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Development of a Hybrid Metamodel based 
Simulation Optimization Algorithm

Farhad Ghassemi Tari α & Zohreh Omranpour σ 

Abstract- In this paper, a metamodel based hybrid algorithm 
was developed for optimization of digital computer simulation 
models. The simulation models are considered to be 
computationally expensive. It is also considered to have a 
single stochastic and unconstrained response function. The 
hybrid algorithm is developed by modification and integration 
of several concepts and routines. We employed the nested 
portioning and the particle swarm optimization algori-thms to 
develop an efficient search mechanism for the hybrid 
algorithm. Then we integrated the modified Kriging metamodel 
to the search mechanism for facilitating the function fitting 
processes of the simulation’s output. The efficiency of the 
developed hybrid algorithm was then evaluated through 
computational experiments. Ten complex test problems were 
selected from the literatures and the efficiency of the 
developed hybrid algorithm was evaluated by comparing its 
performances against three known algorithm which are cited in 
the literature.  The result of these computational experiments 
revealed that the developed hybrid algorithm can provide very 
robust solutions with a very low computational effort.  
Keywords: simulation, optimization, nested partitioning, 
stochastic kriging, particle swarm optimization. 

I. Introduction 

igital computer simulation models have been 
very successful approach for analyzing the 
complex systems. In simulation models the 

analytical expression for input/output relationship is 
generally unavailable and hence conducting its output 
performance analysis is a cumbersome task. Based on 
Barton and Meckesheimer [2] simulation optimization is 
defined as a repeated analysis of simulation models 
with different values of design parameters, in an attempt 
to identify best simulated system performance. Since 
1950when simulation optimization has been introduced 
as a new area for research, many practical problems are 
modeled as simulation optimization problems and 
successful results have been achieved. Some recent 
achievements are the works of Liu and Maghsoodloo, 
[17] and Kleijnen et al.[14]. Also a number of software 
packages have been developed with the ability of 
simulation optimization and have been added to some 
well-known simulation software’s. However, the related 
literatures are still waiting for developments of more new 
robust methods with the high results efficiency. For 
recent surveys in this field, we acknowledge the 
research studies conducted  by Fuand Glover [7], Tekin 
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and Sabuncuoglu [28], Henderson and Nelson [8] and 
Kleijnen [13]. 

Since simulation models have stochastic 
response they potentially require extensive runtime. 
When an optimization routine is incorporated to the 
simulation models, this problem will intense 
dramatically. Due to the stochastic nature of the 
simulation models, the output must be estimated by 
averaging of the outputs values over reasonable number 
of replications [10]. In addition the simulation models 
are usually considered as the black-box models in 
which, the output function is not usually expressed 
explicitly. Therefore determining the best combination of 
controllable variables which provide the best output 
value can be done either by fitting an explicit function to 
the output values or by one of the algorithmic input-
output optimization routines.  

One of the approaches is the use of 
metamodel-based methods. Metamodels provide 
deterministic objectives, which surrogate simulation 
models, and generally need fewer computational efforts. 
One of the powerful metamodel, addressed in the 
literatures, is Kriging method. Kriging is an interpolation 
method which initially developed for using in spatial 
statistics. Thismethod which is initially proposed by 
Krige [15]was applied by Cressie [5] in geology. Later it 
was applied in areas like economic and modeling black 
box computer experiments [9].  

The efficiency of this method in deterministic 
simulation models has proven [11,20, 26]. Based on the 
good results obtained in deterministic simulation, Beer 
and Klijnen [3] applied this method to the random 
simulation models. With considering successful 
application of Kriging methodology in design and 
analysis of deterministic computer experiments 
Ankenman et al [1]. Introduced stochastic Kriging (SK) 
metamodel inspired by Kriging methodology. Actually 
they extend Kriging methodology which applied 
successfully in deterministic simulation as a global 
metamodel, to the stochastic simulation. Despite of high 
accuracy and successful results, SK has not been use 
as metamodel in numerous papers and has not been 
use to any of the commercial simulation software 
package. 

A powerful population based metaheuristics 
which can be employed for solving large-scale 
optimization problems efficiently is nested partition (NP) 
method. This method introduced by Shi and Ólafsson 
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[21] inspired by adaptive partitioned random search 
(APRS) [27] and branch and bound algorithm. 
Concentrating search effort in some regions which are 
most likely to have global optimum has been the key 
idea in developing NP method and this goal can be 
achieved by partitioning. 

