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Abstract -

 

Boundary layer theory is considered to be the 
cornerstone of our knowledge about the fluid flow over a 
surface which not only describes some intriguing physical 
phenomena of fluid dynamics

 

that were rather obscure before 
the year 1904 when Prandtl proposed the theory, but also 
pivotal in practical fields of engineering. The boundary layer 
which is known as the distance from the surface to a particular 
point perpendicular to the direction of

 

flow where the flow 
velocity has retained 99% of the free stream velocity providing 
‘no-slip’ condition at the surface i.e. zero velocity of flow at the 
surface; can be laminar or turbulent and there is a zone of 
‘transition’ from laminar to turbulent depending on Reynolds 
number. In this paper the intriguing properties of laminar 
boundary layer such as development of velocity profile along 
the flow direction, boundary layer thickness, displacement 
thickness, momentum thickness, shape factor, wall shear 
stress, friction coefficient, drag coefficient etc. for flow over a 
smooth flat plate of 1 meter are studied by exact solution of 

 

Keywords : laminar boundary layer, blasius’s equation, 
momentum equation method, finite volume method, 
boundary layer thickness, displacement thickness, 
momentum thickness, shapes factor, shear stress.

 
I.

 

Introduction

 
t the interface between a fluid and a surface in 
relative motion, a condition known as ‘no slip’ 
dictates an equivalence between fluid and surface 

velocities. Away from the surface, the fluid velocity 
rapidly increases; the zone in which this occurs is known 
as the boundary layer. The boundary layer is the thin 
region of flow adjacent to a surface, where the flow is 
retarded by the influence of friction between a solid 
surface and fluid. Although the boundary layer occupies 
geometrically only a small portion of flow field, its 
influence on different aerodynamic and heat

 

transfer 
phenomena to the body is immense as Prandtl 
described it as ‘marked results’ (Anderson, 2010). 
Smooth thin flat plate has long been considered to be 
simplest form to describe boundary layer as there is no 
pressure gradient involved and it was probably the first 

example illustrating the application of Prandtl’s 
boundary layer theory. 

Shear stress acts as a pivotal parameter for the 
existence of boundary layer. The shear stress on the 
smooth surface is a direct function of the velocity 
gradient at the surface of the plate. This shear stress 
acting at the plate surface sets up a shear force which 
opposes the fluid motion and fluid close to the wall is 
decelerated. If the flow travels further along the surface, 
at zero pressure gradients, the shear force is effectively 
increased due to the increased plate surface wetted 
area. More and more of fluid retarded and the thickness 
of the fluid layer increases. Reynolds number (Re) can 
be considered as the measure-stick for behavior of the 
boundary layer. If the Re; calculated locally is low, the 
fluid flow close to the wall may be categorized as 
laminar. For smooth, polished plates the transition from 
laminar to turbulent may be delayed until Re 500000 i.e. 
below this Re the flow can be considered as laminar. 
However, for rough plates or for turbulent approach 
flows, transition may occur at much lower values. 

There are number of intriguing properties of 
boundary layer which are decisive for analyzing different 
flow phenomena like drag or shear stress. These 
properties can be expressed through mathematical 
expressions which are direct function of local Re and 
distance of the point under consideration on the plate 
from the leading edge. Boundary layer thickness δ is the 
distance from the surface of the plate in perpendicular 
direction up to a point where the velocity of the flow is 
99% of the free stream velocity. Displacement thickness 
δ* can be considered as missing mass flow which is the 
difference between actual mass flow and hypothetical 
mass flow through the boundary layer if the boundary 
layers were not present. Another boundary layer 
property of importance is the momentum thickness θ, 
which is an index that is proportional to the decrement in 
momentum flow due to the presence of the boundary 
layer. It is the height of a hypothetical streamtube which 
is carrying the missing momentum flow at free stream 
conditions. Shape factor H of velocity profile is the ratio 
of the displacement thickness to the momentum 
thickness which increases in an adverse pressure 
gradient. For laminar flow with zero pressure gradient 
(such as a flat plate), it is 2.59 and it reaches to 3.5 at 
separation. Local friction coefficient Cf,x is the 
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dimensionless number defined as the ratio of wall shear 
stress to dynamic pressure. 

