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Robust H-infinity (H∞) Stabilization of Uncertain 
Wheeled Mobile Robots  

A.Dolly Mary α, Abraham T. Mathew σ, Jeevamma Jacob ρ 

Abstract - This paper proposes a robust H-infinity control 
design of a single unit differential type Wheeled Mobile Robot.  
Mobile robots are non holonomic systems as their constraint 
equations are not integrable. Considering the constraints and 
combining the kinematics and dynamics of the system, a  
linearized model is obtained. Taking into account the 
exogenous inputs in the form of model uncertainties and 
output disturbances, the augmented plant is formulated. The 
H-infinity controller is designed such that the sensitivity of the 
closed loop system is minimised. The proposed design 
renders a robust controller such that the closed loop system is 
internally stable and the effect of disturbances and model 
uncertainties on some of the outputs is attenuated. Simulation 
results showing asymptotic stability plot, disturbance response 
and Robust Stability and Performance margins are found to be 
satisfactory. 
Keywords : H∞ control, robust control, wheeled mobile 
robots, uncertain systems, Disturbance rejection. 

I. INTRODUCTION 
heeled Mobile Robots (WMR) can be 
considered as an isolated system or as a basic 
unit or a building block of a multi linked 

articulated vehicle. Alternatively, WMR can be 
considered an autonomous vehicle in disguise. The 
development of control strategies for long haul 
articulated vehicles shall begin by benchmarking the 
control methods for a single unit of WMR. Non 
holonomic constraints for control arise out of the 
kinematics and the uncertainty is consequent to the 
nonlinearities and parameter variations. Imperfections in 
the measurements, lead to inaccuracies or noise in the 
measurement output. So, even if we consider a single 
unit of WMR, the control issues evolve as a 
sophisticated problem that needs elaborate treatment. 
These could be the reasons for active research in the 
control, stabilization and tracking of WMR for the last 
several decades. 

Non holonomic property of WMR can be 
attributed to systems using velocity inputs. Such 
systems cannot autonomously produce a velocity which 
is transversal to the axle of their wheels. This limitation 
appears as the non holonomic constraint on the velocity 
of the system. In order to pursue the modeling, 
stabilization and tracking of these systems, it is 
assumed that a wheel has only two degrees of freedom 
with no sideway slip. This assumption which imposes 
non holonomic constraint on the motion of the vehicle is 
called the ideal rolling condition. Unlike robot 
manipulators, their constraint equations are not 

integrable. Thus the coordinates cannot be eliminated 
making the system description with a larger number of 
coordinates than their degrees of freedom. So our 
attempt shall be to design a robust controller for

 
such 

non holonomic WMR systems.
 Various control schemes and analysis had been 

proposed for the WMR system based on the research 
with the model kinematics. In this kinematic framework 
there exists no continuous state feedback for WMR as 
proven by Brockett (1983). Hence research had been 
focused on other control methods like Lyapunov stability 
and Feedback linearization. In ( Godhavn &.Egeland 
1997; Deng &Brady 1993; Sik Shim & Gyeoung Sung 
2003; Saso Blazic 2011) investigations were made on 
the WMR system to design a control that yields 
asymptotic stabilization of the closed loop for these 
kinematic models, in the Lyapunov stability analysis 
framework. The control law achieved global asymptotic 
stability based on the usual requirement for reference 
velocity.

 
A drawback of this method was that the 

stabilizing controllers do not guarantee performance.  
One of the common methods in the design of controllers 
for the WMR, employs the dynamic feedback 
linearization (Giuseppa Oriolo, Alessandra De Luca & 
Marilena Vendittelli

 
2002). The control of non linear WMR 

systems via feedback linearization was achieved, 
provided the feedback is able to cancel out the 
nonlinearities. If so, trajectory tracking and setpoint 
regulation problems can be solved in the case of motion 
control of WMR. But since it is designed in the kinematic 
framework, the controller does not take care of 
uncertainties and input saturations.  Uncertainties in the 
parameters of the system model can invariably affect 
the stability and performance of the closed loop system 
and hence have to be addressed. Uncertainty modeling,  
either structured or unstructured, form an integral part of 
the robust control design. In the research work as in 
(Wenjie Dong 2000; Jinbo WU, Guohua XU 2009; 
Mohammad Ali Sadrnia, and Atiyeh Haji Jafari 2007; 
Doyle 1985) the need of uncertainty modelling was 
stressed and the robust controllers were designed for 
the uncertain systems by adaptive or H-infinity (H∞) 
control. Robust approaches for control design renders a 
fixed controller .

