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Study of Mathematical Model and Ant Colony  
Optimization (ACO)

Pawandeep Chahal 

Abstract - In this paper we define those mathematical notions 
and terms that are useful about ACO and the relationships 
between ACO and other frameworks for optimization and 
control. This chapter defines and discusses the characteristics 
of: (i) the combinatorial optimization problems addressed by 
ACO, (ii) construction heuristics for combinatorial problems, 
(iii) the equivalence between solution construction and 
sequential decision process (iv) the graphical tools (state 
graph and construction graph) that can be used to represent 
and reason on the structure and dynamics of construction 
processes. 

I. Combinatorial Optimization 
Problems 

ACO is a metaheuristic for the solution of 
problems of combinatorial optimization.  

Instance of a combinatorial optimization problema : An 
instance of a combinatorial optimization problem is a 
pair (S, J), where S is a finite set of feasible solutions 
and J is a function that associates a real cost to each 
feasible solution, J: S → R. The problem consists in 
finding the element s*∈ S which minimizes the function 
J: 

s∗  =  arg min𝑠𝑠∈𝑆𝑆 𝐽𝐽(𝑠𝑠)     (1)
 

 

Hereafter only sets S with finite cardinality will 
be considered, even if the above definition could be 
extended to countable sets of infinite cardinality. Given 
the finiteness of the set S, the minimum of J on S indeed 
exists. If such minimum is attained for more than one 
element of S, it is a matter of indifference which one is 
considered. 
Combinatorial optimization problema : A combinatorial 
optimization problem is a set of instances of an 
optimization problem. The set of instances defining an 
optimization problem are usually all sharing some core 
properties or are all generated in a similar way. 
Therefore, an optimization problem defines a 
classification over sets of instances. This classification 
can be made according to several criteria that are 
usually based on both mathematical and practical 
considerations. 
Static and dynamic optimization problems :

 
Static 

combinatorial optimization problems are such that the 
value of the mapping J does not change during the 
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execution of the solving algorithm. In dynamically 
changing problems the mapping J changes during the 
execution of the algorithm, that is, J depends on a time 
parameter t: J ≡ J (s, t). 

If the statistical processes according to which 
the costs change over time are known in advance, then 
the optimization problem can be stated again as a static 
problem in which J is either a function of the time or has 
a value drawn according to some probability 
distribution. In these cases the minimization in Equation 
1 has to be done according to the J’s characteristics 
(e.g., minimization of the J’s mean value, if J’s values 
are drawn from a unimodal parametric distribution). On 
the other hand, when only incomplete information is 
available about the dynamics of cost changes, the 
problem has to be tackled online using an adaptive 
approach. 

The set of problems here labeled as “static” are 
actually most of the problems usually considered in 
combinatorial optimization textbooks (e.g., the traveling 
salesman problem, the quadratic assignment problem, 
the graph coloring problem, etc.). They can be solved 
offline, adopting either a centralized or a 
parallel/distributed approach according to the available 
computing resources. Dynamic problems are somehow 
real-world versions of these problems. Routing in 
communication networks is a notable example of 
dynamic problem: the characteristics of both the input 
traffic and the topology of the network can change over 
time according to dynamics for which is usually hard to 
make robust prediction models. Moreover, in general 
routing requires a distributed problem solving approach. 

In general terms, while for static problems using 
a centralized or a distributed algorithm is a matter of 
choice, dynamic problems usually impose more severe 
requirements, such that the nature (either centralized or 
distributed) of the problem has to be matched by the 
characteristics of the algorithm. In this sense, ACO’s 
design, relying on the use of a set of autonomous 
agents, appears as rather effective, since it can be in 
principle used in both centralized and distributed 
contexts with little adaptation. 

Primitive, environment, and constraints sets : An 
optimization problem can be formally identified in terms 
of a primitive set K, an environment set E, a solution set 
S, and a cost criterion J defined on S. The primitive set 
defines the basic elements of the problem. The 
environment set E is derived from the primitive set K as 
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a subset of its power set, E ⊆
 
P (K), and the solution set 

S is in turn derived from the environment set in terms of 
a family of subsets of E defined by a set of mathematical 
relations Ω

 
among the K’s elements, S ⊆

 
P (E) ∩

 
Ω. The 

set of relations Ω, which puts specific limitations on the 
way the elements in E can be selected in order to 
identify elements in S, is usually termed the constraints 
set.

 The choices for sets K, E and Ω
 
are not unique. 