Blasius (1908) was the first one to illustrate 
Prandtl’s boundary layer theory through the application 
of flow over a flat plate. He provided the legendary 
equation known as ‘Blasius’s equation’. Bairstow (1925), 
Goldstein (1930) solved it through analytical procedure 
while Töpfer (1912) solved it using Runge-Kutta 
numerical method. Howarth (1938) solved the equation 
with greater accuracy using numerical procedure. 
Steinheuer (1968) published a systematic review of the 
solutions to Blasius’s equation. Filobello-Nino et. al. 
(2012) provided with an approximate solution of 
Blasius’s equation by using HPM (Homotopy 
Perturbation Method) and described the behavior of a 
two-dimensional viscous laminar flow over flat plate. 
Aminikhah (2012) persuaded analytical approximation to 
the solution of non-linear Blasius’s viscous flow equation 
by LTNHPM (Laplace Transform and New Homotopy 
Perturbation Method). The exact solutions of boundary-
layer equation have some mathematical difficulties 
associated with it. Thus exact solutions can be replaced 
by some sophisticated approximate methods like 
‘Momentum Equation Method’. Kármán (1921) and 
Pohlhausen (1921) linked shear stress with momentum 
thickness which provides alternative way of finding the 
wall shear stress rather than depending on velocity 
gradient at wall. In this paper the laminar boundary layer 
properties are illustrated using exact solution of 
Blasius’s equation and ‘Momentum Equation Method’ 
and these properties are analyzed using flow over one 
side of a smooth flat plate with no pressure gradient by 
solving the Navier-Stokes equation set using the Finite 
Volume Method. 

II. Mathematical Model 

a) Blasius Equation and Exact Solution 
Incompressible, two dimensional flows over a 

thin flat plate at 0° angle of incidence is simplest 
example used in the first place to describe Prandtl’s 
boundary layer theory. For such flow the density and 
viscosity are constant and the pressure gradient is zero 
as inviscid flow over the smooth flat plate at 0° angle of 
attack yields constant pressure over the surface. Thus 
the Navier-Stokes equations reduce to: 

                   
    

                            (1)
 

 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

                                      (2)
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
 

 
                                     (3)

 

Here ν is the kinematic viscosity defined 
as 𝜈𝜈 =  𝜇𝜇/𝜌𝜌. The exact solution is described by Blasius 
(1908); a student of Prandtl in his doctor’s thesis at 
Goettingon. The independent variable (x, y) are then 

transformed into ( ξ, η) as 𝜉𝜉 = 𝜕𝜕 and 𝜂𝜂 = 𝜕𝜕�𝑉𝑉∞
𝜕𝜕  𝜈𝜈  

and the 

stream function is considered to be ψ = 𝑓𝑓(𝜂𝜂) ×
�𝜕𝜕 ν𝑉𝑉∞(Huges and Brigton, 1967), (Resnick and 
Halliday, 1977), (Landau and Lifshitz, 1987) where f is 
strictly a function of η. Blasius concluded with a 
legendary equation known as Blasius’s Equation’ as 
form of  

              2𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ = 0                        (4) 

Where the function 𝑓𝑓(𝜂𝜂) has the property that is 
𝑓𝑓′ is described as 𝜕𝜕

𝑈𝑈∞
 where u is velocity at any point 

normal to the plate and 𝑈𝑈∞ is the free stream velocity. 
This is a third order non-linear differential equation which 
requires three boundary conditions to solve which are: 
at 𝜂𝜂 = 0 ∶  𝑓𝑓 = 0, 𝑓𝑓′ = 0  and 𝜂𝜂 = ∞ ∶ 𝑓𝑓′ = 1. The 
equation was solved by Blasius using a series of 
approach. The properties of boundary layer are defined 
as in Table. 