NP method has been used in both deterministic 
[21] and stochastic [22] optimization problems and also 
has been successfully applied in many areas, such as 
planning and scheduling, logistics and transportation, 
supply chain design, data mining and health care and 
task assignment. This method also is used for solving 
some difficult optimization problems like traveling sales 
man problem [23] and production scheduling problems 
[21]. More details about these applications are provided 
in [4, 11]. Based on Shi and Ólafsson [25] the NP 
results significantly depend on the method of sampling 
and low quality samples can affect the final result. In the 
young literature of NP, using other heuristics in order to 
improve samples quality is common. 

Using heuristic search method for optimizing 
simulation models has been very successful 
approaches. The majority of researches in this area 
focus on some well-known algorithms like genetic 
algorithm (GA), simulated annealing (SA), and particle 
swarm optimization (PSO). PSO method is a global 
population-based metaheuristic which developed by 
Kennedy [12] and Eberhart [6] in 1995for optimizing 
nonlinear programming problems. The key idea of this 
algorithm was derived from movement of flying birds. 
There is a population (swarm) which consists of some 
particles. These particles are representative of solutions 
in feasible region. Each particle position and velocity 
updated based on the best performance of the particle 
achieving so far (its own previous best position) and the 
best performance obtained by any other particles. 

In this paper we developed a metamodel-base 
simulation optimization hybrid algorithm. The developed 
algorithm is hybrid by the fact that it is constructed by 
modification and combination of several optimization 
routines. We used stochastic Kriging (SK) metamodel 
for fitting a functional relation to the input output of our 
simulation models. SK actually is a global metamodel, 
since it is fitted on the whole feasible space. We then 
incorporated the NP method into our hybrid algorithm. 
Through the NP method, the developed hybrid algorithm 
will concentrate its search effort in the regions which are 
most likely contained the global optimum. And finally we 
integrated the PSO method as the searching 
mechanism for improving the searching process of the 
proposed hybrid algorithm. Through these integrations a 
hybrid algorithm for optimization of the digital simulation 
models is developed, which is described in the next 
sections of this manuscript in more detailed. 
  
 

II. Problem Statements 

In this article we focus on the simplest 
optimization problem which is an unconstrained 
simulation model with the continuous variables and a 
single output. We aim to minimize the expected value of 
this univariant output. Despite the simplicity, these kinds 
of problems have many applications in practice. 
Examples are(s, Q)inventory management simulation, 
inventory production simulation models in logistics and 
operation management and queuing simulation models 
[13]. 
This problem is formulated as follow: 

))((min xwE
x                                  )1(  

jjj uxl ≤≤ dj ,...,2,1=                )2(  

Where [ ]Tdxxxx ,...,, 21= denotes a d-
dimensional input vector and w  indicates the output 
value. The expected value in the objective function is 
estimated by simulation and we consider only box 

constraints where jl
 and ju

 are the lower and upper 

bounds of the input variables jx
 respectively.  

III. Development of the Hybrid 
Algorithm 

The developed hybrid algorithm is a 
metamodel-based optimization process. We used the 
stochastic Kriging (SK) metamodel and employed a 
sequential experiment design for validating its results. In 
optimization part we used the hybrid metaheuristic 
algorithm of nested partition (NP) method, which 
benefits of quick convergence for large scale problems 
with high computational efforts and we also used the 
advantages of Particle swarm optimization (PSO) 
algorithm for its simplicity and good local search ability.  

During the process of developing the hybrid 
algorithm, we first developed an algorithm with the 
integration of the NP and the PSO algorithm, and we 
called it PSPO algorithm [19]. The efficiency of the 
PSPO algorithm was then tested through a computation 
experiment. As the result, we found that although the 
solution obtained by this algorithm was either optimal or 
closed to the optimal, but the computational efforts to 
obtain the solution were extensive. Due to this problem 
we directed the path of our research to the metamodel 
based algorithm and we developed the hybrid 
algorithm.  

