
© 2013. R. Ambika, S. Ramachandran & K. R. Kashwan. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting
all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Researches in Engineering
Electrical and Electronics Engineering
Volume 13 Issue 15 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
 Online ISSN: 2249-4596 & Print ISSN: 0975-5861

Securing Distributed FPGA System using Commutative RSA
Core

By

R. Ambika, S. Ramachandran & K. R. Kashwan

Vinayaka Missions University, India

Abstract-

Protecting

important data is of utmost concern to

the organizations or multiple transceiver

based communication

systems and, cryptography is one

of the primary ways to do

the job. RSA algorithm

is extensively used in the popular

implementations of Public Key Infrastructures. Many

cryptographic

protocols and attacks on these protocols make

use of the fact that the order in which encryption is

performed

does not affect the result of the encryption, i.e., encryption is

commutative. On the other hand,

the need of a security feature

encompassing data authentication among multiple MIMO or

transceivers

has become very critical. This paper presents the

implementation of a cryptography core based on

Commutative

RSA public key cryptography algorithm for accomplishing data

security and authentication

in environment comprising multiple

FPGA cores without any key exchange overheads. In spite of
 considering conventional two terminal communications, we

have implemented a scalable architecture for

multi distributed

FPGA based systems and realizes commutative RSA

algorithm for verifying data security

among multiple transceiver

terminals. In this approach, a sophisticated RSA cryptographic

technique

based on commutative Encryption methodology

has been implemented for distributed FPGA terminals.

The

proposed system architecture has used the Montgomery

multiplication algorithm with exponential

modular multiplication

and Radix-2 multiplication based multiparty cryptography.

Keywords: authentication, cryptography, data security,

FPGA, montgomery multiplication, RSA

 cryptosystem,

Radix-2 multiplier.

GJRE-F Classification : FOR Code: 090699

SecuringDistributedFPGASystemusingCommutativeRSACore

 Strictly as per the compliance and regulations of

:

Securing Distributed FPGA System using
Commutative RSA Core
R. Ambika α, S. Ramachandran σ & K. R. Kashwan ρ

Author

α:

Vinayaka Missions University, Salem, India

.

e-mail: ambika2810@gmail.com

Author

σ:

S J B Institute of Technology, Bangalore, India.

e-mail: ramachandr@gmail.com

Author

ρ:

Sona College of Engineering, Salem, India.

e-mail: drkrkashwan@gmail.com

Abstract -

Protecting

important data is of utmost concern to
the organizations or multiple transceiver based communication
systems and, cryptography is one of the primary ways to do
the job. RSA algorithm is extensively used in the popular
implementations of Public Key Infrastructures. Many
cryptographic protocols and attacks on these protocols make
use of the fact that the order in which encryption is performed
does not affect the result of the encryption, i.e., encryption is
commutative. On the other hand, the need of a security feature
encompassing data authentication among multiple MIMO or
transceivers has become very critical. This paper presents the
implementation of a cryptography core based on Commutative
RSA public key cryptography algorithm for accomplishing data
security and authentication in environment comprising multiple
FPGA cores without any key exchange overheads. In spite of
considering conventional two terminal communications, we
have implemented a scalable architecture for multi distributed
FPGA based systems and realizes commutative RSA
algorithm for verifying data security among multiple transceiver
terminals. In this approach, a sophisticated RSA cryptographic
technique based on commutative Encryption methodology
has been implemented for distributed FPGA terminals. The
proposed system architecture has used the Montgomery
multiplication algorithm with exponential modular multiplication
and Radix-2 multiplication based multiparty cryptography. The
proposed multiplier is able to work with any precision of the
input operands, limited only by memory or control constraints.
The result obtained for this approach has illustrated a very
high computational efficiency with minimum memory or space
occupancy and higher operational frequency. The proposed
PM based CRSA cryptography core has exhibited 12.1%
higher throughput as compared to Serial Montgomery based
CRSA. Similarly, the frequency or speed of the proposed
system is also higher. The proposed system exhibits trade-off
of 0.03% in power consumption.

Keywords:

authentication, cryptography, data security,
FPGA, montgomery multiplication, RSA

cryptosystem,
Radix-2 multiplier.

I.

Introduction

s the telecommunication network has grown
explosively and the internet has become
increasingly popular, security over the network is

the main concern for services like electronic commerce
[1]. The fundamental security requirements include
confidentiality, authentication, data integrity, and non

repudiation. Cryptography plays an important role in the
security of data. It enables us to store sensitive
information or transmit it across insecure networks so
that unauthorized persons cannot read it. The urgency
for secure exchange of digital data resulted in large
quantities of different encryption algorithms which can
be classified into two groups: symmetric key algorithms
(with private key algorithms) and asymmetric key
algorithms (with public key algorithms) [2]. Many
systems utilize public-key cryptography to provide such
security services, and the algorithms developed by
Rivest, Shamir, and Adleman (RSA) [3] is one of the
most widely adopted public key algorithms at present.
Since, RSA is considered as an efficient and optimized
solution for public-key cryptography, we have
implemented the Commutative RSA (CRSA) approach
for authenticating data communication between Multiple
Input Multiple Output (MIMO) or transceiver systems. In
most of the existing data authentication or security
systems, the authentication is accomplished by key
exchange approach and thus it increases the key
exchange overheads. On the other hand at every
terminal, encryption and decryption process is required
and thus if general RSA approach is applied in that case
the data authentication and security could be violated.
Therefore, in order to accomplish the goal of data
security with individual encryption/decryption without
affecting the data security and its integrity, a modified
RSA has been developed and this mechanism is termed
as Commutative RSA (CRSA).