 𝐻𝐻∞
 

has played an important role in the study 
and analysis of control theory, since its original 
formulation in an input output setting (Doyle 1989). It is 
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well known that , though conservative , they provide 
better response in the presence of disturbance than 𝐻𝐻2
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optimal techniques. The control requirement is that the 
response of error to the disturbances with the 
stabilization controller should be brought to less than

 

𝛾𝛾

 

,

 

where 𝛾𝛾

 

is the suboptimal 𝐻𝐻∞

 

limits with 0 < 𝛾𝛾 ≤ 1

 

.   
For the standard 𝐻𝐻∞

  

problem, a controller exists if and 
only if unique positive definite solutions to the two 
Riccati equations exists (John C. Doyle 1989). State 
space formulas can be derived for all controllers such 
that the 𝐻𝐻∞

  

norm of the closed loop transfer function is 
less than γ. Based on the above control criteria,  
investigations on the WMR were carried out as in (Hong 
Chen et al 2009;

 

Carlos De Souza, Minyue Fu & Lihua 
Xie 1993;

 

Zhijian Ji  2006;

 

Wenan Sun and Jun Zhao  
2005) for different preset conditions aiming at robust 
stabilization, performance and tracking. In Hong Chen et 
al (2009) a moving horizon 𝐻𝐻∞

 

control algorithm for 
WMR was computed in presence of external 
disturbances and control constraints. The results 
showed that the 𝐻𝐻∞

  

controller can reduce tracking 
errors with desired performances. A 𝐻𝐻∞

  

control as 
applied to a discrete time systems with time-varying 
uncertainties was synthesised in Carlos De Souza,

 

Minyue Fu & Lihua Xie (1993).The 𝐻𝐻∞

 

  problem was 
converted to a scaled form for quadratic stability 
analysis. In Wenan Sun and Jun Zhao (2005) a sufficient 
condition for hybrid output feedback 𝐻𝐻∞

  

control was 
derived for uncertainties in the state and input matrices. 
The controller satisfied guaranteed cost with 𝐻𝐻∞

  

disturbance attenuation 𝛾𝛾. Thus the above works 
highlights the possibility that robust stability and 
performance measure could be achieved by 𝐻𝐻∞

 

control.

 

In this paper, a robust 𝐻𝐻∞

 

design is addressed 
for the uncertain, linear WMR system, accounting for 
disturbances and model uncertainties. Remaining part 
of the paper is organised as follows. Section II deals 
about the 𝐻𝐻∞

 

problem and its necessary robustness 
criteria for WMR implementation. The robust 𝐻𝐻∞

 

control 
objective and its design procedure are stated. The 
procedure aims at a controller such that the closed loop 
system is internally stable and the effect of disturbance 
inputs on some of the outputs is attenuated.

 

The norm 
of system sensitivity which is the effect of the 
disturbance on the output of the system is to be less 
than unity. In Section III the nominal modelling of WMR 
is carried out by incorporating the kinematics and the 
dynamics of the system. The disturbances along with 
the control input are assumed to act on the system. In 
Section IV, the uncertain WMR plant is modelled 
assuming low frequency disturbance inputs to act on 
the system and outputs.  In Section V the 𝐻𝐻∞   controller 
obtained is evaluated to verify its effectiveness. The 
closed loop response, asymptotic stability plots and 
stability and performance margins are plotted.

 
 

H∞  PROBLEM STATEMENT

 

 

 
  

  

   

 
    

�
𝑧𝑧
𝑦𝑦� = �𝑃𝑃11 𝑃𝑃12

𝑃𝑃21 𝑃𝑃22
� �𝑤𝑤𝑢𝑢�                                   (1)

 

Considering the invariance of the plant P

 

and 
the separability of the variables for the linear setting, the 
system has been partitioned into the state space for as 
given in (2)

 

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴

 

𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑤𝑤(𝑡𝑡) + 𝐵𝐵2𝑢𝑢(𝑡𝑡)             (2a)

 

𝑧𝑧(𝑡𝑡) = 𝐶𝐶1𝑥𝑥(𝑡𝑡) + 𝐷𝐷11𝑤𝑤(𝑡𝑡) + 𝐷𝐷12𝑢𝑢(𝑡𝑡)         (2b)

 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶2𝑥𝑥(𝑡𝑡) + 𝐷𝐷21𝑤𝑤(𝑡𝑡) + 𝐷𝐷22𝑢𝑢(𝑡𝑡) ,        (2c)

 

where   𝑥𝑥

 

∈ 𝑅𝑅𝑛𝑛

 

is the state, 𝑢𝑢

 

∈ 𝑅𝑅𝑟𝑟

 

is the 
control input,  𝑦𝑦

 

∈ 𝑅𝑅𝑚𝑚

 

is the observed output,

 

𝑧𝑧

 

∈ 𝑅𝑅𝑞𝑞

 

is 
the controlled output and 𝑤𝑤

 

∈ 𝑅𝑅𝑝𝑝

 

is the disturbance.

