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AAbstract - In linear quadratic previewed control, strictly proper 
systems are used for tracking performance by the feedforward 
control proportional to the measurable exogenous input. 
However, state space models that employ sensors to measure 
exogenous inputs are sometimes biproper. A classical 
example for biproper system is a small aircraft regulation in 
cruise condition where the gust inputs are measured but the 
ride quality is deteriorated. For such systems, the previewed 
control with a biproper system is required. In this paper, the 
procedure for strictly proper system is extended and a 
modified Riccati matrix differential equation for biproper 
system is presented.   

 
I. INTRODUCTION 

 
n linear quadratic previewed control, tracking 
performance by the feedforward control proportional 
to an exogenous input is well known [1-5]. The state 

space model in these problems incorporates a strictly 
proper system. However, models that employ sensors to 
measure exogenous inputs are sometimes biproper. A 
classical example is a small aircraft regulation in cruise 
condition wherein the normal acceleration is regulated 
for a smooth ride quality in the presence of gust inputs. 
For such systems, previewed control for biproper 
system is required. In this paper, the procedure for 
strictly proper system in Ref. 1 is extended and a 
modified Riccati matrix differential equation for biproper 
system is studied further.  

 
There is substantial progress in gust alleviation 

[6,7] and in structural control problems with 
accelerometers [8] that are biproper systems. Yet, 
especially in gust alleviation, investments for forward-
looking sensor have been made to measure the 
presence of gust ahead of a flight path [9]. We are 
required to use the previewed measurements and 
restore the performance in the time windows of gust 
using a feedforward control law. Therefore, linear 
quadratic previewed (LQP) control for biproper systems 
is considered.  In normal acceleration regulation, the 
inner loop controller is assumed fixed. Thus, the 
feedforward actions linear to the measurements of 
exogenous inputs are considered in simulation.    

 
It is possible to convert a biproper system into a 

strictly proper system and develop a  LQP control  within 
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the framework of strictly proper system. To this end, 
consider a scalar differential equation with respect to 
time, 

)()()(
)()()(

tdutnty
tbutantn  

 
The non-zero constant ‘d ’ defines a biproper system. 
With an actuator model, 

( ) ( ) ( )cu t u t g u t , 

the augmented system without the time variable in 
arguments becomes, 

 
0

( )
0

1 .

c

n a b n
u t

u u g

n
y d

u

 

 
By defining a command input ( )cu t , clearly the 

problem converts itself into a strictly proper system. 
However, the state feedback control problem 
simultaneously modifies itself into an output feedback 
problem. Thus a solution matrix to the Riccati differential 
equation (RDE) is not always direct as in the case of a 
state feedback system. In fact, a steady state solution 
using the algebraic Riccati equation itself calls for 
parameter optimization [10,11].   

In Section 2, modified RDE and its symmetric 
matrices are presented. Section 3 provides stability and 
optimality conditions to solve the RDE. In Section 4, a 
scalar example is used to compare the tracking 
performance of biproper and strictly proper systems. 
Conclusions are presented in Section 5. 
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II. MAIN RESULTS 

 
In deriving an optimal control law 

*( )u t , consider the following problem statement. 

                                                     
u

Minimize  ( , )J x u    (1) 

                         subject to the following constraints, 

         ( ) ( ) ( ) ( )x t Ax t Bu t Ew t        (2) 

        ( ) ( ) ( ) ( )y t Cx t Du t Fw t       (3) 

The state, input and output vectors are represented by nx R , mu R  and ry R , respectively. The 

disturbance input vector is given by pw R . The compatible matrices A, B, C, D and F are assumed to be time 
invariant. Define the cost function J, 

0

( ), ( ) { ( ), ( ) ( ), ( ) }
T

t

J e T Qe T e t Qe t u t Ru t dt   (4) 

Where, 1 2,v v  is the inner product for the compatible vectors 1v  and 2v . The error vector is 

( ) ( ) ( )e t z t y t  and ( )z t  is the reference inputs. The Hamiltonian with costate vector ( )p t  is, 

