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On Dynamics of a Landing Gear Mechanism
With Torsional Freeplay

Elmas Atabay , Ibrahim Ozkol

AAbstract - In this study, dynamics of a landing gear 
mechanism with torsional degree of freedom and torsional 
freeplay is analyzed. Derivation of the equations of motion of 
the model with torsional degree of freedom and the von 
Schlippe tire model are presented. Freeplay is introduced into 
the model and effects of freeplay angles of 0 º, 0.5º, 1º and 
1.5º are observed by obtaining time histories of the torsion 
angle and lateral tire deformation and limit cycles of the torsion 
angle. Amplitudes and frequencies of oscillations of the time 
histories of the torsion angle and lateral tire deformation are 
presented.

I. INTRODUCTION

ibration of aircraft steering systems has been a 
problem of great concern since the production of 
first airplanes. Shimmy is an oscillatory motion of 

the landing gear in lateral and torsional directions, 
caused by the interaction between the dynamics of the 
tire and the landing gear, with a frequency range of 10–
30 Hz. Though it can occur in both nose and main 
landing gear, the first one is more common. Shimmy is a 
dangerous condition of selfexcited oscillations driven by 
the interaction between the tires and the ground that can 
occur in any wheeled vehicle. Problem of shimmy 
occurs in ground vehicle dynamics and aircraft during 
taxiing and landing. In other words, shimmy takes 
places either during landing, take–off or taxi and is 
driven by the kinetic energy of the forward motion of the 
aircraft. It is a combined motion of the wheel in lateral, 
torsional and longitudinal directions.

II. SHIMMY

Shimmy can occur in steerable wheels of cars, 
trucks and motorcycles, as well as trailers and tea carts. 
In vehicle dynamics, shimmy is the unwanted oscillation 
of a rolling wheel about a vertical axis. It can occur in 
taxiing aircraft, as well. In the case of a shopping cart 
wheel, it is caused by the coupling between transverse 
and pivot degrees of freedom of the wheel. In the case 
of landing gear, shimmy is the result of the coupling 
between tire forces and landing gear bending and 
torsion. In other words, basic cause of shimmy is energy 
transfer from tireground contact force and vibration 
modes of the landing gear system.

Shimmy is an unstable phenomenon and it 
occurring with a certain combination of parameters such 
as mass, elastic quantities, damping, geometrical 
quantities, speed, excitation forces  and   nonlinearities 
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such as friction and freeplay. It is difficult to determine 
shimmy analytically since it is a very complex 
phenomenon, due to factors such as wear and ground 
conditions that are hard to model. Small differences in 
physical conditions can lead to extremely different 
results. For example, it is reported in [1] that a new small 
fighter aircraft whose name is withheld, has displayed to 
vibrations during low and high speed taxi tests and first 
several landings and takeoffs, but shimmy vibrations 
with frequencies in the range 22–26 Hz were 
experienced during next several landings and take–offs 
at certain speeds, especially during landing. This 
demonstrates the effect of wear on landing gear 
shimmy. In the reported case, it was seen that tightening 
the rack too tight against the pinion prevented the wheel 
from turning, while tightening it less tight caused the 
vibration to disappear but reappear in the following 
flights.

Ground control of aircraft is extremely important 
since severe shimmy can result in loss of control or 
fatigue failure of landing gear components. Vibration of 
aircraft steering systems deserves and has gained 
attention since shimmy is one of the most important 
problems in landing gear design. Shimmy is reported to 
be due to the forces produced by runway surface 
irregularities and nonuniformities of the wheels [2–5]. 
Modeling of aircraft tires presents similar challenges to 
those involved in modeling automotive tires in ground 
vehicle dynamics, on a much larger scale in terms size 
and loads on the tire [6].

Shimmy is a complex phenomenon influenced 
by many parameters. Causes of shimmy can be listed 
as follows [2,7–10].

