
© 2012 Pawandeep Chahal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Researches in Engineering
General Engineering
Volume 12 Issue 4 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
 Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Study of Mathematical Model and Ant Colony Optimization
(ACO)

By Pawandeep Chahal
CMJ University

Abstract - In this paper we define those mathematical notions and terms that are useful about ACO and
the relationships between ACO and other frameworks for optimization and control. This chapter defines
and discusses the characteristics of: (i) the combinatorial optimization problems addressed by ACO, (ii)
construction heuristics for combinatorial problems, (iii) the equivalence between solution construction and
sequential decision process (iv) the graphical tools (state graph and construction graph) that can be used
to represent and reason on the structure and dynamics of construction processes.

GJRE-J Classification : FOR Code : 230202

Study of Mathematical Model and Ant Colony Optimization ACO

Strictly as per the compliance and regulations of

:

Study of Mathematical Model and Ant Colony
Optimization (ACO)

Pawandeep Chahal

Abstract - In this paper we define those mathematical notions
and terms that are useful about ACO and the relationships
between ACO and other frameworks for optimization and
control. This chapter defines and discusses the characteristics
of: (i) the combinatorial optimization problems addressed by
ACO, (ii) construction heuristics for combinatorial problems,
(iii) the equivalence between solution construction and
sequential decision process (iv) the graphical tools (state
graph and construction graph) that can be used to represent
and reason on the structure and dynamics of construction
processes.

I. Combinatorial Optimization
Problems

ACO is a metaheuristic for the solution of
problems of combinatorial optimization.

Instance of a combinatorial optimization problema : An
instance of a combinatorial optimization problem is a
pair (S, J), where S is a finite set of feasible solutions
and J is a function that associates a real cost to each
feasible solution, J: S → R. The problem consists in
finding the element s*∈ S which minimizes the function
J:

s∗ = arg min𝑠𝑠∈𝑆𝑆 𝐽𝐽(𝑠𝑠) (1)

Hereafter only sets S with finite cardinality will
be considered, even if the above definition could be
extended to countable sets of infinite cardinality. Given
the finiteness of the set S, the minimum of J on S indeed
exists. If such minimum is attained for more than one
element of S, it is a matter of indifference which one is
considered.
Combinatorial optimization problema : A combinatorial
optimization problem is a set of instances of an
optimization problem. The set of instances defining an
optimization problem are usually all sharing some core
properties or are all generated in a similar way.
Therefore, an optimization problem defines a
classification over sets of instances. This classification
can be made according to several criteria that are
usually based on both mathematical and practical
considerations.
Static and dynamic optimization problems :

Static

combinatorial optimization problems are such that the
value of the mapping J does not change during the

Author : Research Scholar, CMJ University, Shillong, Meghalaya-793
003, Asst. Prof, Department of IT, Desh Bhagat Institute of Engg. &
Management, Moga.

execution of the solving algorithm. In dynamically
changing problems the mapping J changes during the
execution of the algorithm, that is, J depends on a time
parameter t: J ≡ J (s, t).

If the statistical processes according to which
the costs change over time are known in advance, then
the optimization problem can be stated again as a static
problem in which J is either a function of the time or has
a value drawn according to some probability
distribution. In these cases the minimization in Equation
1 has to be done according to the J’s characteristics
(e.g., minimization of the J’s mean value, if J’s values
are drawn from a unimodal parametric distribution). On
the other hand, when only incomplete information is
available about the dynamics of cost changes, the
problem has to be tackled online using an adaptive
approach.

The set of problems here labeled as “static” are
actually most of the problems usually considered in
combinatorial optimization textbooks (e.g., the traveling
salesman problem, the quadratic assignment problem,
the graph coloring problem, etc.). They can be solved
offline, adopting either a centralized or a
parallel/distributed approach according to the available
computing resources. Dynamic problems are somehow
real-world versions of these problems. Routing in
communication networks is a notable example of
dynamic problem: the characteristics of both the input
traffic and the topology of the network can change over
time according to dynamics for which is usually hard to
make robust prediction models. Moreover, in general
routing requires a distributed problem solving approach.

