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Relativistic Elasticity & the Universal Equation of 
Elasticity for Next Generation Aircrafts & 

Spacecrafts
E.G. Ladopoulos

AAbstract - The theory of “Relativistic Elasticity” is proposed for 
the design of the new generation large aircrafts with turbojet 
engines and speeds in the range of 50,000 km/h. This theory 
shows that there is a considerable difference between the 
absolute stress tensor and the stress tensor of the moving 
frame even in the range of speeds of 50,000 km/h. For bigger 
speeds like c/3, c/2 or 3c/4 (c=speed of light), the difference 
between the two stress tensors is very much increased. 
Therefore, for the next generation spacecrafts with very high 
speeds, then the relative stress tensor will be very much 
different than the absolute stress tensor.       

Furthermore, for velocities near the speed of light, the 
values of the relative stress tensor are very much bigger than 
the corresponding values of the absolute stress tensor. The 
proposed theory of “Relativistic Elasticity” is a combination 
between the theories of "Classical Elasticity" and "Special 
Relativity" and results to the “Universal Equation of Elasticity”. 
For the structural design of the new generation aircrafts and 
spacecrafts the stress tensor of the airframe will be used in 
combination to the singular integral equations method. Such a 
stress tensor is reduced to the solution of a multidimensional 
singular integral equation and for its numerical evaluation will 
be used the Singular Integral Operators Method (S.I.O.M.).
Keyword and Phrases : Relativistic Elasticity, Aircrafts, 
Spacecrafts, Relative Stress Tensor, Absolute Stress 
Tensor, Stationary and Moving Frames, Energy-
Momentum Tensor, Multidimensional Singular Integral 
Equations, Singular Integral Operators Method 
(S.I.O.M.), Universal Equation of Elasticity.

I. FUTURE APPLICATIONS OF AIRCRAFTS 

AND SPACECRAFTS DESIGN

he possibilities of turbomachines applied in 
aircrafts have been very much increased because 
of the big evolution of the jet engines and the high 

performance axial – flow compressor. The concern for 
very light weight in the aircraft propulsion application,
and the desire to achieve the highest possible isentropic 
efficiency by minimizing parasitic losses, led inevitably 
speed operation. The increasing evolution of 
aeroelasticity in aircraft turbomachines to axial-flow 
compressors with cantilever airfoils of high aspect ratio. 
Also,   the  turbojet   engines  were  found  to  experience

Author : Interpaper Research Organization 8, Dimaki Str. Athens, GR -
106 72, Greece.

severe vibration of the rotor blades at part Continues to 

be under active investigation, driven by the needs of 
aircraft powerplant and turbine designers.

The target of international Aeronautical 
Industries is therefore to achieve a competitive 
technological advantage in certain strategic areas of 
new and rapidly developing advanced technologies, by 
which in the longer terms, can be achieved increased 
market share. This considerably big market share 
includes the design of a new generation large aircraft 
with speeds even in the range of 50,000 km/h. The 
application of new generation turbojet engines makes 
possible the design of such type of large aircrafts and 
therefore there is a need of elastic stress analysis for the 
construction of the total parts of such type of new 
generation aircrafts.

Furthermore, the target of the International 
Space Agencies (ESA, NASA, etc.) is to achieve in the 
future, next generation spacecrafts moving with very 
high speeds, even approaching the speed of light. In 
such cases the relative stress tensor will be much 
different than the absolute stress tensor and so special 
material will be used for the construction of such 
spacecrafts. The type of the proper material for the 
construction of the next generation spacecrafts is under 
investigation and will be very much different than the 
usual composite materials.