Table 1 : Properties of laminar boundary layer over flat 
plate 

 
 

Boundary layer thickness (δ) 5𝜕𝜕/�𝑅𝑅𝑅𝑅𝜕𝜕  
Displacement thickness (δ*) 1.72𝜕𝜕/�𝑅𝑅𝑅𝑅𝜕𝜕  

Momentum thickness (θ) 0.664𝜕𝜕/�𝑅𝑅𝑅𝑅𝜕𝜕  
Shape factor (H) 𝛿𝛿∗ 𝜃𝜃⁄  

Friction coefficient (Cf,x) 0.664/�𝑅𝑅𝑅𝑅𝜕𝜕  
Drag coefficient (CD) 1.328/�𝑅𝑅𝑅𝑅𝐿𝐿 

Here Rex refers to be local Reynolds number 
and ReL is the overall Reynolds number. To calculate the 
Rex, the distance is measured from the leading edge of 
the flat plate. In case of ReL, the distance is the total 
length of the plate. 

b) Momentum Equation Method 
Von Kármán first applied the momentum 

equation to a general section of a boundary layer. 
Regardless of the position of the section in either the 
laminar or turbulent boundary layer regions, it is 
possible to equate the skin friction drag force as a rate 
of change of mass and momentum of the fluid affected 
by the boundary layer. Consider a rectangle ABCD 
where the boundary AB parallel to the plate is placed at 
such a distance from the body that it lies in undisturbed 
region of velocity U∞.There is no pressure gradient to 
affect the momentum. When we calculate the 
momentum flux across the control surface it should be 
considered that, owing to continuity, fluid must leave 
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Boundary layer property
Mathematical

expression

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕

= 0          
𝜕𝜕𝜕𝜕



through AB is equal to the difference of fluid entering 
through AD to fluid leaving through BC. 

 

Figure 1 : Momentum equation method 

The DC boundary does not contribute to the 
momentum in x direction as no-slip condition is 
considered. The mass entering the section is taken as 
positive and mass leaving the section is taken as 
negative. Now the net momentum flux is equal to the 
drag on a flat plate wetted on one side. 

Table 2
 
: Momentum flow at different boundary of Fig. 1

 

  
 

DC
 

0
 

0
 

AD
 

𝑏𝑏� 𝑈𝑈∞
𝜕𝜕

0
𝑑𝑑𝜕𝜕

 
𝑏𝑏ρ� 𝑈𝑈∞2

𝜕𝜕

0
𝑑𝑑𝜕𝜕

 

BC
 

−𝑏𝑏� 𝜕𝜕
𝜕𝜕

0
𝑑𝑑𝜕𝜕

 
−𝑏𝑏ρ� 𝜕𝜕2

𝜕𝜕

0
𝑑𝑑𝜕𝜕

 

AB
 

−𝑏𝑏� (𝑈𝑈∞ − 𝜕𝜕)
𝜕𝜕

0
𝑑𝑑𝜕𝜕

 
−𝑏𝑏ρ� 𝜕𝜕(𝑈𝑈∞ − 𝜕𝜕)

𝜕𝜕

0
𝑑𝑑𝜕𝜕

 

Total
 

0
 

𝑏𝑏ρ × � 𝜕𝜕(𝑈𝑈∞ − 𝜕𝜕)
𝜕𝜕

0
𝑑𝑑𝜕𝜕

 

Thus we have: drag,

 

𝐷𝐷 = 𝑏𝑏ρ × ∫ 𝜕𝜕(𝑈𝑈∞ −
∞
𝜕𝜕=0

𝜕𝜕)𝑑𝑑𝜕𝜕.Now, from the definition of wall shear stress at the 
wall𝜏𝜏0, where b is the breadth of the plate,

 

 