Fig.1 represents a flow diagram of the 
developed hybrid algorithm. According to Fig.1, the first 
part of the hybrid algorithm includes initial sampling 
(step 1) and simulating this sample points with a 
number of specified iteration (step2). The second stage 
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is an iterative process for fitting metamodel using the 
input output data (step3) and then validating metamodel 
by the method developed by Liu, Nelson, and Staum 
[18]. Their method is actually based on cross-validation 
method and developed for stochastic Kriging 
metamodels (step4). Finally the last stage, algorithm 
starts with primary partitioning of feasible space (step 5) 
and then sampling and improving these sample points 
in each partition (step6). By using the validated 
metamodel and improved samples we computed the 
fitness value of each partition and then determine the 
best partition (the most promising partition) and 
consequently the best point (step7). Actually this point 
was used for re-partitioning the solution space and adds 
it to the experiment design process, which can be used 
for updating the metamodel (step8). After this step, the 
algorithm checks the existence of any significant 
improvement. If a significant improvement is not 
achieved, the hybrid algorithm performs a pre-specified 

number of simulation runs, denoted by
maxI , and then 

stops and accepts the best obtained point. Otherwise it 
loops back to step 6. 

For presenting a detailed description of the 
algorithm steps, let us show the whole feasible space 
byΘ, the number of algorithmic iteration by k and the 

most promising partition by ).(kσ  Now, the following 
sections provide more details for each step. 

Step 1 :

 

Performing the initial experiment design

 

The first step of the hybrid algorithm includes 
generating some initial simulation observations, based 
on a statistical sampling. Selecting an efficient 
experiment design is an important step in the process of 
developing a metamodel and can affect the hybrid 
algorithm performances.

 

Since we intend to use stochastic Kriging 
metamodel and based on the assumption that there is 
no former information about output values, we employed 
the max-min Latin Hyper Cube sampling [13] while 
checking the box constraints. Considering a d-
dimensional space, we used the sample size suggested 
by Kleijnen [14]. Therefore the sample size was 
designated as 5+2d

 

of the initial sample points. In step 
5 we will explain more detail regarding the sequential 
experiment design.

 

Step 2 :

 

Simulating the initial design points 

 

Stochastic simulation models have stochastic 
output values, so we should obtain an average of 
simulation outputs over the number of replications. If we 
denote nias the number of simulation runs in a design 
point xi, the average will be obtained by:

 

( )
( )

(3)         

                                                  

                                                  1

i

n

l
il

i n

xw
xw

i

∑
==

Where ( )il xw represent simulation output in the 
lth

 

iteration. Fordetermining the number of simulation run 
(replication) in each design point, we used the method 
of Liu et al. [18] through which the output variance is 
reduced. At first we performed 0n

 

replications for every 

design point ix . Then we calculated mean ( )ixw

 

and 

the variance ( )ixS 2

 

of these replications. We targeted a 

relative precision for simulation output γ and then 

determined the total replication size in

 

in each design 

point. The relative precision for in

 

replication in design 

point ix

 

was calculated by
( )

( )i

ii
xw

nxl α;,

 

which we 

required it to be less thanγ . Where ( )α;, ii nxl

 

is a 

half-width of the ( )α−1

 

confidence interval for output

( )ixw . We then used the following condition,  proposed 

by Law [16], for obtaining in :

 

( )
γ

γα
+

≤
1)(

;,

i

ii

xW
nxl

   

(4)

 

And therefore in
is obtained as:
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(5)

 

As the result, 0nni − more replication runs in the 
design point ix

 

should be executed. After determining 
design points and number of replication in each design 
point, simulation of all the design points can be 
executed.

 

Step 3 :

 

Fitting stochastic Kriging metamodel
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By using initial design points and simulation model 
output (I/O data) we fit stochastic Kriging motamodel, 
and used it for estimation of the simulation output. 
Considering m initial design points, the stochastic 
Kriging predictorwhich optimizes mean square error 
(MSE) has the form of:
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Figure 1 :

 

The flow diagram of the hybrid algorithm

 
Where cx is a point to be predicted,

MR is the 
correlation between two points which depends on the 

distance between points and a function of θ̂ , εΣ̂ is an
mm× matrix and is calculated by the following formula:

 ( ) ( ) ( )








=Σ
m

m
n

xV
n

xV
n

xVDiag
ˆ

,...,
ˆ

,
ˆˆ

2

2

1

1
ε

 

where 

( ) ( )( ) ,)(
1

1ˆ
1

2∑
=

−
−

=
in

j
iij

i
i xwxw

n
xV

2τ̂ ,θ̂ , 0β̂
 

are estimated by solving the following likelihood equation:

 ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( ) (7)       ,11
2
1ln

2
12ln,, 0

12
0

222
0 kM

T
mM
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and ( ) ,)(),...,(),( 21
T

mxwxwxww = where 

)( ixw calculated by equation (3) and m1 is avector of 
ones with a compatible dimension.

