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Abstract -

  

Protecting

 

important data is of utmost concern to 
the organizations or multiple transceiver based communication 
systems and, cryptography is one of the primary ways to do 
the job. RSA algorithm is extensively used in the popular 
implementations of Public Key Infrastructures. Many 
cryptographic protocols and attacks on these protocols make 
use of the fact that the order in which encryption is performed 
does not affect the result of the encryption, i.e., encryption is 
commutative. On the other hand, the need of a security feature 
encompassing data authentication among multiple MIMO or 
transceivers has become very critical. This paper presents the 
implementation of a cryptography core based on Commutative 
RSA public key cryptography algorithm for accomplishing data 
security and authentication in environment comprising multiple 
FPGA cores without any key exchange overheads. In spite of 
considering conventional two terminal communications, we 
have implemented a scalable architecture for multi distributed 
FPGA based systems and realizes commutative RSA 
algorithm for verifying data security among multiple transceiver 
terminals. In this approach, a sophisticated RSA cryptographic 
technique based on commutative Encryption methodology 
has been implemented for distributed FPGA terminals. The 
proposed system architecture has used the Montgomery 
multiplication algorithm with exponential modular multiplication 
and Radix-2 multiplication based multiparty cryptography. The 
proposed multiplier is able to work with any precision of the 
input operands, limited only by memory or control constraints. 
The result obtained for this approach has illustrated a very 
high computational efficiency with minimum memory or space 
occupancy and higher operational frequency. The proposed 
PM based CRSA cryptography core has exhibited 12.1% 
higher throughput as compared to Serial Montgomery based 
CRSA. Similarly, the frequency or speed of the proposed 
system is also higher. The proposed system exhibits trade-off 
of 0.03% in power consumption.

 

Keywords:

 

authentication, cryptography, data security, 
FPGA, montgomery multiplication, RSA

 

cryptosystem, 
Radix-2 multiplier.

 

I.

 

Introduction

 

s the telecommunication network has grown 
explosively and the internet has become 
increasingly popular, security over the network is 

the main concern for services like electronic commerce 
[1]. The fundamental security requirements include 
confidentiality, authentication, data integrity, and non 

repudiation. Cryptography plays an important role in the 
security of data. It enables us to store sensitive 
information or transmit it across insecure networks so 
that unauthorized persons cannot read it. The urgency 
for secure exchange of digital data resulted in large 
quantities of different encryption algorithms which can 
be classified into two groups: symmetric key algorithms 
(with private key algorithms) and asymmetric key 
algorithms (with public key algorithms) [2]. Many 
systems utilize public-key cryptography to provide such 
security services, and the algorithms developed by 
Rivest, Shamir, and Adleman (RSA) [3] is one of the 
most widely adopted public key algorithms at present. 
Since, RSA is considered as an efficient and optimized 
solution for public-key cryptography, we have 
implemented the Commutative RSA (CRSA) approach 
for authenticating data communication between Multiple 
Input Multiple Output (MIMO) or transceiver systems. In 
most of the existing data authentication or security 
systems, the authentication is accomplished by key 
exchange approach and thus it increases the key 
exchange overheads. On the other hand at every 
terminal, encryption and decryption process is required 
and thus if general RSA approach is applied in that case 
the data authentication and security could be violated. 
Therefore, in order to accomplish the goal of data 
security with individual encryption/decryption without 
affecting the data security and its integrity, a modified 
RSA has been developed and this mechanism is termed 
as Commutative RSA (CRSA).  

RSA is the most widely used public-key 
cryptosystem. An RSA operation is an exponentiation, 
which requires repeated multiplications. The 
Montgomery multiplication algorithm [4] is the most 
efficient multiplication algorithm available. It replaces 
trial division by the modulus with a series of additions 
and divisions by a power of two. Thus, it is well suited to 
hardware implementation and forms the basis of many 
of the currently reported RSA hardware architectures [5–
7]. To date, several techniques have been proposed in 
order to avoid carry propagation during the addition 
stages of the computation, as this is a key factor in 
determining performance. One approach proposed by 
Elbirt and Paar [6] is to break these additions into x-bit 
stages, where x is an optimal bit length chosen to take 
advantage of the fast carry chains available on modern 
FPGAs. However, a drawback of this approach is that 
the circuits developed can be very heavily technology 
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and implementation dependent. For example, it is 
unlikely that a design created in this manner for a 
specific FPGA family will show the same speed 
advantages if migrated to a modern ASIC technology or, 
indeed, an alternative type of FPGA or Programmable 
Logic Device (PLD). An alternative approach presented 
by Blum and Paar [7] is based on the use of FPGA 
systolic array multiplier architectures with varying 
processing element sizes, namely, 4, 8 and 16 bits. 
However, these systems are again tailored specifically 
for the XilinxFPGA series.

