Common Fixed Point Theorems for Self-Maps on Metric Spaces with Weak Distance

By V. Siva Rama Prasad & T. Phaneendra

VIT-University, India

Abstract- Fixed point theorems on complete metric spaces with a weak distance proved by Ume and Yi [4] have been improved under weaker conditions. The results of this paper also generalize those of Brian Fisher [1], Dien [3] and Liu et al. [6].

Keywords: self-map, w-distance on a metric space, (g; f)-orbit at a point, Common fixed point.

GJRE-J Classification : FOR Code: 47H10, 54H25
Common Fixed Point Theorems for Self-Maps on Metric Spaces with Weak Distance

V. Siva Rama Prasad & T. Phaneendra

Abstract- Fixed point theorems on complete metric spaces with a weak distance proved by Ume and Yi [4] have been improved under weaker conditions. The results of this paper also generalize those of Brian Fisher [1], Dien [3] and Liu et al. [6].

Keywords: self-map, w-distance on a metric space, (g; f)-orbit at a point, Common fixed point.

1. INTRODUCTION

Let \((X; d)\) be a metric space. If \(f\) is a self-map on \(X\), and \(x_0 \in X\), we denote by \(fx\) the \(f\)-image of \(x_0\).

As a weaker form of the metric, Kada et al. [5] introduced the notion of weak distance (or simply \(w\)-distance) on \(X\) as follows:

Definition 1.1. Let \((X; d)\) be a metric space and \(p : X \times X \to [0, \infty)\) satisfy the following conditions:

\((w_1)\) \(p(x, y) \leq p(x, z) + p(z, y)\) for all \(x, y, z \in X\).

\((w_2)\) For any \(x \in X\), \(p(x, \cdot) : X \to \mathbb{R}_+\) is lower semi continuous in the second variable, that is \(p(x, y) \leq \liminf_{n \to \infty} p(x, y_n)\) whenever \(y_n \to y\) as \(n \to \infty\) for some \(x \in X\), and \(w_3\) Given \(\epsilon > 0\), there is a \(\delta > 0\) such that \(p(z, x) \leq \delta\) and \(p(z, y) \leq \delta\) imply that \(d(x, y) < \epsilon\).

Then \(p\) is known as a \(w\)-distance on \(X\).

Obviously, every metric \(d\) on \(X\) satisfies the conditions \((w_1)-(w_3)\), that is \(d\) is a \(w\)-distance on \(X\).

Example 1.1. Let \(X = \left\{ \frac{1}{m} : m = 1, 2, 3, \ldots \right\} \cup \{0\}\) with metric \(d(x, y) = x + y\) if \(x \neq y\) and \(d(x, y) = 0\) if \(x = y\) for all \(x, y \in X\). Note that \((X, d)\) is a complete metric space. Define \(p(x, y) = y\). Then \(p\) a \(w\)-distance on \(X\).

For other examples one can refer to [5].

Recently Ume and Sucheoel [4] have proved two common fixed point theorems, given below, for self-maps on a complete metric space with a \(w\)-distance on \(X\), which generalize and improve the results of Fisher [1], Dien [3] and Liu et al. [6].

Theorem 1.1 ([4], Theorem 3.1). Let \(X\) be a complete metric space \((X, d)\) with \(w\)-distance \(p\) on it. Suppose that \(f, g : X \to X\) and \(\phi : X \to [0, \infty)\) satisfy the conditions:

\[(1.1)\] \(g(X) \subseteq f(X)\)

\[(1.2)\] \(p(t, gx) \leq rp(t, fx) + \phi(fx) - \phi(gx)\) for all \(x, y \in X, 0 \leq r < 1\),

\[(1.3)\] \(
\lim_{n \to \infty} p(t, f^n(x)) = 0 = \lim_{n \to \infty} p(t, g^n(x)),
\)

we have

\[(1.4)\] \(
\lim_{n \to \infty} \max \{p(t, f^n(x)), p(t, g^n(x)), p(fg^n(x), fg^n(x))\} = 0,
\)

and

\[(1.5)\] \(\{p(u,fx) + p(u, gx) + p(fgx, fgx) : x \in X\} > 0\).

Then \(f\) and \(g\) will have a unique common fixed point.