RSA is the most widely used public-key
cryptosystem. An RSA operation is an exponentiation,
which requires repeated multiplications. The
Montgomery multiplication algorithm [4] is the most
efficient multiplication algorithm available. It replaces
trial division by the modulus with a series of additions
and divisions by a power of two. Thus, it is well suited to
hardware implementation and forms the basis of many
of the currently reported RSA hardware architectures [5–
7]. To date, several techniques have been proposed in
order to avoid carry propagation during the addition
stages of the computation, as this is a key factor in
determining performance. One approach proposed by
Elbirt and Paar [6] is to break these additions into x-bit
stages, where x is an optimal bit length chosen to take
advantage of the fast carry chains available on modern
FPGAs. However, a drawback of this approach is that
the circuits developed can be very heavily technology

A

X
III

Is
su

e
 X

V

V
er

sio
n

 I

47

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f
R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

G
l

© 2013 Global Journals Inc. (US)

V
ol
um

e

and implementation dependent. For example, it is
unlikely that a design created in this manner for a
specific FPGA family will show the same speed
advantages if migrated to a modern ASIC technology or,
indeed, an alternative type of FPGA or Programmable
Logic Device (PLD). An alternative approach presented
by Blum and Paar [7] is based on the use of FPGA
systolic array multiplier architectures with varying
processing element sizes, namely, 4, 8 and 16 bits.
However, these systems are again tailored specifically
for the XilinxFPGA series.

As the operands such as the plain text of a
message or the cipher or possibly a partially ciphered
text are usually large and, in order to improve time
requirements of the encryption/decryption operations, it
is essential to attempt to minimize the number of
multiplications performed and to reduce the time
requirement of a single multiplication. There are various
algorithms that implement multiplication. But con-
sidering the versatility and robustness of Montgomery
multiplication approach, we have used Montgomery
Multiplication algorithm. The most attractive feature of
Montgomery algorithm is that it computes multi-
plications without trial divisions.

The RSA algorithm and Diffie-Hellman key
exchange scheme need exponentiation, which binary or
m-ary methods can break into a series of multiplications.
It is effectively accomplished by Montgomery mult-
iplication algorithm. Montgomery algorithm speeds up
the multiplications and squaring required for expo-
nentiation. The efficient implementation of this long-word
length multiplication is crucial for the performance of
public-key cryptography like our proposed CRSA.
Exponentiation with a large modulus, which is usually
accomplished by repeated multiplications, has been
widely used in public key cryptosystems for secured
data communications. To speed up the computation,
the Montgomery multiplication algorithm is used to relax
the process of quotient determination and, the carry-
save addition (CSA) is employed to reduce the critical
path

delay. Basically, the exponentiation with a large

modulus is usually accomplished by performing
repeated multiplications, which is considerably time-
consuming. As a result, the throughput rate of RSA
cryptosystem will be entirely dependent on the speed of
multiplication and the number of performed multi-
plications. One way to achieve this is to use carry save
adders (CSAs) to perform the addition stages of
Montgomery’s algorithm. For example, Kim et al. [8]
used two levels of carry save logic (CSL) and a 32-bit
carry propagate adder along with a 32 x 32-bit shift
register in order to perform the 1024-bit additions
required. Bunimov et al. [9] improved this by replacing
one level of CSL with a look-up table.

In order to accomplish the goal of data security
and authentication among multiple MIMO or transceiver

terminals with proposed Commutative RSA crypto-
graphic algorithm, we have implemented an enhanced
and optimized noble data authentication architecture
called Commutative RSA algorithm with multiple MIMO
or transceiver systems, and simulated on FPGA devices.
In this approach, three FPGA cores have been
considered in simulation framework and simulation for
RSA encryption and decryption has been accomplished
at every considered terminal. The developed archi-
tecture encompasses the Montgomery modular multi-
plication approach to speed up the computation and to
relax the process of quotient determination and similarly
the carry-save addition has been employed to reduce
the critical path delay. The proposed multiplier is able to
work with any precision of the input operands, limited
only by memory or control constraints. In order to make
the system compatible with Very Large Scale Integration
and to get optimized performance, the system
architecture has been developed with Montgomery
multiplication with Radix-2 multiplier based architecture.
We have implemented two different CRSA imple-
mentation architectures. One is Serial Montgomery
implementation and another one represents Parallel
Montgomery based CRSA core. The

performance for
both architectures for delay, frequency, efficiency, power
consumption as well as throughput have been
calculated and we have found that the proposed Parallel
Montgomery (PM) based CRSA performs far better than
serial Montgomery (SM) based

CRSA core.

The remaining paper has been divided into the
following sections. Section 2 discusses in brief the
literature survey conducted for the research work with
emphasis on RSA algorithm and implementation of
Montgomery multiplication with Radix-2 architecture.
Section 3 discusses the proposed Commutative RSA
algorithm and presents the mathematical derivation for
CRSA approach. Section 4 represents the proposed
commutative RSA core based on serial Montgomery
and parallel Montgomery multipliers. The hardware
implementation has been presented in Section 5
followed by Section 6 that presents the results and
analysis of the research work. The conclusion has been
given in the last section.

II.

Related

Works

Gustavo D. Sutter et. al [10] optimized the
Montgomery’s multiplication and proposed architectures
to perform the least significant bit first and the most
significant bit first algorithms. The developed
architecture has the following distinctive characteristics:
1) use of digit serial approach for Montgomery
multiplication. 2) Conversion of the CSA representation
of intermediate multiplication using carry–skip addition.
This allows the critical path to be reduced, albeit with a
small-area speed penalty; and 3) recomputed the
quotient value in Montgomery’s iteration in order to

 X
III

Is
su

e
 X

V

V
er
sio

n
I

2

(
)

Ye
ar

01
3

2
F

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e

48

© 2013 Global Journals Inc. (US)

researchers presented results in Xilinx Vertex 5 and in
0.18-μm application-specified integrated circuit techno-
logies.