In general terms, while for static problems using
a centralized or a distributed algorithm is a matter of
choice, dynamic problems usually impose more severe
requirements, such that the nature (either centralized or
distributed) of the problem has to be matched by the
characteristics of the algorithm. In this sense, ACO’s
design, relying on the use of a set of autonomous
agents, appears as rather effective, since it can be in
principle used in both centralized and distributed
contexts with little adaptation.

Primitive, environment, and constraints sets : An
optimization problem can be formally identified in terms
of a primitive set K, an environment set E, a solution set
S, and a cost criterion J defined on S. The primitive set
defines the basic elements of the problem. The
environment set E is derived from the primitive set K as

G
lo
ba

l
J o

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II

Is
su

e
IV

V
er
si
on

 I

23

(
J)

ea
r
20

12

Y

© 2012 Global Journals Inc. (US)

a subset of its power set, E ⊆

P (K), and the solution set

S is in turn derived from the environment set in terms of
a family of subsets of E defined by a set of mathematical
relations Ω

among the K’s elements, S ⊆

P (E) ∩

Ω. The

set of relations Ω, which puts specific limitations on the
way the elements in E can be selected in order to
identify elements in S, is usually termed the constraints
set.

 The choices for sets K, E and Ω

are not unique.

Given an abstract definition of a problem, the same
problem can be expressed in different ways according
to different choices for these sets. One choice can be
preferred over another just because it puts some more
emphasis on aspects that are seen as more important in
the considered context.

In general, these facts raise the

issue of the representation adopted to model the
abstract problem under consideration in the perspective
of attacking it with a specific class of algorithms. This
issue is discussed more in depth in the following of this
section. But before that, it is useful to make the above
notions of primitive and environment sets more concrete
through a few examples, and to introduce the notion of
solution components which will play a central role
throughout the thesis.

 In order to explain in what a problem definition
in terms of the sets K, E and Ω

precisely consists of, let

us consider the concrete case of two wide and quite
general classes of combinatorial problems: matching
problems and set problems [70], to which we will refer
often throughout the thesis:

 Matching problems : A matching in a graph is a set of
edges, no two of which share a node. Goals in matching
problems consist in finding either matching with
maximal edge sets or, given that costs are associated to
the edges/nodes, matching with minimal associated
cost (weighted matching problems).
Matching problems in terms of primitive and
environment sets : Let K = {1, 2, . . . , N} be a generic

set of elements of interest, and let K be the primitive set.
The environment and solution sets are derived as
follows:

E = P (K)
S = {Ɛ ∈ E | problem constraints Ω (K) are satisfied} (2)

The expressions 3.2 mean that the solution set
is directly defined in terms of subsets of K’s power set.
In the class of matching problems, of particular practical
interest, as well as easier to solve, are those problems
for which the underlying graph is a complete bipartite
graph with two sets of nodes that are equal in size.
Bipartite weighted matching of this type are also known
as assignment problems, which are for instance the
problems of assigning tasks to agents knowing the cost
of making agent i deal with task j, and include important
combinatorial problems like the TSP, the QAP and the
VRP. Network flow problems can be also expressed in
terms of generic bipartite matching. The following
example shows in practice how K, E and S can be
defined in the case of a TSP.