Given an abstract definition of a problem, the same 
problem can be expressed in different ways according 
to different choices for these sets. One choice can be 
preferred over another just because it puts some more 
emphasis on aspects that are seen as more important in 
the considered context.

 
In general, these facts raise the 

issue of the representation adopted to model the 
abstract problem under consideration in the perspective 
of attacking it with a specific class of algorithms. This 
issue is discussed more in depth in the following of this 
section. But before that, it is useful to make the above 
notions of primitive and environment sets more concrete 
through a few examples, and to introduce the notion of 
solution components which will play a central role 
throughout the thesis.

 In order to explain in what a problem definition 
in terms of the sets K, E and Ω

 
precisely consists of, let 

us consider the concrete case of two wide and quite 
general classes of combinatorial problems: matching 
problems and set problems [70], to which we will refer 
often throughout the thesis:

 Matching problems : A matching in a graph is a set of 
edges, no two of which share a node. Goals in matching 
problems consist in finding either matching with 
maximal edge sets or, given that costs are associated to 
the edges/nodes, matching with minimal associated 
cost (weighted matching problems). 
Matching problems in terms of primitive and 
environment sets : Let K = {1, 2, . . . , N} be a generic 

set of elements of interest, and let K be the primitive set. 
The environment and solution sets are derived as 
follows:

 
E = P (K) 
S = {Ɛ ∈ E | problem constraints Ω  (K ) are satisfied} (2) 

The expressions 3.2 mean that the solution set 
is directly defined in terms of subsets of K’s power set. 
In the class of matching problems, of particular practical 
interest, as well as easier to solve, are those problems 
for which the underlying graph is a complete bipartite 
graph with two sets of nodes that are equal in size. 
Bipartite weighted matching of this type are also known 
as assignment problems, which are for instance the 
problems of assigning tasks to agents knowing the cost 
of making agent i deal with task j, and include important 
combinatorial problems like the TSP, the QAP and the 
VRP. Network flow problems can be also expressed in 
terms of generic bipartite matching. The following 
example shows in practice how K, E and S can be 
defined in the case of a TSP. 

Example 1 : 
Given an N cities TSP, K = {c1

 
, c2

 
, . . . , cN

 
} = 

{1, 2, . . . , N} coincides with the set of the cities to be 
visited, E=P(K ) is the set of all their possible 
combinations, and S results from the application of Ω

 
as 

the subset of elements in E which are cyclic 
permutations of size N. An alternative

 
definition of K, E 

and Ω
 
could consist in K being the set of pairs (pi

 
, cj

 
),

 

pi

 
, cj  ∈

 
{1, 2, . . . , N}, that is, the set of elements telling 

that city cj

 
is in position pi

 
in the solution sequence 

(notice that being the TSP’s solutions cyclic 
permutations, the notion of position requires setting an 
arbitrary start city). In this case E is still the power set of 
K, but the syntax of the Ω

 
relations is slightly different 

from before, S is in fact defined as 
 

 

 
𝑆𝑆 = 𝜀𝜀𝑘𝑘 ∈ 𝐸𝐸, 𝜀𝜀𝑘𝑘 = {(𝑝𝑝1

𝑘𝑘 , 𝑐𝑐1
𝑘𝑘), … , (𝑝𝑝𝑁𝑁𝑘𝑘 , 𝑐𝑐𝑁𝑁𝑘𝑘 )} |  ∪𝑖𝑖  𝑝𝑝𝑖𝑖𝑘𝑘 = {1, … ,𝑁𝑁} ˄ ∪𝑖𝑖  𝑐𝑐𝑖𝑖𝑘𝑘 = {1, … ,𝑁𝑁}

  
That is, the set of pairs must correspond to a 
permutation over {1, …, N}. 

Set problems : In assignment problems solutions can 

be usually expressed in terms of ordered subsets of 

primitive elements, while in the case of set problems there 
is no explicit notion of ordering. Moreover, in most of the 

assignment problems the solution has a predefined size, 
while this is never the case for set problems. Set 

problems are also in general characterized by an 

additional level of complexity with respect to the 

assignment ones in the sense that is well expressed by 

the structure of the environment and solution sets: 

Set
 
problems

 
in

 
terms

 
of

 
primitive and environment sets :

 

