
© 2013. Salau T.A.O. & Ajide O.O.. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Global Journal of Researches in Engineering 
Mechanical & Mechanics 
Volume 13 Issue 7 Version 1.0  Year  2013 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 2249-4596 & Print ISSN: 0975-5861 

 
Correlation and Distribution Analyses of Estimated Fractal 
Dimensions and Hurst’s Exponent from Waveforms of Excited 
Nonlinear Pendulum 

By Salau T.A.O. & Ajide O.O.   
  University of Ibadan, Nigeria 

 

 

     
 

 
Keywords : fractal dimension, hurst’s exponent, excited nonlinear pendulum, waveforms and runge-kutta. 
GJRE-A Classification : For Code: 850508, 091399 
 

Correlation and Distribution Analyses of Estimated Fractal Dimensions and Hursts Exponent from Waveforms of Excited Nonlinear Pendulum                                       
                

Strictly as per the compliance and regulations of :  

Abstract - This study utilised correlation and distribution analyses to investigate the acceptability of 

application of two fractal dimension estimators to characterise the waveforms originating from excited 

nonlinear pendulum. Parameters selection sensitive simulation of the excited nonlinear pendulum 

waveforms was performed with the constant time step fourth order Runge-Kutta algorithm with codes 

developed in FORTRAN90. However, the waveforms validated by Gregory and Jerry (1990) and treated as 

time series were characterized using developed codes of Carlos (1998) and Hurst fractal dimension 

estimation procedures. The validation results compare qualitatively well and the correlation coefficients 

between Carlos (1998)-based and Hurst’s exponent based dimension estimate for the angular 

displacement and velocity are respectively R
2

= 0.68 and R
2

= 0.66. A higher correlation coefficient 

(R2 = 0.84) existed between the estimated Hurst’s exponent of the angular displacement and velocity. The 

Hurst distribution exhibited both full spectrum and peak values range 0.04 to 1.00 and percentage 

probability range 2 to 12. The sum of this study results is the interchange possibility and utility of the two 

fractal dimension estimators as waveforms characterising tool.
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Abstract -

 

This study utilised correlation and distribution 
analyses to investigate the acceptability of application of two 
fractal dimension estimators to characterise the waveforms 
originating from excited nonlinear pendulum. Parameters 
selection sensitive simulation of the excited nonlinear 
pendulum waveforms was performed with the constant time 
step fourth order Runge-Kutta algorithm with codes developed 
in FORTRAN90. However, the waveforms validated by Gregory 
and Jerry (1990) and treated as time series were characterised 
using developed codes of Carlos (1998) and Hurst fractal 
dimension estimation procedures. The validation results 
compare qualitatively well and the correlation coefficients 
between Carlos  (1998)-based and Hurst’s exponent based 
dimension estimate for the angular displacement and velocity 

are respectively 2 0.68R = and 2 0.66R = . A higher 

correlation coefficient ( 2 0.84R = ) existed between the 
estimated Hurst’s exponent of the angular displacement and 
velocity. The Hurst distribution exhibited both full spectrum 
and peak values range 0.04 to 1.00 and percentage 
probability range 2 to 12. The sum of this study results is the 
interchange possibility and utility of the two fractal dimension 
estimators as waveforms characterising tool.
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I.

 

Introduction

 

 

 electronic circuit modelling of a ball bouncing on an 
oscillating table in demonstrating these different 

dynamic characteristics. Findings show that the fractal 
dimension of 1.07 and 1.7 respectively implies regular 
data and chaotic data.  It was also shown that the fractal 
dimension which is infinite refers to data that are 
random. It is concluded from the paper

 

that the 
bouncing ball circuit system dynamics has a chaotic 
attractor of low fractal dimension. This paper has shown 
that fractal dimension can be utilised in characterising 
nonlinear system. Salau and Ajide (2012) asserted that 
the study of images play a significant role in engineering 
and several fields of study. The authors employed fractal 
dimension as the estimator for sectional images 
characterisation of selected dynamic systems. Findings 
obtained from the paper showed the high potentiality of 
fractal disk dimension as characterising tool for images.