In the present investigation it will be shown that 
there is a difference between the absolute stress tensor 
and the stress tensor of the airframe even in the range of 
speeds of 50,000 km/h. On the other hand, for bigger 
speeds the difference of the two stress tensors is very 
much increased. Thus, for bigger velocities like c/3, c/2 
or 3c/4 (c=speed of light) the relative stress tensor is 
very much different than the absolute one, while for 
velocities near the speed of light the values of the 
relative stress tensor are much bigger than the 
corresponding values of the absolute stress tensor. The 
study of the connection between the stress tensors of 
the absolute frame and the airframe is included in the 
theory proposed by E.G.Ladopoulos [30] - [32] under 
the term “Relativistic Elasticity” and the final formula 
which results from the above theory is called the 
“Universal Equation of Elasticity”. Hence, in the present 
study the theory of “Relativistic Elasticity” will be applied 
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for the elastic stress analysis design of the next 
generation aircrafts and spacecrafts.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beyond the above, E.G.Ladopoulos [1]-[16] 
and E.G.Ladopoulos et al. [17]-[22] proposed several 
linear singular integral equation methods applied to 
elasticity, plasticity and fracture mechanics applications. 
In the above studies the Singular Integral Operators 
Method (S.I.O.M.) is investigated for the numerical 
evaluation of the multidimensional singular integral 
equations in which is reduced the stress tensor analysis 
of the linear elastic or plastic theory. Also, the theory of 
linear singular integral equations was extended to non-
linear singular integral equations, too. [23]-[29]. The 
theory of “Relativistic Elasticity” will be applied to the 
design of the elastic stress analysis for the airframes. 
“Relativistic Elasticity” is derived as a generalization of 
the classical theory of elastic stress analysis for 
stationary frames. For future aerospace applications the 
difference between the relative and the absolute stress 
tensors will be of increasing interest. Furthermore, the 
classical theory of elastic stress analysis began to be 
analyzed in the early nineteenth century and was further 
developed in the twentieth century. In the past were 
written several important monographs on the classical 
theory of elasticity. [33]- [52}. 

On the other hand, during the past years 
special attention has been concentrated on the 
theoretical aspects of the special theory of relativity. 
Hence, some classical monographs were written, 
dealing with the theoretical foundations and 
investigations of the special and the general theory of 
relativity. [53]–[60].Furthermore, a very important point 
which will be shown in the present research is that the 
"relative stress tensor is not symmetrical", while, as it is 
well known, the "absolute stress tensor is symmetrical". 
This difference is very important for the design of the 
next generation aircrafts and spacecerafts of very high 
speeds. Thus, the foundations of the theory of 
“Relativistic Elasticity” for airstructures lead to a general 
theory, in which no restriction is made with regard to the 
relative motion. This general theory is further reduced to 
one class of relative motion, uniform in direction and 
velocity.         

II. RELATIVE STRESS TENSOR 

FORMULATION FOR AIRFRAMES

The state of stress at a point in the stationary 
frame S0, is defined by the following symmetrical stress 
tensor: (Fig.1).
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(2.2)

Consider an infinitesimal face element df with a 
directed normal, defined by a unit vector n, at definite 
point p in the three-space of a Lorenz system. The 
matter on either side of this face element experiences a 
force which is proportional to df.
              Thus, the force is valid as:

                                  fd)()(d nn       

                             

(2.3)

The components  i(n)  of  (n)  are linear 
functions of the components  nk of  n:

    3,2,1,,)( kinkiki n                                 (2.4)

Where ik is the elastic stress tensor, which can 
be also called the relative stress tensor, in contrast to 

the space part 0
ik of the total energy-momentum 

tensor   Tik,   referred as the absolute stress tensor. [53], 
[54} (Fig. 2).

The connection between the absolute and 
relative stress tensors is:

                                         

                  

3,2,1,,0 kiug kiikik                               (2.5)

where gi are the components of the 
momentum density  g  and  uk  the components of the 
velocity u  of the matter.

Furthermore, the connection between g and the 
energy flux s, is valid as:

2csg                                                                  (2.6)

in which c denotes the speed of light (= 
300.000 km/sec).

The total work done per unit time by elastic 
forces on the matter inside the closed surface f is equal 
to:

                  

3,2,1,,d
)(

dd)( ki
x

u
funfW

k

iki

f
ikik

f

un

(2.7)

Where the integration in the last integral is 
extended over the interior of the surface f.

Hence, the work done on an infinitesimal piece 
of matter of volume   is valid as:
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k

iki

x
u

W
)(

                                     (2.8)

Moreover, (2.8) must be equal to the increase 
per unit time of the energy inside :

   Wh
t

)(
d
d

                                              (2.9)

where h is the total energy density, including the 
elastic energy and denotes the substantial time 
derivative.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                              
Eq. (2.9) is valid as:
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t
h

h
t

(2.10)

which leads to the relation:

0)( ikik
k

uhu
xt

h
                               (2.11)

So, the total energy flow is valid as:

                                                                                                              )(uhus                                                     (2.12)

Where )(u is a space vector with 

components ikik u)(u .