1 1
2 2( ), ( ) ( ), ( )

       ( ), ( ) ( ), ( ) ( ), ( )
H e t Qe t u t Ru t

Ax t p t Bu t p t Ew t p t
  (5) 

Following the necessary conditions for optimality, 

0  &   ( )
( ) ( )
H H

p t
u t x t

 

We have the control law as a function of the costate vector, 

1( ) [ ( )]u R D QD B p D QCx D Q z Fw    (6) 

( )p A p CQDu C QCx C Q z Fw     (7) 

Here (.)  refers the transpose of the vector or matrix (.) . For brevity, the time variable in the arguments is 

suppressed. Since 0Q (positive semidefinite) and 0R  (positive definite), the sufficient condition, 

2

2
ˆ 0,H
R R D QD

u  

for a minimum ( )u t  is met. Rewriting Eqn.(7) 

1 1ˆ ˆ( ) ( )[ ]p A p WR W C QC x C Q WR D Q z Fw ,  (8)  

the matrices W C QD and 1ˆA A BR W are defined. To derive RDE, consider the costate vector ( )p t

p Kx g (9)
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such that the control law in Eqn.(6) modifies to,

 

* 1
0

ˆ( ) { [ ]},   [ , ]u t R Kx B g D Q z Fw t t T .

   

(10)

 

The state feedback gain and the closed loop system matrix are defined as below,

 

K B K W

        

(11)

 

1 1ˆ ˆ [ ].cx A x BR B g Ew BR D Q z Fw

    

(12)

 

Note that in the stability matrix

 

1ˆ( )cA A BR B K , A

 

serves as an open loop matrix. It is important to

 

guarantee that the matrix cA

 

is stable. Consider the time derivative of

 

( )p t

 

in Eqn.

 

(9),

 

1 1

1

ˆ ˆ[ ]
ˆ     [ ]

p K KA KBR B K x KBR B g g

KEw KBR D Q z Fw

    

(13)

 

Equating the coefficients of like terms in Eqn.(7) and

 

(13), the RDE and g -equation for tracking performance are,

 

1 1ˆ ˆK KA A K KBR B K WR W C QC

   

(14)

 

1ˆ[( ) )] [ ]cg A g KB W R D C Q z Fw KEw

   

(15)

 

The boundary conditions for the forward integration are known to be

 

g(T) = 0 and

 

0 0( )K t K . For

 

finite 

duration optimal control problem in time

 

0[ , ]t T , the transversality conditions [1], lead to the

 

following end 

conditions,

 

1 1ˆ( ) [ ]K T S C QC WR W

      

(16)

 

1 1ˆ( ) [ ][ ( ) ( )]g T S C Q WR D Q z T Fw T

    

(17)

 

1ˆS I WR B

 

and W C QD

 

Note that when

 

( ) ( )Fw t z t , the reference signal

 

( )z t

 

is previewed. The optimal control law in

 

Eqn.(10) 
minimizing

 

J

 

can be stated as follows:

 

Control Law: Given the linear time invariant system 

 

( ) ( ) ( ) ( )x t Ax t Bu t Ew t

 

( ) ( ) ( ) ( )y t Cx t Du t Fw t

 

and the desired output ( )z t with error ( ) ( ) ( )e t z t y t . Given the cost functional J   

0

( ), ( ) { ( ), ( ) ( ), ( ) }
T

t

J e T Qe T e t Qe t u t Ru t dt
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Where

 

( )u t

 

is unconstrained, T

 

is specified,

 

R

 

is positive definite, and

 

Q

 

and

 

Q are positive

 

semidefinite. The optimal control exists, is unique, and is given by

 

* 1
0

ˆ( ) { [ ]},   [ , ]u t R Kx B g D Q z Fw t t T .