In
 
set problems, which

 
can

 
be

 
further

 
classified in

 
set

 

covering, set
 
packing and set

 
partitioning problems,

 
the  

 
corresponding of expression 3.2 takes the following 
form: 
 E= {Ɛ

 
∈ P (K ) | instance constraints ΩI

 
are satisfied}

 S= {Ɛ’ ∈ P (K ) | instance constraints ΩI are satisfied} (3) 
 These

 
expressions point

 
out

 
the

 
fact

 
that

 
the

 solution
 
set

 
is

 
defined

 
in a more complex way

 
than

 
in

 the
 
matching

 
case. Solutions are in

 
this

 
case

 
sets

 
of

 subsets
 
of

 
elements

 
of the

 
environment

 
set,

 
which,

 
in

 turn, are subsets of
 
elements

 
of

 
K. The ΩI

 
constraints 

that have been called a bit improperly “instance 
constraints” are defined by the actual characteristics of 
the instance

 
at hand. 
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Instance of a combinatorial problem using a compact
representation : Let C be a finite set of variables such 
that a solution in S can be expressed in terms of 



 

  

   
 

subsets of C′s elements. In particular, called X′

 

= P(C), 
S is identified by the subset of elements of X′

 

for which 
the relations in Ω

 

are satisfied:

 

S ⊆ X′

 

∩

 

Ω(C). Therefore, 
given the sets S, C and Ω(C), together with a real-valued 
cost function J (S), a problem of combinatorial 
optimization consists in finding the element s* such that:

 
 

𝑠𝑠∗ =  𝑎𝑎𝑎𝑎𝑎𝑎   𝑚𝑚𝑖𝑖𝑚𝑚
𝑠𝑠∈{𝑋𝑋′ ∩

 

Ω (𝐶𝐶)}
  𝐽𝐽(𝑠𝑠)   (5)

 

 

Following

 

this representation,

 

an instance of a 
combinatorial

 

optimization problem

 

can

 

be

 

also

 

compactly represented

 

by

 

the

 

triple

 
 

 

<C, Ω, J >     (6)

 
 

The

 

elements

 

of

 

C, which represent

 

the

 

object

 

of

 

the

 

decisions

 

of

 

the

 

optimization process, are called 
hereafter solution

 

components.

 

a)

 

Solution

 

components

 

From above definition it is apparent that solution 
components always have a precise relationship with the 
primitive and environment sets.  In particular, for 
assignment problems C coincides with K, while for set 
problems C coincides with E. However, here we prefer 
to speak in terms of solution components rather than 
primitive and environment sets, because of their more 
intuitive and general meaning of parts of which a 
solution is composed of:

 

Solution components :

 

The solution components set C 
is operatively defined as the set from which a step-by-
step decision process would select elements one-at-a-
time and add them to a set x until a feasible solution is 
built, that is, until x ∈

 

S.

 

According to this characterization, the notion of 
solution components plays a central role in this thesis, 
since combinatorial optimization is here framed in the 
domain of decision processes, and the components of 
a solution are precisely the step-by-step objects 
considered by the decisions processes. More 
specifically, ACO’s target will consists in the learning of 
good decisions in the terms of pairs of components to 
be included in the building solutions.

 

Above definition implicitly implies that for each 
set C of solution components must exist a bijective 
mapping:

 

fC  : X

 

⊆

 

P(C) →

 

S,     (7)

 
 

such that each si

 

∈

 

S has a finite subset 
{𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2, … , 𝑐𝑐𝑖𝑖𝑚𝑚}

 

∈

 

X of

 

solution components as preimage 
in X, and this preimage is unique. That is, after a finite 
number of decision steps, where at each step t a new 
component ct

 

is included in the set xt, the elements in 
xt∈

 

X are expected to map through fC

 

onto an element s 
∈

 

S. The characteristics of the mapping fC

 

define the 
level of correspondence between the problem under 
solution and the way solutions are represented. In 
particular, if fC

 

is not anymore surjective, not all the 
feasible solutions are going to have a preimage in terms 
of a single set of components. Such a choice could rule 

out the same possibility of addressing the

 

optimal 
solution. On the other hand, if fC

 

is not anymore injective, 
the same solution in S can be addressed by one or 
more distinct elements in X. Such a choice would result 
in a sort of blurred image of the solution set as seen 
from the component set, since several solutions could 
be seen as the same solution, making potentially difficult 
for an algorithm to act optimally. In general, when the 
mapping fC

 

is not anymore bijective the representation 
will undergo some loss of necessary information. That 
is,

 

additional information must be added to a subset x ∈

 

X of C’s elements in order to map it onto a solution.