 

•

 

(𝐴𝐴, 𝐵𝐵1)

 

is stabilizable and

 

(𝐴𝐴, 𝐶𝐶1)

 

is detectable.  

 

•

 

(𝐴𝐴, 𝐵𝐵2)

 

is controllable and (𝐴𝐴, 𝐶𝐶2)

 

is observable,

 

The control problem is: with a feedback 
𝑢𝑢 = 𝐾𝐾(𝑠𝑠)𝑦𝑦

 

, find an admissible internally stabilizing 
control K

 

which would be attenuating disturbances such 
that the norm of the stable closed loop system from the 
disturbances to the controlled outputs is less than γ

 

(γ

 

is 
equal to 1 for optimal and slightly greater than 1 for 
suboptimal control).  The control objective is stated in 
the mathematical form in (3)

 

∥ 𝐹𝐹𝑙𝑙(𝑃𝑃, 𝐾𝐾) ∥∞= 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝜔𝜔𝜔𝜔 𝐹𝐹𝑙𝑙(𝑃𝑃, 𝐾𝐾)(𝑗𝑗𝑗𝑗)⁄

  

⁄ < 𝛾𝛾       (3)

 

The H∞

 

solution involves two Hamiltonian 
matrices (Doyle 1989),

 

𝐻𝐻∞: =

 

� 𝐴𝐴 𝛾𝛾−2𝐵𝐵1𝐵𝐵1
′ − 𝐵𝐵1𝐵𝐵1

′

−𝐶𝐶1
′𝐶𝐶1 −𝐴𝐴′ �

 𝐽𝐽∞ ≔

 

� 𝐴𝐴′ 𝛾𝛾−2𝐶𝐶1
′𝐶𝐶1 − 𝐶𝐶2

′ 𝐶𝐶2
−𝐵𝐵1𝐵𝐵1

′ −𝐴𝐴 �

 
Theorem (Doyle 1989):

 

There exists an 
admissible controller such that ‖𝑇𝑇𝑧𝑧𝑧𝑧‖∞ <

 

𝛾𝛾

 

iff the 
following three conditions hold.

 
i.

 

𝐻𝐻∞ ∈ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅𝑅𝑅𝑅𝑅)

 

and 𝑋𝑋∞ ∶= 𝑅𝑅𝑅𝑅𝑅𝑅(𝐻𝐻∞) ≥ 0.

 
ii.

 

𝐽𝐽∞ ∈ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅𝑅𝑅𝑅𝑅)

 

and 𝑌𝑌∞ ∶= 𝑅𝑅𝑅𝑅𝑅𝑅(𝐽𝐽∞) ≥ 0.

 
iii.

 

𝜌𝜌(𝑋𝑋∞𝑌𝑌∞) < 𝛾𝛾2
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II.

The proof of this theorem is seen in (Doyle 
1989). For these conditions being satisfied the 
suboptimal controller is 

The output feedback structure for the proposed 
𝐻𝐻∞ control scheme is shown in Fig. 1. The system 
consists of a linear time invariant augmented system P

which belongs to the class Ρ of uncertain system. P
comprises the nominal model and weighting functions 
corresponding to model uncertainties   and 
disturbances. The inputs of the system are w and u
which represent exogenous and control inputs 
respectively; z and y would represent the controlled and 
measured outputs. Considering the input-output 
relations that are depicted by P, the relation between [z, 
y] and [w, u] could be written as given in (1)

© 2012 Global Journals Inc.  (US)



  

 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠) = �𝐴𝐴
�∞

 

|
𝐹𝐹∞

  

|
−𝑍𝑍∞ 𝐿𝐿∞

0
�                         (4)

 

where 𝐴̂𝐴∞ ≔ 𝐴𝐴 + 𝛾𝛾−2𝐵𝐵1𝐵𝐵1
′ 𝑋𝑋∞ + 𝐵𝐵2𝐹𝐹∞ + 𝑍𝑍∞𝐿𝐿∞𝐶𝐶2

 

𝐹𝐹∞ ≔ −𝐵𝐵2
′ 𝑋𝑋∞

 

, 𝐿𝐿∞ ∶=

 

−𝑌𝑌∞𝐶𝐶2
′

 

, 𝑍𝑍∞ ∶= (𝐼𝐼 − 𝛾𝛾−2𝑌𝑌∞𝑋𝑋∞)−1

 

The resulting closed loop system with a 
feedback 𝑢𝑢 = 𝐾𝐾(𝑠𝑠)

 

𝑦𝑦

 

obtained by Linear Fractional 
Transformation is brought to the form

 

𝑥̇𝑥𝑐𝑐(𝑡𝑡) = 𝐴𝐴𝐶𝐶𝑥𝑥𝑐𝑐(𝑡𝑡) + 𝐵𝐵1𝑤𝑤(𝑡𝑡)              (5)

 

𝑧𝑧(𝑡𝑡) = 𝐶𝐶1𝑥𝑥𝑐𝑐(𝑡𝑡)

 

where 𝑥𝑥𝑐𝑐

 

indicates the states of the closed loop system.

