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I.

 

INTRODUCTION

 
n recent years, fractional differential equations have 
attracted many researchers [7-9] due to their very 
important applications in Physics, Science and 

Engineering such as damping law, rheology, diffusion 
process, description of fractional random walk and so 
on. Most fractional differential equations do not have 
exact solutions, so approximation and numerical 
techniques must be used, such as Laplace transform 
method [10], Adomian decomposition method 
[6,11,12], Variational iteration method [13,14], 
Homotopy perturbation method [15,16], Hamotopy 
analysis method [1,17,18] and so on. The homotopy 
analysis method (HAM)

 

was first proposed by Liao [1] in 
his Ph.D. Thesis. This method (HAM) given in Liao [17] 
also provides a systematic and an effective procedure 
for explicit and numerical solutions of a wide and 
general class of differential equations system 
representing real physical and engineering problems.

 

In this paper, the homotopy analysis method 
(HAM) Liao [1] is applied to solve multi-order fractional 
differential equations studied by Diethelm and Ford [2]. 
We also present an algorithm to convert the multi-order 
fractional differential equation into a system of fractional 
differential equations without putting any of the 

restrictions. This algorithm is valid in the most general 
case and yields fewer number of equations in a system 
compared to those in Diethelm-Ford algorithm. In last 
the solutions of the system of FDE have been obtained 
by applying the Homotopy analysis method.

 
II.

 
SOME BASIC DEFINITIONS

 Definition 2.1: 
 A real function F(x), x > 0

 
is said to be 

 
in 

 
space   

                  is there exists a real number p ( >  
 
) such 

that F(x) = xp

 
F1(x)

 
where F1(x)   c[0,   ]

 
and it is said to 

be in the space                                          .
 

Definition 2.2:
  

The Riemann-Liouville fractional integral 
operator of order 

         
of a function            

defined as

 
 
 

 

(1)

 
 
 
 

Properties of the operator Jα

 

can be found in 
[10,19] we mentioned only the following 

 
 
 
 
 
 

(2)

 
 
 
 
  Definition 2.3 : 

 The Fractional derivative of F(x) in the Caputo sense is defined as

 
 

  
(3) 

 
 
For 

 
 

(4) 

 
Caputo’s fractional derivative has a useful property [19] 

 
(5)  
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For the Caputo’s derivative
 

 
 
 

(6) 
 
 
 
 

(7) 

 
 
 

Caputo’s fractional derivative is linear operator, similar to integer order derivative

 
 

(8) 

 where a and b are constants. Also this operator satisfies the so-called Leibnitz rule. 
 

 
(9)  

 
For n to be the smallest integer that exceeds  , the Caputo space fractional derivative operator of order α > 0 

is defined as 
  

 

(10) 

 
 

For the purpose of this article, the Caputo’s definition of fractional differentiation will be used. 

 

Definition 2.4 :

 

The Mittag-Leffler function Eα

 

(z)

 

with α

 

> 0

 

is defined the following series representation valid 
in the whole complex plane [3] .

 
 
 
 
 
 

Lemma 2.5.

  

Diethelm and Ford [4]. Let Y(t                  

 

(o, t) for some T > 0

 

and          and let q           IN be such that 
0 < q < k then

 
 

III.

 

ALGORITHM TO CONVERT THE MULTI-ORDER FDE INTO A SYSTEM OF FDE

 

Let the given fractional differential equation is 

 
 

(11) 

 
 

Subject to the initial conditions 

 
 

(12)

  

where                                                                  

 

for alli = 1,2,…,k and       assume that 

 

In Daftardor-Gejji and Jafari [5], Jafari, Das and 
Tajadodi [6] it was proved that the FDE (11) can be 
represented as a system of FDE, without any additional 
restrictions mentioned in equation (2). Here is above 
mentioned approach. Let us define 

 
 

then 

 
 
 

(13) 

 

Here two cases arise 

 

Case (i)

 

: If                                 then define 

 
 

(14) 
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If                               

 

then define

 
 
 

 
 

 

(16)

 
 

and continuing similarly one can convert the initial value problem (11)

 

into a system of FDE.

   
 

The following example will illustrate the method. Consider

 
 
 

(17)

 
 

where

  
 

(18)

  

This initial value problem can be viewed as the following system

 

of FDE.

  
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

(19)

  

This algorithm is valid in the most general case, because we do not impose any of the restriction on α

 

and 
nℓ

 

as mentioned in equation (12). 

 

IV.

 

BASIC IDEA OF HAM AND A SYSTEM OF FDE

 

We can present the multi-order equation (11) as system of fractional differential equations:

  
 
 
 
 

(20) 
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Case (ii) : Consider then define 

(15) 
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where           

 

denotes an auxiliary parameter,          is an auxiliary function,         

  

is an embedding 

parameter,       

 

is initial guess of 
      

and      

 

   

 

unknown function of independent variables x

 

and q. 

 
 

Obviously, when q = 0

 

and q = 1

 

it holds

  
 
 

(22)

 
  

Thus as q increases from 0 to 1 the solution 
       

 

varies from the initial guess      

 

to the solution

      

   

Expanding in Taylor’s series with respect to q, we have 

 
 

(23)

 
 

where 

 
 
 

(24) 

 
 
 

If the auxiliary linear operator, initial guess, the auxiliary parameters   

 

and the auxiliary function are so properly 
chosen the series (23) converges at q = 1, then 

 
 
 

(25) 

 
 

Define the vector 

 
 

(26) 

 
 

Differentiating equation (21) m times with respect to q and then putting setting q = 0

 

and finally dividing them 
by m! we obtain the mth

 

order deformation equation 

 
 
 
 
 

(27) 

 

where 
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According to the HAM, we construct the so-called zeroth order deformation equations 

(21)
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(30) 

 
 

The m-th order deformation equations are linear and thus can be easily solved. We have 

 
 

  

(31) 

 
 

when 

 

M

 

        

, we get an accurate approximation of original equation (11).

 
 

V.

 

TEST EXAMPLES

 

Example 1. 

 
 

(32) 

 
 

with the initial conditions 

 
 

(33)

 
  

In view of the discussion in the last section the 
equation (32) can be viewed as the following system of 
FDE 

 
 

then 

 
 

and 

 
 
 

Using equation ( ), we get the following scheme: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

and hence 

 
 
 

In view of above terms, we find y1(x) = x3, y2(x) = 
0 so

 

y(x) x3

 

is the required solution of the given 
equation. 

 

Example 2:

 

Consider the following initial value problem 
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(28)

and

(29)

Applying Jαl the inverse operator         of on both sides of equation (27), we have 
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with the initial conditions 

1(0)y'y(0) (35) 
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and hence 

 
 

In view of above, we get the exact solution y(x) =1+x.

  

VI.

 

CONCLUSION

 

This paper deals with the approximate solution 
of a class of multi-order fractional differential equations 
by Homotopy analysis method. Thus it has been 
demonstrated that Homotopy analysis method proves 
useful in solving linear as well as non-linear multi-order 
fractional differential equation by reducing them into a 
system of fractional differential equations.
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