 For more details, we refer the reader to Ankenman, 
Nelson, and Staum [1].

 
Step 4 :

 
Validating of the metamodel

 For checking the validity of metamodel we used 
the leave-one-out cross-validation method. The main 
goal of this method is to decrease the difference 
between real simulation output in a specific design 
point, ),( ixw and the metamodel prediction for the same 

design point, after eliminating the point designated by 

).(ˆ )(
i

i xw −
 In other words, the key idea is to control the 

relative leave-one-out prediction error at each design 
point which is calculated as follow: 

)(
)()(ˆ )(

i

ii
i

xw
xwxw −−

       )8(  

Liu and coworkers (2010) demonstrated 

achieving this goal need to control iE
value which is 

calculated as follow:  

(9)                                                                          );,()(
)()(

);,()(
);,( )(

αα
α

iii

ii
i

iii

ii
i nxlxw

xwxw
nxlxw

nxlE
−

−
+

−
=

−

Where the half-width is a measure of uncertainty 

in ).( ixw  
Before cross-validation we should separate 

design points which are not on the edges, i.e. for design 

point ),,,( 21 di xxxx =  in the d dimensions, we select 
point which none of the factors contains the extreme 
value. This subset of designing points is showed by set 

II
 
and iE is calculated for this subset.

 
Based on equation (9) the lack of credibility of 

iE
 originated from two sources: 

• Relative difference between simulation output and 
true value (relative precision of simulation output) 
which need to add more replication. 

• Relative difference between true value and leave-
one-out prediction which need to add more 
design point. 

In each iteration, if ,β>iE even just for one 
design point, we should add some more design points 
or add more replication to existing design points. If the 

first term of iE is less thanλβ , we select a new design 
point and we add it to the experimental design points. 
Otherwise, we add more simulation replications for the 

point with maximum value of iE . This selection is based 

on covering complex areas, when λ
 

is a predefined 
parameter which aims to control the effect of Mont Carlo 

variability during cross-validation [17}for )1,0(∈λ . We 

selected 4/1=λ in our experiments; 
 The procedure for the validation process can be 

summarized by the following steps:
 

1.

 

Separate design points which are not on the 
edges and show this subset by II. 

 

2.

 

Determine number of simulation replication ni

 

in 
each design points as in equation (5) and set

.ii nN ←

 

3.

 

Calculate  ),( ixw

 

and )(2
ixS for all design 

points in set II.

 

4.

 

Calculate iE

 

as in equation (9) for all design point 
in set II.

 

5.

 

.maxarg*

IIi
iEi

∈
←

 

6.

 

If ,β>∗iE

 
6.1.

 

If λβ
α

α
>

− );,()(
);,(

***

**

iii

ii

nxlxw
nxl

 

a)

 

Run simulation model at ** , ii Nx more 
replication and set ** 2 ii NN ←

 

.

 

b)

 

Calculate ),( ∗ixw

 

and )(2
∗ixS again.

 

c)

 

Go to step 4.

 

6.2.

 

Else

 

a)

 

Add a new design point in the middle of 

distance between *ix

 

and the nearest design 
point.

 

b)

 

Calculate the number of simulation replication in 
new design point and then calculate ),( 1+kxw

 

and )( 1
2

+kxS .

 

c)

 

1+← kk .

 

d)

 

Go to step 4.
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Step 5 :

 

Initial partitioning 

 

In optimization process first we should partition 
experimental area. Different methods have been 
developed for partitioning in the NP algorithm. In this 
article for initial partitioning we divided the range of each 
variable, which is defined by the box constraint, into two 
halves.  Through this way each variable’s dimension is 
divided into two equal parts. Then we use the SK 
algorithm for determining the potential areas.

