carried out to reduce the reflected component of solar energy due to lattice mismatch.

Limitations of efficient use of broad solar spectrum of one junction solar cell have led to carry out much more theoretical and experimental works on the multijunction (MJ) solar cells. MJ solar cells are being widely investigated by the researchers to increase the efficiency.

It has been shown that the theoretical Efficiency of the MJ solar cells increases as it incorporates more

Author^a: Department of Electrical & Electronic Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh.

E-mail: jahirul_kuet@yahoo.com, habibullah@mail.kuet.ac.bd, idip98@yahoo.com, rejvikaysir@yahoo.com

Author^W: Department of Electrical & Electronic Engineering, Stamford University Bangladesh, Dhaka-1217, Bangladesh.

E-mail: mottaleb77@ieee.org

and more junctions [2]. However, practically there is a very little range of material that could be used to make these cells. A major challenge in achieving widespread use of solar cells lies in the identification of suitable materials with appropriate lattice and band gap matching. Besides lattice and band gap mismatches, recombination before drift, and reflection at top surface contact obstruction associated with MJ solar cells restricted the achievement of higher efficiency [3]. Due to lattice mismatch, generated carrier will be recombined in the defect of the lattice. After considering the effect of lattice mismatch the efficiency of the proposed solar cell has been found approximately 43.5% and the approach targeting 50% efficiency is proceeding using the invert lattice mismatch quantum well solar cells [4]. In this paper, the effect of antireflection on MJ solar efficiency is also studied.

II. DEVICE STRUCTURE

Improved efficiency is the most important factor in designing the MJ solar cells. Currently used MJ solar cells are based on two or three layers of different material which are usually III-V semiconductors [5]. But lattice constants of different junctions are not same. The efficiency decreases due to the lattice mismatch. The AlAs/GaAs/Ge based solar cells have been proposed for higher efficiency.

For designing this solar cell, the materials are used in buffer layer and tunnel junction having nearly the same lattice constant and this helps to improve the efficiency [6]. These layers act as antireflection coating which reduces the reflection of incident light. The schematic illustration of the proposed AlAs/GaAs/Ge MJ solar cells is shown in Fig. 1. The sub cells are arranged from bottom to top with lower to higher the band gap. Tunnel junctions are placed between the layers of a MJ to avoid the formation of junction as well as potential barrier between the layers. However dislocations at the interference of the GaAs and Ge are limiting the cell efficiency. This propagation often causes Shockley-Read-Hall recombination in the active cell regions.

To reduce the number of dislocations and cease their propagation through the upper layers of the junction cell, step graded buffer layers of InGaAs are used. Thus the constant remains the same due to small composition of In.

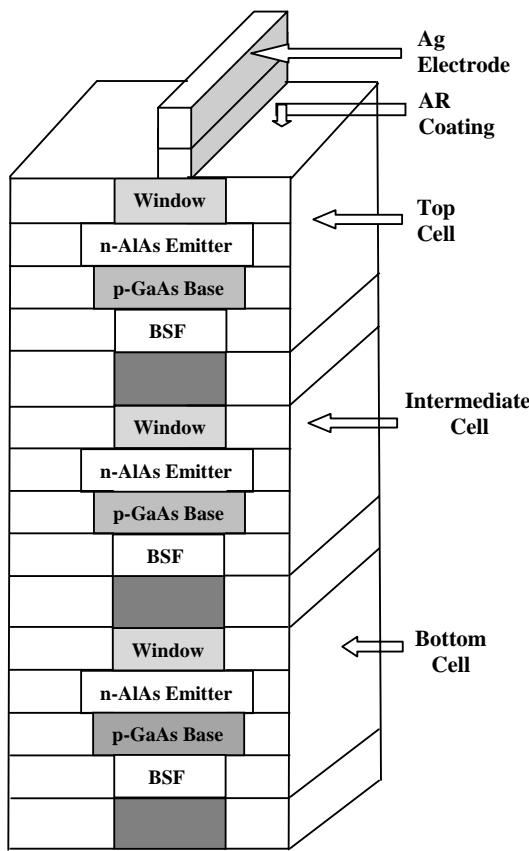


Fig. 1: Schematic illustration of the proposed lattice matched solar cells.