 
 

The chaotic driven impact of two important 
parameters of excited Duffing oscillator has been 
studied using fractal disk dimension (Salau and Ajide, 
2013). The outcome of the study has provided a very 
robust platform for the relevance of the use of fractal 
dimension as a reliable estimator for characterising 
nonlinear dynamic systems.

 
Hurst exponent can easily be computed from 

fractal dimension. Wikipedia (2013) describes Hurst 
exponent as what can be utilized as a measure of long 
term memory of time series. It relates to the 
autocorrelations of the time series and the rate at which 
these decrease as the lag between pairs of values 
increases. It was further understood here that Hurst 
exponent were originally developed in hydrology for the 
practical matter of determining optimum dam sizing for 
the Nile River’s volatile rain and drought conditions that 
have been observed over a long period of time. The 
name “Hurst Exponent” was coined from Harold Edwin 
Hurst who was the lead researcher in this field. An 
extract from Ian (2013) article shows that Hurst exponent 
has a very wide application. It occurs in several areas of 
mathematics (Fractals and Chaos theory, Spectral 
Analysis, e.t.c.), biophysics, computer networking, 
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hydrology and just to mention but a few. Hurst exponent 
has been found to be very useful in marketing, 
medicine, engineering and host of other fields. In 
business, the simulation model which describes the 

ldrich et al in 2001 describes fractals as a rough 
shape that can easily be subdivided in parts of 
which are at least approximately a reduced copy 

of the whole (self-similar). The use of a concept known 
as fractal dimension has made it easy for researcher in 
this field to measure the extent to which a one-
dimensional thread fills up a three dimensional space 
(Scott,1990). The use of fractal dimension as an 
estimating tool for characterising nonlinear systems is 
becoming more appreciated in the recent times. The 
aim of Clark et al (1995) paper was to distinguish 
chaotic and non-chaotic (regular or random) behaviour 
using fractal dimension. The authors employed an 
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multi-level supply chain has been done using

 

Hurst 
exponent (Chien-Yuan and Jinsheng, 2013). The 
exponent satisfactorily analyzes the dynamic behaviour 
of inventory under various factors that include lead time, 
demand pattern, information sharing and RFID (Radio 
Frequency Identification). The outcome of the study 
showed that the lead time and RFID utilization 
effectualness greatly influence the inventory dynamics 
under the stock and supply line discrepancies of 
specified parameters. This paper has also shown the 
utility of Hurst exponent as a relevant estimator of supply 
chain dynamics. The trend in prices of gold has been 
analyzed by Priyadarshini and Babu (2010). The author 
utilised fractal dimension index (FDI) that was computed 
from Hurst exponents. The monthly gold rates required 
for study was collected from January 1971 to April 2010 
(40 years). The results of FDI calculated from a constant 
Hurst exponent (H=1.047) revealed that it is useful tool 
for determining the amount of market growth.  The 
author affirmed that this study has opened-up an 
immeasurable advantage for a businessman to venture 
into markets that have the most opportunity. Yu-Zhi et al

 

(2011) paper dwell on the possibility of Hurst exponent 
being utilised in ecology. A careful application of this 
exponent to rodent populations revealed that it is very 
convenient and effective exponent for detecting 
nonlinear systems in natural populations. In medicine, 
Kamalanand and Jawahar (2012) paper studied the 
behaviour of Human Immuno Virus (HIV) system using 
the three dimensional HIV model and a chaotic measure 
popularly referred to as Hurst exponent. Results of the 
study showed that Hurst exponents of cells and viral 
load vary nonlinearly in the selected parameters range. It 
was further shown that the three dimension HIV model 
can accommodate both persistent and anti-persistent 
dynamics of HIV states. The research output of this 
paper has clearly shown the high clinical relevance of 
Hurst exponent. This is because the analysis of the 
complexity of the HIV model is helpful for choosing 
appropriate parameter estimation methods. It has great 
benefits for identifying suitable treatment strategies. 

 

Despite the richness of fractal dimensions and 
Hurst exponent as estimating tools in nonlinear 
dynamics, they are yet to be extensively explored in 
many nonlinear mechanical engineering system 
dynamics as characterising exponents. Extensive 
literature study shows that Duffing oscillator and excited 
nonlinear pendulum are just two of the so many 
mechanical systems that Hurst exponent has not been 
significantly used to characterize. The main objective of 
this paper is to investigate the correlation and 
distribution analyses of estimated Fractal dimensions 
and Hurst’s exponent from Waveforms of Excited 
Nonlinear Pendulum. The quest of filling this research 
gaps is a strong motivation for this paper.