Jin-Hua and Cheng-Wen [11] proposed a radix-
4 modular multiplication

algorithm based on
Montgomery’s algorithm, and a fast radix-4 modular
exponentiation algorithm for RSA public-key crypto-
system. The proposed multiplier is four-times faster than
a direct radix-2 implementation of Montgomery’s
algorithm. Extending the design for a larger modulus is
straightforward. High-radix bit-level and digit-level
modular multipliers have also been discussed.

C. McIvor et.al [12] presented Modified
Montgomery multiplication and associated RSA modular
exponentiation algorithms and circuit architectures.
Practical approach presented is based on a
reformulation of the solution to modular multiplication
within the context of RSA exponentiation.

Alexandre F. Tenca and C¸ etin K. Koc [13]
presented a scalable architecture for the computation of
modular multiplication based on the Montgomery
multiplication algorithm. A word-based version of is
presented and used to explain the main concepts in the
hardware design. The proposed multiplier is able to
work with any precision of the input operands, limited
only by memory or control constraints.

Marcelo E. and Naofumi Takagi [14] proposed
a mixed radix-4/2 algorithm for modular multi-
plication/division for a large modulus suitable for VLSI
implementation. The calculation of modular multi-
plication is based on the Montgomery multiplication
algorithm and the modular division on the extended
Binary GCD algorithm. The researchers exploit these
similarities to modify the algorithms in order to share
almost all hardware components for both operations.

Koç, C.K., et.al [15] studied the operations
involved in computing the Montgomery product and
describe several high-speed, space-efficient algorithms
for computing MonPro (a, b), and analyzed their time
and space requirements. Their focus is to collect several
alternatives for Montgomery multiplication, three of
which are new. However, the researchers do not
compare the Montgomery techniques to other modular
multiplication approaches.

Ching-Chao Yang et. al [16] proposed a new
algorithm based on Montgomery’s algorithm to calculate
modular multiplication that is the core arithmetic
operation in an RSA cryptosystem. The modified
algorithm eliminates over-large residue and has very
short critical path delay that yields a very high-speed
processing. The researchers have

implemented a 512-
bit single-chip RSA processor based on the modified
algorithm with Compass 0.6-µm SPDM CMOS cell
library.

GuilhermePerin

et. al [18] described a
comparison of two Montgomery modular multiplication
architectures: a systolic and a multiplexed. Both
implementations target FPGA devices. The modular
multiplication is employed in modular exponentiation
processes, which are the most important operations of
some public-key cryptographic algorithms, including the
most popular of them, the RSA. The proposed systolic
architecture presents a high-radix implementation with a
one-dimensional array of Processing Elements.

The RSA algorithm

proposed by P. Fournaris

and O. Koufopavlou [19] has gained wide acceptability
and has been well used algorithm in many security
applications. Its main mathematical function is
demanding in terms of speed, operation of modular
exponentiation. In this article, a systolic, scalable,
redundant carry-save modular multiplier and RSA
encryption architecture are proposed using the
Montgomery modular multiplication algorithm.

Perovic, N. S. et. al [23] presented FPGA
implementation of RSA algorithm, where a key is

1024

bits long and the project synthesis results like resource
occupancy, maximal operating frequency, etc. were
examined for the system implementation.

III.

Proposed

System

Highly robust and optimized system
architecture for implementation of

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑅𝑅𝑅𝑅𝑅𝑅

algorithm for data authentication among multiple MIMO
terminals (here simulated on FPGA devices) has been
proposed in this paper. In order to facilitate the secure
data communication among multiple MIMO or tran-
sceiver systems, a noble commutative RSA approach
that states that, the order in which encryption is
performed does not affect the result of the encryption,
has been implemented and simulated on multiple FPGA
devices. In order to optimize the performance of the
system with minimum space and higher speed, the
robust Montgomery modular multiplication mechanism
has been adopted with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 2 multiplication
architecture. We have proposed the implementation of
Serial Montgomery as well as Parallel Montgomery
based CRSA cryptography core, with a goal to enhance
the system performance for its less memory occupancy,
fast rate, higher throughput and less power
consumption.

X
III

Is
su

e
 X

V

V
er

sio
n

 I

49

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f
R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

G
l

© 2013 Global Journals Inc. (US)

V
ol
um

e

speed up the operating frequency. In this paper,

Along with the strong momentum of shifting
from single-core to multicore systems, Zhimin Chen et.

al [17] present a parallel-software implementation of the
Montgomery multiplication for multicore systems. Their
comprehensive analysis shows that the proposed
scheme, pSHS, partitions the task in a balanced way so
that each core has the same amount of job to do. In
addition, we also comprehensively analyze the impact of
inter-core communication overhead on the performance
of pSHS. The analysis reveals that pSHS is high
performance, scalable over different number of cores,
and stable when the communication latency changes.

a) Commutative RSA

A secure plane is realizable provided
the data communicated over the plane is protected
and cannot be colluded. The use of cryptographic
techniques is generally preferred, hence the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
proposed in this paper adopts the commutative RSA
algorithm. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

considers

two prime numbers

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑄𝑄𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 initialized amongst all

the group members. 𝐺𝐺𝐴𝐴

Let and 𝐺𝐺𝐵𝐵

represent the group

members required to communicate over the secure
plane. To compute the encryption keys and decryption
key pairs of the commutative RSA algorithm, the
Property

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
and

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 are computed

using the following equations:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� × �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑄𝑄𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�� (1)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1� × �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑄𝑄𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1�� (2)

From the above equations, it is clear that

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 (3)

and

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

for

𝐴𝐴 and

𝐵𝐵 (4)

The encryption key pair of 𝐴𝐴

and

𝐵𝐵

represented as

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

are

to be obtained. The

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is obtained by
randomly selecting numbers such that it is a

co prime of

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

or in other terms:

ℱ𝓃𝓃𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 1 (5)

where ℱ𝓃𝓃𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥,𝑦𝑦) represents the greatest
common divisor function between two variables

𝑥𝑥 and

𝑦𝑦.