 

It is clear that once a mapping fC

 

has been 
defined, solution components can be seen in more 
general terms as decision variables. At each solution 
construction step a decision variable ct

 

representing any 
convenient value is assigned. The only strict requirement 
consists in the fact that sets of decision variables can be 
eventually mapped bijectively onto a feasible solution. 
Since in some sense it is

 

natural to explicitly associate 
decision variables to parts of a solution, in the following 
we will preferably use the term “solution components” 
instead of “decision variables”.

 

Even if this latter would likely make clearer the 
intrinsic meaning of ACO’s

 

pheromone variables, which 
are precisely associated to pairs (ci, cj) of decision 
variables: decision cj

 

is taken, conditionally to the fact 
that decision ci

 

has been already issued, according to a 
probability value which depends on the value of the 
pheromone variable 𝜏𝜏𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗

 

associated to the pair of 
decisions. The way ACO is discussed in this thesis in 
terms of sequential decision processes, as well as the 
recent work of Chang et al. [13], where ACO, departing 
from the usual application to “classical”

 

combinatorial 
optimization problems, is applied to the solution of 
generic MDPs (therefore, dealing with stochastic 
transitions after the issuing of a decision), strongly 
confirm this interchangeable view of pheromone 
variables as pairs of decision variables or solution 
components.

 

II.

 

Construction

 

Methods

 

ACO’s ant-like agents independently generate 
solutions according to an incremental construction 
process. Therefore, the notion of construction algorithm 
is at the core of ACO. A generic construction algorithm 
is defined here as follows:

 

Construction algorithm :

 

Given an instance of the 
generic combinatorial optimization problem in the form 
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equation 3.5, an algorithm is said a construction 
algorithm when,  starting from an empty partial solution 
x0=ϕ, a complete solution s ∈S is incrementally built by 
adding one-at-a-time a new component c ∈ C to the 
partial solution.

The generic iteration (also termed hereafter
transition) of a construction process can be described
as:



 

  

 
 

 

      
    

 

 

xj

 

={c1, c2, . . . , cj} → xj+1  = {c1, c2, . . . , cj, cj+1},  ci∈

 

C,  ∀i ∈

 

{1, 2, . . . , |    C |}, (3.10)

 
 

where xj

 

∈ X′

 

= P(C) is a partial solution of cardinality 
(length) j, j ≤ |C | < ∞.

 

The partial solutions, that is, the set of all the 
possible configurations of solution components that can 
be encountered during the steps of the construction 
algorithm, coincides with elements of the environment 
set X′. As it has been previously noticed, the majority of 
these elements are such that, in general, they are not 
subsets of some feasible solution set. That is, without a 
careful step-by-step checking, the construction process 
is likely to end up in a partial solution that cannot be 
further completed into a feasible solution.

 

The

 

algorithmic

 

skeleton

 

of a generic

 

construction

 

strategy

 

is reported

 

in

 

the pseudo-code

 

of 
the Algorithm

 

3.1.

 

1.

 

procedure Generic construction algorithm()

 

2.

 

t ←

 

0;

 

3.

 

xt  ←

 

ϕ; 
4.

 

while (xt  ∈/ S 

 

∨  ¬ stopping criterion)

 

5.

 

ct  ←

 

select component(C | xt

 

);

 

6.

 

xt+1  ←

 

add component(xt

 

, ct

 

);

 

7.

 

t ←

 

t + 1;

 

8.

 

end while return xt ; 

Algorithm 1 : A general algorithmic skeleton for a 
construction algorithm.

 
 

It is the duty of the construction algorithm to 
guarantee that a sequence of feasible partial solutions, 
defined as it follows, is generated during the process:

 

Feasible partial solution :

 

A partial solution xj

 

∈ X′

 

is

 

called feasible if it can be completed into a feasible 
solution s ∈

 

S, that is, if at least one feasible solution s 
∈

 

S exists, of which xj

 

is the initial sub tuple of length j in 
the case of sequences, or, of which xj

 

is a subset in the 
case of sets. The set of the feasible partial solutions is 
indicated with X ⊆ X′. 