Insufficient overall torsional stiffness of the gear 
about the swivel axis

Inadequate trail, since positive trail reduces 
shimmy

Improper wheel mass balancing about the swivel 
axis
Excessive torsional freeplay

Low torsional stiffness of the strut

Flexibilities in the design of the suspension
Surface irregularities
Nonuniformities of the wheels
Worn parts
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III. DETECTION AND SUPPRESSION OF 

SHIMMY

Shimmy is a great concern in aircraft landing 
gear design and maintenance. Prediction of nose
landing gear shimmy is an essential step in landing gear 
design because shimmy oscillations are often detected 
during the taxi or runway tests of an aircraft, when it is 
no longer feasible to make changes on the geometry or 
stiffness of the landing gear. Although shimmy was 
observed in earlier aircraft as well, there were no extra 
shimmy damping equipments installed. Historically, 
France and Germany tended to deal with shimmy in the 
design phase, while in United States, the trend was to 
solve the problem after its occurrence. Currently, the 
general methodology is to employ a shimmy damper 
and structural damping. A shimmy damper, acting like a 
shock absorber in a rotary manner, is often installed in 
the steering degree of freedom to damp shimmy. It is a 
hydraulic damper with stroke limited to a few degrees of 
yaw. A shimmy damper restrains the movement of the 
nose wheel, allowing the wheel to be steered by moving 
it slowly, but not allowing it to move back and forth 
rapidly. It consists of a tube filled with hydraulic fluid 
causing velocity dependent viscous damping forces to 
form when a shaft and piston are moved through the 
fluid. Oleo–pneumatic shock absorbers are the most 
common shock absorber system in medium to large 
aircraft, since they provide the best shock absorption 
ability and effective damping. Such an absorber has two
components: a chamber filled with compressed gas, 
acting as a spring and absorbing the vertical shock and 
hydraulic fluid forced through a small orifice, forming 
friction, slowing the oil and causing damping. Another 
common cure is to replace the tires even though they 
may not be worn out [10–12].

Shimmy started being investigated in 1920’s 
both theoretically and experimentally and soon it 
became clear that it is caused not by a single parameter 
but by the relationships between parameters. Effects of 
acceleration and deceleration on shimmy have been 
reported to be examined, and the accelerating system is 
found to be slightly less stable [13]. Number of 
publications available in literature on landing gear 
shimmy is limited because many developments are 
proprietary and are not published in literature.

IV. LITERATURE SURVEY

Many papers have been published addressing 
shimmy as a vehicle dynamics problem. In that 
perspective, tire is the most important item, and tire 
models have been investigated. [13] examines the 
wheel shimmy problem and its relationship with 
longitudinal tire forces, vehicle motions and normal load 
oscillations. [8] compares different dynamic tire models 
for the analysis of shimmy instability. [3] is an 
investigation of tire parameter variations in wheel 
shimmy, by considering the shimmy resulting from the 

elasticity of a pneumatic tire, particularly in taxiing 
aircraft. [14] is on the application of perturbation 
methods to investigate the limit cycle amplitude and
stability of the wheel shimmy problem. [7] deals with the
shimmy stability of twin–wheeled cantilevered aircraft
main landing gear. The objective in [15] is to develop 
software on assessing shimmy stability of a general 
class of landing gear designs using linear and nonlinear 
landing gear shimmy models. [16] studies the periodic
shimmy vibrations and chaotic vibrations of a simplified 
wheel model using bifurcation theory. [17] is on tire
dynamics and is a development to deal with large 
camber angles and inflation pressure changes. [18] is 
another study on tire dynamics, where stability charts 
show the behavior of the system in terms of certain 
parameters such as speed, caster length, damping 
coefficient and relaxation length. [19] is an experimental 
study on wheel shimmy where system parameters are 
identified, stability boundaries and vibration frequencies 
are obtained on a test rig for an elastic tire. Dependence 
of shimmy oscillations in the nose landing gear of an 
aircraft on tire inflation pressure are investigated in [20]. 
The model derived in [21] is used and it is concluded 
that landing gear is less susceptible to shimmy 
oscillations at inflation pressures higher than the 
nominal.

Transverse vibrations of landing gear struts with 
respect to a hull of infinite mass have been studied 
theoretically in [22]. Similarly, [23] presents a nonlinear 
model describing the dynamics of the main gear wheels 
relative to the fuselage.

Lateral dynamics of nose landing gear shimmy 
models has gained some attention. Lateral response of 
a nose landing gear has been investigated in [10] where 
nonlinearities arise due to torsional freeplay. In [24], 
lateral response to ground–induced excitations due to 
runway roughness is taken into consideration as well. 
Lateral stability of a nose landing gear with a closed 
loop hydraulic shimmy damper is presented in [12]. 
Closed form analytical expressions for shimmy velocity 
and shimmy frequency are derived in regard to the 
lateral dynamics of a nose landing gear in [25].