 

II.

 

Methodology

 

a)

 

Equation of Motion

 

According to Gregory and Jerry (1990), the 
dimensionless representation of the damped, 
sinusoidally excited pendulum with fixed lumped-mass 
and length is described by equation (1) called equation 
of motion. This equation expresses Newton’s second 
law with the various terms on the left representing 
respectively variation with time (t) of the acceleration, 
damping and gravitation effect. The variation with time of 
the angular displacement, velocity and acceleration are

 

( )tθ , ( )tθ and ( )tθ .  The angular velocity of the forcing 

is
D

ω , g is the forcing amplitude (not gravitational 

acceleration) and q

 

is the damping parameter.

       

2 1 sin( ) cos( )D
d d g t
dt q dt
θ θ θ ω+ + =

   

(1)

 

The transformation of equation (1) under the 

assumptions ( 1 angular displacement ADθ = = and

2 angular velocity AVθ = = ) to a pair of first order 

differential equation leads to equations (2) and (3).

 
                           1 2θ θ

•

=

    

  (2)

                
2 2 1

1cos( ) sin( )Dg t
q

θ ω θ θ
•

= − −

 

(3)

 
The transient and steady angular displacements 

and velocities were obtained by simultaneous simulation 
of equations (3) and (4) using constant time step 
Runge-Kutta fourth order algorithms over large number 
of excitation periods. The results of the periodic time 
history of the steady angular displacement and velocity 
are the waveforms objects for the present investigation.

 

b)

 

Fractal Dimension of

 

Waveforms

 

This study utilised Carlos (1998) procedure to 
evaluate the fractal dimension of the waveforms. The 
method is of Hausdorff dimension (where for a curve:
1 2hD≤ ≤ ) origin and in the simplified form equal to 
equation (4) for a curve of length (L) covered by N-open 
balls of radius (ε ). To achieve equal axes Carlos (1998) 
employed two linear transformations (assuming 
topology invariance under the transformation) that map 
an original waveform into another such that the 
transformed waveform is embedded in an equivalent 

© 2013  Global Journals Inc.  (US)

  
  
  

  
  

  
  

  
  

metric space. The equivalent transformation equations 
for the present study are given respectively for 
increasing simulation periods ( iT ), consecutive steady 
angular displacements ( 1,iθ ) and consecutive steady 
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angular velocities ( 2,iθ ) by equations (5) to (7). The 
transformation maps N-points of angular displacement 
and velocity waveforms to another that belongs to a unit 
square respectively. In the resulting unit square, Carlos 
(1998) justified that each of the waveforms can be 
visualised as covered by a grid of N N× cells where N 
of them containing one point of the transformed 
waveforms. Substituting in equation (4) the length (L) of 

the transformed waveform and '1 (2 )Nε = where 
' 1N N= − ) results in a modified expression for 

dimension given by equation (8).

 
 

            
0

ln( )lim 1
ln( )h

LD D
ε ε→

 
= = − 

 

 

(4)

 

                                 

* min

max min

i
i

T TT
T T

−

= −

  

(5)

 

1, 1,min*
1,

1,max 1,min

i
i

θ θ
θ

θ θ
−

= −

  

(6)

 

                                

2, 2,min*
2,

2,max 2,min

i
i

θ θ
θ

θ θ
−

= −

  

(7)

 
'

ln( )1
ln(2 )

h
LD D
N

φ
 

= = ≈ + 
 

  

(8)

 
It is to be noted that the approximation to φ

 

expressed in equation (8), improves as '
N → ∞ .

 

c)

 

Hurst Exponent (H) of Waveforms

 

According to Mandelbrot (1983), Hurst (1951), 
Daniel  and Benjamin (2005) the Hurst exponent 
0 1H≤ ≤ ) can be obtained from the rescaled range 
(R/S) statistic which is the range (R) of partial sums of 
deviation of times series from its mean, rescaled by its 
standard deviation (S). In the present study, the 
rescaled range (R/S) and the standard deviation (S) for 
the periodic time history of the steady displacement and 
velocity waveforms are given correspondingly by 
equations (9 & 11) and (10 &12) for the time span (τ ). 
Literatures recommended that time span ( 4τ ≥ ) to 
ensure the reliability of the estimated Hurst exponent, 
which is the slope of best line to the log-log plot of (τ ) 
versus (R/S).