𝐷𝐷 = 𝑏𝑏 × � 𝜏𝜏0

𝜕𝜕

0
𝑑𝑑𝜕𝜕

 

                (5)

 

Comparing two equations we find the 
expression of𝜏𝜏0. Other parameters like boundary layer 
thickness, displacement thickness, momentum 
thickness, shape factors etc. can be found by following 
the procedure described by Schlichting (1979).Now 
different approximation of f(η)allows us to evaluate the 
coefficients which are different from exact solution. Point 
to be noted here

 

that α1,

 

α2and β

 

are defined as 𝛼𝛼1 =
∫ 𝑓𝑓(1 − 𝑓𝑓)𝑑𝑑𝜂𝜂1

0 , 𝛼𝛼2 = ∫ (1 − 𝑓𝑓)𝑑𝑑𝜂𝜂1
0 and 𝛽𝛽 = 𝑓𝑓′(0).Now 

several approximations are made for f(η) and depending 
on them α1,

  

α2and β

 

are calculated.  These values of α1,

  

α2and β

 

are used to evaluate the coefficients A to G.

 
 

Table 3

 

:

 

Properties of laminar boundary layer from 
momentum equation method (Schlichting, 1979)

 

Boundary layer 
property

 

Mathematical 
expression

 

Coefficients

 

Shear stress (𝜏𝜏)

 

μ

 

U∞×𝐴𝐴

 

×�𝑈𝑈∞ 𝜐𝜐𝜕𝜕⁄

 

A=�𝛼𝛼1𝛽𝛽 2⁄

 

Friction 
coefficient (Cf,x)

 

𝐵𝐵 �𝑅𝑅𝑅𝑅𝜕𝜕⁄

 

B=�2𝛼𝛼1𝛽𝛽

 

Boundary layer 
thickness (δ)

 

(𝜕𝜕 × 𝐶𝐶) �𝑅𝑅𝑅𝑅𝜕𝜕⁄

 

𝐶𝐶 = �2𝛽𝛽 𝛼𝛼1⁄

 

Momentum 
thickness (θ)

 

(𝜕𝜕 × 𝐷𝐷)

 

�𝑅𝑅𝑅𝑅𝜕𝜕⁄

 

D=�2𝛼𝛼1𝛽𝛽

 

Displacement 
thickness (δ*)

 

(𝜕𝜕 × 𝐸𝐸

 

) �𝑅𝑅𝑅𝑅𝜕𝜕⁄

 

𝐸𝐸 = α2�2𝛽𝛽 𝛼𝛼1⁄

 

Shape factor 
(H)

 

δ ∗ θ⁄   or F

 

𝐹𝐹 = 𝛼𝛼2 𝛼𝛼1⁄

 

Drag coefficient 
(CD)

 

𝐺𝐺 �𝑅𝑅𝑅𝑅𝐿𝐿⁄

 

𝐺𝐺 = 2 × �2𝛼𝛼1𝛽𝛽

 

Table 4

 

:

 

Different approximations of f(η) and 
coefficients of boundary layer properties

 

  
 

Exact

 

1

 

2

 

3

 

4

 

𝑓𝑓(η)

 

-

 

η

 

1.5𝜂𝜂
− 0.5η3

 

2η − 2η3

+ η4

 

Sin(

 

𝜋𝜋

 

2
η)

 

𝛼𝛼1

 

-

 

1
6�

 

39
280�

 

37
315�

 

4 − 𝜋𝜋
2𝜋𝜋

 

α2

 

-

 

1
2�

 

3
8�

 

3
10�

 

𝜋𝜋 − 2
𝜋𝜋

 

𝛽𝛽

 

-

 

1

 

3
2�

 

2

 

𝜋𝜋
2

 

A

  

0.2886

 

0.3232

 

0.3427

 

0.328

 

B

 

0.664

 

0.5774

 

0.6464

 

0.6854

 

0.655

 

C

 

5.0

 

3.464

 

4.641

 

5.8355

 

4.795

 

D

 

0.664

 

0.5774

 

0.6464

 

0.6854

 

0.655

 

E

 

1.72

 

1.732

 

1.74

 

1.75

 

1.742

 

F

 

2.59

 

3.0

 

2.7

 

2.55

 

2.66

 

G

 

1.328

 

1.1548

 

1.2928

 

1.3708

 

1.310

 

III.