 

As the operands such as the plain text of a 
message or the cipher or possibly a partially ciphered 
text are usually large and, in order to improve time 
requirements of the encryption/decryption operations, it 
is essential to attempt to minimize the number of 
multiplications performed and to reduce the time 
requirement of a single multiplication. There are various 
algorithms that implement multiplication. But con-
sidering the versatility and robustness of Montgomery 
multiplication approach, we have used Montgomery 
Multiplication algorithm. The most attractive feature of 
Montgomery algorithm is that it computes multi-
plications without trial divisions.

 

The RSA algorithm and Diffie-Hellman key 
exchange scheme need exponentiation, which binary or 
m-ary methods can break into a series of multiplications. 
It is effectively accomplished by Montgomery mult-
iplication algorithm. Montgomery algorithm speeds up 
the multiplications and squaring required for expo-
nentiation. The efficient implementation of this long-word 
length multiplication is crucial for the performance of 
public-key cryptography like our proposed CRSA. 
Exponentiation with a large modulus, which is usually 
accomplished by repeated multiplications, has been 
widely used in public key cryptosystems for secured 
data communications. To speed up the computation, 
the Montgomery multiplication algorithm is used to relax 
the process of quotient determination and, the carry-
save addition (CSA) is employed to reduce the critical 
path

 
delay.  Basically, the exponentiation with a large 

modulus is usually accomplished by performing 
repeated multiplications, which is considerably time-
consuming. As a result, the throughput rate of RSA 
cryptosystem will be entirely dependent on the speed of 
multiplication and the number of performed multi-
plications. One way to achieve this is to use carry save 
adders (CSAs) to perform the addition stages of 
Montgomery’s algorithm. For example, Kim et al. [8] 
used two levels of carry save logic (CSL) and a 32-bit 
carry propagate adder along with a 32 x 32-bit shift 
register in order to perform the 1024-bit additions 
required. Bunimov et al. [9] improved this by replacing 
one level of CSL with a look-up table. 

 

In order to accomplish the goal of data security 
and authentication among multiple MIMO or transceiver 

terminals with proposed Commutative RSA crypto-
graphic algorithm, we have implemented an enhanced 
and optimized noble data authentication architecture 
called Commutative RSA algorithm with multiple MIMO 
or transceiver systems, and simulated on FPGA devices.  
In this approach, three FPGA cores have been 
considered in simulation framework and simulation for 
RSA encryption and decryption has been accomplished 
at every considered terminal. The developed archi-
tecture encompasses the Montgomery modular multi-
plication approach to speed up the computation and to 
relax the process of quotient determination and similarly 
the carry-save addition has been employed to reduce 
the critical path delay. The proposed multiplier is able to 
work with any precision of the input operands, limited 
only by memory or control constraints.  In order to make 
the system compatible with Very Large Scale Integration 
and to get optimized performance, the system 
architecture has been developed with Montgomery 
multiplication with Radix-2 multiplier based architecture. 
We have implemented two different CRSA imple-
mentation architectures. One is Serial Montgomery 
implementation and another one represents Parallel 
Montgomery based CRSA core. The

 

performance for 
both architectures for delay, frequency, efficiency, power 
consumption as well as throughput have been 
calculated and we have found that the proposed Parallel 
Montgomery (PM) based CRSA performs far better than 
serial Montgomery (SM) based

 

CRSA core. 

 

The remaining paper has been divided into the 
following sections. Section 2 discusses in brief the 
literature survey conducted for the research work with 
emphasis on RSA algorithm and implementation of 
Montgomery multiplication with Radix-2 architecture. 
Section 3 discusses the proposed Commutative RSA 
algorithm and presents the mathematical derivation for 
CRSA approach. Section 4 represents the proposed 
commutative RSA core based on serial Montgomery 
and parallel Montgomery multipliers. The hardware 
implementation has been presented in Section 5 
followed by Section 6 that presents the results and 
analysis of the research work. The conclusion has been 
given in the last section.

 

II.

 

Related

 

Works

 

Gustavo D. Sutter et. al [10] optimized the 
Montgomery’s multiplication and proposed architectures 
to perform the least significant bit first and the most 
significant bit first algorithms. The developed 
architecture has the following distinctive characteristics: 
1) use of digit serial approach for Montgomery 
multiplication. 2) Conversion of the CSA representation 
of intermediate multiplication using carry–skip addition. 
This allows the critical path to be reduced, albeit with a 
small-area speed penalty; and 3) recomputed the 
quotient value in Montgomery’s iteration in order to 
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researchers presented results in Xilinx Vertex 5 and in 
0.18-μm application-specified integrated circuit techno-
logies.