 

 

1, 1, 1, 1,11 1 11, 1,

1 max ( ) min ( )k ktt k k

R
S S

τ τ

τ τττ
τ τ

θ θ θ θ
≤ ≤≤ ≤

= =

   = − − −     
∑ ∑

    

(9)

 
 

2, 2, 2, 2,11 1 12, 2,

1 max ( ) min ( )k ktt k k

R
S S

τ τ

τ τττ
τ τ

θ θ θ θ
≤ ≤≤ ≤

= =

   = − − −     
∑ ∑

    

(10)

 
 

2
1, 1, 1,

1

1 ( )k
k

S
τ

τ τθ θ
τ =

 = −  
∑

  

(11)

 

 

2
2, 2, 2,

1

1 ( )k
k

S
τ

τ τθ θ
τ =

 = −  
∑

  

(12)

 

 

In a related study on fractal dimensions of time 
sequences by Sy-Sang and Feng-Yuan (2009) equation 
(13) give the expression for the relationship between the 
dimension and the Hurst exponent.

 

2D Hφ= = −

   

(13)

 

It is important to note that in the present study 
the estimated fractal dimension using equations (8) and 
(13) are respectively represented by DCS-Carlos (1998)-
based

 

and DHE-

 

Hurst’s exponent based.

 

d)

 

Studied Cases and Simulation Parameters 

 

The present investigation focuses three cases 
at fixed excitation frequency ( 2 3Dω = ), the details are 

provided as follow:

 

Case-I

 

:

 

( , 2,0.9q g = ). The case enables the 
investigation of the variation of estimated fractal 
dimension with increasing number of time series to 
verify existence of dimension convergence.

 

Case-II

 

: ( , 4,1.5q g = ). The original and the 
transformed Poincare sections obtained from this case 
was compared visually with its equivalent from Gregory 
and Jerry (1990) to validate

 

topological invariance under 
linear transformation and FORTRAN programme 
developed for this present study. As in Case-I, 
convergence of estimated fractal dimension 
demonstrated with increasing number of time series.

 

Case-III

 

: This case focuses the parameter plane defined 
by 

 

2.0 4.0q≤ ≤ and

 

0.9 1.5g≤ ≤ . First part of the

 

case dealt with a total of 2601 nodal points selected on 
the plane including 51coordinates each along  the  axes
(qand g ) at constant step size to enable correlation 
analysis. However the second part involves

 

a total of 
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10201 nodal points selected on the parameters plane 
including 101coordinates each along the axes
( q and g ) at constant step size. Runge-Kutta simulation 
with constant time step, estimation of fractal dimension 
and Hurst exponent were performed for each node. 
Thereafter correlation and Hurst exponent distribution 
analyses were performed for the entire nodes of the 
corresponding part. 
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Simulation of equations (2) and (3) for each set 
of parameters selected with fourth order Runge-Kutta 
algorithms were effected from initial conditions (0, 0) 
using constant time step ( 500pt T∆ = ) over 3010 

excitation periods ( 2p DT π ω= ) in which the results 

from the first ten periods are regarded unsteady. The 
fractal dimension was estimated using the steady 
angular displacement and velocity solutions at 3000 
consecutive excitation periods. However the Hurst 
exponent estimate was based on the first 2048 
consecutive steady solutions over ten different time 
spans (τ = 4, 8, 16, 32, 64, 128, 256, 512, 1024

                            

and 2048).

 

Comparison of the distribution of the estimated 
Hurst exponents was investigated in 100-equal intervals 
between the limits-values (Hurst exponents) for the 
angular displacement and velocity.

 

III.

 

Results and Discussion

 

Figure 1 refers. The visual quality of the 
untransformed and the transformed Poincare sections 
are same and compare very well with the corresponding 
result reported by Gregory and Jerry (1990). This 
demonstrated topological invariance under linear 
transformation as required by Carlos (1998) approach of 
estimating fractal dimension.