It is understood that a process generating a 
sequence of feasible partial solutions necessarily ends 
up into a feasible solution. The set X of all feasible sets xj

 

is finite since both the set S and the cardinality of the set 
associated to each feasible solution si

 

are finite. 
Moreover, S ⊆

 

X, since all the solutions si

 

is composed 
by a finite number of components, all belonging to C. 
Each feasible partial solution xj

 

has associated a set of 
possible feasible expansions:

 

Set of feasible expansions :

 

For each feasible partial 
solution xj, the set C(xj)∈

 

C is the set of all the possible 
new components cj

 

∈

 

C that can be added to xj

 

giving in 
turn a new feasible (partial) solution xj+1: 

 

𝐶𝐶�𝑥𝑥𝑗𝑗 � = �𝑐𝑐𝑗𝑗

 

�∃

 

𝑥𝑥𝑗𝑗+1: 𝑥𝑥𝑗𝑗+1

 

∈ 𝑋𝑋

 

˄

 

𝑥𝑥𝑗𝑗+1 =  𝑥𝑥𝑗𝑗

 

⊕

 

𝑐𝑐𝑗𝑗 }  (10)

 
 

Where the operator ⊕

 

represents the strategy 
adopted by the construction algorithm to include a new 
component into the building solution.  In general, the 

characteristics of the sets C strongly depend on the 
precise form of the operator ⊕. 

The

 

very

 

possibility

 

of speaking

 

in terms

 

of 
feasible

 

partial

 

solutions and feasible

 

expansion sets

 

is

 

related

 

to

 

the

 

possibility

 

of

 

checking

 

step-by-step

 

the

 

feasibility

 

of

 

the

 

partial solution

 

in order

 

to

 

take a 
sequence of decisions that

 

can

 

finally

 

take

 

to a 
feasible

 

solution.

 

For reasons that

 

will

 

be

 

more clear

 

in

 

the

 

following,

 

we

 

make a distinction between

 

the

 

components

 

of

 

the algorithm

 

managing

 

the

 

aspects

 

of

 

feasibility from

 

those

 

specifically addressed

 

at

 

optimize

 

the quality

 

of

 

the

 

solution(s)

 

that

 

will

 

be

 

built.  In order

 

to

 

check

 

step-by-step

 

the

 

feasibility

 

of

 

the building

 

solution,

 

we

 

assume

 

that a logical

 

device

 

can

 

be

 

made

 

available to

 

the

 

construction agent:

 

Feasibility-checking

 

device :

 

By

 

feasibility-checking

 

device

 

we intend any algorithm

 

which,

 

on

 

the

 

basis

 

of

 

the knowledge of

 

the

 

set S and/or of

 

the

 

constraint

 

set

 

Ω, is

 

able

 

to provide

 

in

 

polynomial

 

time

 

an

 

answer

 

concerning

 

the

 

feasibility

 

of a complete

 

solution and the

 

potential

 

feasibility

 

of a

 

partial

 

solution.

 

From a theoretical

 

point

 

of

 

view

 

it

 

is

 

always

 

possible

 

to

 

find

 

such a polynomial

 

algorithm in

 

the

 

case

 

of

 

NP-hard problems and in

 

all

 

the

 

subclasses of

 

the

 

NP-hard one.

 

However, even

 

in

 

the

 

case

 

of

 

NP-
hardness, which

 

is

 

the

 

most

 

common and

 

interesting 
case,

 

to allow a practical

 

use

 

of

 

the

 

device

 

the

 

polynomial order

 

should

 

be

 

small.

 

Generally

 

speaking, 
the

 

computations

 

associated

 

to

 

the

 

device

 

should

 

be

 

light.

 

When

 

this

 

is

 

not

 

the

 

case,

 

it

 

can result more 
convenient to

 

incur

 

the

 

risk

 

of

 

building a solution

 

which

 

is

 

not

 

feasible,

 

that

 

can

 

be

 

either repaired

 

or discarded. 
For

 

the

 

class

 

of problems considered

 

in

 

this

 

thesis

 

it

 

is

 

often

 

possible

 

to

 

have at

 

hand a computationally-light

 

feasibility-checking

 

device.

 

In

 

fact,

 

it

 

is

 

usually

 

easy

 

to

 

check step-by-step

 

the

 

feasibility

 

of a constructing

 

solution

 

for assignment problems

 

like

 

the

 

TSP

 

or

 

the QAP. 
However, for

 

some

 

scheduling

 

or

 

covering problems,

 

this

 

same

 

task can result

 

both more difficult and 
computationally

 

expensive

 

to

 

accomplish.

 

Moreover, in
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the case of max constraint satisfaction problems this is
precisely the problem. However, the point is that here 
we will not focus on the design of strategies for smart or
optimized ways of dealing with feasibility issues. Surely 
this will be an important part of the specific 
implementations, but we assume that in some sense 
this is not the most important part of the story, which is, 
on the contrary, the optimization of the quality of the final 
solution output by the algorithm.