 

Step 6 :

 

Sampling and improving samples 

 

After defining partition boundaries, a

 

uniform 
random sampling procedure was used for each 
partition. In this article the PSO algorithm is used to 
improve the quality of initial samples and generate 
feasible solutions which improve the effectiveness and 
efficiency of the NP algorithm. Suppose we have N

 

initial 
random samples in the jth

 

partition denoted by

}.,,{ 21 jN
I

J
I

j
I

j
I xxxD =   Using PSO algorithm, the 

hybrid algorithm generates a sequence of improving 
solutions until no further improvement is possible. The 
final solutions which are more likely to be near optimal 
solution is shown by }.,,{ 21 jN

F
J
F

j
F

j
F xxxD =

 

By using high quality samples we increase the 
probability of selecting correct partition and making 
correct moves. Assuming simulation runs are 
computationally very time consuming, in the process of 
running the PSO, we used the metamodel for estimating 
outputs instead of using the simulation run outputs.

 

It should be noted that in the next iterations 
(except first iteration) we will have five partitions for 
sampling. More details provide in step8.

 

Step 7 :

 

Determining winner partition and near optimal 
solution

 

Final population is used for estimating 
promising index and finally determining the winner 
partition (next most promising region). To achieve this 
goal we use the validated metamodel to estimate the 
output for all the final samples which are shown by

)( Ji
FxY for ith

 

sample in jth

 

partition. 

 

The best answer for each partition shows fitness 
coefficient for that partition. For example in minimization 
problems it is calculated as follow:

 

(10)                                                                           5,,2,1                    )(min)(
},2,1{




==
∈

jxYY ji
FNijσ

And the partition with the best overall fitness coefficient is chosen as the next most promising partition, with 
the index as follow: 

(11)                                                                                      5,,2,1                    )(argˆ =← jYJ jk σ

If this index corresponds to a sub region of ,4ˆ),( ≤kJkσ we let this to be the next most promising partition, ie: 

(12)                                                                                                                          )()1( ˆ kk
kJσσ =+

 But if it belongs to complementary region we backtrack to previous iteration, ie:
 

(13)                                                                                                                        )1()1( −=+ kk σσ

All partitions features in different iterations are 
saved.Also the backtrack-flag is set on. This flag is used 
for counting the number of back tracking simulation 
runs. 

We also record the best point which is obtained. 
The index of the best point in jth partition is as follow: 

(14)                                                                                  5,,2,1                    minargˆ
},2,1{




==
∈

jxJ ji
FNii

So the best overall point will be denoted by

kJkiJ
F

opt
k xx ˆˆˆ

=  which will be used in next partitioning (step 
8). We also compare this point with the best answer 
which is obtained so far )( optx and we record the point 
which has the better performance measure. 

 

Step 8 : Updating the metamodel and re-partitioning 
solution space 

In this step the near-optimal point which is 

obtained from previous step, ),( opt
kx is simulated and 

then it will be added to the experimental design. With 
this new experimental design we re-fit and re-validate 
the metamodel. This new metamodel which may be 
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more likely to have better prediction is used in the next 
iteration. 

As we explained before, if the current near-
optimal point belongs to the complementary region we 
back track and we use previous partitioning, but if this 
point belongs to the promising region, the algorithm 
partitions the promising region into four new partitions 
(four rectangles) somehow that the obtained best point 
becomes one of the corner of these rectangular while 
the other corners are kept as the corners of the 
promising region. It is clear that these regions may not 
have equal area. All the remaining parts of the region 
except these four partitions are aggregated together 
and will be formed as the complementary partition. 

Having these five partitions, the algorithm checks the 
stopping rule and if the stopping rule is not satisfied 
returns back to step 6 for the new sampling. 

Step 9 : Checking stopping rule 
The hybrid algorithm is iteratively proceeds until 

no significant improvement is realized. In order to check 
this condition the algorithm compares the objective 

function value of the current best point, ),( opt
kxw  with 

the best point obtained among all the previous 

iterations, ).( optxw To conduct this it first calculate thet
 
-

student prediction error as follow:
 

(15)                                                                                                   
))((ˆ))((ˆ

)()(
0 optopt

k

optopt
k

xwvxwv
xwxwt

+

−
=

The current best point is accepted as the best 

solution point until now, only if dftt ,10 α−< , otherwise, we 

conclude that there was not any improvement, where is 
the degree of freedomand is calculated as follow: 

(16)                                                                                                                     ),min( optk nndf =

In our experiments we set α=0.1. We also set a 
threshold for maximum number of unimproved 
replications equal to 30, i.e. Imax= 30. 
Whenever this threshold is reached, the iterations are 
terminated. The algorithm is stopped and the best 
solution point is acknowledged as the final solution point

).( optx
 

IV. Computational Experiments 

For evaluating the performances of the 
developed algorithm, it is common to employ some 

known response surface functions, which are presented 
in the optimization literatures. We selected 10 complex 
test problems as the bench mark. Due to deterministic 
nature of these problems, we add a noise to their 
objective function relations. The main advantage of 
using these test problems was their complexity of 
obtaining their optimal solutions. 