Hence, the total momentum density can be 
written as:

22

)(
cc

uusg                                           (2.13)

Where 2ch is the total mass density, 
including the mass of the elastic energy.
From (2.5) and (2.13) one obtains:

                                   

ikkikiik ugug 0/](([ 2cuu ikki uu                       (2.14)

which shows that the relative stress tensor is not 
symmetrical, in contrast to the absolute stress tensor 
(2.1) which is symmetrical.

In the stationary frame S0 the velocity 00u
and hence, from (2.5), (2.12) and (2.13) one obtains the 
following expressions:

)3,2,1,(00 kikikiikik
                   (2.15)

Beyond the above, the mechanical energy-
momentum tensor satisfies the following relation:

                                                                                                               ikik UhUT 0                                                     (2.16)

where Ui  is the four-velocity of the matter, in the 

Lorentz system and ),0,0,0(0 icU i .

Thus, the following scalar can be formed:

                                                                )( 1
00

44
20002 xhTcUTUcUTU kikikiki      (2.17)

With )( 1
0 xh the invariant rest energy density 

considered as a scalar function of the coordinates (xi) (i
= 1,2,3)   in  S.  (Fig. 2)

By applying further the tensor:
2cUU kiikik                    (2.18)

which satisfies the relations:

0kikiki UU                       (2.19)

then, we can form the following symmetrical tensor:

kimkmiik STS 11                  (2.20)

which is orthogonal to  Ui:

0kikiki USSU                     (2.21)

By combining eqs. (2.16), (2.17) and (2.20) we
obtain:

20 cUUhTS kiikik           (2.22)

Furthermore, in the stationary system S0 one has:

0, 0
4

0
4

00
iiikikik SSS             (2.23)

Eq. (2.22) may also be written as:

ikikik ST                    (2.24)

where:
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kikiik UUcUUh 020           (2.25)

is the kinetic energy-momentum tensor for an elastic 
body and:

200 ch                   (2.26)

is the proper mass density.
Also, let us introduce in every system S the

quantity:

44 UUSS kiikik            (2.27)

which, on account of (2.24) and (2.25) is valid 
as:

44 UUTT kiikik            (2.28)

From (2.1) and (2.2) the three-tensor:

ikikikS 00

in the stationary system is a real symmetrical matrix. The 

corresponding normalized eigenvectors )(0 jh satisfy the 
orthonormality relations:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jej 0)(0)( hh                   (2.29a)
and:

)3,2,1,(0)(0)( jhh ik
j

k
j

i           (2.29b)

The eigenvalues 0
)( jp , the principal stresses, are 

the three roots of the following algebraic equation, 
where   is the unknown:

000
ikikikikS           (2.30)

The matrix 0
ikS may also be written in terms of 

the eigenvalues and eigenvectors as:

0)(0)(0
)(

00 j
k

j
ijikik hhpS            (2.31)

From eqs. (2.23) and (2.31) one obtains the following 

form of the stress four-tensor in So:
0)(0)(0

)(
0 j

k
j

ijik hhpS            (2.32)

Hence, in any system  S we have

)()(0
)(

j
k

j
ijik hhpS                  (2.33)

From (2.24), (2.25), (2.27) and (2.33) we obtain 
the following expressions

)()(0
)(

0 j
k

j
ijkiik hhpUUT         (2.34)

                  

cuihhhpUUSS k
jj

k
j

kjkiikik
)(

4
)()(0

)(44

        
(2.35)

By putting:

),( )(
4

)()( jjj
i hh h                    (2.36)

and introducing the notation ba for the direct product 
of the vectors  a  and  bb,  we may write (2.35) for the 
relative stress tensor    as:                      

                  

3,2,1,)( )()(
4

)()(0
)( jh

c
i

p jjjj
j uhhh

(2.37)

Beyond the above, the triad vectors )( j
ih satisfy 

the tensor relations:

j
i

j
i hh )()(

                                                       (2.38)

ik
j

k
j

i hh )()(
                                                        (2.39)

20)(0)()( )1)(( ujjj huuhh

cih jj 0)()(
4 hu

with:                      
2122 )1(1 cu                 (2.41)

From (2.34) and (2.40) with i = k = 4 we obtain:

2220)(0
)(

2
4

0
44 )( cpUTh j

j hu   (2.42)

In the stationary system, (2.37) reduces to:                          

0)(0)(0
)(

0 jj
jp hh               (2.43)

Thus, from (2.42) we obtain the following 
transformation law for the energy density:
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with  ik  given by (2.18).