 

Jin-Hua and Cheng-Wen [11] proposed a radix-
4 modular multiplication

 

algorithm based on 
Montgomery’s algorithm, and a fast radix-4 modular 
exponentiation algorithm for RSA public-key crypto-
system. The proposed multiplier is four-times faster than 
a direct radix-2 implementation of Montgomery’s 
algorithm. Extending the design for a larger modulus is 
straightforward. High-radix bit-level and digit-level 
modular multipliers have also been discussed.

 

C. McIvor et.al [12] presented Modified 
Montgomery multiplication and associated RSA modular 
exponentiation algorithms and circuit architectures. 
Practical approach presented is based on a 
reformulation of the solution to modular multiplication 
within the context of RSA exponentiation.

 

Alexandre F. Tenca and C¸ etin K. Koc [13] 
presented a scalable architecture for the computation of 
modular multiplication based on the Montgomery 
multiplication algorithm. A word-based version of is 
presented and used to explain the main concepts in the 
hardware design. The proposed multiplier is able to 
work with any precision of the input operands, limited 
only by memory or control constraints.

 

Marcelo E. and Naofumi Takagi [14] proposed 
a mixed radix-4/2 algorithm for modular multi-
plication/division for a large modulus suitable for VLSI 
implementation. The calculation of modular multi-
plication is based on the Montgomery multiplication 
algorithm and the modular division on the extended 
Binary GCD algorithm. The researchers exploit these 
similarities to modify the algorithms in order to share 
almost all hardware components for both operations.

 

Koç, C.K., et.al [15] studied the operations 
involved in computing the Montgomery product and 
describe several high-speed, space-efficient algorithms 
for computing MonPro (a, b), and analyzed their time 
and space requirements. Their focus is to collect several 
alternatives for Montgomery multiplication, three of 
which are new. However, the researchers do not 
compare the Montgomery techniques to other modular 
multiplication approaches.

 

Ching-Chao Yang et. al [16] proposed a new 
algorithm based on Montgomery’s algorithm to calculate 
modular multiplication that is the core arithmetic 
operation in an RSA cryptosystem. The modified 
algorithm eliminates over-large residue and has very 
short critical path delay that yields a very high-speed 
processing. The researchers have

 

implemented a 512-
bit single-chip RSA processor based on the modified 
algorithm with Compass 0.6-µm SPDM CMOS cell 
library. 

 
 

 

GuilhermePerin
 

et. al [18] described a 
comparison of two Montgomery modular multiplication 
architectures: a systolic and a multiplexed. Both 
implementations target FPGA devices. The modular 
multiplication is employed in modular exponentiation 
processes, which are the most important operations of 
some public-key cryptographic algorithms, including the 
most popular of them, the RSA. The proposed systolic 
architecture presents a high-radix implementation with a 
one-dimensional array of Processing Elements.

 

The RSA algorithm
 
proposed by P. Fournaris 

and O. Koufopavlou [19] has gained wide acceptability 
and has been well used algorithm in many security 
applications. Its main mathematical function is 
demanding in terms of speed, operation of modular 
exponentiation. In this article, a systolic, scalable, 
redundant carry-save modular multiplier and RSA 
encryption architecture are proposed using the 
Montgomery modular multiplication algorithm.

 

Perovic, N. S. et. al [23] presented FPGA 
implementation of RSA algorithm, where a key is

 
1024 

bits long and the project synthesis results like resource 
occupancy, maximal operating frequency,  etc. were 
examined for the system implementation. 

 

III.
 

Proposed
 
System

 

Highly robust and optimized system 
architecture for implementation of

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 
𝑅𝑅𝑅𝑅𝑅𝑅  

algorithm for data authentication among multiple MIMO 
terminals (here simulated on FPGA devices) has been 
proposed in this paper. In order to facilitate the secure 
data communication among multiple MIMO or tran-
sceiver systems, a noble commutative RSA approach 
that states that, the order in which encryption is 
performed does not affect the result of the encryption, 
has been implemented and simulated on multiple FPGA 
devices. In order to optimize the performance of the 
system with minimum space and higher speed, the 
robust Montgomery modular multiplication mechanism 
has been adopted with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 2 multiplication 
architecture. We have proposed the implementation of 
Serial Montgomery as well as Parallel Montgomery 
based CRSA cryptography core, with a goal to enhance 
the system performance for its less memory occupancy, 
fast rate, higher throughput and less power 
consumption.