 

In this section the developed hybrid algorithm is 
evaluated against three known algorithms cited in the 
literatures. Ten unconstrained hard test problems with 
the following mathematical structures were selected 
from the literatures. 

 

1. P1; which has just one global minimum, with the following mathematical form: 

( )2
2

2
1

1
1 1 xx

xP
++

= 22 ≤≤− jx 2,1=j  ( )17 

2.
 

P2; which has one local minimum and one global minimum with the following mathematical form:
 

( ) ( )( ) ( ) ( )
( )( ) 2,1for     33-             1exp

3
1exp5101exp13

2
2

2
1

2
2

2
1

5
2

3
1

12
2

2
1

2
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=≤≤−+−−

−−−





 −−





−+−−−=

jxxx

xxxxxxxxP

j
                                  

( )18 

3.

 
P3; which  has two local minimum and one global minimum, with the following mathematical form:

 

( )( ) ( )( ) ( ) ( )
( )( ) ( )19                                       1,2for    33-                             1exp

3
1exp5151exp110

2
2

2
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




 −−





−+−−−−=

jxxx

xxxxxxxxP

j

4.

 

P4; which is called  Six Hump Camel back (SHC) has six local minimum and two global minimum, with the 
following mathematical form:
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( ) ( )  20              1,2for    33-           4431.24 2
2

2
221

2
1

4
12

14 =≤≤+−++





 +−= jxxxxxxxxP j

5. P5; which called Himmelblau function (Hmb) and has several local minimum and one global minimum with the 
following mathematical form: 

( ) ( ) ( ) ( )( )
( )21                                                                                          1,2for    66-      

  231.0711 2
2

2
1

22
21

2
2

2
15

=≤≤
−+−+−++−+=

jx
xxxxxxP

j

6. P6; which has several local minimum and one global minimum, with the following mathematical form
7. :  

( ) 2,1for         100100-             7.03cos3.02 2
2
2

2
16 =≤≤+−+= jxxxxP jπ

           
( )22
 

7. P7; which called Booth function and has several local minimum and one global minimum with the following 
mathematical form: 

( ) ( ) 2,1for        100100-           5272 2
21

2
217 =≤≤−++−+= jxxxxxP j    ( )23

8. P8; which called Michalewics function and has several local minimum and one global minimum with the 
following mathematical form: 

 
 
 
 
 
 
 
 9.

 
P9; which called Sphere function and has no local minimum except the global one with the following 
mathematical form:

 
2
2

2
19 xxP += 12.512.5 ≤≤− jx

   for   2,1=j
     

( )25
 

10.
 
P10; which called Brownian function and has three global minimum with the following mathematical form:

 

( ) ( ) ( )( ) ( ) 10cos8
111065

4
5

1

2

1
2
12210 +−+







 −+





−= xxxxP πππ

( )26                                                                                            2,1for   12.55.12- =≤≤ jx j

Each test problem was solved using the 
developed algorithm and three above mentioned 
algorithms. To overcome the problem of stochastic 
output of the simulation models, twenty replication of 
simulation model was considered and the test problems 
are solved by each method. The performance criteria 
were selected as the number of simulated points and 
the quality of final results.  

Table (1) summarizes the computational results 
over 20 replications for the four considered algorithms in 
term of the best result. As it is seen in eight out of ten 
test problems the developed hybrid algorithm provided 
the optimal solutions. For two other problems, problems 
#4 and #5, the objective function values are very closed 
to the optimal, less than 0.1 and 0.3 percents.  