If the stationary system S0 for every event point 
is chosen in such a way that the spatial axes in S0 and in 
S have the same orientation, one obtains:

22

200

1 cu
ch

h
uu

                                                                    (2.44)

kiki uu 00 uu

and the mass density:

22

400

1 cu
cuu

         (2.45)

From (2.40) and (2.34) with k = 4, one obtains 
the momentum density g with the components 

icTg ii 4 :                                                  
20222100 )()1( ccuh uuuug

(2.46)
Also, from (2.40) and (2.35) we obtain the 

relative stress tensor:

20200 )1()(/)1)(( uu uuuu
(2.47)

420 )1())(( uuuuu

In the special case  u = (u,0,0),  where the 
notation of the matter at the point considered is parallel 
to the x1-axis (see Figs.1 and 2), the transformation 
equations (2.44), (2.46) and (2.47) reduce to:

20
112

2
0

c
u

hh

u
c

g x 2

0
1102

1 (2.48)
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and the relative stress tensor:

0
33

0
32

0
31

0
23

0
22

0
21

0
13

0
12

0
11

333231

232221

131211

1

1
(2.49)

where   is given by (2.41). Finally, as it could 
be easily seen the relative stress tensor is not 
symmetrical, in contrast to the absolute stress tensor 
which is symmetrical.

III. ELASTIC STRESS ANALYSIS FOR 

STATIONARY FRAMES AND AIRFRAMES

Let us consider the stationary frame of Fig. 1 
with 1 the portion of the boundary of the body on which 
displacements are presented, 2 the surface of the body 
on which the force tractions are employed and the 
total surface of the body equal to 1+ 2.

For the principal of virtual displacements, for 
linear elastic problems then the following formula is 
valid: 

2

d)(d)( 0
, kkkkkjjk uppub        (3.1)

Where uk are the virtual displacements, which 

satisfy the homogeneous boundary conditions 0ku   
on  1, bk  the body forces (Fig. 1) and pk the surface 
tractions at the point  k of the body. (Fig. 3)

Beyond the above, (3.1) takes the following 
form if uk do not satisfy the previous conditions on 1:

                     

                  

12

d)(d)(d)( 0
, kkkkkkkkjjk puuuppub

                               (3.2)

where 0
jkjk np are the surface tractions corresponding to the uk  system. By integrating (3.2) follows:

112

d)(dddd 0
kkkkkkkjkjkkk puuupupub

                                       
(3.3)

in which jk are the strains.
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By a second integration (3.3) reduces to:
                                        

2112

dddd

dd 0
,

kkkkkkkk

kjjkkk

pupuupup

uub
(3.4)

Furthermore, a fundamental solution should be 
found, satisfying the equilibrium equations, of the 
following type:

00
,

i
ljjk                            (3.5)

Where i
l is the Dirac delta function which 

represents a unit load at i  in the l  direction.
The fundamental solution for a three-

dimensional isotropic body is: [31]

kl
lklk x

r
x
r

v
rvG

u )43(
)1(16

1*

kl
lklk x

r
x
r

v
n
r

rv
p 3)21(

)1(8
1

2
*

                                                                                    (3.6)

l
k

k
l

n
x
r

n
x
r

v)21(

where  G  is the shear modulus,  v  Poisson’s 
ratio,  n  the normal to the surface of the body, lk
Kronecker’s delta,  r  the distance from the point of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

application of the load to the point under consideration 
and nj  the direction cosines (Fig.3).

The displacements at a point are given by the 
formula:

ddd bupuupu i                   (3.7)

Hence, (3.7) takes the following form for the “l” 
component:

                                                                     

ddd lkkklkklk
i
l ubuppuu      (3.8)

By differentiating  u  at the internal points, one 
obtains the stress-tensor for an isotropic medium:
     

i

j

j

i

l

l
ijij x

u

x
u

G
x
u

v
Gv

21
20                (3.9)

Also, after carrying out the differentiation we have:

d
21

20
k

i

jk

j

ik

l

lk
ijij p

x

u

x
u

G
x
u

v
Gv

d
21

2
k

i

jk

j

ik

l

lk
ij b

x

u

x
u

G
x
u

v
Gv

(3.10)

d
21

2
k

i

jk

j

ik

l

lk
ij u

x

p

x
p

G
x
p

v
Gv

Eq. (3.10) can be further written as following:
              

ddd0
kkijkkijkkijij bDuSpD

(3.11)