 

  
X
III

  
Is
su

e 
 X

V
  

V
er

sio
n 

  I
 

 

49

(
)

Ye
ar

01
3

2
F

ob
al
 J
ou

rn
al
 o

f 
R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

G
l

© 2013   Global Journals Inc.  (US)

V
ol
um

e

speed up the operating frequency. In this paper, 

Along with the strong momentum of shifting 
from single-core to multicore systems, Zhimin Chen et. 

al [17] present a parallel-software implementation of the 
Montgomery multiplication for multicore systems. Their 
comprehensive analysis shows that the proposed 
scheme, pSHS, partitions the task in a balanced way so 
that each core has the same amount of job to do. In 
addition, we also comprehensively analyze the impact of 
inter-core communication overhead on the performance 
of pSHS. The analysis reveals that pSHS is high 
performance, scalable over different number of cores, 
and stable when the communication latency changes.



a) Commutative RSA 

A secure plane is realizable provided                           
the data communicated over the plane is protected                             
and cannot be colluded. The use of cryptographic                               
techniques is generally preferred, hence the  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ( 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)
proposed in this paper adopts the commutative RSA 
algorithm. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

considers
 

two prime numbers 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑄𝑄𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 initialized amongst all 

the group members. 𝐺𝐺𝐴𝐴
 
Let and 𝐺𝐺𝐵𝐵

 
represent the group 

members required to communicate over the secure 
plane. To compute the encryption keys and decryption 
key pairs of the commutative RSA algorithm, the 
Property 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
and

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
  are computed 

using the following equations:
 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� × �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑄𝑄𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶��                          (1)

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑃𝑃𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1� × �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑄𝑄𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1��      (2)

 

From the above equations, it is clear that

 

                      𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶              

 

               (3)

 

and

   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

    

 

for   

 

𝐴𝐴  and

 

  

 

𝐵𝐵           (4)

 

The encryption key pair of 𝐴𝐴

 

and

  

𝐵𝐵

 

represented as

 

( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  )  and

 

( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  )

are

 

to be obtained.  The

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   is obtained by 
randomly selecting numbers such that it is a

 

co prime of               

 

                     
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

or in other terms:

 

ℱ𝓃𝓃𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝜙𝜙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) =  1       (5)

 

where ℱ𝓃𝓃𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥,𝑦𝑦)  represents the greatest 
common divisor function between two variables                         

𝑥𝑥  and

 

𝑦𝑦. 

The decryption key pair of 

 

𝐴𝐴  and

  

𝐵𝐵

 

is 

represented by ( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  )  

 

                

         

and ( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 )                       

     
                                   

                                                                      

and

 

the

 

Property   

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   is  computed  based  on the

 

following 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  = ( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  )−1𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  )                           (6)

 

Let   𝐸𝐸𝐸𝐸𝐸𝐸𝑋𝑋      represent the encrypted data 

  

𝑋𝑋

 

. The encryption operation is defined as follows:

 

                                                                 𝐸𝐸𝐸𝐸𝐸𝐸𝑋𝑋 = 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 _𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  ) 

 

  

 

                                                   (7)

 

The commutative RSA decryption operation on the encrypted data 

 

𝔹𝔹  is defined as

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌 = 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 _𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  ) 

 

                       (8)

 

b)

 

Commutative property of RSA Algorithm

 

The commutative property of the RSA algorithm 
adopted in  SMFCP

 

can be proved if data  X 

 

encrypted 
by  A 

 

and then encrypted by  B 

 

provides the same 

resultant if the encryption is performed by  B 

 

followed by 
the encryption performed by  A 

 

, i.e.,

 
 

EncB(Encx
A) ≡ EncA(Encx

B)                     (9)

 

EncB � XProp _EA
CRSA

 Mod(Prop_NA
CRSA  )� ≡ EncA �XProp _EB

CRSA
 Mod(Prop_NB

CRSA  )�                    (10)

 

 X�Prop _EA
CRSA ×Prop _EB

CRSA �

 

Mod �PropN A
CRSA � =  X�Prop _EB

CRSA ×Prop _EA
CRSA �

 

Mod(Prop_NB
CRSA  )             

 

(11)

 

As  PropN A
CRSA =  Prop_NB

CRSA   it can be concluded that

 

X�Prop _EA
CRSA ×Prop _EB

CRSA �

 

Mod �PropN A
CRSA � =  X�Prop _EB

CRSA ×Prop _EA
CRSA �

 

Mod(Prop_NA
CRSA  )             (12)

 

And hence   

 

EncB(EncX
A) ≡ EncA(EncX

B )                 (13)
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equation:



have implemented Commutative RSA cryptography core 
among multiple FPGA devices. In order to optimize the 
performance as well as memory occupancy, highly 
effective system architectures like Montgomery modular 
multiplication based on Radix-2 has been developed. 
Such implementation causes the reduction in memory 
occupancy as well as the speed is also enhanced many 
folds. These implemented approaches have been 
discussed in the following sections.

 

a)

 

Montgomery Algorithm

 

Montgomery multiplication [20] is an efficient 
method for modular multiplication with an arbitrary 
modulus, particularly suitable for implementation on 
general-purpose computers and embedded micro-
processors. The method is based on a representation of 
the residue class modulo 𝑀𝑀. The algorithm uses simple 
divisions by a power of two instead of divisions by 𝑀𝑀, 
which are used in a conventional modular operation. 
The Montgomery multiplication (MM) is the basic 
operation used in modular exponentiation, which is 
required in the Diffie-Hellman and RSA public-key 
cryptosystems.