 

Definition:

 

Given a scalar ɣ

 

> 0 , system (5) is 
said to be stable with disturbance attenuation ɣ

 

if it 
satisfies the following conditions

 

1.

 

𝐴𝐴𝐶𝐶

 

is

 

a stable matrix

 

2.

 

The transfer function from disturbance w

 

to the 
controlled output z

 

satisfies,

 

‖𝐶𝐶1(𝑠𝑠𝑠𝑠 − 𝐴𝐴𝐶𝐶)−1𝐵𝐵1‖∞ <

 

𝛾𝛾                        (6)

 
Lemma:

 

Let ɣ

 

> 0 be given.  The system (5) is 
stable with disturbance attenuation 𝛾𝛾

 

if and

 

only if there 
exists a symmetric matrix X∞

 

> 0  such that

 𝐴𝐴𝐶𝐶′ 𝑋𝑋∞ + 𝑋𝑋∞𝐴𝐴𝐶𝐶 + 𝛾𝛾−2𝑋𝑋∞𝐵𝐵1𝐵𝐵1
′ 𝑋𝑋∞ + 𝐶𝐶1

′𝐶𝐶1 < 0       (7)

 Proof:
  Let the Lyapunov function for the system be 

𝑉𝑉(𝑥𝑥𝑐𝑐(𝑡𝑡)) = 𝑥𝑥𝑐𝑐(𝑡𝑡)′𝑋𝑋∞𝑥𝑥𝑐𝑐(𝑡𝑡).Making substitutions from (5) ,
 

𝑉̇𝑉�𝑥𝑥𝑐𝑐(𝑡𝑡)� = 𝑥𝑥𝑐𝑐
′ (𝑡𝑡)[𝐴𝐴𝐶𝐶′𝑋𝑋∞ + 𝑋𝑋∞𝐴𝐴𝐶𝐶]𝑥𝑥𝑐𝑐(𝑡𝑡) +

 
𝑥𝑥𝑐𝑐 ′ (𝑡𝑡)𝑋𝑋∞𝐵𝐵1𝑤𝑤(𝑡𝑡) + 𝑤𝑤(𝑡𝑡)′𝐵𝐵1

′ 𝑋𝑋∞𝑥𝑥𝑐𝑐(𝑡𝑡)
 

Let the performance measure corresponding to 
disturbance attenuation be  

𝐽𝐽 = � [𝑧𝑧(𝑡𝑡)′𝑧𝑧(𝑡𝑡) − 𝛾𝛾2𝑤𝑤(𝑡𝑡)′
∞

0
𝑤𝑤(𝑡𝑡)] 𝑑𝑑𝑑𝑑 

𝐽𝐽 ≤ � [𝑧𝑧(𝑡𝑡)′𝑧𝑧(𝑡𝑡) − 𝛾𝛾2𝑤𝑤(𝑡𝑡)′
∞

0
𝑤𝑤(𝑡𝑡) + 𝑉̇𝑉�𝑥𝑥𝑐𝑐(𝑡𝑡)�] 𝑑𝑑𝑑𝑑 

𝐽𝐽 ≤ � {𝑥𝑥𝑐𝑐 ′ (𝑡𝑡)𝐶𝐶1
′𝐶𝐶1𝑥𝑥𝑐𝑐(𝑡𝑡) − 𝛾𝛾2𝑤𝑤(𝑡𝑡)′

∞

0
𝑤𝑤(𝑡𝑡)

+ 𝑥𝑥𝑐𝑐 ′ (𝑡𝑡)[𝐴𝐴𝐶𝐶′𝑋𝑋∞ + 𝑋𝑋∞𝐴𝐴𝐶𝐶]𝑥𝑥𝑐𝑐(𝑡𝑡)  +
  

𝑥𝑥𝑐𝑐 ′ (𝑡𝑡)𝑋𝑋∞

𝐵𝐵1𝑤𝑤(𝑡𝑡) + 𝑤𝑤(𝑡𝑡)′𝐵𝐵1
′ 𝑋𝑋∞𝑥𝑥𝑐𝑐(𝑡𝑡)}  𝑑𝑑𝑑𝑑  

 