 

Numerical Procedure

 

a)

 

Computational Design

 

The computational design is comprised of a 
frame of 1m×0.1m×0.03m whose base is used as the 
smooth flat surface under consideration. Now the 
boundary conditions are assigned as; ‘Surface A’ is the 
‘Velocity Inlet’ of 5 m/s uniform velocity, ‘Surface B’ is 
the ‘Pressure Opening’ at 101325 Pa. ‘Surface C’ above 
is considered as the ‘Ideal Wall’ while the ‘Surface D’ is 
the ‘Real Wall’ with no-slip condition which resembles 
the smooth flat plate with zero angle of incidence.
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direction x

Items Approximation



b)

 

Computational Meshing

 

The rectangular computational domain is 
constructed, so it encloses the solid body and has the 
boundary planes orthogonal to the specified axes of the 
Cartesian coordinate system. Then, the computational 
mesh is constructed in the following several stages.

 

First of all, a basic mesh is constructed. For 
that, the computational domain is divided into slices by 
the basic mesh planes, which are evidently orthogonal 
to the axes of the Cartesian coordinate system. The 
basic mesh is determined solely by the computational 
domain and does not depend on the solid/fluid 
interfaces.

 

 

Figure 3

 

:

 

Basic cell construction

 

Then, the basic mesh cells intersecting with the 
solid/fluid interface (like cell ‘A’ in Fig. 3) in are split 
uniformly into smaller cells in order to capture the 
solid/fluid interface with mesh cells of the specified size 
i.e. with respect to the basic mesh cells. The following 
procedure is employed: each of the basic mesh cells 
intersecting with the solid/fluid interface is split uniformly 
into 8 child cells (Child cell ‘B’) shown in Fig. 4.

 

 

Figure 4 :

 

Child cell ‘B’ formation

 

Each of the child cells (like Child cell ‘B’) 
intersecting with the interface is in turn split into 8 cells 
of next level, and so on, until the specified cell size 
(Child cell ‘C’) is attained shown in Fig. 5.

 

 

Figure 5 :

 

Child cell ‘C’ formation

 

At

 

the next stage of meshing, the mesh 
obtained at the solid/fluid interface with the previous 
procedure is refined (i.e. the cells are split further or 
probably merged) in accordance with the solid/fluid 
interface curvature. The criterion to be satisfied is

 

established as follows: the maximum angle between the 
normals to the surface inside one cell should not exceed 
certain threshold; otherwise the cell is split into 8 cells. 
As a result of all these meshing procedures, a locally 
refined rectangular computational mesh is obtained and 
used then for solving the governing equations on it. As 
we are using a flat plate with no curvature or surface 
roughness, this step can be omitted. 

 

c)

 

Governing Equations and Finite Volume Scheme

 

Equation set consisting equation

 

no (1), (2) and 
(3) are solved using ‘Finite Volume’ method. The cell-
centered finite volume (FV) method is used to obtain 
conservative approximations of the governing equations 
on the locally refined rectangular mesh. The governing 
equations are integrated over a control volume which is 
a grid cell, and then approximated with the cell-centered 
values of the basic variables. The integral conservation 
laws may be represented in the form of the cell volume 
and surface integral equation:

 

 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐔𝐔dv

 

+ �𝐹𝐹.𝑑𝑑𝑑𝑑 =

 

�𝑄𝑄𝑑𝑑𝜕𝜕

 

                           (6)

 

Which is replaced by  :

 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑈𝑈v) + ∑ 𝐹𝐹. 𝑑𝑑𝑐𝑐𝑅𝑅𝑐𝑐𝑐𝑐

 

𝑓𝑓𝑓𝑓𝑐𝑐𝑅𝑅𝑑𝑑 =

 

𝑄𝑄𝜕𝜕

 

The second-order upwind approximations of 
fluxes Fare based on the implicitly treated modified 
Leonard's QUICK approximations (Roache, 1998) and 
the Total Variation Diminishing (TVD) method (Hirsch, 
1988).