III. PERFORMANCE ANALYSIS

The performance of solar cells depends on the choice of material used, the direction of light energy incident into the p-n junction, the number of junctions between the cells, the matching of the lattice of the used compound alloys, and carrier concentration. The amount of light energy absorbed by the p-n junction of solar cell is one of the important issues in performance evaluation. The less the reflection of incident light, the more efficient the solar cell is. The values of different parameters for the materials of Ge, GaAs, and AlAs which are used in the theoretical design and performance evaluation of the lattice matched multifunction solar cells are shown in Table I.

Fig. 2 shows the graphical representation of reflectance or reflection coefficient and efficiency of lattice matched AlAs/GaAs/Ge-based MJ solar cells. Efficiency of the solar cells decreases with the increasing percentage of reflectance.

The current densities for electrons and holes are expressed as [7],

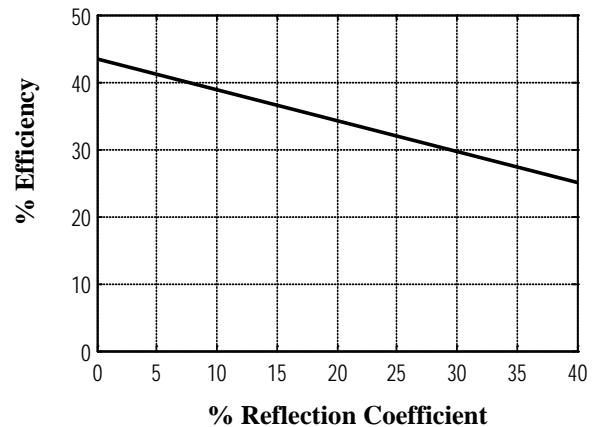


Fig. 2: Efficiency variation of solar cell with respect to reflection coefficient.

$$J_n = q\mu_n n_p \xi + qD_n \frac{dn_p}{dx'} \quad (1)$$

and

$$J_p = q\mu_p p_n \xi - qD_p \frac{dp_n}{dx'} \quad (2)$$

where q is the electron charge, μ_n and μ_p are the mobility of electrons and holes respectively, p is the electron concentration in p region, p_n is hole concentration in n region, ξ is electric field, and $D_{n,p}$ is the minority carrier diffusion coefficients in n and p regions respectively.

In the case of an n on p junction with an n -type emitter and p -type base the expression for p on the top side of the junction is given by

$$D_p \frac{d^2 p_n}{dx'^2} + \alpha F (1 - R) e^{-\alpha x'} - \frac{p_n - p_{no}}{\tau_p} = 0 \quad (3)$$

where F is the number of incident photon per cm^2 per second per unit band width, α is the absorption coefficient, R is the number of reflected photon from surface, p_{no} is the equilibrium minority carrier density in the dark, and τ_p is the minority carrier lifetime.

The Open circuit voltage is expressed as [8],

$$V_{oc} = \frac{kT}{q} \ln \left(\frac{J_{sc}}{J_0} + 1 \right) \quad (4)$$

and

$$J_0 = q n_i^2 \left(\frac{D_{nj}}{L_{nj} N_A} + \frac{D_{pj}}{L_{pj} N_D} \right), j = 1, 2, 3, \dots, n \quad (5)$$

where J_{sc} is the short circuit current density, J_0 dark saturation current density, n_i be the intrinsic carrier concentration, N_A and N_D are the acceptor and

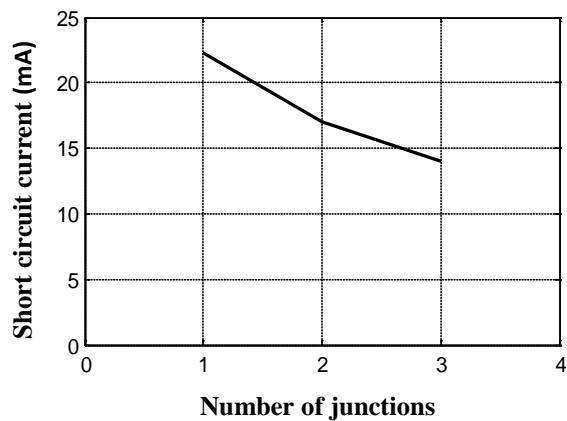


Fig. 3 : Variation of shot circuit current with number of junctions.