With  

𝑤𝑤(𝑡𝑡)′�𝐵𝐵1
′ 𝑋𝑋∞𝑥𝑥𝑐𝑐(𝑡𝑡)� + (𝐵𝐵1

′ 𝑋𝑋∞𝑥𝑥𝑐𝑐(𝑡𝑡)) ′𝑤𝑤(𝑡𝑡)

≤ 𝛾𝛾2𝑤𝑤(𝑡𝑡)′𝑤𝑤(𝑡𝑡) +
𝑥𝑥𝑐𝑐 ′ (𝑡𝑡)𝑋𝑋∞𝐵𝐵1𝐵𝐵1

′ 𝑋𝑋∞𝑥𝑥𝑐𝑐(𝑡𝑡)
𝛾𝛾2

 

Since 𝐽𝐽 ≤ 0
 
to be satisfied,

 
 

𝐴𝐴𝐶𝐶′ 𝑋𝑋∞ + 𝑋𝑋∞𝐴𝐴𝐶𝐶 + 𝛾𝛾−2𝑋𝑋∞𝐵𝐵1𝐵𝐵1
′ 𝑋𝑋∞ + 𝐶𝐶1

′𝐶𝐶1 < 0

 
III.

 

MODELING OF WMR

 
A schematic of the WMR in the {X-O-Y}

 

coordinate axis is shown in Fig. 2. The mobile robotic 
system consists of two rear wheels (A1-A2)

 

which are 
driving wheels. The driving wheels are driven by two 
independent DC

 

motors which are the actuators of the 
left and right wheels. Along with the driving wheels, there 
is pasive wheel (C). The movement of the WMR

 

is 
brought about by the differential control of velocity of the 
wheels

 

A1

 

and A2. The linear and rotational motions of 
WMR are facilitated by the control of A1

 

and A2. F

 

is the 
projection of mass centre of the robot and P

 

the centre 
of two front wheels of the robot.  lf

  

is the distance 
between point P

 

and point F.   θp

 

is the heading angle of 
the robot. vp

 

is the speed at P.  

 

𝜔𝜔

 

is the angular speed 
of WMR. 

 

Let (𝑥𝑥𝑃𝑃, 𝑦𝑦𝑃𝑃) be the coordinates at P and (𝑥𝑥𝐹𝐹, 𝑦𝑦𝐹𝐹)

 

coordinates at F. The x and y axis speed at P which 
represent the kinematics of the system can be derived 
as in (8).

 
𝑥̇𝑥𝑃𝑃

  

= 𝑣𝑣𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑝𝑝                             (8a)

 
𝑦̇𝑦𝑃𝑃 = 𝑣𝑣𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑝𝑝                             

 

(8b)

 also P and  F can be related as  given in (9).

 𝑥𝑥𝐹𝐹 = 𝑥𝑥𝑝𝑝 − 𝑙𝑙𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑝𝑝                            (9a)

 𝑦𝑦𝐹𝐹 = 𝑦𝑦𝑝𝑝 − 𝑙𝑙𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑝𝑝                            (9b)

 The non holonomic constraint is written in the 
form of (10). This equation is not integrable, so the 
fesible trajectory is limited.

 𝑥̇𝑥𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑃𝑃 − 𝑦̇𝑦𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑃𝑃 − 𝑙𝑙𝑓𝑓𝜃̇𝜃𝑃𝑃 = 0                   (10)

 
Differentiating (9) twice results in (11).

 

 
𝑥̈𝑥𝐹𝐹 = 𝑥̈𝑥𝑃𝑃 + 𝑙𝑙𝑓𝑓𝜔̇𝜔 

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑝𝑝 + 𝑙𝑙𝑓𝑓𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑝𝑝                  (11a)
 

𝑦̈𝑦𝐹𝐹 = 𝑦̈𝑦𝑃𝑃 − 𝑙𝑙𝑓𝑓𝜔̇𝜔 
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑝𝑝 + 𝑙𝑙𝑓𝑓𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑝𝑝                  (11b)

 
where 𝜔𝜔 = 𝑑𝑑𝜃𝜃𝑃𝑃

𝑑𝑑𝑑𝑑  
and 𝜔̇𝜔 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑2𝜃𝜃𝑃𝑃

𝑑𝑑𝑡𝑡2  

Let  T1 and T2 be the  driving torques on left and 
right front wheels of the differential WMR. Then 𝑢𝑢1 =
𝑇𝑇1 + 𝑇𝑇2  ;  𝑢𝑢2 = 𝑇𝑇1 − 𝑇𝑇2 . The dynamics of the WMR are 
represented in (12).The accelerations of the system 
depend not only on the inputs but are acted upon by 
disturbances. Let 𝑢𝑢(𝑡𝑡) = [𝑢𝑢1 𝑢𝑢2]′  be the control input 
vectors, 𝑤𝑤0(𝑡𝑡) = [𝑤𝑤1 𝑤𝑤2]′  the input disturbances  
representing external forces and torques in the direction 
of vp and ω. 