 

Likewise the invariance of 
Poincare section (periodic phase plots) suggested the 
invariance of the associated angular displacement and 
velocity waveforms that are the objects of analyses in 
this study. However, quantitative comparison of the 
limits-values

 

along the angular displacement (AD) and 
angular velocity (AV) axes are different.

 

 

Figure 1

 

:

 

The untransformed and the transformed 
Poincare sections for Case-II

 
 

 

Figure 2

 

:

 

Variation of estimated fractal dimension with 
increasing number of time series

 

Figure 2 refers. The variation of the estimated 
fractal dimension with increasing number of time series 
shows evidence of convergence for both Case-I and 
Case-II. In Case-I the observed variation of estimated 
fractal dimension remain the same for the angular 
displacement and velocity. However, a consistent 
relative higher estimated fractal dimension variation for 
the angular displacement is observed for Case-II. That is 
angular velocity sustained lower estimated fractal 
dimension relative to angular displacement in Case-II.
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Figure 3 : Correlation of estimated fractal dimensions in 
Case-III
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Figure 3 refers. The correlation coefficients 
between Carlos (1998)-based and Hurst’s exponent 
based dimension estimated for the angular 
displacement (AD) and angular velocity (AV) are 

respectively 2 0.68R = and 2 0.66R = .  Higher 
correlation coefficients may be achieved by increasing 
the number of time series beyond its present value i.e. 
3000-for dimension estimate and 2048-for Hurst 
exponent estimate. The quality of the visual pattern 

created by the scatter plots of the dimensions 
correlation of angular displacement (AD) and angular 
velocity (AV) are the same. It is important to note that the 
small and negligible quantitative difference between the 
obtained correlation coefficients is an indication of 
common source of time series (i.e. the source is 
periodic sampling of solutions to harmonically excited 
nonlinear pendulum).

 
 
 
 
 

 

Figure 4

 

:

 

Correlation of estimated Hurst’s exponent between angular displacement and velocity

  
 

 
 
 
 
 
 
 
 
 
 

 

Figure 5

 

:

  

Normalised probability distribution of estimated Hurst’s exponents of angular displacement waveforms 
obtained from 10201 nodal parameter points
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Figure 4 refers. There is higher correlation 
coefficient between the estimated Hurst’s exponent of 
the angular displacement and velocity with value being

2 0.84R = . Higher coefficient value indicate common 
source of the angular displacement and velocity 
waveforms.

Case-III: (AV)
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Figure 6 : Normalised probability distribution of estimated Hurst’s exponents of angular velocity waveforms obtained 
from 10201 nodal parameter points
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Figures 5 and 6 refer. In figure 5, the normalised 
probability distribution of the estimated Hurst’s 
exponents of the angular displacement waveforms 
peaked at three different Hurst-values: 1.00, 0.53 and 
0.20. The

 

corresponding percentage probability is 9, 5 
and 3. Likewise the distinct distribution peak points for 
the angular velocity waveforms are four at Hurst-

 

values: 
0.99, 0.50, 0.20 and 0.04. The corresponding 
percentage probability is 9, 3, 5 and 2. The full

 

spectrum 
of Hurst-values ( 0 1H≤ ≤ ) coupled with the multiple 
peak points observed in these distributions is an 
indication of the richness of the pendulum dynamics 
when driven by arbitrary parameters selection from this 
parameter plane while holding constant the drive 
frequency. That is the pendulum can behave 
periodically, quasi-periodically or worst still chaotically 
depending on the choices of parameters from this 
plane.

 

IV.

 

Conclusions

 

This study established good correlation 
coefficients for two differently estimated fractal 
dimensions while the distribution of Hurst exponents 
exhibited full spectrum for the waveforms from excited 
nonlinear pendulum. The Hurst exponents’ distributions 
apart from having full spectrum show multiple distinct 
peak values as a possible indicator of pendulum 
multiple behaviours such as periodic, quasi-periodic, 
random or chaotic. The study therefore show that the 
pendulum drive parameters plane consist of large 
selection combinations with associated rich dynamics. 
Thus the present study has established the possible 
interchange and utility of the two fractal dimension 
estimators as waveforms characterising tool.
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