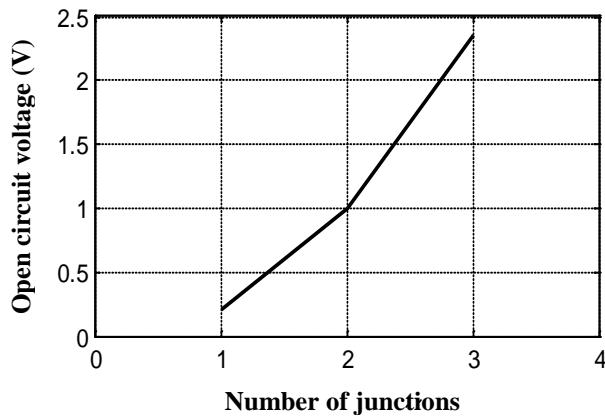


Fig. 4 : Variation of open circuit voltage with number of junctions.

Donor impurities respectively, and $L_{n,p}$ is minority carrier diffusion length in p and n regions respectively.

Short circuit current decreases as the number of junction increases. Simulation result shows that with the increase of number of junctions from single to triple short circuit current decreases about 35%. The result is shown in Fig. 3.

Fig. 4 shows the variation of open circuit voltage with the number of junctions. Open circuit voltage increases with increasing the number of junctions. For choosing of a new junction material, care has been taken about lattice constant so that lattice mismatch does not create in designing of MJ solar cells.

As the number of junctions i.e. the number of cells increases, short circuit current decreases and open circuit voltage increases which consequently causes the increase of solar cell efficiency. Fig. 5 shows the variation of efficiency with the number of junctions. Simulation result shows that efficiency increases about 30% as the junction number increases from single to triple.

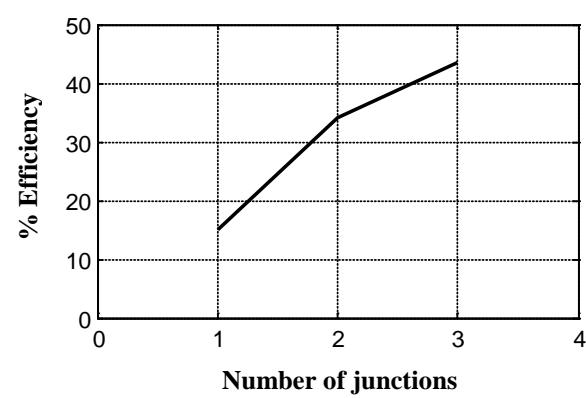


Fig. 5 : Efficiency variation of solar cell with respect to number of Junction.

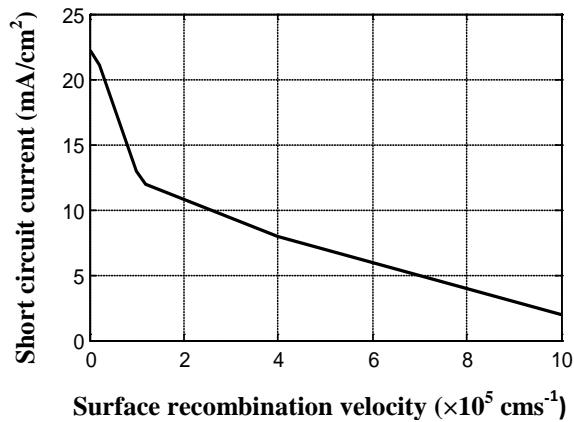


Fig.6 Effect of surface recombination velocity on short circuit current

The influence of surface recombination velocity on the short circuit current is shown in Fig. 6. Higher the recombination velocity, lower the short circuit current. Lattice matched solar cells reduce short circuit current (Fig. 3) which in turn increase the efficiency of the solar cells.

The comparison between lattice matched and mismatched triple junction solar cells considering the values of open circuit voltage, short circuit current, and efficiency is shown in Table II.

Table I: The Simulation Results of Lattice Matched MJ Solar Cells

Parameters	Ge	GaAs	AlAs
N_A (cm $^{-3}$)	10^{16}	10^{16}	10^{16}
N_D (cm $^{-3}$)	10^{18}	10^{18}	10^{18}
n_i (cm $^{-3}$)	2.33×10^{13}	1.84×10^6	8.5×10^{17}
N_C (cm $^{-3}$)	1.04×10^{19}	6.0×10^{18}	1.2×10^{19}
N_V (cm $^{-3}$)	4.45×10^{19}	7.72×10^{18}	4.62×10^{19}
J_o (A)	7.2×10^{-3}	1.1×10	8.9×10^{-5}
V_{oc} (V)	0.20	0.7928	1.33
V_T (V)			2.3228

Table II: Comparison Table Between Lattice Matched and Mismatched Triple Junction Solar Cells