The decryption key pair of

𝐴𝐴 and

𝐵𝐵

is

represented by (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

and (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

and

the

Property

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is computed based on the

following

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)−1𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) (6)

Let 𝐸𝐸𝐸𝐸𝐸𝐸𝑋𝑋 represent the encrypted data

𝑋𝑋

. The encryption operation is defined as follows:

 𝐸𝐸𝐸𝐸𝐸𝐸𝑋𝑋 = 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 _𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

 (7)

The commutative RSA decryption operation on the encrypted data

𝔹𝔹 is defined as

𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌 = 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 _𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

 (8)

b)

Commutative property of RSA Algorithm

The commutative property of the RSA algorithm
adopted in SMFCP

can be proved if data X

encrypted
by A

and then encrypted by B

provides the same

resultant if the encryption is performed by B

followed by
the encryption performed by A

, i.e.,

EncB(Encx
A) ≡ EncA(Encx

B) (9)

EncB � XProp _EA
CRSA

 Mod(Prop_NA
CRSA)� ≡ EncA �XProp _EB

CRSA
 Mod(Prop_NB

CRSA)� (10)

 X�Prop _EA
CRSA ×Prop _EB

CRSA �

Mod �PropN A
CRSA � = X�Prop _EB

CRSA ×Prop _EA
CRSA �

Mod(Prop_NB
CRSA)

(11)

As PropN A
CRSA = Prop_NB

CRSA it can be concluded that

X�Prop _EA
CRSA ×Prop _EB

CRSA �

Mod �PropN A
CRSA � = X�Prop _EB

CRSA ×Prop _EA
CRSA �

Mod(Prop_NA
CRSA) (12)

And hence

EncB(EncX
A) ≡ EncA(EncX

B) (13)

 X
III

Is
su

e
 X

V

V
er
sio

n
I

2

(
)

Ye
ar

01
3

2
F

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e

50

© 2013 Global Journals Inc. (US)

equation:

have implemented Commutative RSA cryptography core
among multiple FPGA devices. In order to optimize the
performance as well as memory occupancy, highly
effective system architectures like Montgomery modular
multiplication based on Radix-2 has been developed.
Such implementation causes the reduction in memory
occupancy as well as the speed is also enhanced many
folds. These implemented approaches have been
discussed in the following sections.

a)

Montgomery Algorithm

Montgomery multiplication [20] is an efficient
method for modular multiplication with an arbitrary
modulus, particularly suitable for implementation on
general-purpose computers and embedded micro-
processors. The method is based on a representation of
the residue class modulo 𝑀𝑀. The algorithm uses simple
divisions by a power of two instead of divisions by 𝑀𝑀,
which are used in a conventional modular operation.
The Montgomery multiplication (MM) is the basic
operation used in modular exponentiation, which is
required in the Diffie-Hellman and RSA public-key
cryptosystems.

Montgomery’s modular multiplication algorithm
employs only simple additions, subtractions, and shift

operations to avoid trial division, a critical and time-
consuming operation in conventional modular
multiplication. The price paid is the need to convert
operands into and out of Montgomery’s domain, which
is almost negligible in some particular applications such
as cryptosystems.

Montgomery modular multiplication is one of
the fundamental operations used in cryptographic
algorithms, such as RSA and Elliptic Curve
Cryptosystems. The Multiple-Word Radix-2 Montgomery
Multiplication algorithm represents a now-classic
architecture for implementing Montgomery multiplication
in hardware. With properties optimized for minimum
latency, this architecture performs a single Montgomery
multiplication in approximately 2n clock cycles, where
“n” is the size of operands in bits.

In many cryptosystems, such as RSA,
computing

𝑀𝑀

is a crucial operation. The reduction of 𝑀𝑀
is a more time-consuming step than the multiplication A
. B

without reduction. Montgomery introduced a method
for calculating products (mod

M)

without the costly
reduction

(mod

M)

,

since then known as Montgomery
multiplication.

𝑀𝑀

is assumed to be an odd integer.
Montgomery multiplication of 𝐴𝐴

and

B

(mod

M), denoted
by

MP(A, B, M)

is defined as A . B. 2𝑛𝑛(mod

M)

for some
fixed integer n. Since Montgomery multiplication is not
an ordinary multiplication, there is a conversion process
between the ordinary domain (with ordinary multi-
plication) and the Montgomery domain. The conversion
between the ordinary domain and the Montgomery
domain is given by the relation A

↔ A′

where 𝐴𝐴′ =
A. 2𝑛𝑛(Mod

M).

Mathematically, it can be written as:

MP(𝐴𝐴′ , B′ , M) = A′ . B′ . 2−n = (A. 2𝑛𝑛). (B. 2𝑛𝑛). 2−n = A. B. 2𝑛𝑛 = (A. B)′(mod

M).