A dynamic model of an aircraft nosegear is 
developed in [9] and effects of design parameters such 
as energy absorption coefficient of the shimmy damper, 
the location of the center of gravity of the landing gear, 
shock strut elasticity, tire compliance, friction between 
the tire and the runway surface and the forward speed 
on shimmy are investigated. It is shown in [26] that dry 
friction is one of the principal causes of shimmy.

Bifurcation analysis of a nosegear with torsional 
and lateral degrees of freedom is performed in [21]. 
Similarly, bifurcation analysis of a nosegear with 
torsional, lateral and longitudinal modes is performed in 
[27]. In a more mathematical study, incremental 
harmonic balance method is applied to an aircraft wheel 
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shimmy system with Coulomb and quadratic damping 
[28] and amplitudes of limit cycles are predicted.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theoretical research on shimmy has a long 
history, with the initial focus on tire dynamic behavior 
because tires play an important role in causing shimmy 
instability. Theories on tire models can be divided into 
stretched string models and point contact models. In the 
stretched string model proposed by von Schlippe, the 
tire centerline is represented as a string in tension, the 
tire sidewalls are represented by a distributed spring 
where the string rests and the wheel is represented by a 
rigid foundation for the spring. Pacejka has proposed 
replacing the string by a beam. The point contact 
method assumes the effects of the ground on the tire 
act at a single contact point and is much easier to 
implement in an analytical model.

V. MATHEMATICAL MODE

a) Landing gear model
In this study, dynamics of a landing gear model 

with torsional degree of freedom and torsional freeplay 
is analyzed. The nonlinear mathematical shimmy model 
presented in [11], [29] and [30] describes the torsional
dynamics of the lower parts of a landing gear 
mechanism and stretched string tire model. Figures 1 a 
and b show the physical and mathematical nose landing 
gear models. Dynamics of the lower part of the landing 
gear is described by a second order ordinary differential 
equation for the yaw angley about the vertical axis z , 
while the dynamics of the tire modeled with respect to 
the stretched string tire model is described by a first 
order ordinary differential equation for the lateral tire 
deflection y .

Figure 1: a. Nose landing gear model [30], b. shimmy dynamics model [29].
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                            (1)

where Iz is the moment of inertia about the z axis,
M1 is the linear spring moment between the turning tube 
and the torque link,
M2 is the combined damping moment from viscous 
friction in the bearings of the oleo–pneumatic
shock absorber and from the shimmy damper,

4321 MMMMI z +++=ψ

M3 is the tire moment about the z axis and
M4 is the tire damping moment due to tire tread width..
M1 and M4 are external moments.
M3 and  M4 are caused by lateral tire deformations due 
to side slip.
M3 is composed of Mz , tire aligning moment about the 
tire center, and tire cornering moment eFy . Fy is the 
wheel cornering force or the sideslip force acting with 
caster e as lever arm.

(2)

(3)

(4)

(5)

where k is the torsional spring rate, c is the 
torsional damping constant, v is the taxiing velocity and 
k is the tread width moment constant defined as [29]

ψkM =1

ψcM =2

yz eFMM −=3

ψ
κ

v
M =4

zF Fca ακ 215.0−= (6)

Fy and Mz depend on the vertical force Fz and 
slip angle    . Tire sideslip characteristics are nonlinear.
Cornering force Fy and vertical force Fz are related as



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7)

(8)

Where    is the limiting slip angle or the limit 
angle of tire force and sign    is the sign function defined 
as

(9)

Slip angle may be caused by either pure yaw or 
pure sideslip. Pure yaw occurs when the yaw angle  is 
allowed to vary while the lateral deflection y is held at 
zero. Pure sideslip, on the other hand, occurs when the 
lateral deflection y is allowed to vary as the yaw angle
is held at zero [11].

An expression is given for the nonlinear sideslip 
characteristic in the widely used Magic Formula [7, 11, 
17] as the following

(10)

where B,C, D and Eare functions of the wheel 
load, slip angle, slip ratio and camber. B and E are 
related to vertical force Fz , C is the shape factor and D
is the peak value of the curve.