Example 1 :
Given an N cities TSP, K = {c1

, c2

, . . . , cN

} =

{1, 2, . . . , N} coincides with the set of the cities to be
visited, E=P(K) is the set of all their possible
combinations, and S results from the application of Ω

as

the subset of elements in E which are cyclic
permutations of size N. An alternative

definition of K, E

and Ω

could consist in K being the set of pairs (pi

, cj

),

pi

, cj ∈

{1, 2, . . . , N}, that is, the set of elements telling

that city cj

is in position pi

in the solution sequence

(notice that being the TSP’s solutions cyclic
permutations, the notion of position requires setting an
arbitrary start city). In this case E is still the power set of
K, but the syntax of the Ω

relations is slightly different

from before, S is in fact defined as

𝑆𝑆 = 𝜀𝜀𝑘𝑘 ∈ 𝐸𝐸, 𝜀𝜀𝑘𝑘 = {(𝑝𝑝1

𝑘𝑘 , 𝑐𝑐1
𝑘𝑘), … , (𝑝𝑝𝑁𝑁𝑘𝑘 , 𝑐𝑐𝑁𝑁𝑘𝑘)} | ∪𝑖𝑖 𝑝𝑝𝑖𝑖𝑘𝑘 = {1, … ,𝑁𝑁} ˄ ∪𝑖𝑖 𝑐𝑐𝑖𝑖𝑘𝑘 = {1, … ,𝑁𝑁}

That is, the set of pairs must correspond to a
permutation over {1, …, N}.

Set problems : In assignment problems solutions can

be usually expressed in terms of ordered subsets of

primitive elements, while in the case of set problems there
is no explicit notion of ordering. Moreover, in most of the

assignment problems the solution has a predefined size,
while this is never the case for set problems. Set

problems are also in general characterized by an

additional level of complexity with respect to the

assignment ones in the sense that is well expressed by

the structure of the environment and solution sets:

Set

problems

in

terms

of

primitive and environment sets :

In

set problems, which

can

be

further

classified in

set

covering, set

packing and set

partitioning problems,

the

corresponding of expression 3.2 takes the following
form:
 E= {Ɛ

∈ P (K) | instance constraints ΩI

are satisfied}

 S= {Ɛ’ ∈ P (K) | instance constraints ΩI are satisfied} (3)
 These

expressions point

out

the

fact

that

the

 solution

set

is

defined

in a more complex way

than

in

 the

matching

case. Solutions are in

this

case

sets

of

 subsets

of

elements

of the

environment

set,

which,

in

 turn, are subsets of

elements

of

K. The ΩI

constraints

that have been called a bit improperly “instance
constraints” are defined by the actual characteristics of
the instance

at hand.

Study of Mathematical Model and Ant Colony Optimization (ACO)
G
lo
ba

l
J o

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II

Is
su

e
IV

V
er
si
on

 I

24

(
J
)

ea
r
20

12

Y

© 2012 Global Journals Inc. (US)

Instance of a combinatorial problem using a compact
representation : Let C be a finite set of variables such
that a solution in S can be expressed in terms of

subsets of C′s elements. In particular, called X′

= P(C),
S is identified by the subset of elements of X′

for which
the relations in Ω

are satisfied:

S ⊆ X′

∩

Ω(C). Therefore,
given the sets S, C and Ω(C), together with a real-valued
cost function J (S), a problem of combinatorial
optimization consists in finding the element s* such that:

𝑠𝑠∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖𝑚𝑚
𝑠𝑠∈{𝑋𝑋′ ∩

Ω (𝐶𝐶)}
 𝐽𝐽(𝑠𝑠) (5)

Following

this representation,

an instance of a
combinatorial

optimization problem

can

be

also

compactly represented

by

the

triple

<C, Ω, J > (6)

The

elements

of

C, which represent

the

object

of

the

decisions

of

the

optimization process, are called
hereafter solution

components.

a)

Solution

components

From above definition it is apparent that solution
components always have a precise relationship with the
primitive and environment sets. In particular, for
assignment problems C coincides with K, while for set
problems C coincides with E. However, here we prefer
to speak in terms of solution components rather than
primitive and environment sets, because of their more
intuitive and general meaning of parts of which a
solution is composed of:

Solution components :

The solution components set C
is operatively defined as the set from which a step-by-
step decision process would select elements one-at-a-
time and add them to a set x until a feasible solution is
built, that is, until x ∈

S.