 (14)

The conversion between each domain
can be done using the same Montgomery
operation, in particular A′ = MP(A, 22n

(mod

M), M)
and

X = MP(A′ , 1, M) ,

where 22𝑛𝑛(mod

M)
can be precomputed. Despite the initial conversion cost,
we achieve an advantage over ordinary multiplication if
we do many Montgomery multiplications followed by an

inverse conversion at the end, which is the case, for
example, in our proposed RSA.

b)

Radix-2 Modular Multiplier

The optimized algorithm for Radix-2 Modular
multiplier for Montgomery multiplication is given as
follows:

 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:

𝑂𝑂𝑂𝑂𝑂𝑂

𝑀𝑀,𝑛𝑛 = ⌊𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀⌋ + 1,

 (15)

 𝐴𝐴 = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 . 2𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ

0 ≤ 𝐴𝐴,𝐵𝐵 < 𝑀𝑀

 (16)

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:

𝑪𝑪 = 𝑀𝑀𝑃𝑃(𝐴𝐴,𝐵𝐵,𝑀𝑀) ≡ 𝐴𝐴.𝐵𝐵. 2−𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀), 0 ≤ 𝐶𝐶 < 𝑀𝑀

 (17)

X
III

Is
su

e
 X

V

V
er

sio
n

 I

51

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f
R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

G
l

© 2013 Global Journals Inc. (US)

V
ol
um

e

IV. Proposed Commutative RSA Core
Based on Serial Montgomery and

Parallel Montgomery

The dominant goal of this research work is to
implement and illustrate the efficiency and robustness of
commutative RSA cryptography approach for multiple
MIMO or transceiver systems and for this purpose, we

 1.1 X[0] = 0; (18)

1.2 𝐹𝐹𝐶𝐶𝑆𝑆 𝐶𝐶 = 0 𝐶𝐶𝐶𝐶 𝐶𝐶 − 1 𝒅𝒅𝒅𝒅;

1.3�
𝑞𝑞 𝐶𝐶 = (𝐶𝐶𝐶𝐶 . 𝑏𝑏0)⨁ X [𝐶𝐶]𝐶𝐶;

X[𝐶𝐶 + 1] =
𝑋𝑋[𝐶𝐶]+𝐶𝐶𝐶𝐶 .𝑏𝑏+𝑞𝑞 𝐶𝐶 .𝐶𝐶

2
;
� (19)

The above mentioned algorithm represents the
Pseudocode for the Radix-2 Montgomery multiplication,
where we choose 𝑛𝑛 = ⌊𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀⌋ + 1.𝑛𝑛

is the size of M in
bits.

The verification of the above algorithm may be
presented as follows:

Consider X[i] given as

 X[𝑖𝑖] ≡ 1
2𝑖𝑖
�∑ 𝕒𝕒𝑗𝑗 . 2𝑗𝑗𝑖𝑖−1

𝑗𝑗=0 �.𝐵𝐵(𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀),

 (21)

 With X[0]=0. Then 𝑋𝑋[𝑛𝑛] ≡ 𝐴𝐴.𝐵𝐵. 2−𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀) = 𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵,𝑀𝑀).𝑋𝑋[𝑛𝑛] (22)

can be computed iteratively using the following dependence:

 ≡ 𝑋𝑋[𝑖𝑖 + 1] ≡ 1
2𝑖𝑖+1 �∑ 𝑎𝑎𝑗𝑗 . 2𝑗𝑗𝑖𝑖

𝑗𝑗=0 �.𝐵𝐵

 (23)

 ≡ 1
2𝑖𝑖+1 �∑ 𝑎𝑎𝑗𝑗 . 2𝑗𝑗𝑖𝑖

𝑗𝑗=0 + 𝑎𝑎𝑖𝑖 . 2𝑖𝑖�.𝐵𝐵

 (24)

1
2
� 1

2𝑖𝑖
�∑ 𝕒𝕒𝑗𝑗 . 2𝑗𝑗𝑖𝑖−1

𝑗𝑗=0 �.𝐵𝐵 + 𝑎𝑎𝑖𝑖 .𝐵𝐵�

 (25)

1

2
(𝑋𝑋[𝑖𝑖] + 𝑎𝑎𝑖𝑖 .𝐵𝐵)(𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀).

 (26)

Therefore, depending on the parity of X [𝑖𝑖] +
𝑎𝑎𝑖𝑖 .𝑌𝑌

, we do compute X [𝑖𝑖 + 1] as or 𝑋𝑋[𝑖𝑖 + 1] =
𝑎𝑎[𝑖𝑖]+𝑎𝑎 .𝐵𝐵+𝑀𝑀

2
 so as to make the numerator divisible by 2.

Since 𝐵𝐵 < 𝑀𝑀 and X [0] = 0,

one has 0 ≤ 𝑋𝑋[𝑖𝑖] <
2𝑀𝑀 for all 0 ≤ 𝑖𝑖 < 𝑛𝑛

. In References [21] and [22], the
result of a Montgomery multiplication is presented as
𝐴𝐴.𝐵𝐵. 2−𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀) < 2𝑀𝑀

when 𝐴𝐴,𝐵𝐵 < 2𝑀𝑀

and

2𝑛𝑛 > 4𝑀𝑀.
As a result, by redefining “n” to be the smallest integer
such that 2𝑛𝑛 > 4𝑀𝑀 , the subtraction at the end of
algorithm can be avoided and the output of the
multipication can be directly used as an input for the
next Montgomery multiplication.

c)

Modular Multiplication Algorithms

In RSA, the public encryption key is a pair of
positive integers (E, N) and the private decryption key is
another pair of positive integers (D, N). To encrypt a
message using the key (E, N) the following structural
approach have

been implemented. Fig. 1 represents the
Serial Montgomery multiplication, whereas the parallel
Montgomery is presented in Fig. 2. It encompasses two
Montgomery multipliers connected in parallel. In our
research work, we have implemented 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 2
Modular multiplier based multiplication architecture. A
brief description of the employed algorithm is as follows:

CONTROLLER MUX22 MUX22

T 1

E

1
0

1

ei e0/1

0

MPRODUCT1 SQUARE1

SAMMM1SAMMM2 MODULUS

M

SQUARE1.1MPRODUCT1.1

Figure 1

:

Serial Montgomery Multiplication Architecture

 X
III

Is
su

e
 X

V

V
er
sio

n
I

2

(
)

Ye
ar

01
3

2
F

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e

52

© 2013 Global Journals Inc. (US)