Figure 3.1 shows in a graphical way the generic
step of a construction process, pointing out all the 
important aspects and their reciprocal relationships in 
very general terms. The feasibility checking device which 
defines the set C (xt) of feasible expansions for the 
current partial solution xt is indicate with the Ω box, to 



 

  

      
     

          

 
      

 
  

stress the role of either the constraints set Ω

 

and/or the 
explicit knowledge of the solution set to accomplish this 
sub-task. The specific strategy of selection and inclusion 
of the new component ct is indicated by the decision 
block π. The dashe d contour lines show the actual 
subsets of components defining respectively the partial 
solution xt

 

and the set of feasible expansions C (xt). The 
chosen component ct belongs to this last. The diagram 
shows the case in which a feasible solution xs

 

∈

 

S is

 

eventually constructed. The decision strategy π is 
generically assumed as making use of at least the 
information contained in the partial solution in addition 
to C (xt). A similar diagram will be shown for the specific 
case of the ACO’s ant agents, in order

 

to show the 
peculiarities of the ACO’s design with respect to this 
generic one.

 

This

 

issue

 

of

 

the

 

feasibility of

 

the

 

final solution

 

has

 

put

 

in

 

evidence

 

the

 

fact

 

that

 

during

 

a construction

 

process

 

the

 

single decisions cannot

 

be

 

seen

 

as

 

independent. On

 

the

 

contrary, they are tightly related,

 

since all

 

the decisions issued

 

in

 

the past will

 

constrain

 

those

 

that

 

can

 

be

 

issued in

 

the

 

future.

 

On

 

the

 

other

 

hand, feasibility

 

is

 

only one

 

aspect

 

of

 

the

 

entire problem

 

of

 

building a

 

solution.

 

The

 

equally, if

 

not

 

more,

 

important aspect

 

concerns

 

the

 

quality

 

of

 

the

 

solution.

 

It

 

is evident

 

that

 

the

 

same

 

considerations

 

on

 

the

 

dependence among

 

the

 

decisions apply

 

also

 

when 
quality

 

is considered.

 

In

 

general,

 

to

 

optimize the

 

final 
quality, each

 

specific

 

decision

 

should

 

be taken

 

in

 

the

 

light

 

of

 

all previous

 

decisions, that

 

is,

 

according to

 

the

 

status

 

of

 

the

 

current

 

partial solution.

 

This

 

can

 

be

 

seen

 

at

 

the

 

same

 

time

 

as a constraint and an

 

advantage: 
building a solution in a sequential

 

way

 

allows

 

to reason

 

on

 

each

 

single

 

choice

 

on

 

the

 

basis

 

of

 

an

 

incremental

 

amount of

 

information coming from

 

the past and also

 

possibly

 

looking

 

into

 

the

 

future through

 

some form of

 

look ahead. 

 

Figure 1 :

 

The t-th step of generic construction process toward generation of a complete solution xs

 

∈

 

S.

 

These are the basic key concepts to understand 
the rationale behind a large part of the con- tents of this 
chapter, which discusses construction and decision 
processes. In fact, in rather general terms, two 
construction strategies are going to be seen as different 
according to the different way of using and discarding 
the information contained in the partial solutions. In 
particular, it will be shown that an exact approach, like 
dynamic programming [3], makes use of the full 
information, while a heuristic approach, like ACO, drops 
off everything but the last included component.

 
 
 
 

III.

 

Conclusion

 

In this paper we have defined the formal tools 
and the basic scientific

 

background. That is, we have 
defined the terms and notions that will allow us to show 
important connections between ACO and other related 
frameworks and that will allow us to adopt a formal and 
insightful language to describe ACO.

 

More specifically the chapter has introduced

 

the

 

class

 

of

 

combinatorial

 

optimization problems addressed

 

by

 

ACO and discussed

 

the role and characteristics

 

of

 

different

 

abstract representations

 

of

 

the

 

same

 

combinatorial optimization problem

 

at

 

hand. The chapter 
has also provided a formal

 

definition and an

 

analysis

 

of

 

construction

 

methods

 

for

 

combinatorial optimization, 
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made explicit and discussed the relationship between 
construction methods and sequential decision 
processes and, in turn, optimal control and defined the 
notion of construction graph as a graphical tool, derived 
from the state graph through the application of a 
generating function, which is useful to visualize and 
reason on sequential decision processes using a 
compact representation.
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