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A Computational Approach on the position of 
Load Centre of a Slipper Bearing 

Mr Kishan Choudhuri α & Dr Prasun Chakraborti σ 

Abstract  - The slipper bearing is an integrated part of an axial 
piston pump. Proper lubrication is important for successful 
operation of the slipper bearing. This type of bearing is a type 
of hydrostatic thrust bearing. Many works have been done in 
the recent past on this type of bearing. This current work is 
based on the theoretical investigation of the locus of the load 
centre of this type of bearing. The leakage losses and the 
slipper drag are two important factors on which this type of 
bearing is designed. The load carrying capacity has a direct 
impact on those two factors. On the other hand the stability of 
the bearing depends upon the position of the load centre. 
There are many input factors on which the position of load 
centre is varied. These input factors thus play an important 
role on the smooth operation of such bearing. Such input 
variable are slipper tilt, applied pressure on the slipper, slipper 
speed, slipper non flatness angle or slipper land size. On the 
variation of these input variables, the nature of the position of 
load centre is plotted in this work. Based on the results the 
reasonable conclusions are made.   
Index Terms : Slipper, position of load centre, slipper tilt, 
lubrication.  

I. Introduction 

xial piston swash-plate type hydrostatic pumps 
are being used extensively in aircraft, industrial 
and agricultural systems since they can transmit 

large specific power and the flow rate from them can be 
varied. A basic difference in the design of various 
models of axial piston pumps is how the pistons contact 
the swash plate. Many design use a bronze slipper 
positioned between the piston and the swash plate. With 
this design, hydraulic fluid is fed through internal 
passages to the piston/slipper and slipper/swash plate 
interfaces to supply lubrication at these surfaces. Some 
axial do not use a slipper, but rather finish each piston 
with a case-hardened spherical dome. The spherical 
dome contacts the swash plate in such a fashion, much 
like the contact that occurs in ball bearings. Elimination 
of the slipper reduces costs and eliminates the 
disadvantages of the slipper design, but unfortunately, it 
creates other problems. One of these is wear at the 
spherical dome/swash plate interface. The fig. 1 shows 
a typical slipper-piston assembly. The slipper is pivoted 
on the ball at the end of the piston to allow it to adjust to 
the swash plate angle and to rotate relative to the piston. 
High pressure fluid from the piston is connected via the 

control orifices in the piston and slipper to the central 
slipper  pool  allowing covered the influence of the orifice 

 
 

  

size on

 

the performance of the bearing. Koc and Hooke 
[1] examined the effect of the tilting couples on the 
behavior of the slippers experimentally. Wang and 
Yamaguchi [2], [3] clarified experimentally and 
theoretically the effects of nozzle and thermoplastic 
materials on the

 

characteristics of hydrostatic 
bearing/seal parts in water hydraulic axial pumps and 
motors. Manring [4] investigated the effects of pressure-
induced deformations on the characteristics of 
hydrostatic thrust bearing. Manring [5] investigated 
experimentally, the effect of different socket geometry in 
the performance of slipper bearing. They found the 
effect on the leakage flow, load carrying capacity and 
the film thickness of the slipper bearing. In the work of 
Nie S. L. [6], the characteristic equation of the 
hydrostatic slipper bearing with an annular orifice 
damper is formulated, where the effects of various 
geometric parameters (e.g. damping length, supporting 
length, and clearance between the piston and the 
cylinder bore) are reflected. S. Kumar, J.M. Bergada, J. 
Watton [7] presented static and dynamic characteristics 
of a piston pump slipper with a groove. Three 
dimensional Navier Stokes equations in cylindrical 
coordinates have been applied to the slipper/plate gap, 
including the groove. In the work of

 

M. Borghi, E. 
Specchia

 

and B. Zardin

 

[8] a numerical procedure is 
used to solve the Reynolds equation, written here with 
respect to the slipper-swash plate gap, whose height is 
considered variable in a two dimensional field and with 
time. In the work of Hong Liu, Zeng Xiong Peng, Chu 
Jing Shen

 

[9] the calculation of film shape is simplified 
as a single objective optimization problem with two 
decision variables. A genetic algorithm is used to 
investigate about the film shape of the entire slipper 
bearing In the work of Fazil Canbulut, Erdem Koç, Cem 
Sinanoglu [10], the slipper geometry and working 
conditions affected on the slipper performance have 
been analyzed experimentally. The model of the slipper 
system has been established by original neural network 
(NN) method. The objective of the present work is 
theoretical investigation of the position of the load centre 
of the slipper bearing which is not studied extensively by 
the previous authors.
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List of Symbols

 

a

 

Conical angle of the slipper.