Plots of          versus     will not be presented 
here due to lack of space, but they have similar 
characteristics when obtained using either (7) and (8) or 
the Magic Formula, thus the simple approximations 
given by (7) and (8) are used instead of the complicated 
Magic Formula. Only force and moment derivatives are 
needed as parameters for (7) and (8).

Aligning moment Mz is defined using a half–
period sine.           is approximated by a sinusoidal 
function and the constant zero given by (11) and (12).

(11)

(12)

where           is the limiting angle of tire moment.

b) Tire model
Tire is modeled using the elastic string theory. 

Lateral deflection of the tire is described as [11,29]

(13)

Ground forces are transmitted to the wheel 
through the tire, and these forces acting on the tire 
footprint deflect the tire. Elastic string theory states that 

lateral deflection y of the leading contact point of the tire 
with respect to tire plane can be described as a first 
order differential equation given by (13). This equation is 
derived as follows.

Tire sideslip velocity V t is expressed as

(14)

Where           is the time constant,    is the 

relaxation length, which is the ratio of the slip stiffness to
longitudinal force stiffness. The tire also undergoes yaw 
motion, leading to a yaw velocity Vr which is 
approximated as
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( )αδα signcFF Fzy = , for δα >

δ
( )α

( )
≤−

>
=

δα

δα
α

if,1

if,1
sign

ψ

ψ

( )( ){ }[ ]ααα BBEBCDFy arctanarctansin −−=

zy FF α

zz FM

= α
α

α
α

g

g

Mzz cFM
180

sin
180

, for gαα ≤

0=zz FM ,    for gαα >

gα

( )ψψ
σ

aevy
v

y −+=+

τ

y
yVt +=

V
σ

τ = σ

( )ψψ aevVr −+= (15)

As the wheel rolls on the ground,

(16)

Substituting (14) and (15) into (16) yields (13).
An equivalent side slip angle caused by lateral 

deflection is used to compute cornering force Fy and 
aligning moment Mz and is approximated as        

rt VV =

(17)

Equations (1), (13) and (17) constitute the 
governing equations of the torsional motion of the 
landing gear and include nonlinear tire force and 
moment. Parameters of a light aircraft used in the 
computations are given in table 1.

σ
αα

y
=≈ arctan



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Parameters used in the torsional dynamics.

c) Linearization
In order to use linear analysis tools, nonlinear 

landing gear model has to be linearized. Following this, 
linear stability analysis will be performed.

within a small range of the side slip angle  , 
cornering force Fy and the ratio Mz / Fz can be 
approximated proportional to the side slip angle. Based 
on this assumption, substituting equations (7), (8), (11) 
and (12) into (4) yields (20), the complete expression for 
the tire moment  M3

(18)

(19)

(20)
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Parameter Description Value Unit 
v  velocity 0…80 m/s 
a  half contact length 0.1 m 
e  caster length 0.1 m 

zI moment of inertia 1 kg m2

zF vertical force 9000 N 

c  torsional spring rate -100000 Nm/rad 

αFc side force derivative 20 1/rad 

αMc moment derivative -2 m/rad 

k torsional damping constant 0…-50 Nm/rad/s 

κ tread width moment constant -270 Nm2/rad 

a3=σ relaxation length 0.3 m 

gα limit angle of tire moment 10 deg 

δ limit angle of tire force 5 deg 

α
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≥
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sin
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α
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α
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αα

α

,

,
180

sin
180
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180
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3

Substituting (17) into (20) and expressing M3 in the neighborhood of a = 0 or y = 0 yields

(21)
zFz

g

g

M F
y

ecF
y

cM
σσα

α
αα −=

180
sin

1803



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M3 can be linearized using the Taylor series expansion as

(22)

Defining the state variables as                   gives 
the linearized model as three ordinary differential 
equations of first order as

(23)

where

(24)

(25)

(26)

(27)

(28)

