
© 2012 Ritu Chhabra & Dr. Vandana Nath.This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of researches in engineering

Electrical and electronics engineering

Volume 12 Issue 4 Version 1.0 March 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
 Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Comparative Study of Bloom Filter Architectures

By

Ritu Chhabra

& Dr. Vandana Nath

Indra Gandhi Institute of Technology, IPU, Delhi

Abstract -

Hardware based virus protection systems are required for identifying the

malicious
content and further removing it from network streams. Network Intrusion Detection System(NIDS)
is needed to protect the end user machines from threats. An effective NIDS is therefore a network
security system capable of protecting the end user machines well before a threat affects.NIDS
requires a space efficient data base for detection of threats in high speed conditions. Bloom
Filters are one of the security filters that consume significant power to detect and then filter out
malicious content. A Bloom filter is a space efficient randomized data structure for representing a
set in order to support membership queries. The aim of this paper is to compare the different
architectures of Bloom filter like Standard Bloom filter, pipelined bloom filter,

counting Bloom filter
and parallel processing architecture of bloom filter in terms of their merits and demerits by using
algorithmic & architectural techniques.

Keywords : Bloom filters, network intrusion detection, universal hash function, FPR (False positive
rate)

GJCST Classification : C.2.0

Comparative Study of BloomFilter Architectures

Strictly as per the compliance and regulations of:

Comparative Study of Bloom Filter Architectures

AAbstract

-

Hardware based virus protection systems are
required for identifying the malicious content and further
removing it from network streams. Network Intrusion Detection
System(NIDS) is needed to protect the end user machines
from threats. An effective NIDS is therefore a network security
system capable of protecting the end user machines well
before a threat affects.NIDS requires a space efficient data
base for detection of threats in high speed conditions. Bloom

Filters are one of the security filters that consume significant
power to detect and then filter out malicious content. A Bloom
filter is a space efficient randomized data structure for
representing a set in order to support membership queries.
The aim of

this paper is to compare the different architectures
of Bloom filter like Standard Bloom filter, pipelined bloom filter,
counting Bloom filter and parallel processing architecture of
bloom filter in terms of their merits and demerits by using
algorithmic & architectural techniques.

Keywords

:

Bloom filters, network intrusion detection,
universal hash function, FPR (False positive rate)

I.

INTRODUCTION

s the usage of portable devices continues to
increase, more and more user applications
catering to these device platforms are being

developed. Also more often than not such devices are
connected to one or more communications networks
and must process a significant amount of incoming
data. It is therefore becoming increasingly essential to
secure these devices from malware of all kinds. The
traditional approach for solving this problem on desktop
computers is to provide for specialized antivirus
software, firewall software and more recently anti-
spyware software etc. However as opposed to a
desktop computer the limited amount of computational
power packed into a small footprint portable device
precludes the use of resource intensive security
software. It is therefore necessary to provide for
alternate means to perform these functions on a small
footprint device. Central to the ability to detect a
malicious piece of code, a malicious packet in a data
stream etc. is the ability to quickly determine if a given
string of tokens belongs to a dictionary of known
signatures. If we think of this dictionary of known
signatures as a set, we have essentially reduced the
problem of detecting malware to a problem of resolving
set membership [1]. In this paper we give a recent
survey on different types of bloom filter used for network
Intrusion Detection system to benefit the research
community to analyze and develop an efficient Bloom

Filter which can have a prominent role in Network
security, each having its own merits and demerits. The
details of standard Bloom filter, pipelined Bloom filter,
parallel processing bloom filter, counting Bloom filter is
explained below. This paper also present the hardware
architectures for the implementation of different Bloom
filters. A Bloom Filter is a data structure that stores a
given set of signatures by computing multiple hash
functions on each member of the set and testing strings
for membership of that set[3]. It acts as hardware
antivirus device and connected with the CPU to remove
the malicious input data. It consists of a set of hash
functions, a hash function buffer to store hash results
temporarily, a look up array to signify hash values and a
decision component made of an AND to test the
membership of testing string as shown in Fig.1.

Fig.1 : Block Diagram

II. STANDARD BLOOM FILTER

ARCHITECTURE

Standard Bloom filter is an important and widely
used tool for supporting efficient query services in
networking because of its ability to represent a set of
items by using a bit array with several independent hash
function[6].Bloom filter provide an effective tool for
saving the space when space is at a premium. For
pattern matching Bloom filters are used. They are
hashed based structures which have a certain degree of
accuracy for considerable savings in memory. Two
basic operations are defined for Bloom Filter. First is
programming for programming the look up array using
hash functions of strings in data set and second is
testing for checking the membership of test string[2].

a) Programming
Bloom Filter represents the set of n-signatures

X= {X1, X2, X3…..… Xn}in an m-bit array. The elements
in this array are set to ‘0’ before programming. Each
signature is of b bits and is hashed k-times by
independent hash functions H1, H2, H3………Hk. It is
assumed that each hash function maps uniformly to a
random number in range {0, 1, 2……..m-1} where m
defines the number of bits in look up array as shown in