 

Montgomery’s modular multiplication algorithm 
employs only simple additions, subtractions, and shift 

operations to avoid trial division, a critical and time-
consuming operation in conventional modular 
multiplication. The price paid is the need to convert 
operands into and out of Montgomery’s domain, which 
is almost negligible in some particular applications such 
as cryptosystems.

 

Montgomery modular multiplication is one of 
the fundamental operations used in cryptographic 
algorithms, such as RSA and Elliptic Curve 
Cryptosystems. The Multiple-Word Radix-2 Montgomery 
Multiplication algorithm represents a now-classic 
architecture for implementing Montgomery multiplication 
in hardware. With properties optimized for minimum 
latency, this architecture performs a single Montgomery 
multiplication in approximately 2n clock cycles, where 
“n” is the size of operands in bits.

 

In many cryptosystems, such as RSA, 
computing

 

𝑀𝑀

  

is a crucial operation. The reduction of 𝑀𝑀  
is a more time-consuming step than the multiplication A 
. B

  

without reduction. Montgomery introduced a method 
for calculating products (mod

 

M)

 

without the costly 
reduction

 

(mod

 

M)

 

,

 

since then known as Montgomery 
multiplication. 

 

𝑀𝑀

 

is assumed to be an odd integer. 
Montgomery multiplication of 𝐴𝐴

 

and

 

B

 

(mod

 

M), denoted 
by 

 

MP(A, B, M)

  

is defined as A . B. 2𝑛𝑛(mod

 

M)

 

for some 
fixed integer n. Since Montgomery multiplication is not 
an ordinary multiplication, there is a conversion process 
between the ordinary domain (with ordinary multi-
plication) and the Montgomery domain. The conversion 
between the ordinary domain and the Montgomery 
domain is given by the relation A

 

↔ A′

 

where 𝐴𝐴′ =
A. 2𝑛𝑛(Mod

 

M). 

 

Mathematically, it can be written as:

 

MP(𝐴𝐴′ , B′ , M) = A′ . B′ . 2−n = (A. 2𝑛𝑛). (B. 2𝑛𝑛). 2−n = A. B. 2𝑛𝑛 = (A. B)′(mod

 

M).

 

    (14)

The conversion between each domain                             
can be done using the same Montgomery                  
operation, in particular A′ = MP(A, 22n

 

(mod

 

M), M)                               
and

 

X = MP(A′ , 1, M) ,

 

where 22𝑛𝑛(mod

 

M)                                          
can be precomputed. Despite the initial conversion cost, 
we achieve an advantage over ordinary multiplication if 
we do many Montgomery multiplications followed by an 

inverse conversion at the end, which is the case, for 
example, in our proposed RSA.

 

b)

 

Radix-2 Modular Multiplier

 

The optimized algorithm for Radix-2 Modular 
multiplier for Montgomery multiplication is given as 
follows:

 

                                                       𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰:

 

𝑂𝑂𝑂𝑂𝑂𝑂

 

𝑀𝑀,𝑛𝑛 = ⌊𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀⌋ + 1,

 

                                                       (15)

 

                                     𝐴𝐴 = ∑ 𝑎𝑎𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 . 2𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ

 

0 ≤ 𝐴𝐴,𝐵𝐵 < 𝑀𝑀

 

                                                    (16)

 

               
       

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:

 

𝑪𝑪 = 𝑀𝑀𝑃𝑃(𝐴𝐴,𝐵𝐵,𝑀𝑀) ≡ 𝐴𝐴.𝐵𝐵. 2−𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚

 

𝑀𝑀), 0 ≤ 𝐶𝐶 < 𝑀𝑀

 

                         (17)
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IV. Proposed Commutative RSA Core
Based on Serial Montgomery and

Parallel Montgomery

The dominant goal of this research work is to 
implement and illustrate the efficiency and robustness of 
commutative RSA cryptography approach for multiple 
MIMO or transceiver systems and for this purpose, we 

  

  1.1 X[0] = 0;                         (18)

1.2 𝐹𝐹𝐶𝐶𝑆𝑆 𝐶𝐶 = 0 𝐶𝐶𝐶𝐶 𝐶𝐶 − 1 𝒅𝒅𝒅𝒅;

1.3�
𝑞𝑞 𝐶𝐶 = (𝐶𝐶𝐶𝐶 . 𝑏𝑏0)⨁ X [𝐶𝐶]𝐶𝐶;

X[𝐶𝐶 + 1] =
𝑋𝑋[𝐶𝐶]+𝐶𝐶𝐶𝐶 .𝑏𝑏+𝑞𝑞 𝐶𝐶 .𝐶𝐶

2
;
�                                    (19)

            



The above mentioned algorithm represents the 
Pseudocode for the Radix-2 Montgomery multiplication, 
where we choose 𝑛𝑛 = ⌊𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀⌋ + 1.𝑛𝑛

 

is the size of M in 
bits.

