

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING CIVIL AND STRUCTURAL ENGINEERING Volume 13 Issue 2 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Effect of Leachate on Surrounding Surface Water: Case Study in Rajbandh Sanitary Landfill Site in Khulna City, Bangladesh

By Md. Rafiqul Islam, Km Alim Al Razi, Md. Rokon Hasan, Md. Hasibul Hasan & Salma Alam

Khulna University of Engineering & Technology, Bangladesh

Abstract - Leachate is the aqueous effluent generated as a consequence of rainwater percolation through wastes and the inherent water content of wastes themselves. Its quality is the result of biological, chemical and physical processes in landfills combined with the specific waste composition and the landfill water regime. In Khulna city, municipal solid waste is dumped in the Rajbandh landfill site where large amount of leachate is produced every day. This leachate is pretreated by anaerobic process in a pond and pumped out to the surface water from three wells. This pretreated leachate has great impact on surrounding surface water and environment. The aims of this study are to asses and evaluate the environmental impact of the pretreated leachate. In order to do this, some parameters including pH, BOD, COD, Iron content, Alkalinity, TC etc. of the collected leachate and surface water are determined. Obtained values of the parameters are compared with the standard value. Amount of green house gas emission and their effects on human health are also determined and reviewed. Therefore, this paper provides insight regarding how the leachate puts impact to the environment.

Keywords : leachate; bod; green house gas emission; rainwater percolation.

GJRE Classification : FOR Code : 961005, 290802

Strictly as per the compliance and regulations of :

© 2013. Md. Rafiqul Islam, Km Alim Al Razi, Md. Rokon Hasan, Md. Hasibul Hasan & Salma Alam. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Effect of Leachate on Surrounding Surface Water: Case Study in Rajbandh Sanitary Landfill Site in Khulna City, Bangladesh

Md. Rafiqul Islam^α, Km Alim Al Razi^σ, Md. Rokon Hasan^ρ, Md. Hasibul Hasan^ω & Salma Alam[¥]

Abstract - Leachate is the aqueous effluent generated as a consequence of rainwater percolation through wastes and the inherent water content of wastes themselves. Its quality is the result of biological, chemical and physical processes in landfills combined with the specific waste composition and the landfill water regime. In Khulna city, municipal solid waste is dumped in the Raibandh landfill site where large amount of leachate is produced every day. This leachate is pretreated by anaerobic process in a pond and pumped out to the surface water from three wells. This pretreated leachate has great impact on surrounding surface water and environment. The aims of this study are to asses and evaluate the environmental impact of the pretreated leachate. In order to do this, some parameters including pH, BOD, COD, Iron content, Alkalinity, TC etc. of the collected leachate and surface water are determined. Obtained values of the parameters are compared with the standard value. Amount of green house gas emission and their effects on human health are also determined and reviewed. Therefore, this paper provides insight regarding how the leachate puts impact to the environment.

Keywords : leachate; bod; green house gas emission; rainwater percolation.

I. INTRODUCTION

unicipal Solid waste landfill has many adverse effects on surrounding environment. Such landfills often produce leachate, i.e. the liquid that usually drains from landfills due to infiltration by water and/or biogeochemical decomposition processes, which serves as an important point source of pollution in many environmental media around the world. The constituents in leachate, some of which may be toxic, have often posed serious challenges in terms of cost of accumulation of metal treatment, or species, remediation and, in particular, possible eco-toxicological implications resulting from both short- and long-term exposure or bio- accumulation of leachate constituents. (Nyame et al). Leachate is a high strength wastewater that contains high concentrations of organic matter and ammonium nitrogen which results from precipitation entering the landfill and from moisture that exists in the

Author α σ p CO ¥ : Undergraduate student, Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh. E-mails : mrafiq31@gmail.com, rrr.civil.kuet@gmail.com, semui91@gmail.com, hasibul999@yahoo.com, semui73@gmail.com waste when it is disposed. The composition of leachate varies greatly from site to site, and can vary within a particular site. Some of the factors affecting composition include age of landfill, types of waste, degree of decomposition; and physical modification of the waste.

II. GENERATION OF LEACHATE

Rainfall is the main contributor to generation of leachate. The precipitation percolates through the waste and gains dissolved and suspended components from the biodegrading waste through several physical and chemical reactions. Other contributors to leachate generation include groundwater inflow, surface water runoff, and biological decomposition. Liquid fractions in the waste will also add to the leachate as well as moisture in the cover material (Abbas, 2009).

III. Composition of Leachate

The composition of the landfill leachate varies greatly depending on the age of the landfill. As landfill age increased, organic concentration (COD) in leachate decreased and increase of ammonia nitrogen concentration. The existing relation between the age of the landfill and the organic matter composition may provide useful criteria to choose a suited treatment process (Amalendu, 2004). Bagchi (2004) has tabulated the range of concentration of different parameters in leachate of municipal waste which is shown in table 1. The table describes the lower limits and upper limits that can be expected from the landfill leachates.