VI. FREEPLAY

Freeplay is a type of concentrated structural 
nonlinearity inherent in many mechanical systems. Such
concentrated structural nonlinearities, such as cubic, 
freeplay and hysteresis stiffnesses, have significant 
effects on aeroelastic responses of airfoil surfaces. 
Freeplay gives the most critical flutter condition among 
the three and is inevitable for control surfaces due to 
wear and manufacturing errors. It exists in the hinge part 
of the control surfaces of most flight vehicles and is 
generated from loose or worn hinge connections, joint 
slippage and manufacturing tolerances. Freeplay may 
couple with aerodynamic effects and cause limit cycle 
oscillations during flight, leading to structural damage 
due to fatigue. Thus, it is crucial to incorporate freeplay 
into the equations of motion and to predict its effects in 
advance. Freeplay nonlinearity causes structural 
stiffness to become piecewise continuous. A spring is 
often used in literature to represent worn or loose control 
surface hinges. Most of the literature considering the 
effect of freeplay concentrates on problems of 
aeroelasticity. Missile control surfaces, moveable aircraft 

lifting surfaces such as horizontal tails or rotatable 
pylons on aircraft with variable sweep exhibit freeplay 
that can be potentially dangerous from an aeroelastic 
perspective, in terms of flutter conditions. It is found that 
limit cycle oscillations in the case of freeplay nonlinearity 
occur below the linear flutter speed boundary, which 
means the critical flutter speed is below that of the 
system without freeplay. Additionally, freeplay may 
cause instabilities both above and below the flutter 
speed predicted by the linear theory. Responses to 
freeplay include nonlinear phenomena such as limit 
cycle oscillations and even chaotic responses. Limit 
cycle oscillations are likely to occur in the presence of 
freeplay nonlinearities, leading to fatigue and damage in 
the long run. The possibility of even small freeplay 
angles leading to severe instabilities dangerous fatigue 
conditions are shown in literature [31–34,35,36,37].

Cyclic loading occurs during taxi due to runway 
surface irregularities, which may lead to wear in 
mechanical components of the landing gear, including 
freeplay in the rack and pinion of the steering system, 
interlinkages of the torque link, fuselage attachment 
points, steering collar and wheel axle [38].

Freeplay is hard to avoid in loose or old joints. 
Its existence may affect the system response, even 
leading to chaos, however harmful results can be 
avoided if possible limit cycle oscillations or chaotic 
motion are known in advance. Therefore, it is important 
to determine the possibility of the existence of such 
motions before they occur [31–33]. Additionally, freeplay 
will have an effect on the response of the system to a 
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control law that was initially designed for the linear
model [39]. Although freeplay is often linearized or 
ignored in calculations, it is necessary to compare the 
responses of the systems with and without freeplay. 
Amount of freeplay present in the studies mentioned 
here are in the range 0.1º–2.12º.

Various parts of the landing gear move with 
respect to each other during landing impact and when 
retracted. Freeplay at the wheel axle due to the 
contributions from various connections are less then 
one degree in yaw and in the order of millimeters in the 
lateral and fore/aft directions. It has been verified 
experimentally that the amount of freeplay is a function 
of the shock absorber deflection. Free play will increase 
with the number of flights. Application of tight tolerances 
might help in solving shimmy problems in the prototype 
phase, however, the problem will reoccur when the 
aircraft is in service, due to wear [7].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. Literature Survey On Freeplay

A literature survey on freeplay reveals that 
freeplay has been considered mostly by researchers 
working on the fluid–structure interaction problem. 
Flutter analysis of airfoils with freeplay nonlinearities in 
pitch degree of freedom subject to incompressible flow 
have gained some attention. Limit cycle oscillations of 
airfoils having two degrees of freedom and freeplay 
nonlinearities in pitch, placed in transonic and 
supersonic flows are investigated in [31] and [32], 
respectively. Similar numerical studies investigating the 
same model are [40], where the model is placed in 
subsonic and transonic flows, [37], where the model is 
placed in transonic and low supersonic flows, and [41], 
where the model is placed in turbulent flow. Bifurcation 
analysis of the same system with two degrees of 
freedom is conducted in [42].

Mathematical analysis of the behavior of a two 
dimensional aeroelastic system with freeplay nonlinearity 
is presented in [43] and two formulations are developed. 
Formulations are extended for a hysteresis model in 
[44]. Unlike a freeplay model which consists of three 
linear subsystems, a hysteresis model consists of six.