According to this characterization, the notion of
solution components plays a central role in this thesis,
since combinatorial optimization is here framed in the
domain of decision processes, and the components of
a solution are precisely the step-by-step objects
considered by the decisions processes. More
specifically, ACO’s target will consists in the learning of
good decisions in the terms of pairs of components to
be included in the building solutions.

Above definition implicitly implies that for each
set C of solution components must exist a bijective
mapping:

fC : X

⊆

P(C) →

S, (7)

such that each si

∈

S has a finite subset
{𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2, … , 𝑐𝑐𝑖𝑖𝑚𝑚}

∈

X of

solution components as preimage
in X, and this preimage is unique. That is, after a finite
number of decision steps, where at each step t a new
component ct

is included in the set xt, the elements in
xt∈

X are expected to map through fC

onto an element s
∈

S. The characteristics of the mapping fC

define the
level of correspondence between the problem under
solution and the way solutions are represented. In
particular, if fC

is not anymore surjective, not all the
feasible solutions are going to have a preimage in terms
of a single set of components. Such a choice could rule

out the same possibility of addressing the

optimal
solution. On the other hand, if fC

is not anymore injective,
the same solution in S can be addressed by one or
more distinct elements in X. Such a choice would result
in a sort of blurred image of the solution set as seen
from the component set, since several solutions could
be seen as the same solution, making potentially difficult
for an algorithm to act optimally. In general, when the
mapping fC

is not anymore bijective the representation
will undergo some loss of necessary information. That
is,

additional information must be added to a subset x ∈

X of C’s elements in order to map it onto a solution.

It is clear that once a mapping fC

has been
defined, solution components can be seen in more
general terms as decision variables. At each solution
construction step a decision variable ct

representing any
convenient value is assigned. The only strict requirement
consists in the fact that sets of decision variables can be
eventually mapped bijectively onto a feasible solution.
Since in some sense it is

natural to explicitly associate
decision variables to parts of a solution, in the following
we will preferably use the term “solution components”
instead of “decision variables”.

Even if this latter would likely make clearer the
intrinsic meaning of ACO’s

pheromone variables, which
are precisely associated to pairs (ci, cj) of decision
variables: decision cj

is taken, conditionally to the fact
that decision ci

has been already issued, according to a
probability value which depends on the value of the
pheromone variable 𝜏𝜏𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗

associated to the pair of
decisions. The way ACO is discussed in this thesis in
terms of sequential decision processes, as well as the
recent work of Chang et al. [13], where ACO, departing
from the usual application to “classical”

combinatorial
optimization problems, is applied to the solution of
generic MDPs (therefore, dealing with stochastic
transitions after the issuing of a decision), strongly
confirm this interchangeable view of pheromone
variables as pairs of decision variables or solution
components.

II.

Construction

Methods

ACO’s ant-like agents independently generate
solutions according to an incremental construction
process. Therefore, the notion of construction algorithm
is at the core of ACO. A generic construction algorithm
is defined here as follows:

Construction algorithm :

Given an instance of the
generic combinatorial optimization problem in the form

Study of Mathematical Model and Ant Colony Optimization (ACO)

G
lo
ba

l
J o

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II

Is
su

e
IV

V
er
si
on

 I

25

(
J)

ea
r
20

12

Y

© 2012 Global Journals Inc. (US)

equation 3.5, an algorithm is said a construction
algorithm when, starting from an empty partial solution
x0=ϕ, a complete solution s ∈S is incrementally built by
adding one-at-a-time a new component c ∈ C to the
partial solution.

The generic iteration (also termed hereafter
transition) of a construction process can be described
as:

xj

={c1, c2, . . . , cj} → xj+1 = {c1, c2, . . . , cj, cj+1}, ci∈

C, ∀i ∈

{1, 2, . . . , | C |}, (3.10)

where xj

∈ X′

= P(C) is a partial solution of cardinality
(length) j, j ≤ |C | < ∞.