  

Q

 

Non dimensional form of Q

 

a

 

Non-dimensional value of a

  

r

 

Radius of any point on the slipper land 
measured from slipper center.

 

*a

 

Another non-dimensional form of

 

a

  

r

 

Non-dimensional value of r

 

d

 

A dimension for a conical slipper

  

cr

 

Mid-land radius

 

d

 

Non-dimensional value of d

  

cr

 

Non dimensional mid land radius

 

e

 

A measure of slipper tilt

  

ir

 

Inner radius of slipper

 

G

 

Non dimensional hydrodynamic 
parameter.

 
 

ir

 

Non-dimensional value of ir

 

h

 

A variable defining film thickness

  

or

 

Outer radius of slipper.

 

ah

 

Average film thickness.

  

or

 

Non-dimensional value of or

 

h

 

Non-dimensional value of h

  

t

 

Slipper tilt  in radian

 

ch

 

The non dimensional film thickness at the 
mid radius of the land

 
 

t

 

Non-dimensional value of t

 

oh

 

Non dimensional film thickness at middle 
land for no tilt

 
 

*t

 

Another non-dimensional form of t

 

O

 

Orifice size coefficient

  

u

 

Slipper velocity

 

fO

 

Orifice coefficient of the orifice between 
piston cylinder and slipper pocket.

 
 

W

 

Load carrying capacity for the slipper

 

p

 

Variable defining pressure in the slipper 
land

 
 

W

 

Non-dimensional value of W

 

sp

 

Pressure in slipper pocket

  

w

 

Non dimensional width of the slipper land

 

sp

 

Non-dimensional value of sp

  

θ

 

Angle measured from trailing edge of the 
slipper

 

p

 

Non-dimensional value of p

  

dθ

 

Angle measured  from the position of 
maximum clearance

 

Q

 

Drain flow through the conical and tilted 
slipper

 
 

mθ

 

Angle of maximum clearance.

 

 

  

 

 
 

 
 

 
 

  

 
 

•

 

The flow is laminar.

 

•

 

Surface velocities are considered to be constant 
in direction.

 

•

 

The lands is approximately conical.

 

Slipper is having a circular pocket, which is 
surrounded by a land as shown in figure.

 

1. The orifice 
connects the slipper pocket to the piston bore which 
feeds it with oil thus establishing a pressure in the 
slipper pocket which is approximately equal to piston 
pressure.  The oil   inside the slipper pocket lubricates 
the total slipper area. Referring to the Figure 2 the 
clearance between the land of an untilted slipper and 
the swash plate can be expressed as       

 

                             . When slipper is tilted (Figure.3)

 

trazdhh a ++−=

A Computational Approach on the position of Load Centre of a Slipper Bearing
G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

V
ol
um

e 
 X

II
  

Is
su

e 
V
 V

er
si
on

 I
 

  
  
  

  
  

  
  

  
  

2

( A
)

© 2012 Global Journals Inc.  (US)

ea
r 
20

12
 

Y

II. Mathematical Model

The following assumptions are taken into 
account to derive all the equations:

• Body forces acting on the lubricant such as 
gravitational, magnetic or electrical are neglected

• The pressure induced flow in the circumferential 
direction is neglected

• The pressure is assumed to constant through the 
thickness of the lubricating fluid.

• The lubricant is Newtonian.

• Viscosity is considered to be constant through the 
thickness of the lubricating film.

Figure 1 : Piston-slipper assembly

this clearance becomes   
And in non-dimensional form 

Pressure distribution over a slipper land must 
satisfy Reynold’s equation, which is expressed in polar 
coordinate by:

( )da trazdhh θcos++−=

( )drtzadh θcos1 ++−=



 


  

 

 

Making Non-dimensional form and introducing 
the non-dimensional group 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

where                                is the non-
dimensional film thickness at the mid radius of the land. 
Constants A and C can be found out from the boundary 
conditions. The boundary conditions are

 

At                                 and      at 

 

This leads to a pressure distribution:

 
 

 

                                                                                 

(1)

 

where,                  

 

is the non-dimensional width 

of the slipper land.   

 

The first group of the equation (1) corresponds 
the hydrostatic pressure distribution for flat and

 

untilted 
slipper and the second group corresponds the 
hydrostatic pressure distribution produced by coning of 
the land and the tilt of the slipper. The final group 
represents the hydrodynamic effects due to conical 
shape of the land, slipper tilt and the slipper velocity.

 

The first group of the equation (1) can be 
replaced by an analytical solution of pressure for flat and 
untilt slipper which is derived in Appendix A. That 

analytical solution can be found out as 
                         

 

. 