 

The verification of the above algorithm may be 
presented as follows:

 

Consider X[i] given as

 

                                                        X[𝑖𝑖] ≡ 1
2𝑖𝑖
�∑ 𝕒𝕒𝑗𝑗 . 2𝑗𝑗𝑖𝑖−1

𝑗𝑗=0 �.𝐵𝐵(𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀),

 

  

 

    

 

                                                          (21)

 

                            With X[0]=0. Then 𝑋𝑋[𝑛𝑛] ≡ 𝐴𝐴.𝐵𝐵. 2−𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚

 

𝑀𝑀) = 𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵,𝑀𝑀).𝑋𝑋[𝑛𝑛]                                                 (22)

 

can be computed iteratively using the following dependence:

 

                                 ≡ 𝑋𝑋[𝑖𝑖 + 1] ≡ 1
2𝑖𝑖+1 �∑ 𝑎𝑎𝑗𝑗 . 2𝑗𝑗𝑖𝑖

𝑗𝑗=0 �.𝐵𝐵

 

                                              (23)

 

                               ≡ 1
2𝑖𝑖+1 �∑ 𝑎𝑎𝑗𝑗 . 2𝑗𝑗𝑖𝑖

𝑗𝑗=0 + 𝑎𝑎𝑖𝑖 . 2𝑖𝑖�.𝐵𝐵

 

                                       (24)

 

                                              

 

1
2
� 1

2𝑖𝑖
�∑ 𝕒𝕒𝑗𝑗 . 2𝑗𝑗𝑖𝑖−1

𝑗𝑗=0 �.𝐵𝐵 + 𝑎𝑎𝑖𝑖 .𝐵𝐵�

 

                                                          (25)

 

                                                     
1

 

2
(𝑋𝑋[𝑖𝑖] + 𝑎𝑎𝑖𝑖 .𝐵𝐵)(𝑚𝑚𝑚𝑚𝑚𝑚

  

𝑀𝑀).

       

 

                                                          (26)

Therefore, depending on the parity of X [𝑖𝑖] +
𝑎𝑎𝑖𝑖 .𝑌𝑌

 

, we do compute X [𝑖𝑖 + 1]   as or 𝑋𝑋[𝑖𝑖 + 1] =
𝑎𝑎[𝑖𝑖]+𝑎𝑎 .𝐵𝐵+𝑀𝑀

2
   so as to make the numerator divisible by 2.

 

Since 𝐵𝐵 < 𝑀𝑀  and X [0] = 0,

 

one has 0 ≤ 𝑋𝑋[𝑖𝑖] <
2𝑀𝑀  for all 0 ≤ 𝑖𝑖 < 𝑛𝑛

 

. In References [21] and [22], the 
result of a Montgomery multiplication is presented as   
𝐴𝐴.𝐵𝐵. 2−𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚

 

𝑀𝑀) < 2𝑀𝑀

 

when 𝐴𝐴,𝐵𝐵 < 2𝑀𝑀

 

and
 

2𝑛𝑛 > 4𝑀𝑀.  
As a result, by redefining “n” to be the smallest integer 
such that 2𝑛𝑛 > 4𝑀𝑀 , the subtraction at the end of 
algorithm can be avoided and the output of the 
multipication can be directly used as an input for the 
next Montgomery multiplication.

 

c)

 

Modular Multiplication Algorithms

 

In RSA, the public encryption key is a pair of 
positive integers (E, N) and the private decryption key is 
another pair of positive integers (D, N). To encrypt a 
message using the key (E, N) the following structural 
approach have

 

been implemented. Fig. 1 represents the 
Serial Montgomery multiplication, whereas the parallel 
Montgomery is presented in Fig. 2. It encompasses two 
Montgomery multipliers connected in parallel. In our 
research work, we have implemented 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 2  
Modular multiplier based multiplication architecture. A 
brief description of the employed algorithm is as follows:

 
 

CONTROLLER  MUX22 MUX22

T 1

E

1
0

1

ei e0/1

0

MPRODUCT1 SQUARE1

SAMMM1SAMMM2 MODULUS

M

SQUARE1.1MPRODUCT1.1

 

Figure 1

 

:

 

Serial Montgomery Multiplication Architecture
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1.5 ⌊X[𝐶𝐶] = 𝑋𝑋[𝐶𝐶] −𝑀𝑀; �

1.6 𝒓𝒓𝒕𝒕𝑰𝑰𝑰𝑰𝒓𝒓𝑰𝑰 𝑪𝑪 = X[𝐶𝐶] (20)    