 

IV.

 

Results and Discussion

 

For air flow over a smooth flat plate of 1 meter 
length without any pressure gradient and heat transfer, 
the local Re never crossed the critical Re (500000) that 
could cause transition of laminar flow to turbulent flow. 
So the boundary layer generated at the vicinity of the 
lower wall of the computational design can be 
considered as laminar boundary layer. The difference 
between Reobtained from finite volume solution of 
Navier-Stokes equations and theoretical Reynolds 
number is considerably low which indicates the 
acceptability of the computational process used for this 
particular analysis.
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Figure 2 : Computational Design

 



Table 5 :  Re at different distance from leading edge 

 
a) Boundary layer Thickness 

At the area closer to the leading edge of the 
plate, the boundary layer thickens rapidly (Fig. 6 (a), (b), 
(c)). As the flow travels further downstream, the rate of 
thickening of the boundary layer decreases and at some 
points around 70-90% of the plate length, the thickening 
effect becomes more obscure (Fig. 6(e)). With 
increasing distance from leading edge, the point at 
which the local velocity of the flow becomes almost 
equal to the free stream velocity; travels more to the 
perpendicular direction of the plate i.e. y direction. Both 
from Fig. 7 and Fig. 8 it is evident that the thickness of 
the boundary layer δ increases as the flow travels more 
downstream because more and more fluid particles pile 
up due to increase of wall shear stress at that direction. 

 

Figure 6 : Development of boundary layer at (a) x=0.0 to 
0.1, (b) x=0.1 to 0.2, (c) x=0.2 to 0.3, (d) x=0.4 to 0.5 

and (e) x= 0.7 to 0.8 

 

Figure 7 : Velocity profile at different position of the plate 

 

 
Figure 8 : Boundary layer thickness (δ) at different 

position of the plate 

In case of momentum equation method, the 
approximation no. 2 and 4 provides nearly similar 
thickness of boundary layer at any position of the plate 
which are close to the exact solution while 
approximation no. 1 is proved to be under-estimated 
and 3 is over-estimated approximation. 

b)
 

Displacement and Momentum Thickness
 

Boundary layer thickness is so far referred to 
only in physical terms. It is however, possible to define 
boundary layer thickness in terms of the effect on the 
flow. Displacement thickness is defined as the ‘distance’ 
the surface would have to move in the y direction to 
reduce the flow passing by a volume equivalent to the 
real effect of the boundary layer. Displacement 
thickness δ* for the boundary layer increases with 
increasing distance from the leading edge of the plate 
(Fig.9). With increasing distance from the leading edge 
of the plate, δ* increases due to the same reason as δ

 

increases. That means the plate would have to move 
further in y direction in case there is no boundary layer 
to compensate the flow reduction due to boundary layer. 
Similar outcome is found for momentum thickness, θ

 
as 

decrement in momentum flow due to the boundary layer 
increases as the flow travels further downstream 
(Fig.10).