Table (2) summarizes the computational results 
over 20 replications for the four considered algorithms in 
term of the average best result. As it is seen in four out 
of ten test problems the developed hybrid algorithm 
provided the average solutions equal to the optimal 
solutions. For the other problems, except problem #3 
and #5 the average solutions have the deviations less 
than 1.1 percent from the optimal solutions.  For 
problem #3 the dilation is 4.06 per cent from the optimal 
solution. Only for problem #5 we obtained a solution 
point which is far away from the optimum which is 
caused to have an average solution with unacceptable 
deviation from the optimal solution.   

Table (3) summarizes the number of simulated 
points for obtaining the final solution. As we emphasized 
earlier, it is assumed that the simulation runs are 
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expensive or from computation points of view they are 
assumed to be very time consuming. Therefore the 
number simulation points for obtaining the optimal 
solution is very critical performance measure in 
evaluation of the optimization algorithm. As it is seen 
considering this performance measure, the developed 

hybrid algorithm outperforms the other thee algorithms. 
Actually in most of the ten test problems, the developed 
algorithm provided more than 80 percent saving in the 
number of simulated points comparing with the average 
number of points simulated by the other three 
algorithms.  

Table 1 : Best objective function value obtained comparing to other methods

Problem No. Optimum 
Best objective function value 

NP PSO PSPO Hybrid A. 
P1 -0.500 -0.493 -0.500 -0.500 -0.500 
P2 -6.081 -6.079 -6.081 -6.081 -6.081 
P3 -19.935 -19.934 -19.934 -19.935 -19.935 
P4 -1.032 -1.032 -1.032 -1.032 -1.031 
P5 0.000 0.006 0.001 0.000 0.003 
P6 0.000 0.008 0.000 0.000 0.000 
P7 0.000 0.000 0.000 0.000 0.000 
P8 -1.801 -1.780 -1.801 -1.801 -1.801 
P9 0.000 0.000 0.000 0.000 0.000 

P10 0.398 0.398 0.398 0.398 0.398 

Table 2 : Average objective function value obtained comparing to other methods

Problem No. Optimum 
Average objective function over replications 

NP PSO PSPO Hybrid A. 
P1 -0.500 -0.344 0.498 -0.500 -0.496 
P2 -6.081 -6.080 -5.670 -6.080 -6.080 
P3 -19.935 -19.916 -19.935 -19.935 -19.126 
P4 -1.032 -1.031 -1.031 -1.031 -1.032 
P5 0.000 1.350 1.506 0.002 3.830 
P6 0.000 0.000 0.488 0.000 0.011 
P7 0.000 0.080 0.000 0.000 0.000 
P8 -1.801 -1.733 -1.681 -1.800 -1.821 
P9 0.000 0.000 0.000 0.000 0.000 

P10 0.398 0.498 0.399 0.398 0.398 

Table 3 : Number of simulated points to obtain the final solution 

Problem No. 
Number of simulation points 

NP PSO PSPO Hybrid A. 
P1 490 220 900 102 
P2 570 300 1400 126 
P3 520 800 1275 134 
P4 810 300 3275 114 
P5 530 550 1730 93 
P6 610 600 2035 99 
P7 290 436 1555 123 
P8 390 328 2490 140 
P9 240 264 305 112 

P10 340 500 1150 137 
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V. Conclusions and Remarks

In this paper, a metamodel based hybrid 
algorithm was developed for optimization of the digital 
computer simulations models. It is assumed that the 
considered simulation models are computationally 
expensive, and have a single output function which is 
nonlinear continuous unconstrained function. By the 
computationally expensive we mean that, each 
simulation run is required an extensive computational 
time.

The hybrid algorithm is developed by modifying 
and integrating of several concepts and routines. We 
incorporated NP and PSO algorithms to develop an 
efficient search mechanism and we modified K 
metamodel to be applied in stochastic simulation-
optimization model (SK), and is integrated to the search 
mechanism as a metamodel for facilitating the function 
fitting processes of the simulation’s output. As the result 
a hybrid algorithm is developed. 
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The efficiency of the developed hybrid algorithm 
was then evaluated through computational experiments. 
Six complex test problems were selected from the 
literatures and the efficiency of the developed hybrid 
algorithm was evaluated by comparing its performances 
against three other algorithms.  Two algorithms were 
selected from the existing literatures, and one algorithm 
was a preliminary developed algorithm by the authors. 
The result of these computational experiments revealed 
that the developed hybrid algorithm can provide very 
robust solutions with  a very low computational effort. 
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