Theorem 1.2 ([4], Theorem 3.6). Let \(X\) be a complete metric space \((X, d)\) with \(w\)-distance \(p\) and the mappings \(f, g : X \to X\) satisfy the conditions (a) and (d). Suppose that \(\phi, \psi : X \to [0, \infty)\) are such that

\begin{itemize}
 \item (a) \(g(X) \subseteq f(X)\)
 \item (b) \(p(t, gx) \leq rp(t, fx) + \phi(fx) - \phi(gx)\) for all \(x, y \in X, 0 \leq r < 1\),
 \item (c) \(\lim_{n \to \infty} p(t, f^n(x)) = 0 = \lim_{n \to \infty} p(t, g^n(x))\),
 \item (d) \(\lim_{n \to \infty} \max \{p(t, f^n(x)), p(t, g^n(x)), p(fg^n(x), fg^n(x))\} = 0\),
 \item (e) \(\{p(u,fx) + p(u, gx) + p(fgx, fgx) : x \in X\} > 0\).
\end{itemize}
for every sequence \(\langle x_n \rangle_{n=1}^{\infty} \) in \(X \) with \(\lim_{n \to \infty} f x_n = \lim_{n \to \infty} g x_n = t \),
we have \(\lim_{n \to \infty} \max \{ p(t, f x_n), p(t, g x_n), p(g x_n, g f x_n) \} = 0 \),
and
\[
p(gx, gy) \leq a_1 p(fx, fy) + a_2 p(fx, gx) + a_3 p(fy, gy) + a_4 p(fx, gy) + a_5 \sqrt{p(gx, fy) d(fy, gx)} + [\phi(fx) - \phi(gx)] + [\psi(fy) - \psi(gy)]
\]
for all \(x, y \in X \) where \(a_i \in [0, 1] \), \(i = 1, 2, 3, 4, 5 \) are such that
\[a_1 + a_4 + a_5 < 1 \quad \text{and} \quad a_1 + a_2 + a_3 + 2a_4 < 1 \] (1.6)

Then \(f \) and \(g \) will have a unique common fixed point.

The purpose of this paper is to establish two fixed point theorems, which generalize those of Brian Fisher [1], Dien [3] and Liu et al. [6].

11. Preliminaries

First we state the following lemma, proved in [5]:

Lemma 2.1. Let \(X \) be a metric space with \(w \)-distance \(p \) on it. Then
\(p(x, y) = 0 \) and \(p(x, z) = 0 \) imply that \(y = z \).

Also \(\langle x_n \rangle_{n=1}^{\infty} \subset X \) is a Cauchy sequence in \(X \), provided
\(p(x_n, x_m) \leq \alpha n \) for all \(m > n \geq 1 \)
and
\(p(x_n) \leq \alpha n \) for all \(n \geq 1 \) each \(x \in X \).

We now introduce an orbit notion that is followed in the rest of the paper.

Definition 2.1. Let \(f \) and \(g \) be self-maps on \(X \). Given \(x_0 \in X \), if there exist points \(x_1, x_2, x_3, \ldots \) in \(X \) such that
\(y_n = g x_{n-1} = f x_n \) for \(n \geq 1 \), (2.1)
the sequence \(\langle y_n \rangle_{n=1}^{\infty} \) is called a \(g \)-orbit relative to \(f \) at \(x_0 \) or simply a \((g, f) \)-orbit at \(x_0 \).
We call \(\langle x_n \rangle_{n=1}^{\infty} \) a base sequence associated with the \(g \)-orbit (2.1). Note that when \(f \) is the identity map \(i \) on \(X \), (2.1) and the base sequence coincide with the \(g \)-orbit \(g x_0, g x_1, g x_2, \ldots \) at \(x_0 \).
This notion was adopted in [8]. The notion of \((g, f) \)-orbit is not unique. For instance, Nesci [7] defined a \((g, f) \)-orbit at \(x_0 \) by the iterations:
\[x_{2n-1} = g x_{2n-2}, \quad x_{2n} = f x_{2n-1} \quad \text{for} \quad n \geq 1 \] (2.2)
which was employed by Fisher [1] though no name was mentioned.