A

G
lo
ba

l
Jo

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II
 I
ss
ue

 vv vvI
V

V
er
sio

n
I

5

(
DDDD

)
F

 © 2012 Global Journals Inc. (US)

Fig. 2. The random number describing hash function
value indicates a bit location in m-bit look up array,

20

12
 M
ar
ch

Author : Department of Electronics & Communication Engineering,
Indra Gandhi Institute of Technology, IPU, Delhi.
E-mail : Chhabra_ritu2006@yahoo.co.in

Ritu Chhabra & Dr. Vandana Nath

which is then set to ‘1’. A particular bit location in m-bit
look up array can be set to 1 more than once[2,3].

Fig. 2 :

Programming of m-bit array in Bloom Filter

i. Hash Function
A class of universal hash functions described

here found to be suitable for hardware implementation.
Following is a description of how this hash matrix is
calculated [2,3,7].

Given dataset of inputs X= {X1, X2, X3………Xn}
Each input is of b bits Xj = {x1, x2, x3…………xb}

 ith hash function over string Xj is given in eqn. (2.1)

1 1 2 2(X) . ^ . ^ ^ . i j i i ib bH d x d x d x (2.1)

Hi (X j) is the ith hash function of jth input string
of input set

ijd is a random coefficient ranging 1 to m

jx ’s are the bits in particular input string

Where ‘.’ is a bitwise AND operator, i.e.

, 1

0, .
ij i

ij id if x
otherwised x

(2.2)

‘^’

is a bitwise XOR operator.

Note that the hash value can be out of the

range [0 . . .

m

1] if m

is not a power of 2. Hence, m

must be a power of 2. Computation of a hash function is
shown in Fig. 3

Fig. 3 :

Computation of Hash Function

b) Testing
In testing phase a string is tested for

membership of programmed Bloom Filter. The test
string ts, is hashed k- times as before. If all the hash
values point to the bit locations that are set to ‘1’ then
this indicates that test string may be member of the set
with a certain probability (false positive probability)
which is called as match. If any one of the hash values
points to a bit location that is set to ‘0’ then the test
string is definitely not a member of the set and is called
as mismatch. The testing phase of Bloom filter is shown
in Fig 4.

Comparative Study of Bloom Filter Architectures
G
lo
ba

l
Jo

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II
 I
ss
ue

 vv vvI
V

V
e r
sio

n
I

6

(
DDDD

)
F

© 2012 Global Journals Inc. (US)

20

12
 M
ar
ch

Fig.4 :

Testing in Bloom Filter

III. PIPELINED BLOOM FILTER

In some application such as network intrusion
detection due to very low rate of malicious traffic there is
no need to compute all the hash functions to get a result
of non membership. To exploit this pipelined
architecture is intruduced. Pipelined architecture of
bloom filter consists of several group of hash function
that are utilized in different stages.The first stage always
compute the hash values. The second and further
stages are used only if there is a match in the previous
stage[3].

Advantage of Pipelined Bloom Filter
The advantage of using a pipelined Bloom filter

is if the first stage pruduces a mismatch there is no
need to use the second satge in order to decide
whether the input string is a member of signature set
because a bloom filter never pruduces a false nagatives.
This saves the power consumed by pipelined bloom
filter as compared to the standard bloom filter.

Draw Back of pipelined Bloom filter

Power saving ratio diminishes when there are
high no of matches in the first stage and second stage
is utilized more.To remove this problem we use fully
pipelined architecture of Bloom filter[4].

a)

Fully Pipelined Architecture of Bloom Filter

In fully pipelined Architecture number of stages
equals to the number of hash functions .Each stage has
only one hash function.

Programming Phase is same as
in case of regular Bloom Filter. In query phase, test
string is progressed to next stage only when a previous
hash function produces a match. Fully pipelined
architecture of bloom filter is shown

in fig 5.

 Fig.5 :

Fully pipelined architecture of bloom Filter

 Advantage of Fully pipelined Architecture

 Pipelined architecture of bloom filter minimizes
the false positive probability because first stage utilize
more no of hash function increases the probability of
mismatch thus

second stage is not utilized but more no
of hash function consume the more power which
becomes the drawback of this architecture. Hence fully
pipelined architecture remove this drawback as each of
its stage has only one hash function. Fully pipelined
architecture has the same no of hash function as the
regular bloom filter hence its false positive probability is
same as the regular bloom filter[3].

IV.

PARALLEL PROCESSING ARCHITECTURE

 A

standard

bloom filter architecture can
effectively represent the items with a single attribute but
it cannot support the representation and querying of

Comparative Study of Bloom Filter Architectures

G
lo
ba

l
Jo

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II
 I
ss
ue

 vv vvI
V

V
er
sio

n
I

7

(
DDDD

)
F

 © 2012 Global Journals Inc. (US)

items that have multiple attributes. To allow the
operation on multi attribute items we proposed a simple
structure called Parallel Bloom filter [5] .In this

20

12
 M
ar
ch

architecture a number of testing strings inputs can be
tested at the same time. Let test string inputs be ts1, ts2,
ts3………………………tsL.