𝑣̇𝑣𝑝𝑝 = 𝛽𝛽1𝑢𝑢1 + 𝛽𝛽3𝑤𝑤1                            (12a)
 

𝜔̇𝜔 = 𝛽𝛽2𝑢𝑢2 + 𝛽𝛽4𝑤𝑤2                             (12b)
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Here 𝛽𝛽1 = 1
𝑟𝑟𝑟𝑟

, 𝛽𝛽2 = 𝑠𝑠
𝑟𝑟𝐼𝐼

, 𝛽𝛽3 = 1
𝑟𝑟

, 𝛽𝛽4 = 1
𝐼𝐼

with    
r representing the radius of the wheel, M  the mass of 
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the WMR, I the

 

moment of  inertia with respect to  the 
centre of mass F of the WMR and 2b the  length of 
wheel axis.

 

The state space equations of the dynamical 
systems can be derived as in Wenping Jaing

 

(2008) by 
the substitution of (12) and derivative of (8) in (11). The 
state variables of the system are taken as 

                   

x=

 

�𝜃𝜃𝑝𝑝

 

𝑥̇𝑥𝐹𝐹

 

𝑦̇𝑦𝐹𝐹

 

𝜃̇𝜃𝑃𝑃�
𝑇𝑇
    angular displacement, x axis speed 

at F, y axis speed at F and angular speed. Table 1. 
shows the nominal values of the WMR parameters. 

 

Table 1 :

  

Parameters of the WMR system

 

Parameter

 

Nominal value

 

r

 

(m)

 

0.105

 

M

 

(kg)

 

25

 

I

 

(kg

 

m2)

 

0.5512

 

2b

 

(m)

 

0.41

 

lf(m)

 

0.09

 

 

Thus the state space representation of the 
nominal open loop system is in the form of (13) 

 

             𝑥̇𝑥 = 𝐴𝐴

 

𝑥𝑥 + 𝐵𝐵1𝑤𝑤𝑜𝑜 + 𝐵𝐵2𝑢𝑢                      (13a)

 

             𝑦𝑦 = 𝐶𝐶2𝑥𝑥                                        (13b)

 

where

 

𝐴𝐴 = �
0 0 0
0 0 −0.0175
0
0

0.0175
0

0
0

    

1
−0.01

0
0

�

 

 

𝐵𝐵1 = �
0 0

0.04 0
0
0

−0.163
1.814

�

 

,  𝐵𝐵2 = �
0 0

0.381 0
0
0

−0.319
3.542

�  ,    

𝐶𝐶2 = �1 0
0 1

    

0 0
0 0�

 

The nominal open loop system is unstable with 
all the poles on the imaginary axis

 

IV.

 

WMR H∞  CONTROL SCHEME

 

The nominal model in (13) do not provide an 
exact representation of the WMR system. Modelling 
errors, parameter uncertainties and nonlinearities of the 
system which were not taken into account do not 
guarantee a robust controller. For the WMR system, the 
robot’s parameters particularly the mass and inertia are 
subjected to variations and hence uncertainties arise in 
system modeling. Also the outputs of the system are 
subjected to disturbances. Hence uncertainties should 
be taken into account when designing a robust 
controller, so that we get satisfactory control over a 
wider range of the operating variables. It is noted that 
the input disturbance  𝑤𝑤0

 

was modeled along with the 
control inputs of the system. To accommodate the 
parameter variations and nonlinearities 𝑤𝑤0

 

is acted on 

by unstructured uncertainty weighting 𝑊𝑊𝑊𝑊.

 

The 
𝐻𝐻∞control to the WMR as in Fig. 3 shows the feedback 
structure of the uncertain plant. Disturbances inputs can 
act on the model and the output. Let it be 𝑤𝑤𝑖𝑖(𝑡𝑡)

 

and 
𝑤𝑤𝑦𝑦(𝑡𝑡)  respectively.

  

These disturbances act on the plant 
in the low frequency range. Let 𝑊𝑊𝑊𝑊

 

and 𝑊𝑊𝑃𝑃

 

be the low 
frequency disturbances weightings for the above inputs. 