Where the third order tensor components Dkij 
and Skij are:

                  

kjikijikjjkikij rrrrrrv
rv

D ...,,,2 3)21(
)1(8

1

(3.12)

kjiijkjikkijkij rrrrrvrv
n
r

rv
G

S ,,,,,,3 5)()21(3
)1(4

(3.13)

ijkjkiikjjikkijkji nvnnrrnvrrnrrnv )41()3)(21()(3 ,,,,,,

whith:
i

i x
r

r,    

Finally, because of eqs (2.49) and (3.11) by 
considering the moving system  S  of Fig. 2, then the 
stress-tensor reduces to the following form:
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0
1111

0
1212

0
1313

0
2121

1

0
2222

(3.14)

0
2323

0
3131

1

0
3232

0
3333

Where  0
ij   are given by. (3.11) to (3.13).

The following Table 1 shows the values of    as 
given by (2.41) for some arbitrary values of the velocity  
u  of the moving aerospace structure:
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Velocity  u 1 1 2 2u c Velocity  u 1 1 2 2u c

50,000 km/h 1.000000001    0.800c    1.666666667
100,000 km/h 1.000000004    0.900c    2.294157339
200,000 km/h 1.000000017    0.950c    3.202563076
500,000 km/h 1.000000107    0.990c    7.088812050

km/h 1.000000429    0.999c    22.36627204
km/h 1.000042870     0.9999c     70.71244596
km/h 1.004314456     0.99999c     223.6073568
km/h 1.017600788     0.999999c     707.1067812

         c/3 1.060660172     0.9999999c     2236.067978
         c/2 1.154700538     0.99999999c     7071.067812
        2c/3 1.341640786     0.999999999c     22360.67978
        3c/4 1.511857892 C     

From the above Table follows that for small 
velocities 50,000 km/h to 200,000 km/h, the absolute and 
the relative stress tensor are nearly the same. On the 
other hand, for bigger velocities like c/3, c/2 or 3c/4 (c = 
speed of light), the variable takes values more than the 
unit and thus, relative stress tensor is very different from 
the absolute one. Finally, for values of the velocity of the 
moving structure near the speed of light, the variable 
takes bigger values, while when the velocity is equal to 
the speed of light, then tends to the infinity.

The Singular Integral Operators Method 
(S.I.O.M.) as was proposed by E.G.Ladopoulos [4], [8], 
[9], [11], [12], [13], [15] and E.G.Ladopoulos et all [22] 
will be used for the numerical evaluation of the stress 
tensor (3.11), for every specific case. 

IV. CONCLUSIONS

In the present investigation in the area of 
aeronautics technologies the theory of “Relativistic 
Elasticity” has been introduced and applied for the 
design of a new generation large aircraft with turbojet 
engines and speeds in the range of 50,000 km/h. Such 
a design and construction of the new generation aircraft 
will be applied to an increased market share of 
International Aeronautical Industries. Furthermore, the 
theory of “Relativistic Elasticity” has been applied for the 
design of the next generation spacecrafts moving with 
very high speeds, even approaching the speed of light, 
as the target of the International Space Agencies (ESA, 
NASA, etc.) is to achieve such spacecrafts in the future. 
The future investigation concerns to the determination of 
the proper composite materials for the construction of 
the next generation spacecfracts, as usual composite 
solids are not proper for such a construction.

The theory of “Relativistic Elasticity” and the 
“Universal Equation of Elasticity” show that there is a 
considerable difference between the absolute stress 
tensor of the airframe even in the range of speeds of 

50,000 km/h. For bigger speeds the difference between 
the two stress tensors is very much increased. 
“Relativistic Mechanics” is a combination of the theories 
of "Classical Elasticity" and "Special Relativity".  
For the structural design of the next generation aircrafts 
and spacecrafts will be used the stress tensor of the 
airframe in combination to the singular integral 
equations. Such a stress tensor is reduced to the 
solution of a multidimensional singular integral equation 
and for its numerical evaluation will be used the Singular 
Integral Operators Method (S.I.O.M.).
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Figure Captions

Figure 1 : The state of stress 0
ik in the stationary 

system.
Figure 2 : The state of stress 0

ik in the stationary 
system  OS and  ik in the airframe system S, with 
velocity u parallel to the  1x - axis.
Figure 3 : The stationary system OS .
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Figure 2
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