Physical	Organic constituent	Inorganic constituent	Biological
Appearance	Organic chemicals	Suspended solid	Biochemical oxygen
рН	Phenols	(SS),total solid(TDS)	demand (BOD)
Oxidation-reduction	Chemical oxygen demand	Volatile suspended	Coli form bacteria (total,
potential	(COD)	solid(VSS)	fecal, fecal streptococci)
Conductivity	Total organic (TOC)	Volatile dissolved	
Turbidity	Volatile acids	solid(VDS)	
Temperature	Tannins , lignin's	Chloride	
Odor	Organic-N	Sulfate	
	Ether soluble (nil & grease)	Phosphate	
	Methylene blue	Alkalinity & acidity	
	Organic functional groups	Nitrite-N	
	as required	Ammonia-N	
	Chlorinated	Sodium	
	Hydrocarbon	Potassium	
		Calcium	
		Magnesium	
		Hardness	
		Heavy metals(Pb, Cd,	
		Ni,Cr,Co,Zn etc)	
		Arsenic	
		Cyanide	
		Fluoride selenium	

Table 1 : Different characteristics of leachate generated from deposited MSW

Table 2 : Typical data on the composition of leac	hate
from new and maturation landfill	

	Value	(unit)			
Constituente	New land	dfill (less	Mature landfill		
Constituents	than 2	years)	(greater than		
	Range	Typical	10 years)		
TOC(total	1500-	6000	80-60		
organic carbon)	20000				
Chemical oxygen	3000-	18000	100-500		
demand(COD)	60000				
TSS(total	200-2000	500	100-400		
suspended solid)					
Organic nitrogen	10-800	200	80-120		
Ammonia	10-800	200	20-40		
nitrogen					
Nitrate	5-40	25	5-10		
Total phosphorus	5-100	30	5-10		
Alkalinity as	1000-	3000	200-1000		
CaCO ₃	10000				
рН	4.5-7.5	6	6.6-7.5		
Total hardness	300-	3500	200-500		
as CaCO ₃	10000				
Calcium	200-3000	1000	100-400		
Magnesium	50-150	250	50-200		
Potassium	200-1000	300	50-400		
Sodium	200-2500	500	100-200		
Chloride	200-3000	500	100-400		
Sulfate	50-1000	300	20-50		
Total iron	50-1200	60	20-200		

There are two options for MSW dumping all over the world, one is crude landfill (open dumping) and the other is sanitary landfill. Sanitary landfill is one of the secure and safe facilities for the disposal of MSW.A pilot scale sanitary landfill is situated at Rajbandh, Khulna in the north side of Khulna-Satkhira Highway and 8 km far from the city center. In Khulna metropolitan city, municipal solid wastes are disposed of at Rajbandh landfill site. In order to pre treat the produced leachate of landfill, firstly it goes to an anaerobic pond for oxidation. Afterwards, it is passed to 15' deep and 4'x4' sized well through pipes. Finally, it is thrown to the adjacent water surfaces. This pretreated leachate mixes with the surrounding water bodies either directly or by rainfall. Despite the pretreatment of leachate, it effects adversely to the surrounding environment and water bodies. So the aim of this study is to evaluate the impact of this pretreated leachate on the surrounding water bodies and characterize the surface water adjacent to the landfill.

The most common pathway for leachate to the environment is from the bottom of the landfill through the unsaturated soil layers to the ground water, then by groundwater through hydraulic connections to surface water. However, pollution may also result from discharge of leachate through treatment plants or direct discharge of untreated or partially treated leachate. The main factors influencing the pollution potential from leachate are:

- > The concentration and flux of the leachate
- The landfill sitting, i.e., the hydro geological setting and the degree of protection provided.
- The basic quality, volume, and sensitivity of the receiving groundwater and surface water.

IV. METHODOLOGY

a) Field Work

Sample was collected weekly during July to December 2012 for six months. At Each time, total of 8 liters sample was collected in 4, two liters bottles from a distance of 0.25 m at four adjacent sides of the finally pumping out point. Temperature was maintained at 4°C in each bottle before performing the required tests. Finally, different parameters of the collected sample were determined by performing the laboratory tests.