The partial solutions, that is, the set of all the
possible configurations of solution components that can
be encountered during the steps of the construction
algorithm, coincides with elements of the environment
set X′. As it has been previously noticed, the majority of
these elements are such that, in general, they are not
subsets of some feasible solution set. That is, without a
careful step-by-step checking, the construction process
is likely to end up in a partial solution that cannot be
further completed into a feasible solution.

The

algorithmic

skeleton

of a generic

construction

strategy

is reported

in

the pseudo-code

of
the Algorithm

3.1.

1.

procedure Generic construction algorithm()

2.

t ←

0;

3.

xt ←

ϕ;
4.

while (xt ∈/ S

∨ ¬ stopping criterion)

5.

ct ←

select component(C | xt

);

6.

xt+1 ←

add component(xt

, ct

);

7.

t ←

t + 1;

8.

end while return xt ;

Algorithm 1 : A general algorithmic skeleton for a
construction algorithm.

It is the duty of the construction algorithm to
guarantee that a sequence of feasible partial solutions,
defined as it follows, is generated during the process:

Feasible partial solution :

A partial solution xj

∈ X′

is

called feasible if it can be completed into a feasible
solution s ∈

S, that is, if at least one feasible solution s
∈

S exists, of which xj

is the initial sub tuple of length j in
the case of sequences, or, of which xj

is a subset in the
case of sets. The set of the feasible partial solutions is
indicated with X ⊆ X′.

It is understood that a process generating a
sequence of feasible partial solutions necessarily ends
up into a feasible solution. The set X of all feasible sets xj

is finite since both the set S and the cardinality of the set
associated to each feasible solution si

are finite.
Moreover, S ⊆

X, since all the solutions si

is composed
by a finite number of components, all belonging to C.
Each feasible partial solution xj

has associated a set of
possible feasible expansions:

Set of feasible expansions :

For each feasible partial
solution xj, the set C(xj)∈

C is the set of all the possible
new components cj

∈

C that can be added to xj

giving in
turn a new feasible (partial) solution xj+1:

𝐶𝐶�𝑥𝑥𝑗𝑗 � = �𝑐𝑐𝑗𝑗

�∃

𝑥𝑥𝑗𝑗+1: 𝑥𝑥𝑗𝑗+1

∈ 𝑋𝑋

˄

𝑥𝑥𝑗𝑗+1 = 𝑥𝑥𝑗𝑗

⊕

𝑐𝑐𝑗𝑗 } (10)

Where the operator ⊕

represents the strategy
adopted by the construction algorithm to include a new
component into the building solution. In general, the

characteristics of the sets C strongly depend on the
precise form of the operator ⊕.

The

very

possibility

of speaking

in terms

of
feasible

partial

solutions and feasible

expansion sets

is

related

to

the

possibility

of

checking

step-by-step

the

feasibility

of

the

partial solution

in order

to

take a
sequence of decisions that

can

finally

take

to a
feasible

solution.

For reasons that

will

be

more clear

in

the

following,

we

make a distinction between

the

components

of

the algorithm

managing

the

aspects

of

feasibility from

those

specifically addressed

at

optimize

the quality

of

the

solution(s)

that

will

be

built. In order

to

check

step-by-step

the

feasibility

of

the building

solution,

we

assume

that a logical

device

can

be

made

available to

the

construction agent:

Feasibility-checking

device :

By

feasibility-checking

device

we intend any algorithm

which,

on

the

basis

of

the knowledge of

the

set S and/or of

the

constraint

set

Ω, is

able

to provide

in

polynomial

time

an

answer

concerning

the

feasibility

of a complete

solution and the

potential

feasibility

of a

partial

solution.