Parameters	Lattice matched (AlAs/GaAs/Ge)	Lattice mismatched (AlAs/GaAs/Ge)
Open circuit voltage, V_{oc} (V)	2.3228	2.683
Short circuit current, J_{sc} (mA/cm ²)	22	15.94
Efficiency (η)	43.5%	37.73%

IV. CONCLUSIONS

The theoretical design of the lattice matched AlAs/GaAs/Ge-based multi junction solar cells has been proposed and performances have been evaluated. The performances are evaluated by developing a simulation model which optimizes the design of the lattice matched AlAs/GaAs/Ge MJ solar cells for high efficiency. The efficiency of the proposed device structure has been obtained to be $\sim 43.5\%$. The lattice mismatch is made to about nil. This increases surface recombination velocity and decreases short circuit current. The currents of each junction are made equal by adjusting the thickness of the emitter. Some major challenges including tunnel junction, buffer layer, and anti reflection coating in designing the effective MJ solar cells have been overcome. All these results show that the proposed AlAs/GaAs/Ge based multijunction solar cells are promising candidates to achieve high efficiency.

REFERENCES REFERENCIAS

1. K. Nishioka, T. Hatayama, Y. Uraoka, T. Fuyuki, R. Hagihara, and M. Watanabe, "Field-test analysis of PV system output characteristics focusing on module temperature," *Solar Energy Materials & Solar Cells* 75 (2003), PP. 665–671.
2. C. H. Henry, "Limiting Efficiencies of ideal single and multiple energy gap terrestrial solar cells," *J. Appl. Phys.*, vol. 51 (8), pp. 4494-4499, 1990.
3. S. O. Kasap, *Principles of Electronic Materials and Devices*, Third Edition, ISBN: 13 9780073104645 McGraw-Hill, 2006.
4. T. Takamoto, "Status of Multijunction Solar Cells and Future Development," in *CS MANTECH Conference*, Tampa, Florida, USA, May 18th-21st, 2009.
5. M. Yamaguchi, "Free electron concentration and mobility of InN and $In_{0.68}Ga_{0.32}N$ as a function of displacement damage dose measured by the Hall Effect," *Solar Energy Materials & Solar Cells* 75, pp. 261-269, 2003.
6. J. F. Geisz, J.M. Olson, D.J. Friedman, K.M. Jones, R.C. Reedy, and M.J. Romero, "Lattice-Matched GaNPAs-on-Silicon Tandem Solar Cells," in *31st IEEE Photovoltaics Specialists Conference and Exhibition, Lake Buena Vista, FL*, 2005.
7. S. M. Sze, *Physics of Semiconductor Devices*. New York: John Wiley & Sons, 1981.
8. T. Yoshida, S. Fujikake, H. Shimabukuro, Y. Ichikawa, and H. Sakai, "Open-circuit voltage of p-i-n a-Si based solar cells," in *Proceedings of the IEEE 2th Photovoltaic Specialists Conference (PVSC)*, vol. 1, pp. 335-339, Las Vegas, NV, USA, 1988.

GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2011

WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF INTERNATIONAL CONGRESS OF ENGINEER (FICE)

- 'FICE' title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'FICE' can be added to name in the following manner

e.g. **Dr. Andrew Knoll, Ph.D., FICE**

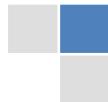
Er. Pettar Jhone, M.E., FICE

- FICE can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- **Free unlimited Web-space** will be allotted to 'FICE' along with subDomain to contribute and partake in our activities.
- **A professional email address** will be allotted free with unlimited email space.
- FICE will be authorized to receive e-Journals -GJRE for the Lifetime.
- FICE will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJRE (FREE of Charge).
- FICE will be Honorable Guest of any gathering held.

ASSOCIATE OF INTERNATIONAL CONGRESS OF ENGINEER (AICE)

- AICE title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICE' can be added to name in the following manner:
eg. Dr. Thomas Herry, Ph.D., AICE
- AICE can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'FICE' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICE will be authorized to receive e-Journal GJRE for lifetime.

AUXILIARY MEMBERSHIPS



ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJRE for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

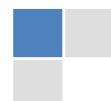
PROCESS OF SUBMISSION OF RESEARCH PAPER

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:

(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.


(II) Choose corresponding Journal.

(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.

(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.

(C) If these two are not convenient, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

PREFERRED AUTHOR GUIDELINES

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

- 1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
- 2) Drafting the paper and revising it critically regarding important academic content.
- 3) Final approval of the version of the paper to be published.