Bifurcation analysis an airfoil having two 
degrees of freedom with both freeplay and cubic 
stiffness nonlinearities in pitch placed in supersonic flow 
has been conducted in [35]. Bifurcation analysis of an 
aircraft with freeplay nonlinearity is conducted in [45]. 
Limit cycle oscillations of an airfoil with two degrees of 
freedo having freeplay in the pitching degree of freedom 
are examined experimentally and theoretically in [34]. An
experimental delta wing model with freeplay at the 
attachment points is designed and tested in [46], and its 
gust response is investigated in [47]. Effect of freeplay 
on the aerodynamic response, such as limit cycle flutter, 
has been examined. It has been found that the 
amplitude and position of the limit cycle varies with the 
magnitude of freeplay. Effects of variations in 
parameters have been examined for both the damped 
and limit cycle oscillations. Critical flutter speeds are 
predicted.

Hinges of control surfaces often demonstrate 
freeplay nonlinearity. [48] is a study examining the limit 
cycle oscillations of a combination of an airfoil and an 
aileron, resulting in three degrees of freedom, with 
freeplay in the aileron hinge. Aeroelastic response of 
other two dimensional systems having control surface 
freeplay nonlinearity are studied using the harmonic 
balance approach in [49] and both numerically and 
experimentally in [39]. A dissertation was presented to 
Duke University in 2000, covering the dynamics of a two 
dimensional aeroelastic system with control surface 
freeplay nonlinearity, both experimentally and 
mathematically [50]. Limit cycle oscillations are 
observed. The system is very similar to the one given in 
[48], a combination of an airfoil with an aileron.

A three dimensional control surface with play is 
investigated in [51] to demonstrate the effects of angle 
of attack and Mach number. Flutter analysis of a missile 
wing having freeplay in it the rotation degree of freedom 
of the wing control mechanism is conducted in [33] by 
investigating limit cycles and chaotic motion. Results 
state that the system response depends on the amount 
of freeplay and initial conditions.

A study on a mechanical system exhibiting 
freeplay nonlinearity is studied both numerically and 
experimentally in [36] where the problem of developing 
a mathematical model and performing a simulation of 
the dynamics of systems exhibiting freeplay nonlinearity 
is addressed. Contact due to freeplay is considered, 
constraints are formulized and the stability of an aircraft 
wing displaying freeplay in the hinge supporting a 
control surface is investigated. Freeplay is considered 
as one of the rotor faults in the simulation of helicopter 
structural damages in [52].

Freeplay model used in this study is based on 
the ones in [31] and [38]. Dynamics of a landing gear 
mechanism with freeplay in the torsional degree of 
freedom is analyzed in [38], while dynamic behavior of a 
two dimensional airfoil with freeplay in pitch, oscillating 
in pitch and plunge directions, subjected to inviscid,
transonic flow is analyzed in [31]. Both freeplay 
nonlinearities are modeled using the same principle and
formulation, although the two studies are in two very 
distinct disciplines. Same formulation as in [31] is
employed in [40,93], and mathematical models given in 
[32,33,35,37,41–43,48] are also similar .

Freeplay is modeled as a nonlinear spring as in 
figure 2, where some deflection is possible before a 
force develops and the spring force is zero if the 
amplitude remains within the freeplay band. 
Formulations have been suggested in literature to 
determine an equivalent linear stiffness.
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Figure 2 : Modeling of freeplay [7].

Equation 34 gives the piecewise continuous 
restoring moment function similar to the one used in 

[38] to describe the concentrated nonlinearity at the 
torsional degree of freedom.

(29)

Torsion is denoted by      is the stiffness coefficientand        is the freeplay angle.

VIII. INCORPORATION OF FREEPLAY INTO 

THE LANDING GEAR MODEL

Torsional freeplay is incorporated into the 
equations of motion of the landing gear. Results are 
displayed for various  values  of  the freeplay angle
within the range 0º–2º, as this is the range employed in 
literature. Freeplay has been incorporated into the 
equations of motion of landing gear mechanisms in very 
few studies literature [38].

Freeplay model given in (29) can be 
incorporated in the equations of motion in two ways. 
One of them, is to linearize the model as in (23)–(28) 
and substitute (29) into           in (23). This way, the only 
nonlinearity in the model is freeplay nonlinearity such 
that the second equation in (23) becomes

(30)

Second way of incorporating freeplay 
nonlinearity in the model is to obtain a more realistic 
model by substituting (29) directly into the nonlinear 
model. This is the approach taken here. Nonlinear 
equations are integrated using the fourth order Runge–
Kutta algorithm.