From a theoretical

point

of

view

it

is

always

possible

to

find

such a polynomial

algorithm in

the

case

of

NP-hard problems and in

all

the

subclasses of

the

NP-hard one.

However, even

in

the

case

of

NP-
hardness, which

is

the

most

common and

interesting
case,

to allow a practical

use

of

the

device

the

polynomial order

should

be

small.

Generally

speaking,
the

computations

associated

to

the

device

should

be

light.

When

this

is

not

the

case,

it

can result more
convenient to

incur

the

risk

of

building a solution

which

is

not

feasible,

that

can

be

either repaired

or discarded.
For

the

class

of problems considered

in

this

thesis

it

is

often

possible

to

have at

hand a computationally-light

feasibility-checking

device.

In

fact,

it

is

usually

easy

to

check step-by-step

the

feasibility

of a constructing

solution

for assignment problems

like

the

TSP

or

the QAP.
However, for

some

scheduling

or

covering problems,

this

same

task can result

both more difficult and
computationally

expensive

to

accomplish.

Moreover, in

Study of Mathematical Model and Ant Colony Optimization (ACO)
G
lo
ba

l
J o

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II

Is
su

e
IV

V
er
si
on

 I

26

(
J
)

ea
r
20

12

Y

© 2012 Global Journals Inc. (US)

the case of max constraint satisfaction problems this is
precisely the problem. However, the point is that here
we will not focus on the design of strategies for smart or
optimized ways of dealing with feasibility issues. Surely
this will be an important part of the specific
implementations, but we assume that in some sense
this is not the most important part of the story, which is,
on the contrary, the optimization of the quality of the final
solution output by the algorithm.

Figure 3.1 shows in a graphical way the generic
step of a construction process, pointing out all the
important aspects and their reciprocal relationships in
very general terms. The feasibility checking device which
defines the set C (xt) of feasible expansions for the
current partial solution xt is indicate with the Ω box, to

stress the role of either the constraints set Ω

and/or the
explicit knowledge of the solution set to accomplish this
sub-task. The specific strategy of selection and inclusion
of the new component ct is indicated by the decision
block π. The dashe d contour lines show the actual
subsets of components defining respectively the partial
solution xt

and the set of feasible expansions C (xt). The
chosen component ct belongs to this last. The diagram
shows the case in which a feasible solution xs

∈

S is

eventually constructed. The decision strategy π is
generically assumed as making use of at least the
information contained in the partial solution in addition
to C (xt). A similar diagram will be shown for the specific
case of the ACO’s ant agents, in order

to show the
peculiarities of the ACO’s design with respect to this
generic one.

This

issue

of

the

feasibility of

the

final solution

has

put

in

evidence

the

fact

that

during

a construction

process

the

single decisions cannot

be

seen

as

independent. On

the

contrary, they are tightly related,

since all

the decisions issued

in

the past will

constrain

those

that

can

be

issued in

the

future.

On

the

other

hand, feasibility

is

only one

aspect

of

the

entire problem

of

building a

solution.

The

equally, if

not

more,

important aspect

concerns

the

quality

of

the

solution.

It

is evident

that

the

same

considerations

on

the

dependence among

the

decisions apply

also

when
quality

is considered.

In

general,

to

optimize the

final
quality, each

specific

decision

should

be taken

in

the

light

of

all previous

decisions, that

is,

according to

the

status

of

the

current

partial solution.

This

can

be

seen

at

the

same

time

as a constraint and an

advantage:
building a solution in a sequential

way

allows

to reason

on

each

single

choice

on

the

basis

of

an

incremental

amount of

information coming from

the past and also

possibly

looking

into

the

future through

some form of

look ahead.

Figure 1 :

The t-th step of generic construction process toward generation of a complete solution xs

∈

S.