1.5 ⌊X[𝐶𝐶] = 𝑋𝑋[𝐶𝐶] −𝑀𝑀; �

1.6 𝒓𝒓𝒕𝒕𝑰𝑰𝑰𝑰𝒓𝒓𝑰𝑰 𝑪𝑪 = X[𝐶𝐶] (20)

 1.4 X[𝐶𝐶] > 𝑀𝑀 𝑰𝑰𝒕𝒕𝒕𝒕𝑰𝑰

0 1

1ty

0 1

Y ty

0 1

exp_2kty

Montgomery
multiplier

e

x y

z

last

start_mp1

mp1_done

next_e

Montgomery
multiplier

x y

z

start_mp2

mp2_done

next_y

first

K-bit register
initially: exp_k

ce_e

load K-bit register ce_ty

ce
ceload

ty
e

z

xi
shift
load

x

K-bit register sift register

serial_out

load

update

Figure 2 : Montgomery exponentiation (MSB first) with two Montgomery’s multipliers in parallel

V. Hardware Design

Fig. 2 presented earlier shows the architecture
of a 32-bit RSA processor based on the proposed
Commutative RSA algorithm. We use four 32-bit linear
shift registers to store operands needed in computing
32-bit RSA operation. The operations of the RSA
processor are described in the following. In the initial
stage, commutative RSA operands are loaded into shift
registers serially through an input buffer. While loading
message M into the text register, we shift the exponent
register until the first nonzero is the most significant bit
and count the number of bits of exponent log2 E. After
the initial stages, we start the multiplier. Once the first
output bit of the multiplier is ready, we start the
Montgomery module immediately. So the execution time
of CPA, multiplier, and Montgomery module is almost
overlapped. Therefore, the function units of our design
are fully utilized during computation.

Carry-Propagation Adder and Serial Parallel
Multiplier: The carry-propagation adder converts the
carry-save form of the output from the Montgomery
module to non-redundant binary form. It generates one
bit output per cycle to the serial-parallel multiplier for the
next iteration. The serial-parallel multiplier is used to
realize the multiplication and square of two n +1 bit
numbers. It first generates the n + 2 lower bits of a
product serially to the Montgomery module, and then it
stops and holds the n higher bit of the product. The n
higher bits of the product will be added with the output
of the Montgomery module to get the modular
multiplication result.

The multiplier itself is a linear array type with a
special input circuit. When the multiplier is generating a
product of two numbers, the parallel input M0 is ready
in the text register and another operand can arrive in
serial. However, if we want to square one number, a
serial input of the operand will make the multiplier fail.

We solved this problem by scheduling the serial input
operands and insert some zeros to avert the failure of
the squaring operation.

Montgomery Module: The Montgomery
module is shown in Fig. 2 and the overall operation for
Montgomery modular multiplication and its functional
approach has already been presented in previous
sections. The variable X[0] refers the n+2 lower bit of
the product from the multiplier. X[0] enters the
Montgomery module one bit per cycle from the lower
bit to the higher bit in series. The reduction step is a
shift-and-add operation that is very similar to the basic
step of a multiplication. The quotient determination is a
parity decision on the summation of the intermediate
result and the carry. This can be done simply by an
exclusive-OR gate with inputs of 𝑋𝑋[i] and the LSB of the
intermediate result in the previous iteration. After n + 2

iterations, the Montgomery module will add X [n + 2]
and the 𝑛𝑛 higher bits of the product from the multiplier
together. The result is then sent to the carry-propagation
adder for the next modular multiplier iteration.

In this work, we have developed two CRSA
cryptography cores. First model represents the Serial
Montgomery multiplier based design, while the second
describes the optimized Parallel Montgomery based
CRSA cryptography core implementation. In parallel
Montgomery approach, two Montgomery multipliers
have been used in parallel.

The results obtained after implementation have
been summarized in the following sections.

VI. Results

The robust commutative RSA core, whose
details were presented in earlier sections, has been
implemented on multiple FPGA devices for simulation
and illustration of data authenticity among multiple user
terminals in a communication environment. The

X
III

Is
su

e
 X

V

V
er

sio
n

 I

53

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f
R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

G
l

© 2013 Global Journals Inc. (US)

V
ol
um

e

proposed work for the implementation of commutative
RSA cryptography core has been simulated with three
individual FPGA devices. The implementation of FPGA
cores do signify the MIMO or multiple transceiver
terminals in multiuser communication environment. The
design has been coded in VHDL and has been
simulated using Xilinx Design Suite 14.3 targeted on
Virtex-5, xc5vlx330t-2-ff1738FPGA. In this work,

two

systems have been developed as mentioned earlier.
One is the Serial Montgomery based Cryptography core
and the second is our proposed Parallel Montgomery
based cryptography core. The results obtained for both
architectures have been compared. Considering the
performance parameters like Memory occupancy,
speed, power consumption, delay and throughput, it
has been found that the Parallel Montgomery performs

better than Serial Montgomery (SM) based Commutative
RSA implementation. The delay in Parallel Montgomery
based CRSA is 13.78% lower as compared to Serial
Montgomery based CRSA cryptography core. Similarly,
the throughput of Parallel Montgomery based CRSA is
12.11% higher than the serial Montgomery based CRSA
architecture. Even in the proposed system, the trade-off
between power consumption is also very small and it is
only 0.03% higher in Parallel Montgomery based CRSA.

The simulation results for encryption and
decryption obtained by the Serial Montgomery based
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 core is presented in Fig. 3 and Fig. 4 respectively.
The functional verification of the Parallel Montgomery
based

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 cryptographic core is shown in Fig. 5 and

Fig. 6.