 

Then  

 

       𝑤𝑤𝑜𝑜(𝑡𝑡) = 𝑊𝑊𝑊𝑊𝑤𝑤𝑖𝑖(𝑡𝑡)                              (14) 

 

With uncertainty model weighting being selected as 

 

 

𝑊𝑊𝑊𝑊 = 6(𝑠𝑠+60)
(𝑠𝑠+0.3)

= 𝐶𝐶𝑊𝑊(𝑠𝑠𝑠𝑠 − 𝐴𝐴𝑊𝑊)−1𝐵𝐵𝑊𝑊 + 𝐷𝐷𝑊𝑊           (15)

 

[𝐴𝐴𝑊𝑊, 𝐵𝐵𝑊𝑊, 𝐶𝐶𝑊𝑊,𝐷𝐷𝑊𝑊]

 

which are the state space 
matrices of  the transfer function (15) can be obtained.

 

The output disturbance weighting 𝑊𝑊𝑃𝑃

 

is 
selected based on the maximum steady state error, 
bandwidth etc of (16).  Fig. 4. shows the inverse of 
performance weighting that is acting on the system.

 

𝑊𝑊𝑃𝑃 =
𝑠𝑠
𝑀𝑀� +

 

𝜔𝜔𝐵𝐵

 

𝑠𝑠+𝜔𝜔𝐵𝐵𝐴𝐴
                                      (16)

 
𝜔𝜔𝐵𝐵

 

is the bandwidth frequency, A  is the 
maximum steady state tracking error and M the 
maximum peak magnitude of sensitivity. For the WMR 
design performance weighting 𝑊𝑊𝑃𝑃

 

is selected as in (17).

 
𝑊𝑊𝑃𝑃 = (𝑠𝑠+77)

(𝑠𝑠+24)
= 𝐶𝐶𝑃𝑃(𝑠𝑠𝑠𝑠 − 𝐴𝐴𝑃𝑃)−1𝐵𝐵𝑃𝑃           (17)

 
[𝐴𝐴𝑃𝑃, 𝐵𝐵𝑃𝑃, 𝐶𝐶𝑃𝑃, 𝐷𝐷𝑃𝑃]

 

are the state space matrices of  
the transfer function (17).

 

Next we consider the regulated or controlled 
output as shown by 𝑧𝑧1

 

and  𝑧𝑧2. Stabilization  and 
regulation of the state variables corresponds to 𝑧𝑧1

 

and 
error on u corresponds to 𝑧𝑧2.

 
               𝑧𝑧1 = 𝜑𝜑𝜑𝜑                                     (18)

 
𝜑𝜑

 

is a 3 by 3 diagonal matrix corresponding to 
first 3 state variables to be regulated.

 

               𝑧𝑧2 = 𝜌𝜌𝜌𝜌                                     (19)

 

ρ

 

is a 2 by 2 diagonal weighting matrix on u.

 

Let xw

 

and xp

 

be the states of the low frequency 
disturbances 𝑊𝑊𝑊𝑊

 

and 𝑊𝑊𝑃𝑃.

 

Then   𝑤𝑤𝑜𝑜 = 𝐶𝐶𝑊𝑊𝑥𝑥𝑊𝑊 + 𝐷𝐷𝑊𝑊𝑤𝑤𝑖𝑖                          (20a)

 

and     𝑥̇𝑥𝑊𝑊 = 𝐴𝐴𝑊𝑊𝑥𝑥𝑊𝑊 + 𝐵𝐵𝑊𝑊𝑤𝑤𝑖𝑖                        (20b)

 

         𝑥̇𝑥𝑃𝑃 = 𝐴𝐴𝑃𝑃𝑥𝑥𝑃𝑃 + 𝐵𝐵𝑃𝑃𝑤𝑤𝑦𝑦                          (20c)

 
Combining the nominal model (13) and the 

above uncertain states, the augmented model is 
brought to the form of (2).The state space 
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representation is shown in (21), the states of the 
uncertain plant are  [xT xw

T xp
T],   w  = [wi

T wy
T] and z = 

[z1
T z2

T ]. 
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�
𝑥̇𝑥
𝑥̇𝑥𝑊𝑊
𝑥̇𝑥𝑃𝑃
� = �

𝐴𝐴 𝐵𝐵1𝐶𝐶𝑊𝑊 0
0 𝐴𝐴𝑊𝑊 0
0 0 𝐴𝐴𝑃𝑃

�

  

�
𝑥𝑥
𝑥𝑥𝑊𝑊
𝑥𝑥𝑃𝑃
�

 

+

  

�
𝐵𝐵1

 

𝐷𝐷𝑊𝑊 0 𝐵𝐵2
𝐵𝐵𝑊𝑊 0 0
0 𝐵𝐵𝑃𝑃 0

�

  

�
𝑤𝑤𝑖𝑖
𝑤𝑤𝑦𝑦
𝑢𝑢
�   (21)

 