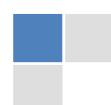
All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.


If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

- (a) Title should be relevant and commensurate with the theme of the paper.
- (b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
- (c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
- (d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
- (e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
- (f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
- (g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
- (h) Brief Acknowledgements.
- (i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve brevity.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4×10^{-3} m³, or 4 mm somewhat than 4×10^{-3} m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

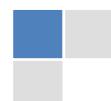
All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.


Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: *Please make these as concise as possible.*

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: *Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.*

Figures: *Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.*

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: *Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.*

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded

(Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

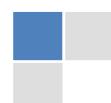
Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services


Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grown readers. Amplification is a billion times of inferior quality than sarcasm.

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

· Adhere to recommended page limits

Mistakes to evade

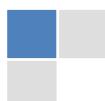
- Insertion a title at the foot of a page with the subsequent text on the next page

- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:


Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The **Introduction** should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.

- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

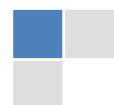
Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.


ADMINISTRATION RULES LISTED BEFORE SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The **major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- **Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)**
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

CRITERION FOR GRADING A RESEARCH PAPER (COMPILED)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
<i>Abstract</i>	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form Above 200 words	No specific data with ambiguous information Above 250 words
	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
<i>Introduction</i>	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
<i>Methods and Procedures</i>	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
<i>Result</i>	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
<i>Discussion</i>	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring
<i>References</i>			

INDEX

A

absorbance · 22
accelerated · 27, 29
acceptance · 35
accessibility · 24
accomplished · 31, 34
Administration · 21
Admittance · 44
Algeria · 1, 2, 9
algorithm · 37, 38, 50, 51, 52, 55
Algorithm · 34, 35, 37, 38, 40
aluminate · 5
ambiguity · 52
Analysis · 11, 13, 16, 17, 20, 41, 42, 44, 48, 49
analytical · 21, 36
anemometers · 27
antenna, · 11
Antioxidant · 21, 23
antireflection · 56, 57
appreciable · 29
arithmetic · 52
Armatum · 21
assessments · 22, 29
assumption · 48
asymptotic · 44
automotive · 30

C

calcite · 2
capacitance · 14, 15, 17
carminative · 21
carrageenin · 21, 22, 23
catalysing · 30
cementations · 5
Characterization · 2, 9
characterizations · 32
Co-Efficient · 42
collaboration · 30
colloidal · 9
combination · 1, 8, 9, 14, 25
combinations · 1, 8, 31
combustible · 28
Commercial · 30
commercialisation · 32
communication · 11, 30, 50

comparator · 4
comparison · 24, 39, 45, 59
compensator · 14, 16, 19, 20
Compensator · 14, 19
competition · 14
competitive · 28, 34, 56
complex · 21, 34, 35, 50
complicated · 11, 34
computations · 51
concentration · 4, 5, 9, 22, 57, 58, 59
Conférence · 9
Configuration · 14
confirmed · 2, 3, 46
consideration · 25, 34, 36, 40
conventional · 14, 29, 34, 36, 50, 56
convergence · 37, 38, 39, 40, 50, 51
Correlation · 42, 45, 48
Crossover · 37
cumulative · 53

D

Decentralized · 40, 41
deformation · 4, 44, 46, 47, 48
Deformation · 42, 44, 49
demolished · 1
demonstrate · 20, 46
deregulated · 34
Detection · 42, 48, 49
deteriorate · 24
Developements · 10
development · 1, 14, 21, 23, 24, 25, 26, 28, 29, 30, 31, 34
diagnostic · 42
Diagnostics · 48
dimensional · 3, 51
dimensions · 13
displacement · 4, 22, 42, 59
Displacements · 42, 49
domestic · 24, 25, 28
Dominated · 34, 35, 37, 38, 40
durability · 29
Dynamic · 16, 20, 34, 35, 40, 41

E

economic · 24, 25, 27, 30, 31

economically · 14, 25, 30
Economics · 24
effectiveness · 20, 36, 42
Efficiencies · 59
electrification · 26, 27, 28
electromechanical · 37, 39, 42
Electromechanical · 39
environmental · 14, 24, 25, 27, 29, 31
equilibrium · 36, 58
essentially · 15
estimation · 50, 51, 52, 55
Estimation · 3, 50
ethanolic · 22
excitation · 11, 34, 35, 41
exhaustively · 22
exhibited · 21
exogenously · 21
expansive · 1, 2, 9, 10
experimental · 21, 22, 56
Exploration · 25
Exposition · 20