Figure 3 :

Simulation Waveforms Using Serial Montgomery based : Encryption

Figure 4 :

Simulation Waveforms Using Serial Montgomery based : Decryption

Figure 5 :

Simulation Waveforms Using Parallel Montgomery based : Encryption

 X
III

Is
su

e
 X

V

V
er
sio

n
I

2

(
)

Ye
ar

01
3

2
F

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e

54

© 2013 Global Journals Inc. (US)

 Figure 6 :

Simulation Waveforms Using Parallel Montgomery based : Decryption

The results obtained for comparative simulation
are presented in the following.

 Table 1 :

Comparison for Chip Resource Utilization in
Serial and Parallel Montgomery based CRSA

cryptography Core

 CRYPTOGRAPHY
CORE

CRSA

CRSA

CIRCUIT

SERIAL
MONTGOMERY

PARALLEL
MONTGOMERY

 DEVICE

xc5vlx330t-2-ff1738

xc5vlx330t-2-
ff1738

 SLICE LUT

913

844

 LUT USED AS LOGIC

913

813

 OCCUPIED SLICES

290

311

Table 2 :

Comparison for Power consumption in Serial

and proposed Parallel Montgomery based Commutative
RSA cryptography core

CRYPTOGRAPHY

CORE

CRSA

CRSA

CIRCUIT

SERIAL
MONTGOMERY

PARALLEL
MONTGOMERY

DEVICE

xc5vlx330t-2-ff1738

xc5vlx330t-2-
ff1738

STATIC POWER
(mW)

3516.7

3516.75

DYNAMIC POWER
(mW)

4.76

5.72

TOTAL POWER (mW)

3521.46

3522.47

Table 3 :

Performance (Delay, Frequency and
Throughput) Analysis for Serial and Parallel Montgomery

Based CRSA Cryptography Core

CRYPTOGRAPHY
CORE

CRSA

CRSA

CIRCUIT

SERIAL
MONTGOMERY

PARALLEL
MONTGOMERY

DEVICE

xc5vlx330t-2-ff1738

xc5vlx330t-2-ff1738

FREQUENCY (MHz)

199.57

227.08

DELAY (ns)

5.01

4.40

THROUGHPUT(kbps)

779.58

887.02

The graphical comparison for the performance
of Serial and Parallel Montgomery based Commutative
RSA architectures has been presented in Fig. 7 to Fig.
10.

X
III

Is
su

e
 X

V

V
er

sio
n

 I

55

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f
R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

G
l

© 2013 Global Journals Inc. (US)

V
ol
um

e

Figure 7 : Chip Resource Utilization Analysis for serial and parallel Montgomery based CRSA

0

200

400

600

800

1000

SERIAL MONTGOMERY PARALLEL MONTGOMERY

AR
EA

CRSA - IMPLEMENTATION

AREA ANALYSIS

SLICE LUT

LUT USED AS
LOGIC

Figure 8 :

Delay analysis for serial and parallel Montgomery based CRSA

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5
5.1

SERIAL MONTGOMERY PARALLEL MONTGOMERY

DE
LA

Y
(n

s)

CRSA - IMPLEMENTATION

DELAY ANALYSIS

3510

3512

3514

3516

3518

3520

3522

SERIAL MONTGOMERY PARALLEL MONTGOMERY

TO
TA

L
PO

W
ER

 (
m

W
)

CRSA - IMPLEMENTATION

POWER ANALYSIS

 X
III

Is
su

e
 X

V

V
er
sio

n
I

2

(
)

Ye
ar

01
3

2
F

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e

56

© 2013 Global Journals Inc. (US)

Figure 9 : Power analysis for serial and parallel Montgomery based CRSA

Figure 10 : Throughput analysis for serial and parallel Montgomery based CRSA

720
740
760
780
800
820
840
860
880
900

SERIAL MONTGOMERY PARALLEL MONTGOMERY

TH
RO

U
G

HP
U

T
(k

bp
s)

CRSA - IMPLEMENTATION

THROUGHPUT ANALYSIS

VII.

Conclusion

A noble security or authentication public key
cryptography technique called Commutative RSA has
been implemented for multiple MIMO or transceiver
terminals for accomplishing the goal of data security in
multiuser communication environment. The
commutative RSA approach has been implemented with
multiple FPGA cores that functions as individual
transceiver terminal and performs its encryption and
decryption individually without affecting the original data.
The two approaches based on Montgomery
multiplication with Radix-2 multiplier have been
designed and individual modules for Serial Montgomery
(SM) and Parallel Montgomery have been simulated.
The results obtained have been compared and it has
been found that the proposed Parallel Montgomery (PM)
architecture performs better as compared to Serial
Montgomery. The proposed PM based CRSA
cryptography core has exhibited 12.1% higher
throughput as compared to Serial Montgomery based
CRSA. Similarly, the frequency or speed of the proposed
system is also higher. The proposed system exhibits
trade-off of 0.03% in power consumption. Thus
considering various aspects of this research work, it can
be stated that the proposed Parallel Montgomery based
Commutative RSA performs better than the serial based
Montgomery multiplication application.

References Références Referencias

1.

B. Premkumar, “An RNS to binary converter in
2n+1, 2n, 2n-1 moduli set,” IEEE Trans. Circuits
Syst. II, Vol. 39, pp. 480–482, July 1992.

2.

SCHNEIER, B., Applied Cryptography: Protocols,
Algorithms, and Source Code in C, John Wiley &
Sons, 1996.

3.

R. L. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signature and public-key
cryptosystems,” Commun. ACM, Vol. 21, No. 2, pp.
120–126, Feb. 1978.

4.

Montgomery, P. L.: ‘Multiplication without Trial
Division’, Math. Computation, 1985, 44, pp.

519–521.

5.

Eldridge, S. E., and Walter, C. D., ‘Hardware
Implementation of Montgomery’s Multiplication
Algorithm’, IEEE Trans.