Table 3 : Location and description of leachate and
surface water samples relative to landfill site

Sample No.	Description of Sample Point	Sample Type	Distance (m) from landfill (Reference Pt.)
1	Leachate	Leachate	5m
	collection point		
2	North side of	Surface	150m
	landfill	water	
3	East side of	Surface	150m
	landfill	water	
4	South side of	Surface	150m
	landfill	water	
5	West side of	Surface	150m
	landfill	water	

b) Analysis of Leachate and Water Sample

Analytical methods used for leachate and water samples varied depending on the parameters of interest. All field and laboratory determinations were done according to standard methods for the examination of waste and waste water. For every sample, physiochemical, nutrients and oxygen demand parameters were determined. Physiochemical parameters were determined at the Environmental Engineering Laboratory of Khulna University of Engineering and Technology (KUET). Fe and Cadmium were determined by spectrometer.

Biochemical Oxygen Demand (BOD) was determined by diluting portions of the sample and incubating for 5 days at 20°C. The BOD exerted over the 5 days deter-mined as follows:

Calculations BOD₅ = BOD \times S1 \times S2

Where,

 $BOD_5 = BOD$ recorded on the fifth day from the Oxitop S1 = Dilution factor

S2 = Factor dependent on total volume of diluted sample put in Oxitop bottle.

In determining the Chemical Oxygen Demand (COD), the sample was refluxed in concentrated sulphuric acid with a known excess of potassium dichromate ($K_2Cr_2O_7$) for two hours. After digestion, the remaining reduced $K_2Cr_2O_7$ was titrated with ferrous ammonium sulphate to determine the amount of

 $K_2 C r_2 O_7$ consumed and the oxidizable matter calculated in terms of the oxygen equivalent.

V. Results & Discussions

a) Physicochemical Data For Landfill Leachate

Data on parameters from leachate samples taken during the study are presented in Table 4. Average pH value of leachate obtained is 8.15 at a distance of 150 m from the landfill. Throughout the sampling period as well as outwards from the landfill, the pH of leachate remained fairly uniform. Temperature value range from a minimum of 17° C in December at distance 150 m to a maximum of 34.3° C in July at the same sampling site, i.e. 200 m from the landfill. The average value of conductivity 25256μ S/cm was obtained in leachate taken respectively in July (distance 150 m) and December (distance 150 m) from the landfill. Average value for total dissolved solids (TDS) was 8906 mg/l at about 150 m from the landfill; Values of other parameters are shown in the following table.

Table 4 : Different parameters of pretreated leachate & the limiting value according to WHO

		-
Pollutant	Average	Limiting values
parameters	values	(according to WHO)
рН	8.15	6.5-8.5
COD	10897 (mg/l)	250
BOD	26000 (mg/l)	50
TDS	8906 (mg/l)	1000
Iron	3.8 (mg/l)	3
Cadmium	4.3(mg/l)	0.003
Sulphate	2960 (mg/l)	400
Nitrate	20(mg/l)	10
Total	2735	<400
coliform(TC)	(Nos./100ml)	
Conductivity	30000	
	(µS/cm)	
Chloride	3106(mg/l)	250
Hardness	3789(mg/l)	500

© 2013 Global Journals Inc. (US)

		-				Ω)				-	0			÷	4	
	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
1	7.41	7.2	7.3	7.81	7.53	7.62	7.32	7.72	6.85	7.1	7.61	7.1	7.37	7.47	7.35	7.28
1	11.21	13.65	12.54	13.3	15.3	13.78	16.42	14.52	9.78	10.63	13.4	13.1	16.3	17.53	19.23	15.07
	2534	4323	3112	2535	3454	3423	2313	3472	2354	4235	2213	4326	4532	3322	4143	4342
	1.9	2.1	0.7	2.4	3.1	4	0.6	1.3	2.9	1.8	1.4	1.2	1.8	2.3	0.8	1.9
	0.78	0.0	0.47	0.56	0.0	0.78	0.36	0.51	0.89	0.86	0.78	0.73	0.56	0.43	0.45	0.43
1	1324	1026	1022	987	1026	1132	1423	1324	1862	1322	1324	982	1425	1724	1435	875
1	2453	2422	2212	1244	3321	3473	1212	3266	3533	4552	3215	2166	2313	3453	2533	4233
1	1042	1076	1234	876	986	1322	1212	1189	957	1119	1089	1011	1062	1023	975	1342
1	14	13.6	14.3	11.6	7.8	10.9	9.9	13.4	15.2	14.8	14.4	11.1	9.6	14.2	11.7	8.9
	4536	6023	6443	6342	3780	3546	6532	4785	3450	4636	5472	4745	4759	4875	5458	5643
1	3243	4323	3234	3124	2353	1787	1974	2435	2543	2342	1786	1968	3211	3332	1453	2743
	1432	1234	1323	1533	2143	1323	1875	1545	3221	1754	1976	1876	1221	1223	1231	1238

Table 5 : Physico-chemical data from surrounding surface water from 1 week to 26 weeks