F

Fitoterapia · 23
frequencies · 11, 42, 46

G

Genetic · 34, 35, 37, 38, 40, 41
geotechnical · 1, 2
guaranteed · 38, 51

H

harmonic · 14, 16
harmonics · 17, 44
histamine · 22
hydration · 5
hydraulic · 5
Hydropower · 28, 29
hyperbolic · 50, 51, 52, 55
Hyperbolic · 50

I

ibropfen · 22
impedance · 11, 12, 18, 42, 43, 44
Inflammatory · 21
infrastructure · 1, 51
insolation · 31
inspection · 42, 47

instability · 14, 34, 36
installation · 20, 26, 27, 29
instantaneous · 15, 16
Insulation · 48, 49
interventions · 32
intraperitoneal · 22
investments · 25
irrigation · 29

L

latitude · 26
Localization · 1, 2
logarithmic · 44
logarithmically · 44

M

magnitude · 1, 9, 14, 15, 26, 44
maintenance · 26, 27, 36
Mechanical · 42, 48, 49
mechanically · 14, 15
mechanism · 21, 37, 53
methodical · 11
microscope · 22
microstrip · 11, 12, 13
Microstrip · 11, 12, 13
mineralogical · 2, 3
minimization · 37
modifications · 51, 56
multifunction · 57
Multijunction · 56, 59
Mutation · 37

O

obstruction · 50, 56
occurrence · 1
œdometer · 4
operating · 12, 17, 18, 25, 34
operation · 13, 15, 17, 27, 34, 36, 37, 42
optimization · 20, 34, 35, 36, 37, 38, 40
Optimum · 3, 55
oscillations · 34, 35, 36

P

Performance · 13, 16, 17, 19, 41, 56
photovoltaic · 25, 31, 56
Phytochemistry · 23
plasticity · 2, 5, 9
polarization · 12

polynomials · 43
popularized · 37
potassium · 3
potential, · 1
potentiality · 29
probabilities · 38
propagation · 11, 51, 53, 57
Prospects · 24, 31
protection · 24, 46

Q

quantify · 3

R

Radiation · 11, 12, 13
RADICAL · 22
realistically · 45
recombination · 37, 56, 57, 58, 59
reflectance · 57
reliability · 25, 29, 42
Renewable · 24, 29, 30, 31, 32
Reproduction · 37

S

scavenging · 22
SCENARIO · 25
scientifique · 9
Screening · 21, 23
Semiconductor · 20, 59
sequential · 34, 35, 36
significant · 4, 16, 21, 22, 23, 28, 30, 35, 36, 38, 39, 42, 56
simulation · 11, 13, 20, 35, 36, 40, 50, 51, 52, 53, 59
Simulation · 11, 12, 13, 34, 36, 58, 59
specifically · 24

specification · 12
stabilization · 1, 3, 4, 5, 7, 8, 9, 34, 35, 37, 38, 39, 40, 41
Stabilization · 1, 5, 8, 9, 34, 35, 40, 41
stiffening · 5
stratigraphic · 2
subsequently · 44
substitution · 4
supplemented · 30
surveillance · 25, 50
susceptance · 15, 16, 17, 18
sustainable · 24, 28, 29, 30, 31, 32
swelling · 1, 2, 3, 4, 5, 7, 8, 9, 10
synchronized · 50
synchronous · 14, 15, 19, 34

T

technological · 24, 26
technologies · 24, 25, 27, 28, 29, 30, 31, 50, 51
theoretical · 11, 42, 56, 57, 59
theoretically · 29
thyristor · 14, 15, 16, 17, 19, 36
transmission · 11, 12, 13, 14, 15, 16, 19, 20, 25, 27, 29, 34, 50
Transmission · 11, 20, 25, 41
transmitted · 27, 51
transreceiver · 51

U

ultracapacitors · 29
utilization · 14, 26, 34

V

Vinegar · 22, 23
Voltage · 12, 14, 19, 20, 41, 42, 43, 46, 49

A 3D white figure stands at the bottom center, looking up at a large globe. The globe is mostly grey with a prominent green continent (representing South America) in the center. The figure is in a contemplative pose, with one hand on its head and the other pointing towards the globe.

Global Journal of Researches in Engineering

Visit us on the Web at www.GlobalJournals.org | www.EngineeringResearch.org
or email us at helpdesk@globaljournals.org

ISSN 9755861

© 2011 by Global Journals