Comput., 1993, 42, pp.

693–699.

6.

Elbirt, A. J., and Paar, C., ‘Towards an FPGA
Architecture Optimized for Public-Key Algorithms’;
the SPIE Symposium on Voice, Video and
Communications, Sept. 1999.

7.

Blum, T., and Paar, C., ‘Montgomery Exponentiation
on Re-configurable Hardware’. Proc. 14th
Symposium on Computer Arithmetic, 1999, pp.
70–77.

8.

Kim, Y. S., Kang, W. S., and Choi, J. R.,
‘Implementation of 1024-bit processor for RSA

cryptosystem’. http://www.ap-asic.org/2000/pro-
ceedings/10-4.pdf.

9.

Bunimov, V., Schimmler, M., and Tolg, B., ‘A
Complexity-Effective Version of Montgomery’s
Algorithm’. Presented at the Workshop on
Complexity Effective Designs (WECD02), May 2002.

10.

Gustavo D. Sutter, Jean-Pierre and José Luis
“Modular Multiplication and Exponentiation Archi-
tectures for Fast RSA Cryptosystem Based on Digit
Serial Computation”, IEEE TRANSACTIONS ON

X
III

Is
su

e
 X

V

V
er

sio
n

 I

57

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f
R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

G
l

© 2013 Global Journals Inc. (US)

V
ol
um

e

INDUSTRIAL LECTRONICS, Vol. 58, No. 7, JULY
2011.

11. Jin-Hua Hong and Cheng-Wen Wu, “Cellular-Array
Modular Multiplier for Fast RSA Public-Key
Cryptosystem Based on Modified Booth’s
Algorithm”, IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION SYSTEMS, Vol. 11, No. 3,
JUNE 2003.

12. McIvor, M. McLoone and J. V. McCanny, “Modified
Montgomery modular multiplication and RSA
exponentiation techniques”, IEE Proceedings online
No. 20040791 DOI: 10.1049/ip-cdt: 20040791.

13. Alexandre F. Tenca and C¸ etin K. Koc, “A Scalable
Architecture for Modular Multiplication Based on
Montgomery’s Algorithm”: IEEE TRANSACTIONS
ON COMPUTERS, Vol. 52, No. 9, SEPTEMBER
2003.

14. Marcelo E. Kaihara and NaofumiTakagi, “A
Hardware Algorithm for Modular Multiplication/
Division”, IEEE TRANSACTIONS ON COMPUTERS,
Vol. 54, No. 1, JANUARY 2005.

15. Koç, C. K., Acar, Tolga, and Kaliski, B. S.,
“Analyzing and comparing Montgomery multipli-
cation algorithms”, Micro, IEEE Publication: Jun
1996 Page(s): 26 - 33 ISSN: 0272-1732 INSPEC
Accession Number: 5298231 Vol. 16, Issue: 3.

16. Ching-Chao Yang, Tian-Sheuan Chang, and Chein-
Wei Jen, “A New RSA Cryptosystem Hardware
Design Based on Montgomery’s Algorithm”, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:
ANALOG AND DIGITAL SIGNAL PROCESSING, Vol.
45, and No. 7, JULY 1998.

17. Zhimin Chen and Patrick Schaumont, “A Parallel
Implementation of Montgomery Multiplication on
Multicore Systems: Algorithm, Analysis, and
Prototype”, IEEE TRANSACTIONS ON COM-
PUTERS, Vol. 60, No. 12, DECEMBER 2011.

18. GuilhermePerin, Daniel Gomes Mesquita, and
JoãoBaptista Martins, “Montgomery Modular
Multiplication on Reconfigurable Hardware: Systolic
versus Multiplexed Implementation”, International
Journal of Reconfigurable Computing Volume 2011
(2011), Article ID 127147, 10 pages DOI:
10.1155/2011/127147.

19. P. Fournaris and O. Koufopavlou, “A new RSA
encryption architecture and hardware implemen-

tation based on optimized Montgomery
multiplication,” in Proc. IEEE ISCAS, May 23–26,
2005, pp. 4645–4648.

20.

P. L. Montgomery, “Modular Multiplication without
Trial Division”, Math. of Computation, Vol. 44, No.
170, pp. 519-521, Apr., 1985.

21.

L. Batina

and G. Muurling, “Montgomery in Practice:
How to Do It More Efficiently in Hardware,” Proc.
Cryptographer’s Track at the RSA Conf., Topics in
Cryptology (CT-RSA ’02), pp. 40-52, Feb. 2002.

22.

D. Walter, “Precise Bounds for Montgomery
ModularMultiplication and Some Potentially Insecure
RSA Moduli,”Proc. Cryptographer’s Track at the
RSA Conf. Topics in Cryptology (CT-RSA ’02), pp.
30-39, Feb. 2002.

23.

Perovic, N. S., Popovic-Bozovic, M., “FPGA
implementation of RSA cryptoalgorithm using shift
and carry algorithm”; 20th

Telecommunications
Forum (TELFOR), 2012 on 20-22 Nov. 2012,
Page(s): 1040 – 1043.

 X
III

Is
su

e
 X

V

V
er
sio

n
I

2

(
)

Ye
ar

01
3

2
F

G
lo
ba

l
Jo

ur
na

l
of

R
es
ea

rc
he

s
in
 E

ng
in
ee

ri
ng

V
ol
um

e

58

© 2013 Global Journals Inc. (US)

	Securing Distributed FPGA System using Commutative RSACore
	Authors
	Keywords
	I. Introduction
	II. Related Works
	III. Proposed System
	IV. Proposed Commutative RSA CoreBased on Serial Montgomery andParallel Montgomery
	V. Hardware Design
	VI. Results
	VII. Conclusion
	References Références Referencias