     1.4 X[𝐶𝐶] > 𝑀𝑀 𝑰𝑰𝒕𝒕𝒕𝒕𝑰𝑰

             



0 1

1ty

0 1

Y ty

0 1

exp_2kty

Montgomery 
multiplier 

e

x y

z

last

start_mp1

mp1_done

next_e

Montgomery 
multiplier 

x y

z

start_mp2

mp2_done

next_y

first

K-bit register 
initially: exp_k 

ce_e

load K-bit register ce_ty

ce
ceload

ty
e

z

xi
shift
load

x

K-bit register sift register  

serial_out

load

update

 

Figure 2 : Montgomery exponentiation (MSB first) with two Montgomery’s multipliers in parallel

V. Hardware Design 

Fig. 2 presented earlier shows the architecture 
of a 32-bit RSA processor based on the proposed 
Commutative RSA algorithm. We use four 32-bit linear 
shift registers to store operands needed in computing 
32-bit RSA operation. The operations of the RSA 
processor are described in the following. In the initial 
stage, commutative RSA operands are loaded into shift 
registers serially through an input buffer. While loading 
message M into the text register, we shift the exponent 
register until the first nonzero is the most significant bit 
and count the number of bits of exponent log2 E. After 
the initial stages, we start the multiplier. Once the first 
output bit of the multiplier is ready, we start the 
Montgomery module immediately. So the execution time 
of CPA, multiplier, and Montgomery module is almost 
overlapped. Therefore, the function units of our design 
are fully utilized during computation. 

Carry-Propagation Adder and Serial Parallel 
Multiplier:  The carry-propagation adder converts the 
carry-save form of the output from the Montgomery 
module to non-redundant binary form. It generates one 
bit output per cycle to the serial-parallel multiplier for the 
next iteration. The serial-parallel multiplier is used to 
realize the multiplication and square of two n  +1  bit 
numbers. It first generates the n + 2  lower bits of a 
product serially to the Montgomery module, and then it 
stops and holds the n higher bit of the product. The n 
higher bits of the product will be added with the output 
of the Montgomery module to get the modular 
multiplication result. 

The multiplier itself is a linear array type with a 
special input circuit. When the multiplier is generating a 
product of two numbers, the parallel input  M0 is ready 
in the text register and another operand can arrive in 
serial. However, if we want to square one number, a 
serial input of the operand will make the multiplier fail. 

We solved this problem by scheduling the serial input 
operands and insert some zeros to avert the failure of 
the squaring operation.  

Montgomery Module: The Montgomery   
module   is shown in Fig. 2 and the overall operation for 
Montgomery modular multiplication and its functional 
approach has already been presented in previous 
sections. The variable X[0]  refers the n+2   lower bit of 
the product from the multiplier. X[0] enters the 
Montgomery module one  bit per  cycle from the  lower 
bit  to  the  higher bit  in  series. The reduction step is a 
shift-and-add operation that is very similar to the basic 
step of a multiplication. The quotient determination is a 
parity decision on the summation of the intermediate 
result and the carry. This can be done simply by an 
exclusive-OR gate with inputs of 𝑋𝑋[i] and the  LSB  of the 
intermediate result in the previous iteration. After   n + 2 

iterations, the Montgomery module will add X  [n + 2]  
and the 𝑛𝑛 higher bits of the product from the multiplier 
together. The result is then sent to the carry-propagation 
adder for the next modular multiplier iteration. 

In this work, we have developed two CRSA 
cryptography cores. First model represents the Serial 
Montgomery multiplier based design, while the second 
describes the optimized Parallel Montgomery based 
CRSA cryptography core implementation. In parallel 
Montgomery approach, two Montgomery multipliers 
have been used in parallel.  

The results obtained after implementation have 
been summarized in the following sections.

 

VI. Results 

The robust commutative RSA core, whose 
details were presented in earlier sections, has been 
implemented on multiple FPGA devices for simulation 
and illustration of data authenticity among multiple user 
terminals in a communication environment. The 
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proposed work for the implementation of commutative 
RSA cryptography core has been simulated with three 
individual FPGA devices. The implementation of FPGA 
cores do signify the MIMO or multiple transceiver 
terminals in multiuser communication environment. The 
design has been coded in VHDL and has been 
simulated using Xilinx Design Suite 14.3 targeted on 
Virtex-5, xc5vlx330t-2-ff1738FPGA. In this work,

 
two 

systems have been developed as mentioned earlier. 
One is the Serial Montgomery based Cryptography core 
and the second is our proposed Parallel Montgomery 
based cryptography core. The results obtained for both 
architectures have been compared. Considering the 
performance parameters like Memory occupancy, 
speed, power consumption, delay and throughput, it 
has been found that the Parallel Montgomery performs 

better than Serial Montgomery (SM) based Commutative 
RSA implementation. The delay in Parallel Montgomery 
based CRSA is 13.78% lower as compared to Serial 
Montgomery based CRSA cryptography core. Similarly, 
the throughput of Parallel Montgomery based CRSA is 
12.11% higher than the serial Montgomery based CRSA 
architecture. Even in the proposed system, the trade-off 
between power consumption is also very small and it is 
only 0.03% higher in Parallel Montgomery based CRSA.