	1	8		22				26			
North	East	South	West	North	East	South	West	North	East	South	West
6.83	6.97	7.41	7.05	7.17	7.32	7.87	7.96	6.64	6.73	6.98	7.01
19.7	20.01	22.12	14.23	17.24	15.53	16.43	12.32	13.98	12.34	13.43	13.96
3453	4431	3425	5643	2134	4241	3983	4231	2133	2334	5364	4352
0.9	0.9	1.3	3.6	1.1	1.4	2.1	2.3	2.1	1.9	2.5	2.4
0.45	0.76	0.65	0.47	0.8	0.59	0.56	0.35	0.67	0.72	0.68	0.57
1973	1231	1224	1425	986	1322	1423	1325	1423	1422	1342	1342
1023	2124	3132	1212	1239	2311	2331	1223	2123	3211	2331	1543
983	1323	878	1067	1211	1078	979	1083	1089	1028	1094	1312
8.7	12.4	10.7	12.5	12.3	13.2	15.3	13.4	15.2	13.8	12.3	12.9
4673	5354	3564	4787	3564	3745	4275	7642	3752	4356	5467	5345
2332	1985	2442	2435	2345	2424	2319	1407	2456	3321	2422	987
986	1032	1233	906	879	838	1112	975	1023	1232	1223	1065

b) Physicochemical Data for Surrounding Surface Water

From the above table values obtained for pH ranged from 6.64 – 7.81 temperature 27.8°C - 31.2°C, conductivity 610 - 1903 μ S/cm, TDS 2213 - 4532 mg/l.

Fe ranged from 0.9 – 4mg/liter. Chloride and total hardness also ranged from 987 - 1724 mg/l, 1000 - 5000 mg/l, respectively.

Graphical Representation

Version I

Issue II

XIII

Global Journal of Researches in Engineering (E) Volume

Hardness

5000 4500

4000

3500

3000

2500

2000

1500

1000 500

0

c) Comparison of Data with Who Values

Compared to WHO leachate and surface water in the present study appear to have fairly high conductivity and, to some extent, high Mn, SO_4 , NO_3 , and Cl contents. The limiting values of BOD and COD according to WHO are 50 and 250.However, in this study it appears large values of BOD and COD for both leachate and surrounding water. On the other hand iron content is relatively low for the surrounding water but iron content in leachate is high than that of WHO limiting value.

VI. Conclusion

The concentration of heavy metals: Cadmium, Iron are found in the leachate and surrounding surface water of Rajbandh landfill site. Total solids, Turbidity, COD and Conductivity, also were well above the permissible levels in surface water of the surrounding area. The results show that the constituent characteristics of Municipal Solid Waste is a major factor influenced on leaching solutions and heavy metal release. Although the leachate is partially treated by roughing filter, it contains huge amount of trace metals and other hazardous compounds which mix with the surrounding surface water and causing heavy pollution of the water and soil of surrounding agricultural lands. By considering all the above facts, it is necessary of designing proper treatment method for the leachate discharging from the landfill site.

References Références Referencias

- Abbas A. A., Jingsong G, Ping L Z, Ya Pan Y., WisaamS.Al-Rekabi. 2009. Review on Landfill Leachate Treatments. *American Journal of Applied Sciences*, 6(4):pp672 -684, 2009.
- Amalendu B. 2004. *Design of Landfill and Integrated Solid Waste Management*. 3rd Edition, John Wiley & Sons, Inc, Hoboken, New Jersey, Canada.

- Guidelines," Se-ries No. 3, EPA, Accra, 2002.
 4. Metcalf & Eddy, 2003. Wastewater Engineering Treatment and Reuse, Tata McGraw – Hill publishing Company Limited, New Delhi, India
- Mohan S. and Gandhimathi R. 2009. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, *Journal* of *Hazardous Materials* 169: pp351 – 359
- Kotagama S.W., Bambaradeniya C.N.B,.2006.An Overview of the Wetlands of Sri Lanka and their Conservation Significance. National Wetland Directory of Sri Lanka, IUCN Sri Lanka and the Central Environmental Authority. Colombo, Sri Lanka.
- Stegmann R., Heyer K.U, Cossu R. 2005. Leachate Treatment. Proceedings Sardinia, *Tenth International Waste Management and Landfill Symposium.* 03-07 October 2005, Environmental Sanitary Engineering Centre, Cagliari Italy.
- Foo K.Y., Hameed B.H. 2009. An overview of landfill leachate treatment via activated carbon adsorption process, *Journal of Hazardous Materials* 171:pp54– 60
- Welikannage K and Liyanage BC., 2009. Organic waste composing by low cost semi aerobic converted trench method at Central Province, *Proceedings of Annual Academic Sessions 2009*, 15-16 Oct 2009, Open University of Sri Lanka, pp 52-56.

This page is intentionally left blank