Each test string is a b bit long
.Hash values for all of the test strings are tested by
checking particular bit locations in m bit look up array as
in case of regular bloom filter. Bit location values in look
up array are ANDED separately for different hash values
of different test string. Parallel processing architecture of
bloom

filter is shown in fig 6.

Fig. 6 :

Parallel Processing Architecture

V. COUNTING BLOOM FILTER

One property of Bloom filter is that it is not
possible to delete a member stored into the filter.
Deleting a particular entry requires that the
corresponding k hashed bits in the bit vector be set to
zero. This could disturb other members programmed
into the filter which hash to any of these bits. In order to
solve this problem, the idea of the Counting Bloom
Filters was proposed in. A Counting Bloom filter
maintains a vector to counters corresponding to each bit
in the bit-vector. Whenever a member is added to or
deleted from the filter, the counters corresponding to the
k hash values are incremented or decremented
respectively. When a counter changes from 0 to 1, the
corresponding bit in the bit-vector is cleared. It is
important to note that the counters are changed only
during addition and deletion of strings in a Bloom filter.
For applications like network intrusion detection, these
updates are relatively less frequent than the actual query
process itself [6]. Architecture of counting bloom filter is
shown in fig. 7

Fig.7

:

Counting Bloom Filter

VI. CONCLUSION

A Bloom Filter can be used in variety of Network
applications. Different architectures of Bloom filter have
been described in terms of merits and demerits.
Pipelined architecture of bloom filter minimizes the false
positive probability because first stage utilize more
number of hash function increases the probability of
mismatch thus second stage is not utilized but more
number of hash function consume the more power
which becomes the drawback of this architecture.
Hence fully pipelined architecture remove this drawback
as each of its stage has only one hash function.counting
bloom filter remove the problem of deleting a member
stored in filter.

1. Kaya and T. Kocak, “A low power lookup technique

for multi-hashing network applications,” in Proc.
IEEE Annual Symp. on VLSI (ISVLSI), Karlsruhe, pp.
920-926 Germany, 2006.

2. Ilhan Kaya and Taskin Kocak , “ Low power Bloom
filter architecture for deep packet inspection, ”, IEEE
Commun. Lett., vol.10,no.3, pp.210-212, 2006.

3. Michael Paynter and Taskin Kocak,”Fully Pipelined
Bloom Filter Architecture”, IEEE Communications
Letters Vol.12 No. 11, pp. 855-857, November 2008.

4. Mahmood Ahmadi & Stephan Wong” K-stage
Bloom Filter Architecture”, International conference
on Computer science and Engg.,2009.

5. Bin Xio & YuHua “using Parallel Bloom Filters for
multiattribute Representation on Network
Services”IEEE Transaction on Parallel and
Distributed Systems,vol.21,n0.1, January 2010.

6. K.saravanam,Dr. .A. Senthil Kumar, J.S Dolian,”A
Recent Survey on Bloom Filters in Network Intrusion
Detection Systems” International Journal on
Computer science and Engg. Vol 3 No. 3 Mar 2011.

Comparative Study of Bloom Filter Architectures
G
lo
ba

l
Jo

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II
 I
ss
ue

 vv vvI
V

V
e r
sio

n
I

8

(
DDDD

)
F

© 2012 Global Journals Inc. (US)

References Références Referencias

7. B. Bloom, “Space/time trade-offs in hash coding
with allowable errors,” Commun. ACM, vol. 13, no.
7, pp.422-426, 1970.

20

12
 M
ar
ch

8.

S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull,
and J. W. Lockwood, “Deep packet inspection using
parallel Bloom filters,” IEEE Micro, vol. 24, no. 1, pp.
52-61, 2004.

9.

Ilhan Kaya and Taskin Kocak ,

“ Increasing the
Power Efficiency of Bloom Filters for Network String
Matching”, in PProc.IEEE International Symposium on
VLSI , pp. 1585-1589, 2006.

Comparative Study of Bloom Filter Architectures

G
lo
ba

l
Jo

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II
 I
ss
ue

 vv vvI
V

V
er
sio

n
I

9

(
DDDD

)
F

 © 2012 Global Journals Inc. (US)

20

12
 M
ar
ch

	Comparative Study of Bloom Filter Architectur
	Authors

	Keywords
	I. INTRODUCTION
	II. STANDARD BLOOM FILTERARCHITECTURE
	a) Programming
	b) Testing

	III. PIPELINED BLOOM FILTER
	a) Fully Pipelined Architecture of Bloom Filter

	IV. PARALLEL PROCESSING ARCHITECTURE
	V. COUNTING BLOOM FILTER
	VI. CONCLUSION
	References Références Referencias

