The Shewhart-Ewma Automatic Control Chart

By John J. Flaig

International Technological University, United States

Abstract- As the amount of critical process data increases due to automatic data acquisition systems, two problems present themselves. First, it becomes uneconomic to add sufficient staff to monitor all these processes using control charts, and second, the skill level required to observe and interpret the control charts becomes an ongoing issue of assuring accuracy and consistency via expensive training programs. An automated control procedure could conceivably provide a solution to both of these issues.

Keywords: statistical process control (SPC), automatic process control (APC), exponentially weighted moving average (EWMA).

GJRE-J Classification : FOR Code: 091599

© 2014. John J. Flaig. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Shewhart-Ewma Automatic Control Chart

John J. Flaig

Abstract: As the amount of critical process data increases due to automatic data acquisition systems, two problems present themselves. First, it becomes uneconomic to add sufficient staff to monitor all these processes using control charts, and second, the skill level required to observe and interpret the control charts becomes an ongoing issue of assuring accuracy and consistency via expensive training programs. An automated control procedure could conceivably provide a solution to both of these issues.

Keywords: statistical process control (SPC), automatic process control (APC), exponentially weighted moving average (EWMA).

I. INTRODUCTION

Statistical process control (SPC) is a powerful tool whose primary purpose is process stabilization based on the identification of the assignable causes of a significant process change and appropriate corrective action. A side benefit of SPC is that the process is “improved”. That is the process becomes more predictable.

Automated process control (APC) is an advanced tool whose primary purpose is to analyze the data coming from the process, apply the appropriate heuristics rules, and signal if the process behavior changes significantly, and/or automatically adjust the process input variables to maintain control. The value of APC is that it replaces the human being in analyzing the data and it assures that the heuristic analysis rules are consistently applied. In addition, it allows exception reporting (i.e., receiving a notification only when there is a significant change in the process occurs).

The utilization of these tools adds substantially to the ability to effectively monitor and control processes at minimum cost. If the two tools are combined, then even greater benefits can be achieved. However, the effectiveness of the SPC-APC system is a function the strength of the SPC control procedure and the soundness of the APC heuristic algorithms applied to the data. The goal is thus to marry a powerful control procedure with a robust heuristic program for data analysis and inference generation.

II. METHODOLOGY

The exponential weighted moving average is an extremely effective SPC control procedure that has been used in industry for years. It is a procedure that has a number of design features that make it a highly desirable choice in selecting a control methodology.

- It is very sensitive to small process changes and thus allows the practitioner to detect changes early and respond to them.
- It is robust against non-normal data. This means it can be applied to distributions where the data is skewed or not bell shaped and it will still provide reasonably accurate results (see the appendix).

a) The Exponentially Weighted Moving Average Control Chart for the Process Mean

Roberts introduced the EWMA control chart in 1959. See also Crowder (1989), and Lucas and Saccucci (1990) for a good discussion on the EWMA control chart. The exponentially weighted moving average is defined as follows:

\[z_i = \lambda x_i + (1 - \lambda)z_{i-1} \]

where \(0 < \lambda \leq 1 \) is a constant and the starting value (required with the first sample at \(i = 1 \)) is the process target, so that:

\[z_0 = \mu_0 \]

Sometimes the average of preliminary data is used as the starting value of the EWMA so in that case \(z_0 = x \).

- Formula for the EWMA Control Limits

\[C.L. = \frac{\mu_0}{\sqrt{1 - (1 - \lambda)^2}} \]

\[U.C.L. = \mu_0 + K\sigma \sqrt{\frac{1}{1 - (1 - \lambda)^2}} \]

\[L.C.L. = \mu_0 - K\sigma \sqrt{\frac{1}{1 - (1 - \lambda)^2}} \]

where \(K \) is the distance to the control limit.

- Example of an EWMA Control Chart

Given that \(\mu_0 = 10 \) and \(\sigma = 1 \) the EWMA using \(\lambda = .1 \) and \(K = 2.7 \) for the following set of observations is given in Table 1:
Table 1: EWMA Example