 

The n

 

by n

 

real, symmetric and positive definite matrix

 

K

 

in

 

K B K W

 

is the solution of the Riccati 
type matrix differential equation in Eqn. (14) with boundary condition in Eqn. (16). The vector ( )g t

 

(with

 

n

 

components) is the solution to the linear vector differential equation in Eqn. (15) with the boundary condition in Eqn. 
(17). The optimal trajectory is the solution of the linear differential equation in Eqn. (12). 

 
 

III.

 

STABILITY AND OPTIMALITY CONDITIONS

 

Consider matrix

 

Ĥ

 

and the sufficient condition

 

ˆ 0H

 

for local optimality, where

 

2 2

2

2 2

2

ˆ
ˆ

H H
Q Wx x uH

W RH H
u x u

.

 

In cases where

 

0D , a positive semidefinite

 

Ĥ

 

is guaranteed by the virtue

 

0Q

 

and

 

0R . In

 

biproper 

systems, however, it is necessary to select quadratic weights

 

0Q

 

and

 

0R

 

such that

 

Ĥ

 

is

 

positive 

semidefinite for a given non-zero

 

W . To derive stability, consider the algebraic Riccati

 

equation,

 

1 1ˆ ˆ0 KA A K KBR B K WR W C QC

 

and its counterpart, the Lyapunov matrix equation,

 

1 1 ˆˆ ˆ( )c cKA A K KBR B K WR W C QC Q .

 

Clearly, stability is guaranteed if

 

ˆ 0Q . Therefore, given

 

ˆ 0R

 

and

 

0Q , it is required to show that

 

ˆ 0Q . 
Consider the feedback part of the control law for stability,

 

1 1ˆ ˆ[ ]   or  u R B K W x R B Kx u W x .

   

(18)

 

To prove ˆ 0Q , let

 

1 1ˆ ˆ ˆ( )x Qx x KBR B K WR W C QC x

 

1 1ˆ ˆ( ) [ ]x KB u R W x x WR W C QC x

1ˆ( )x KBu x KB W R W x x C QCx

x KBu u W x x C QCx

( )u B K W x x C QCx

1ˆ ˆ0    0 and 0u R u x C QCx R Q Q.E.D
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Thus the new symmetric matrices in the algebraic and Lyapunov equations preserve stability and optimality 
conditions.

 

IV.

 

EXAMPLE

 

To illustrate the optimal control of biproper systems, a scalar example is considered.

 

x x u ew
y x du fw

 

Let

 

( ) 1( )z t t

 

and consider the boundary value problem

 

0( 0) 0x t , 1T , sin(60 )w t and

 

( ) ( ) 0k T g T . Eqn.(14) and

 

(15) for

 

( )k t

 

and

 

( )g t

 

with

 

1Q

 

and

 

R r

 

are,

 

2 2

2

2 1
ˆ ˆ

( )( ) [ 1][1 ]
ˆ

ˆ ,   (1 ),   
ˆ ˆ

c

c

k d
k ka

r r
k d d

g a g t fw ekw
r

d k
r r d a a a

r r

 

The optimal control law and the closed loop system are,

 

1[( ) (1 )]
ˆ

1 (1 )
ˆ ˆc

u k d x g d fw
r

d
x a x g fw ew

r r

 

 

In Figure 1, optimal trajectories for biproper (solid lines) and strictly proper (dotted lines) are compared. The 
presence of control input at the output node with a non-zero value for d introduces a steady state error in biproper 
systems. Further the rise time and settling time for strictly proper system is much faster than the biproper system. 
The control input and the solution to the Riccati differential equation are also plotted in Figure 1. 

Figure 1 : Tracking Performance of Typical Biproper System
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V.

 

CONCLUDING REMARKS

 

In this paper, linear quadratic previewed control 
for strictly proper system is extended to biproper 
systems. Modified Riccati differential equation is 
presented. For normal acceleration regulation in a small 
aircraft at time windows of a gust input, the results of 
this paper is extendible to a control configuration where 
the inner loop is fixed and outer loop is used for 
regulation. This aspect of the paper is under 
investigation for medium size aircraft. 
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