 
 
 

Thus ultimately the equation of pressure 
distribution over the land of the slipper can be written as 

 
 

 

Non-dimensional load is given as

 

( ) θ
π

dzdzrpW
w

w
c∫ ∫

+

−
+=

2

0

2

2

 

Putting the non-dimensional pressure the load 
carrying capacity can be derived as

 
 

 

(2)

 

Where                    

 
 

                       and

 
 

In equation (2) the first group is load carrying 
capacity for flat and untilted slipper. The second group 
is its modification for conical shape of the land and 
slipper tilt. The third group is the hydrodynamic effect on 
the load carrying capacity. 

 

Finding out the appropriate G value is the main 
issue to solve the slipper equations. This is done from 

dcc rtdh θcos1 +−=

si pprr == , 0, == prr o
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Figure 2 :

 

The geometry of slipper bearing
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load equilibrium conditions. This analysis is different 
from Hook’s analysis only by the equation of load 
equilibrium. The hydrodynamic parameter 
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which is dependent on           and

 

 

The moment of the load with respect to x and y 
axis can be found out by integrating the load of small 
strip abut x and y axis. These moments are given by

 
 

 

and

 

 

 
 

From these two moments the load centre of the 
load can be found out by dividing the moment with the 
load carrying capacity.  The derivations of the moments 
are given in Appendix C. Now the dimensional moments 
are given by 

 
  

).( 3
poxx prMM =

 

and

 

).( 3
poyy prMM =

        

 

The total moment on the land is given by

 
 

22
yx MMM +=

 

The polar arm of the load centre can be found out by

 
  

W

MMr

W
Mj yxo

22 +
==

 

The angle between polar arm with the X axis is given by

 
 

2
tan 1 πθ −=′ −

y

x

M
M

 

The abscissa and the ordinate of the load centre is given by

 

                        

 

and   

 

III.

 

Results

 

As the solution is directly got from the analytical 
method, the plotting can be done using MATLAB 
programming window. All the equation

 

are set in the 
programming environment of the MATLAB software and 
the solutions are plotted. Generally the maximum 
clearance occurs very near to the leading edge. In the 

analysis of theoretical slipper drag, programming is 
developed with the fact that in the leading edge 
maximum clearance occurs. The position of the load 
centre is plotted against the slipper tilt. the slipper are 
considered as perfectly flat. For the figure

 

3, the slipper 
speed is kept constant at 1500 rpm and the plot is 
drawn for different pressure. It can be seen from the 
graph that after some point of tilt angle the position of 
load centre

 

goes out of the slipper land area. This prove 
that slipper runs with very small tilt angle. For figure 4 
the pressure is kept constant at 120 bar and the plot is 
drawn for different speeds. It is observed for a higher 
theoretical tilt the slipper does not

 

work. Apparently the 
fluid film breaks after a maximum angle of tilt. 

 

It can be observed from figure 3 through figure 
6, that the slipper center stays in the center line of 
motion or X axis for small tilt angles. For small tilt angle 
the center of load moves firstly towards the negative X 
axis. More tilt brings the center of load on the positive 
side of X axis. A little more tilt bring the centre of load to 
the actual centre of slipper. But for more tilt angle the 
centre of tilt angle the load goes outside the area of 
slipper which is not possible. Therefore a higher tilt is 
not possible to occur in actual slipper operation. 
Moreover the variation of pressure, speed, slipper area 
and non flatness angle put different response to the 
position of load centre.

 

It can be observed that higher 
pressure in the slipper pocket tries to keep the slipper 
load centre in the actual centre of slipper and lower 
pressure tries to deflect the load centre away from 
actual slipper centre. In the same way higher speed of 
slipper tries to keep the slipper load centre in the actual 
centre of slipper and lower speed tries to deflect the 
load centre away from actual slipper centre. From figure 
5, it can be observed that a particular amount of non-
flatness angle tries to keep the load centre in the actual 
slipper centre. 
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Figure 3 : Position of load centre with 
slipper tilt for different pressure
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From figure 6, it can be observed that a more 
amount of slipper are tries to keep the load centre in the 
actual slipper centre and hence stabilize the bearing 
fast.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV.

 

CONCLUSION

 

From the results of the computation of the 
position of load centre, it can observed that higher tilt 
angle gives irrelevant results. It may happen the fluid film 
breaks at higher tilt angles. The stability of slipper 
increases with increase of slipper pressure (vide figure 
3).  The stability increases with increase of slipper speed 
(vide figure 4). The stability of slipper increases with 
increase of slipper non flatness angle (vide figure 5).   
The stability increases with increase of slipper land size 
(vide figure 6).  For more practicality of this tilt angle 
more computation is required. 
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