These are the basic key concepts to understand
the rationale behind a large part of the con- tents of this
chapter, which discusses construction and decision
processes. In fact, in rather general terms, two
construction strategies are going to be seen as different
according to the different way of using and discarding
the information contained in the partial solutions. In
particular, it will be shown that an exact approach, like
dynamic programming [3], makes use of the full
information, while a heuristic approach, like ACO, drops
off everything but the last included component.

III.

Conclusion

In this paper we have defined the formal tools
and the basic scientific

background. That is, we have
defined the terms and notions that will allow us to show
important connections between ACO and other related
frameworks and that will allow us to adopt a formal and
insightful language to describe ACO.

More specifically the chapter has introduced

the

class

of

combinatorial

optimization problems addressed

by

ACO and discussed

the role and characteristics

of

different

abstract representations

of

the

same

combinatorial optimization problem

at

hand. The chapter
has also provided a formal

definition and an

analysis

of

construction

methods

for

combinatorial optimization,

Study of Mathematical Model and Ant Colony Optimization (ACO)

G
lo
ba

l
J o

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II

Is
su

e
IV

V
er
si
on

 I

27

(
J)

ea
r
20

12

Y

© 2012 Global Journals Inc. (US)

made explicit and discussed the relationship between
construction methods and sequential decision
processes and, in turn, optimal control and defined the
notion of construction graph as a graphical tool, derived
from the state graph through the application of a
generating function, which is useful to visualize and
reason on sequential decision processes using a
compact representation.

References Références Referencias

1. T. Abe, S. A. Levin, and M. Higashi, editors.
Biodiversity: an ecological perspective. Springer-
Verlag, New York, USA, 1997.

2. M. Beckmann, C.B. McGuire, and C.B. Winstein.
Studies in the Economices of Transportation. Yale
University Press, 1956.

3. R. Bellman. Dynamic Programming. Princeton
University Press, 1957.

4. R. Bellman. On a routing problem. Quarterly of
Applied Mathematics, 16(1): 87–90, 1958.

5.

D. Bertsekas, J. N. Tsitsiklis, and Cynara Wu.
Rollout algorithms for combinatorial optimization.
Journal of

Heuristics, 3(3):245–262, 1997.

6.

M. Birattari, G. Di Caro, and M. Dorigo. Towards the
formal foundation of ant programming. In M. Dorigo,
G. Di Caro, and M. Sampels, editors, Ants
Algorithms - Proceedings of ANTS 2002, Third
International Workshop on Ant Algorithms, Brussels,
Belgium, September 12–14, 2002, volume 2463 of
Lecture Notes in Computer Science, pages 188–
201. Springer-Verlag, 2002.

7.

J.A. Bland. Optimal structural design by Ant Colony
Optimization. Engineering optimization, 33: 425–
443, 2001.

8.

J.A. Bland. Layout of facilities using an Ant System
approach. Engineering optimization,

32(1), 1999.
[38] J.A. Bland. Space-planning by Ant Colony
Optimization. International Journal of Computer
Applications in Technology, 12, 1999.

9.

K. Bolding, M. L. Fulgham, and L. Snyder. The case
for chaotic adaptive routing. Technical Report CSE-
94-02-04, Department of Computer Science,
University of Washington, Seattle, 1994.

10.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford University Press, 1999.

11.

J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J.
Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In
Proceedings of the Fourth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom98), 1998.

12.

D. Camara and A.F. Loureiro. Gps/ant-like routing in
ad hoc networks. Telecommunication Systems,
18(1–3):85–100, 2001.

13.

H.S. Chang, W. Gutjahr, J. Yang, and S. Park. An
Ant System approach to Markov Decision
Processes. Technical Report 2003-10, Department
of Statistics and Decision Support Systems,
University of Vienna, Vienna, Austria, September
2003.

14.

C. Cheng, R. Riley, S.P. Kumar, and J.J. Garcia-
Luna-Aceves. A loop-free extended bellman-ford
routing protocol without bouncing effect. ACM
Computer Communication Review (SIGCOMM ’89),
18 (4):224–236, 1989.