IX. RESULTS

Effects of freeplay are observed by obtaining 
time histories of the torsion angle and lateral tire 
deformation and limit cycles. Freeplay angles of 0º, 0.5º, 
1º and 1.5º are incorporated. Amplitudes and 
frequencies of oscillations of the time histories of the 
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torsion angle and lateral tire deformation are presented 
in tables 2 and 3, respectively.

a) Effect of freeplay on the torsion angle
Time histories of the torsion angle are 

presented for freeplay angles of 0º, 0.5º, 1º and 1.5º in 
figures 3–6 for      (0) = 0.1. Amplitudes and frequencies 
of oscillations of the time histories of the torsion angle 
are presented in table 2.
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Figure 3 : Torsion angle for        of 0º.              Figure 4 : Torsion angle for        of 0.5º.

Figure 5 : Torsion angle         of 1º.         Figure 6 : Torsion angle for                 of 1.5º.

Table 2 : Amplitudes and frequencies of the torsion 
angle for various

b) Effect of freeplay on the lateral tire deformation
Time histories of the lateral tire deformation are 

presented for freeplay angles of 0º, 0.5º, 1º and 1.5º in 
figures 7–10 for   (0) = 0.01 and in figures 11–14 for
(0) = 0.1. Amplitudes and frequencies of oscillations of
the time histories of the lateral tire deformation are 
presented in table 3 for    (0) = 0.01 and in table 4 for

                  

(0) = 0.1.
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Figure 7 : Lateral tire deformation for of 0º.         Figure 8 : Lateral tire deformation for of 0.5º.
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Figure 9 : Lateral tire deformation for        of 1º.          Figure10 : Lateral tire deformation for       of 1.5º.

Table 3 : Amplitudes and frequencies of the lateral tire deformation for various       and     (0) = 0.01.

Figure11: Lateral tire deformation for     of 0º.        Figure 12 : Lateral tire deformation for          of 0.5º.
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Figure13 : Lateral tire deformation for        of 1º.         Figure14 : Lateral tire deformation for      of 1.5º.
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Table 4 : Amplitudes and frequencies of the lateral tire deformation for various       and                   .

c) Effect of freeplay on limit cycles

Limit cycles of the torsion angle are obtained for                   in figures 15–18 and for           1for figures 19–22.

Figure 15 : Limit cycle for     

                            

On Dynamics of a Landing Gear Mechanism With Torsional Freeplay

G
lo
ba

l 
Jo

ur
na

l 
of
 R

es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

V
ol
um

e 
 X

II 
 I
ss
ue

 vvvvI
  

V
er
sio

n 
I 

  
  

  
  

  
  
  

  
  

45

(
DDDD

)
D

 ©  2012 Global Journals Inc.  (US)

  
20

12
  

eb
ru
ar
y

F

fpψ ( ) 1.00 =ψ . 

fpψ amplitude frequency 

0º oscillation decays after 0.2 s - 
0.5º 2.2 * 10-3 m 29 Hz 
1º 4.5 * 10-3 m 28 Hz 
1.5º 7 * 10-3 m 28 Hz 

( ) 01.00 =ψ ( ) 10 =ψ

fpψ of 0º and ( ) 01.00 =ψ . 

Figure 16 : Limit cycle for                                                   fpψ of 0.5º and ( ) 01.00 =ψ . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 : Limit cycle for 

                                                

Figure 18 : Limit cycle for 
                                                .
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Figure 19 : Limit cycle for        
fpψ of 0º and ( ) 10 =ψ . 
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Figure 20 : Limit cycle for                                          

.

Figure 21: Limit cycle for            

                                     .
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Figure 22 : Limit cycle for       
fpψ of 1.5º and ( ) 10 =ψ . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

Effect of freeplay on the torsion angle and 
lateral tire deformation are observed. By observing 
tables 2–4 it can be stated that the existence of a 
freeplay angle prevents shimmy damping of the system 
with the same physical parameters. The increase in the 
freeplay angle increases shimmy amplitude. A 0.5º 
increase of the freeplay angle from 0.5º to 1º doubles 
the amplitude in all 3 cases. Another 0.5º increase in the 
freeplay angle from 1º to 1.5º causes a 25% increase in 
the amplitude of the torsion angle and a 55% increase in 
the amplitude of the lateral tire deformation.
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