 �
𝑧𝑧1
𝑧𝑧2
𝑦𝑦
� = �

𝜑𝜑 0 0
0 0 0
−𝐶𝐶2 0 −𝐶𝐶𝑃𝑃

�

  

�
𝑥𝑥
𝑥𝑥𝑊𝑊
𝑥𝑥𝑃𝑃
�

 

+

  

�
0 0 0
0 0 𝜌𝜌
0 −𝐷𝐷𝑃𝑃 0

�

  

�
𝑤𝑤𝑖𝑖
𝑤𝑤𝑦𝑦
𝑢𝑢
�

 

The regulated matrix corresponding to the states and input are selected as

 

𝜑𝜑 =
 
�
. 1𝑒𝑒−3 0 0

0 . 4𝑒𝑒−3 0
0 0 1𝑒𝑒−4

�                       ,            𝜌𝜌 = �2𝑒𝑒
−2 0

0 . 5𝑒𝑒−2�.
 

It is noted that   (A,B1) , (A,B2) are controllable 
and (A,C2) observable. Hence the uncertain plant that 
represents the WMR also satisfies the requirement for 
the existence of the controller.

 
V.

 
CONTROLLER EVALUATION

 
With the uncertain plant in the general form of 

(2) and the controllability and observability conditions 
being satisfied, the controller was simulated in MATLAB 
® as per the theorem in Section II. The suboptimal H∞ 

controller was obtained in the form of (4) with a 𝛾𝛾
 
value 

of 1.09. The Linear Fractional Transformation of the 
augmented system and the controller yields a closed 
loop system in the form of (5). This system with inputs 
as disturbances w and outputs z represent the robust 
closed loop system. Fig. 

 
5.  shows the magnitude of 

the uncertain closed loop plant for varying frequencies.  
The maximum bound of the closed loop system which 
indicates the sensitivity of the system guarantees 
robustness for values less than unity. The maximum 
value of the WMR system was around 0.7. 

 Fig. 6. shows the impulse response of the 
uncertain plant from output disturbances 𝑤𝑤𝑦𝑦

 
to 𝑧𝑧1

 
. The 

variation in the output 𝑧𝑧1
 
because of the disturbance 

was negligible ascertaining that the control design is 
robust. To verify the internal stability with the H∞ 

controller, the asymptotic stability of the output of the 
closed loop system was plotted as in Fig. 7. Both the 
outputs tend to zero in minimum time thus proving that 
the controller stabilizes the WMR system. To further 
evaluate the robustness of the above control design, the 
stability and performance margins for the closed loop 
system were calculated subject to variation in the 
parameters of the robotic system.  The mass 𝑀𝑀

 
of the 

system was varied between [ 20 : 30] and moment of 
inertia 

 
𝐼𝐼
 

between [0.6 : 0.7]. The stability analysis 
showed that the uncertain system is robustly stable to 
modeled uncertainty.   It can tolerate up to 500% of the 
modeled uncertainty.  The sensitivity with respect to 
uncertain element 𝐼𝐼  is 67% and 𝑀𝑀  129% for robust 
stability. The robust performance margin for the WMR 
was calculated subject to the above variations. The 
uncertain system achieves a robust performance margin 

of 1.32. A model uncertainty exists of size 131% 
resulting in a performance margin    of 0.761 at 0.0169 
rad/sec.  For robust performance, the sensitivity with 
respect to uncertain element 𝐼𝐼  is 17% and 𝑀𝑀  14% .  
The above results clearly indicated that the controller 
design is robust. 

  

 

CONCLUSION

 
In this paper the robust control design of a 

single unit Wheeled Mobile Robot was presented.  
Modeling of the WMR system was done taking into 
account the kinematics and dynamics to achieve a 
linearized model for these systems. The exogenous 
inputs in the form of model uncertainties and output 
disturbances were assumed to act on the system and 
the augmented plant was formulated. The robust 
internally stabilizing H∞

 

controller was obtained. The 
above design rendered a controller such that the closed 
loop system was internally stable and the effect of 
disturbances and model uncertainties on some of the 
outputs was attenuated. The asymptotic stability plot, 
disturbance response and Robust Stability and 
Performance margins were found to be satisfactory.
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Fig. 1 : 𝐻𝐻∞  Feedback control
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Fig.  2 :

 

Model of a Wheeled Mobile Robot
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Fig. 3 : Augmented structure of uncertain plant
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Fig. 4 :

 

Inverse of performance weighting 𝑊𝑊𝑃𝑃
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Fig. 5 : Closed loop magnitude of the uncertain plant
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Fig. 6 :

 

Impulse response of the uncertain plant
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Fig. 7 : Asymptotic stabilization of the closed loop system
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