15.

L. Chrisman. Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach. In
Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 183–188, 1992.

16.

I. Cidon, R. Rom, and Y. Shavitt. Multi-path routing
combined with resource reservation. In IEEE
INFOCOM’97, pages 92–100, 1997.

17.

I. Cidon, R. Rom, and Y. Shavitt. Analysis of multi-
path routing. IEEE/ACM Transactions on Network-
ing, 7(6):885–896, 1999.

18.

A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian.
Ant system for job-shop scheduling. Belgian
Journal of Operations Research, Statistics and
Computer Science (JORBEL), 34:39–53, 1994.

19.

M. Cottarelli and A. Gobbi. Estensioni dell’algoritmo
formiche per il problema del commesso via
ggiatore. Master’s thesis, Dipartimento di Elettronica
e Informazione, Politecnico di Milano, Italy, 1997.

20.

J.-L. Deneubourg, S. Aron, S. Goss, and J.-M.
Pasteels. The self-organizing exploratory pattern of
the argentine ant. Journal of Insect Behavior, 3:159–
168, 1990.

21.

J.L. Deneubourg, S. Goss, N. Franks, A. Sendova-
Franks, C. Detrain, and L. Chretien. The dynamics of
collective sorting: robot-like ants and ant-like robots.
In S. Wilson, editor, Proceedings of the First
International Conference on Simulation of Adaptive
Behaviors: From Animals to Animats, pages 356–
365. MIT Press, Cambridge, MA, USA, 1991.

22.

G. Di Caro and M. Dorigo. AntNet: A mobile agents
approach to adaptive routing.

Technical Report 97–
12, IRIDIA, University of Brussels, Belgium, June
1997.

23.

G. Di Caro, F. Ducatelle, and L.M. Gambardella.
AntHocNet: an ant-based hybrid routing algorithm
for mobile ad hoc networks. In Proceedings of
Parallel Problem Solving from Nature

(PPSN) VIII,
volume 3242 of Lecture Notes in Computer Science,
pages 461–470. Springer-Verlag, 2004.

24.

G. Di Caro, F. Ducatelle, and L.M. Gambardella.
AntHocNet: an adaptive nature-inspired algorithm
for routing in mobile ad hoc networks. European
Transactions on Telecommunications, 16(5),
October 2005.

Study of Mathematical Model and Ant Colony Optimization (ACO)
G
lo
ba

l
J o

ur
na

l
of
 R

es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e
 X

II

Is
su

e
IV

V
er
si
on

 I

28

(
J
)

ea
r
20

12

Y

© 2012 Global Journals Inc. (US)

25. E. W. Dijkstra. A note on two problems in
connection with graphs. Numerical Mathematics,
1:269–271, 1959.

26. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant
algorithms for discrete optimization. Artificial Life,
5(2):137–172, 1999.

27. J.J. Garcia-Luna-Aceves and S. Murthy. A path-
finding algorithm for loop-free routing. IEEE/ACM
Transactions on Networking, February 1997.

28. F. Glover. Tabu search, part I. ORSA Journal on
Computing, 1:190–206, 1989.

29. J. Moy. OSPF version 2. Request For Comments
(RFC) 1583, Network Working Group, 1994.

30. J. Moy. OSPF Anatomy of an Internet Routing
Protocol. Addison-Wesley, 1998.

31. G. Owen. Game Theory. Academic Press, third
edition, 1995.

32. M.L. Puterman. Markov Decision Problems. John
Wiley & Sons, 1994.

33. Rome, Kay, and Friedemann Mattern. The design
space of wireless sensor networks. IEEE Wireless
Communications, 11(6):54–61, December 2004.

	Study of Mathematical Model and Ant Colony Optimization(ACO)
	Author
	I. Combinatorial OptimizationProblems
	a) Solutioncomponents

	II. ConstructionMethods
	III. Conclusion
	References Références Referencias