 

 

Figure 9

 

:

 

Displacement thickness (δ*) at different 
position of the plate

 

 

Distance from 
Leading edge, 

x        (m) =
𝜌𝜌𝜕𝜕𝑑𝑑
𝜇𝜇  

Re 
(theoretical) 

Re 
(numerical) 

Deviation 
(%) 

0.1 33425.41 33328.98 0.28 
0.2 66850.82 66871.84 0.03 
0.3 100276.24 100593.78 0.31 
0.4 133701.65 134449.18 0.56 
0.5 167127.07 168409.15 0.77 
0.6 200552.48 202480.73 0.96 
0.7 233977.90 236622.62 1.13 
0.8 267403.31 270818.32 1.28 
0.9 300828.73 305028.96 1.40 
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Figure 10 : Momentum thickness (θ) at different position 
of the plate 

In case of displacement thickness, all four 
approximation seem cogent while for momentum 
thickness, approximation no. 4 seems convenient than 
approximation no. 2 and 3. Approximation no. 1 
deviates by huge percentage from the exact solution.  

c) Shape Factor 
The shape factor from Blasius’s calculation 

(Blasius, 1908) is 2.59 for the flat plate while from 
present calculation, it is the approximation 3 and 4 for 
momentum equation method that are closer to the exact 
solution and as this value would be around 3.5 at 
separation (Fox, McDonald and Pritchard, 2009), it can 
be concluded that separation of flow from the plate 
surface did not occur.   

d) Shear Stress, Local Friction Coefficient and Skin 
Friction Drag Coefficient 

The shear stress on a smooth plate is a direct 
function of the velocity gradient at the surface of the 
plate and this velocity gradient exists in a direction 
perpendicular to the surface. In immediate 
neighborhood of the body in which the velocity gradient 
normal to the wall is very large and the very small 
viscosity of the fluid exerts an essential influence that 
results in larger shear stress (Fig. 11). As we travel 
further upward from the plate, the influence of viscosity 
becomes trivial and flow at this region can be 
considered frictionless. As flow travels further 
downstream from the leading edge, Re increases and 
the velocity gradient decreases (in laminar boundary 
layer region) and thus the shear stress decreases. As 
the friction coefficient is directly proportional to the shear 
stress, it also decreases as the flow travels towards the 
downstream (Fig. 12). 

 

Figure 11 : Shear stress distribution in perpendicular 
direction of the plate 

 

Figure 12 : Friction coefficient (Cf,x) at different Rex 

In calculating the skin friction drag, the 
approximation no.4 for the momentum equation method 
converged very closely to the exact solution of Blasius 
equation. Similar case happens when we calculate the 
drag coefficient for flow over the flat plate at zero angle 
of attack. Both approximation no. 2 and 4 deviate from 
exact solution by small fraction while the approximation 
no. 1 strays well way from the exact drag coefficient. 

Table 6 : Coefficient of drag for laminar flow over flat 
plate at zero angle of incidence 

Process CD
 Deviation from 

exact solution (%) 

Exact Sol. 0.002296 - 

Approx.1 0.001997415 13.0 

Approx.2 0.0022361 2.61 

Approx.3 0.00237102 2.6 

Approx.4 0.002266205 1.3 

V. Conclusion 

Properties of laminar boundary layer are 
analyzed numerically using Finite Volume Method 
solution of the Navier-Stokes equations and these 
intriguing and rather decisive properties of boundary 

layer are evaluated through exact solution of Blasius 
equation and different approximation of Momentum 
Equation Method. Authors have reached to several 
concluding remarks through this study: 
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 As the theoretical Reynolds number and the 
Reynolds number calculated numerically differ by 
very small percentages at different position of the 
plate, it can be concluded that Finite Volume 
Method of solving Navier-Stokes equations serves 
well the purpose of analyzing the laminar boundary 
layer. 

 Different boundary layer thickness increase as the 
flow travels further downstream from the leading 
edge of the flat plate. 

 Shear stress and the local friction coefficient 
decreases as the flow travels downstream from the 
leading edge. 

 Among the four approximations used in Momentum 
Equation Method, the fourth approximation 
conversed convincingly towards the exact solution. 

Future research works could be conducted by 
applying different other approximations to the 
momentum equation method for laminar flow over a flat 
plate at different free stream velocities and compare the 
relative outcomes. Mesh shapes other than rectangular 
mesh at the fluid solid interface can be implied to find 
out whether the characteristics of boundary layer are 
responsive to mesh size and shape or not. 
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