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Simulation of Gear Dynamics by Circuit Theory 
Methods 

Evgueni I. Podzharov α, Jorge Alberto Torres Guillén σ & Julia Patricia Ponce Navarro ρ

Abstract- A methodology of study of gear dynamics with 
the aid of the circuit theory and linear graph methods is 
presented. In terms of analogy of the force, electric 
tension is used for the composition of equivalent 
electrical circuit, which immediately gives the equations 
of motion. The application of the electrical analogy 
method for the automation of composition of equation of 
motion and their analysis are considered for the 
classical example of a one-stage gear transmission with 
flexible supports and coupling masses. This technique 
can be extended to analyse the dynamic characteristics 
of more complex dynamic systems as a planetary 
transmission with flexible supports. 
Keywords: dynamic gear model, equivalent electric 
circuit, linear graph, node equations, automation of 
composition of motion equations. 

I. Introduction 

he classical method of Lagrange equation (Genkin 
and Grinkevich, 1961) and the methods of 
dynamic stiffness or admittance (Airapetov et al. 

1975) are used in studies of gear dynamics. These 
methods are cumbersome and laborious. In order to 
automate composition of equations of motion, the bond 
graph (Karnopp and Rosenberg, 1972) and some other 
methods are also used. However, the use of these 
methods presupposes presentation of a dynamic model 
as a system with concentrated parameters. Also, the 
bond graph of a relatively simple model, as, for 
example, a planetary gear transmission, is very 
cumbersome (Allen, 1979). On the other hand, electrical 
analogy method (Skudrzyk, 1968) and linear graph 
method (Mason and Zimmermann, 1960) allow us to 
model dynamic systems with both concentrated and 
distributed parameters (Podzharov, 1983, 1987, Sasa et 
al., 2004, Wojnarowski, 2006, Kalous, 2009). 

In this paper a methodology of study of gear 
dynamics with the aid of the electric circuit theory 
methods is presented. The analogy between the force 
and electric tension is used to compose equivalent 
electric circuits for dynamic gear systems. 
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Table 1 : Equivalent Parameters 

No. Mechanical System Electrical System 
1 Force Tension 
2 Speed Electric current 
3 Displacement Electric charge 
4 Mass Inductance 
5 Flexibility Capacitance 
6 Absorber Electrical resistance 

Nomenclature 

iJ - moment of inertia of the mass im , 

ik - torsional stiffness 

32 , SS CC - support stiffnesses, 

3C - stiffness of tooth engagement, 

)(),( 21 tTtT - variable torsion moments, 

iµ - moment of inertia reduced to the mass moving on 

the line of action, 

iC -  torsion stiffness reduced to linear stiffness on the 

line of action, 

bir - base radius of a gear, 

)(tFi - torsional moment reduced to a force applied in 

the line of action of gear engagement, 

)(tSi - kinematic error in the gear engagement, 

ijy - element of the matrix of mechanical conductance, 

Y - matrix of mechanical conductance, 

Z - mechanical impedance, 

ijT - transmission in a graph between the points i and  j, 

f - frequency, 

𝑗𝑗 = √−1.
 

II.
 

Modelling One-Stage
 
Gear 

Transmission
 

We shall now consider the use of electrical 
analogy for the automation of composition of equations 
of motion and their analysis in the example of one-stage 
gear transmission with flexible supports and coupled 
masses. The mechanical model of the transmission is 
shown in Fig.1 and in Fig. 2, presenting the equivalent 
electrical circuit. Here, the parameters of the torsion 
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system reduced to the parameters of a linear system are 
determined as follows: 

     2/ biii rJ=µ , 2/ biiki rkC = , biii rtTtF /)()( =       (1) 

This system has 10 independent elements and 
11 resonances and antiresonances (Skudrzyk, 1968), 
including zero and infinite frequencies. When the circuit 
is excited by variable tensions (forces) )(1 tF and )(2 tF
the contours 11µC and 43µC act as low frequency 

filters filtering out high frequency components. Thus, the 
existence of large coupled masses linked to the gears 
by relatively low stiffness shafts means that the gears 
are dynamically isolated from external excitation in 
medium and high frequency ranges. 

Let us consider stationary vibrations and 
assume that the gear is a linear dynamic system. Then, 
the solution of this system with periodic force or 
kinematic excitation can be found as a sum of 
harmonics.  In this case the equations of motion can be 
composed as Kirchhoff equations of the equivalent 
electric circuit.  

The total conductance between the points a 
and b will be equal to the sum of the conductances of 
parallel branches (Skudrzyk, 1968). 
 
                    ,43210 YYYYYYab ++++=                 (2) 
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 The input impedance between points a and b
 

can be found as inverse of abY
 

                               
abab YZ /1= .                                 (4) 

Substituting the equations (3) in the equation (2) 
and (4) and making abZ  equal zero, we can find a 

frequency characteristic of abZ , which is shown in Fig. 3 

for the transmission with the following parameters: 

 ,012.0 2
1 mkgJ =  ,000686.0 2

2 mkgJ =  

,00471.0 2
3 mkgJ =  ,02.0 2

4 mkgJ =
,56.12 kgm =  ,8.33 kgm =

,/10455.0 8
2 mNCS ⋅=  ,/10101.0 8

3 mNCS ⋅=  

,/1027.0 9
2 mNCS ⋅=  mNk ⋅= 42701 , 

mNk ⋅= 20003 , ,0383.02 mrb =  .0634.03 mrb =  

It was calculated neglecting the damping in the 
system and, according to the Foster theorem (Skudrzyk, 
1968), it has a monotonous character. We can find from 
the curve that the poles are at frequencies 55 Hz, 209 
Hz, 300 Hz, 794 Hz and 5200 Hz. The zeros are at the 
frequencies 115 Hz, 259.5 Hz, 408 Hz and 859.5 Hz.  