<table>
<thead>
<tr>
<th>Obs No.</th>
<th>Obs X</th>
<th>Predicted EWMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.45</td>
<td>9.9450</td>
</tr>
<tr>
<td>2</td>
<td>7.99</td>
<td>9.7495</td>
</tr>
<tr>
<td>3</td>
<td>9.29</td>
<td>9.7036</td>
</tr>
<tr>
<td>4</td>
<td>11.66</td>
<td>9.8992</td>
</tr>
<tr>
<td>5</td>
<td>12.16</td>
<td>10.1253</td>
</tr>
<tr>
<td>6</td>
<td>10.18</td>
<td>10.1307</td>
</tr>
<tr>
<td>7</td>
<td>8.04</td>
<td>9.9217</td>
</tr>
<tr>
<td>8</td>
<td>11.46</td>
<td>10.0755</td>
</tr>
<tr>
<td>9</td>
<td>9.20</td>
<td>9.9880</td>
</tr>
<tr>
<td>10</td>
<td>10.34</td>
<td>10.0232</td>
</tr>
<tr>
<td>11</td>
<td>9.03</td>
<td>9.9238</td>
</tr>
<tr>
<td>12</td>
<td>11.47</td>
<td>10.0785</td>
</tr>
<tr>
<td>13</td>
<td>10.51</td>
<td>10.1216</td>
</tr>
<tr>
<td>14</td>
<td>9.40</td>
<td>10.0495</td>
</tr>
<tr>
<td>15</td>
<td>10.08</td>
<td>10.0525</td>
</tr>
<tr>
<td>16</td>
<td>9.37</td>
<td>9.9843</td>
</tr>
<tr>
<td>17</td>
<td>10.62</td>
<td>10.0478</td>
</tr>
<tr>
<td>18</td>
<td>10.31</td>
<td>10.0740</td>
</tr>
<tr>
<td>19</td>
<td>8.52</td>
<td>9.9186</td>
</tr>
<tr>
<td>20</td>
<td>10.84</td>
<td>10.0108</td>
</tr>
<tr>
<td>21</td>
<td>10.90</td>
<td>10.0597</td>
</tr>
<tr>
<td>22</td>
<td>9.33</td>
<td>10.0227</td>
</tr>
<tr>
<td>23</td>
<td>12.29</td>
<td>10.2495</td>
</tr>
<tr>
<td>24</td>
<td>11.50</td>
<td>10.3745</td>
</tr>
<tr>
<td>25</td>
<td>10.60</td>
<td>10.3971</td>
</tr>
<tr>
<td>26</td>
<td>11.08</td>
<td>10.4654</td>
</tr>
<tr>
<td>27</td>
<td>10.38</td>
<td>10.4568</td>
</tr>
<tr>
<td>28</td>
<td>11.62</td>
<td>10.5731</td>
</tr>
<tr>
<td>29</td>
<td>11.31</td>
<td>10.6468</td>
</tr>
<tr>
<td>30</td>
<td>10.52</td>
<td>10.6341</td>
</tr>
</tbody>
</table>

The Graph of the EWMA Control Chart

Figure 1: EWMA Control Chart
b) Control Chart Design

One of the critical performance measures for any control procedure is its Average Run Length (ARL). That is, how long it takes to signal when a significant change occurs. More precisely, if the process experiences a change in its mean or variance, then the Average Run Length is the average number of samples that will be evaluated before a warning signal is generated indicating a change has occurred. The ARL can also be thought of as the time that it takes to signal once a change of a given magnitude has occurred, assuming a constant time interval between samples. Using this metric, good chart performance means that the ARL is a large number when the process is stable (i.e., no change has occurred (denoted ARL₀). A signal in this case would be a false alarm), and a small number one when the process is unstable (i.e., when there has been a change, and thus providing quick detection).

Control system design goals seek to find procedures that maximize ARL₀ and simultaneously minimize ARLₓ for x > 0.

The ARL₀ for a Shewhart individuals control chart using the single test, one point outside the control limits is 370, whereas for an EWMA with λ = .1 and K = 2.8 it is 500 (see Figure 2). This is a much better false alarm rate than the Shewhart individuals control chart. Further, if the K value were set to 3, the typical value, then the EWMA false alarm rate would be even better.

Examining Figure 2 it can be seen that the EWMA control chart is very effective in detecting small process shifts but does not react to large shifts as quickly as the Shewhart chart. A good way to further improve sensitivity of the control procedure to large shifts without sacrificing the ability to detect small shifts quickly is to combine a Shewhart chart with the EWMA. These combined Shewhart-EWMA control procedures are effective against both large and small process changes. When using such schemes, it may be helpful to use slightly wider than usual limits on the Shewhart chart (e.g., 3.2 sigma is recommended by Montgomery, 2001). The reason for this is to prevent the false alarm rate from increasing too much when we add the Shewhart chart.

c) The Shewhart-EWMA Control Chart

Since the EWMA chart performs well in detecting small shifts but does not react to large shifts as quickly as the Shewhart chart. A good way to further improve sensitivity of the control procedure to large shifts without sacrificing the ability to detect small shifts quickly is to combine a Shewhart chart with the EWMA. These combined Shewhart-EWMA control procedures are effective against both large and small process changes. When using such schemes, it may be helpful to use slightly wider than usual limits on the Shewhart chart (e.g., 3.2 sigma is recommended by Montgomery, 2001). The reason for this is to prevent the false alarm rate from increasing too much when we add the Shewhart chart.

Figure 2: ARL for a Shewhart and EWMA Control Procedure
It is also possible to plot the observed value x and the EWMA on the same control chart along with both Shewhart and EWMA limits. This produces one chart for the combined control procedure that operators quickly become adept at interpreting because there is only one test—a single point outside the control limits on either chart is an out-of-control signal. When the plots are computer generated, different colors or plotting symbols can be used for the two sets of control limits and statistics. In the automated case when a signal is generated it can be plotted as a large red dot or an X on the control chart.