 

The simulation results for encryption and 
decryption obtained by the Serial Montgomery based  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  core is presented in Fig. 3 and Fig. 4 respectively. 
The functional verification of the Parallel Montgomery 
based 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  cryptographic core is shown in Fig. 5 and 

Fig. 6.
 

 

Figure 3 :
 
Simulation Waveforms Using Serial Montgomery based : Encryption

 

Figure 4 :

 

Simulation Waveforms Using Serial Montgomery based : Decryption

 

 

Figure 5 :

 

Simulation Waveforms Using Parallel Montgomery based : Encryption
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 Figure 6 :

 

Simulation Waveforms Using Parallel Montgomery based : Decryption

The results obtained for comparative simulation 
are presented in the following.

 Table 1 :

 

Comparison for Chip Resource Utilization in 
Serial and Parallel Montgomery based CRSA 

cryptography Core

 CRYPTOGRAPHY 
CORE

 

CRSA

 

CRSA

 
CIRCUIT

 

SERIAL 
MONTGOMERY

 

PARALLEL 
MONTGOMERY

 DEVICE

 

xc5vlx330t-2-ff1738

 

xc5vlx330t-2-
ff1738

 SLICE LUT

 

913

 

844

 LUT USED AS LOGIC

 

913

 

813

 OCCUPIED SLICES

 

290

 

311

 
Table 2 :

 
Comparison for Power consumption in Serial 

and proposed Parallel Montgomery based Commutative 
RSA cryptography core

 
CRYPTOGRAPHY 

CORE
 

CRSA
 

CRSA
 

CIRCUIT
 

SERIAL 
MONTGOMERY

 

PARALLEL 
MONTGOMERY

 
DEVICE

 
xc5vlx330t-2-ff1738

 

xc5vlx330t-2-
ff1738

 

STATIC POWER 
(mW)

 

3516.7

 

3516.75

 

DYNAMIC POWER 
(mW)

 

4.76

 

5.72

 

TOTAL POWER (mW)

 

3521.46

 

3522.47

 

 

 
 
 
 
 
 
 
 
 
 

Table 3 :

 

Performance (Delay, Frequency and 
Throughput) Analysis for Serial and Parallel Montgomery

 

Based CRSA Cryptography Core

 

CRYPTOGRAPHY 
CORE

 

CRSA

 

CRSA

 

CIRCUIT

 

SERIAL 
MONTGOMERY

 

PARALLEL 
MONTGOMERY

 

DEVICE

 

xc5vlx330t-2-ff1738

 

xc5vlx330t-2-ff1738

 

FREQUENCY (MHz)

 

199.57

 

227.08 

DELAY (ns)

 

5.01

 

4.40

 

THROUGHPUT(kbps)

 

779.58

 

887.02 

The graphical comparison for the performance 
of Serial and Parallel Montgomery based Commutative 
RSA architectures has been presented in Fig. 7 to Fig. 
10.
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Figure 7 : Chip Resource Utilization Analysis for serial and parallel Montgomery based CRSA
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Figure 8 :

 

Delay analysis for serial and parallel Montgomery based CRSA
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Figure 9 : Power analysis for serial and parallel Montgomery based CRSA

Figure 10 : Throughput analysis for serial and parallel Montgomery based CRSA
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VII.

 

Conclusion

 

A noble security or authentication public key 
cryptography technique called Commutative RSA has 
been implemented for multiple MIMO or transceiver 
terminals for accomplishing the goal of data security in 
multiuser communication environment. The 
commutative RSA approach has been implemented with 
multiple FPGA cores that functions as individual 
transceiver terminal and performs its encryption and 
decryption individually without affecting the original data. 
The two approaches based on Montgomery 
multiplication with Radix-2 multiplier have been 
designed and individual modules for Serial Montgomery 
(SM) and Parallel Montgomery have been simulated. 
The results obtained have been compared and it has 
been found that the proposed Parallel Montgomery (PM) 
architecture performs better as compared to Serial 
Montgomery. The proposed PM based CRSA 
cryptography core has exhibited 12.1% higher 
throughput as compared to Serial Montgomery based 
CRSA. Similarly, the frequency or speed of the proposed 
system is also higher. The proposed system exhibits 
trade-off of 0.03% in power consumption. Thus 
considering various aspects of this research work, it can 
be stated that the proposed Parallel Montgomery based 
Commutative RSA performs better than the serial based 
Montgomery multiplication application. 
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