The poles pif  and zeros sjf can also be found 

approximately from the concepts of parallel and 
successive resonances or resonances of tensions and 
currents: 
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As we see, the approximate and exact 
frequencies are very similar to each other. Therefore, the 
formulas (5) – (13) can be used for the analysis of 
resonances.

 

Now, let us use the linear graph method (Mason 
and Zimmermann, 1960) to obtain a general form for 
this model. A linear graph for the circuit in Fig. 2 is 
constructed in

 
Fig. 4. This graph illustrates the relations 

between forces iF  
(upper nodes) and velocities iv

(lower nodes). The lines between them are 
transmissions, which in this case are mechanical 
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admittances iy  or mechanical impedances iz . Thus, in 

this graph we use relations 

                   iii Fyv ⋅=   and  iii vzF ⋅=              (14) 

In order to simplify the graph, the number of 
nodes can be reduced retaining only the nodes which 
we need to determine. Further simplification of the graph 
can be implemented by adding parallel transmissions 
and excluding the nodes, which we do not need to 
determine, by splitting them. Hence, splitting the nodes

iFµ , Civ , ivµ  and excluding the loops il , we can 

obtain the transformed graph presented in Fig. 5. 
Here,  

)/(1 ii jy µωµ = , iCi Cjy /ω= ,                         

                     

 

))/(/(1 ωµω jCjy iiSi += .              (15) 

 The transmissions of this graph can be 
determined by the following formulas
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Where 
 

1211 /)( Cyyyl µµ +−= , 3433 /)( Cyyyl µµ +−= , 

           232322 /)( CSS yyyyyl +++−= µµ .      (17)
 

This graph can also be described by the 
equations determining the nodes in relation to adjacent 
nodes and transmissions that link them:
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Substituting (16) and (17) in (18) and multiplying 
each of the itch equation (18)  by  )1( iCi ly − ,  we  have 
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 Where 21111 µµ yyyy C ++= , 22112 µyyy == , 

              3232222 SSC yyyyyy ++++= µµ ,      (20)

 
33223 µyyy == , 43333 µµ yyyy C ++= . 

As we can see from equation (19) and (20), 
equation (19) has the form

 
                              PFY c =× ,                            (21)

 

Here, the matrix of the mechanical conductance 
Y is symmetrical; each itch diagonal element is positive 
and equal to the sum of the input mechanical 
conductances of the elements, which enter the itch 
node. Each non-diagonal element is negative and equal 
to the transition conductance of the elements, which 
locate between itch and j-th nodes. This type of matrix is 
known in the circuit theory as matrix of node equations

 

(Karni, 1966).

 

The excitation term in the right-hand part of the 
i-th equation is equal to the velocity of cinematic error in 
the gear engagement, in the case of cinematic 
excitation. In the case of force excitation, it equals to the 
product of the exciting force and the transition 
conductance between the point of application of the 
force and the itch node. 

 

Therefore, it is not necessary to compose 
equivalent electric circuits and graphs. Instead, following 
the rules explained above, we can directly compose the 
matrix of mechanical conductance and the vector of the 
right-hand part of the equations.

 

The above formulated rules can be extended to 
more complicated systems and systems with distributed 
parameters.

 

A dynamic calculation of the gear with the 
parameters mentioned above was implemented using 
the equations (15) – (20). The damping in elastic 
elements was considered by introducing complex 
stiffness (Skudrzyk, 1968).

 
                          )1( iii jCC η+= ,                     (22)

 

Where iη - loss factor in i-th elastic element.

 

 

The results of calculation of dynamical forces 

CiF

 

in elastic elements are presented in Fig.6; the 

amplitude of kinematic excitation mS µ52 =

 

and the 
loss factor in all of the elastic elements was taken equal 
to 0.1.

 

As we see from the graph, in the low frequency 
range the dynamic forces in each elastic element are the 
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same. The resonance at the frequency 55 Hz 
corresponds to the frequency of natural vibrations of 
mass 4µ at the stiffness 3C , and the high frequency 

resonance at 5200 Hz is the natural frequency of 



 

vibrations of all masses at the stiffness 2C of the gear 
engagement. The origin of all other resonances can be 
checked with the aid of equations (5) – (9).

 

The measurement of noise and vibration of this 
gear shows that it has high levels at frequency 5200 Hz.

 

III.

 

Conclusions

 

a)

 

The use of electric analogy allows us to avoid the 
derivation of equations of motion and to make a 
frequency analysis without solving the equations.

 

b)

 

Equations analogous to node equations known in 
the circuit theory can be used in the gear dynamics 
for the systems with concentrated and distributed 
parameters.

 

c)

 

There is no need to compose any electric circuit and 
linear graph to obtain linear equations of motion of a 
dynamic system. They can be composed as node 
equations directly for a dynamic model.
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Fig. 1 : Gear dynamic model

Fig. 2 : Equivalent electrical circuit
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Fig. 3 : Frequency characteristic of input impedance

Fig. 4 : Linear graph of gear dynamic model

Fig. 5 : Transformed linear graph of gear dynam
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Fig. 6 Frequency characteristic of dynamic loads in the gear:
Fc1 - in the gear support, Fc3 – in the pinion support,
Fc2 – in the gear engagement

Fig. 6 : Dynamic loads in the gear
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