Graph of a Shewhart-EWMA Control Chart

Figure 3: Shewhart-EWMA Control Chart

d) Automating the Shewhart-EWMA

The control chart establishment process consists of two phases.

- **Phase I:** The center line, and control limits are determined from the mean and variance of a process that is in a state of statistical control, or from the data that has been edited to remove signals and corrective action has been taken prevent reoccurrence.

- **Phase II:** The centerline, and control limits are used as standards for incoming data after Phase I. They are used until such time as the process parameters (mean and/or variance) have statistically been determined to have changed. If the process parameters have changed, then the practitioner must take the appropriate actions, which may include going back to Phase I and re-computing a new center line and control limits.

The automation program proposed here attempts to mimic this procedure algorithmically.

- First it establishes the baseline performance (the number of samples used is adjustable and if a signal occurs within the window, then the baseline program restarts). The program would not go on to Phase II if the initial baseline were unstable.

- Once the initial baseline parameters are established, the automation algorithm takes over. Any point that is outside the Shewhart limits or the EWMA limits generates a signal. If four points in a row signal on the EWMA chart, then the program assumes the process has shifted. If this happens, the old parameters are reset and the program goes...
back to step 1 and attempts to establish a new baseline. The number of points in a row required to declare a shift is selectable.

The assumptions and algorithm rules for the procedure are listed below:

i. EWMA design rules (λ, K_1)

Initially set: $\lambda = .10$ and $K_1 = 2.58$ (this gives an alpha of .01 or 99% control limits)

ii. Shewhart design rules (K_2)

Initially set: $K_2 = 3.0$ (Montgomery suggests using 3.2 to reduce the combined alpha risk of having two charts.)

iii. Initial process baseline computation rules

Readings are taken until there are eight (8) in a row that are all within the EWMA control limits. The control parameters (mean and variance) are computed from these eight readings and are used to compute the center line (CL), the Upper Control Limit (UCL) and Lower Control Limit (LCL) for both the EWMA and Shewhart control procedures.

iv. Signal rules

If a single point falls outside the control limits on either the EWMA or Shewhart control chart, then a warning signal is generated and an email notification is sent to the responsible authority.

v. Process change rules

If there are four (4) points in a row outside the EWMA control limits, then the process is assumed to have changed (i.e., the mean has changed) and the program resets. The probability of this happening assuming that the process was stable is about 1 in 2000 for $\lambda = .10$ based on simulation studies. The EWMA false reset rate depends on the autocorrelation induced in the EWMA data by the λ value selected.

vi. Revised baseline computation rules

If a process change is detected, then all historical data prior to the four signal points is no longer used and the new control chart parameters are generated following the procedure listed in step 3 above.

vii. Communication and response rules

If a signal is generated, then an email is sent to the responsible authority. Receipt of the email must be acknowledged. If it is not acknowledged within one (1) day, then an email is sent to the designated alternate. This email also requires acknowledgement.

The Automated Shewhart-EWMA Control Chart

![Control Chart](image)

Figure 4: Automated Shewhart-EWMA Control Chart with Shift Rule of Three in a Row

III. Summary

There are infinitely many ways a process may exhibit unstable behavior. Therefore, it is impossible to define a finite set of detections rules that would be able to detect all the possible types of instability. Hence, there is no perfect control chart as each one has its own strengths and weaknesses. However, by using a combination of Shewhart and EWMA charts, we can effectively monitor and control the process.
to detect all the possible types of instability. Hence, there is no perfect control chart as each one has its strengths and weaknesses. The Shewart individuals control chart offers a good graphical representation of the process performance, capability, and is sensitive to large process shifts, but it not robust against nonnormality. The EWMA control chart does not give the practitioner a good view of individual observations, process performance, or capability, but it is fairly robust against nonnormality and it is sensitive to small process changes. The Shewart-EWMA control procedure resolves most of these issues but is designed to detect changes in the mean and not the variance unless we apply more runs rules to the Shewart x-chart (e.g., 5 points in a row outside ± 1 sigma).

Also, when the Shewart-EWMA is automated a host of additional issues present themselves. These include the reasonableness of the following design decisions:

- EWMA design rules (λ, K_1)
- Shewart design rules (K_2)
- Initial baseline computation rules
- Signal rules
- Process change declaration rules
- Revised baseline computation rules
- Communication and response rules

The value of an automated process control procedure rests on its ability to accurately and precisely perform its detection and communication function in a timely manner. Since the goal is to reduce the labor content of the process monitoring activity via automation and exception reporting. The authors have attempted to make rational design choices, but in the final analysis the procedure must work in practice, or as Dr. Shewhart noted:

> The fact that the criterion, which we happen to use, has a fine ancestry of powerful statistical theorems does not justify its use. Such justification must come from empirical evidence that it works.

Walter A. Shewhart

IV. Acknowledgement

I wish to thank Mr. Kip Rapp for programming the algorithms and providing the process behavior chart used in Figure 4.

References Références Referencias