Remark 2.1. If the self-maps \(f \) and \(g \) on \(X \) satisfy the inclusion (1.1), then by a routine induction, it can be easily shown that \((g, f) \)-orbit at each \(x_0 \) exists with the choice (2.1). Given \(x_0 \in X \), there can be more than one base sequence \(\langle x_n \rangle_{n=1}^{\infty} \) as the following examples reveal:

Example 2.1. Let \(X = \mathbb{R} \) with usual metric \(d(x, y) = |x - y| \) for all \(x, y \in X \). Define \(f, g : X \to X \) by
\[f(x) = x^2 \quad \text{and} \quad g(x) = \frac{x^2}{4} \quad \text{for} \quad x \in X \].
Then (1.1) is obvious and hence by Remark 2.1, orbits can be specified at each \(x_0 \). Given \(x_0 \in X \), choose \(x_n = \pm \frac{x_0}{2^n} \) for \(n \geq 1 \).

Since each \(x_n \) has two choices, several base sequences \(\langle x_n \rangle_{n=1}^{\infty} \) can be specified to get the respective \((g, f) \)-orbit.

We now prove

Lemma 2.2. Suppose that \((X, d) \) is a metric space with \(w \)-distance \(p \) on \(X \). Let \(f, g : X \to X \) and \(\phi : X \to [0, \infty) \) satisfy the inclusion (1.1) and the condition (b) of Theorem 1.1. If \(X \) is complete metric space and \(x_0 \in X \), then
\[\lim_{n \to \infty} f x_n = \lim_{n \to \infty} g x_n = z \quad \text{for some} \quad z \in X \]. (2.3)

Proof. Given \(x_0 \in X \), Suppose that \(\langle x_n \rangle_{n=1}^{\infty} \) is a base sequence at \(x_0 \) and \(f, g \) are such that (2.1) holds good. Now, by condition (b) with \(x = x_{n-1} \), we have
\[
p(t, f x_n) = p(t, g x_{n-1}) \leq r \cdot p(t, f x_{n-1}) + \phi(f x_{n-1}) - \phi(g x_{n-1})
\]
so that for any \(k \geq 2 \)
\[
\sum_{n=1}^{k} p(t, f x_n) \leq r \cdot \sum_{n=1}^{k} p(t, f x_{n-1}) + \sum_{n=1}^{k} [\phi(f x_{n-1}) - \phi(f x_n)]
\]
which gives

$$\sum_{n=2}^{k} p(t, fx_n) \leq \frac{r}{1-r} p(t, fx_1) + \frac{1}{1-r} [\phi(fx_0) - \phi(fx_k)]$$

$$< \frac{r}{1-r} p(t, fx_0) + \frac{1}{1-r} \phi(fx_0)$$

Showing that $\sum_{n=2}^{\infty} p(t, fx_n)$ converges so that nth term tends to 0 as $n \to \infty$, that is $\lim_{n \to \infty} p(t, fx_n) = 0$.

Now, by (i) of Lemma 2.1, it follows that $\langle fx_n \rangle_{n=1}^{\infty}$ is a Cauchy sequence in the (g, f)-orbit X. Since X is complete, there is a $z \in X$ such that $fx_n \to z$ as $n \to \infty$.

Similar argument shows $\langle gx_n \rangle_{n=1}^{\infty}$ converges to z' in X. Proceeding the limit as $n \to \infty$ in (2.1) and using these limits, it follows that $z = z'$, proving the lemma.

Remark 2.2. The converse of Lemma 2.2 is not true. In fact, the example given below shows that we can find a metric space (X, d) with a w-distance p on it satisfying condition (a) and (b) of Theorem 1.1 such that for any $x_0 \in X$ and for any base sequence $\langle x_n \rangle_{n=1}^{\infty}$ at x_n, both $\langle fx_n \rangle_{n=1}^{\infty}$ and $\langle gx_n \rangle_{n=1}^{\infty}$ converge to the same point in X, but X is not complete.

Example 2.2. Let $X = [0, 1]$ with $d(x, y) = |x - y|$ for all $x, y \in X$. Clearly (X, d) is an incomplete metric space. Define $f, g : X \to X$ by $fx = \frac{2x + 1}{4}$ and $gx = \frac{1}{2}$ for $x \in X$. Then $g(X) = \left\{\frac{1}{2}\right\}$ and $f(X) = \left\{\frac{1}{4}, \frac{3}{4}\right\}$ so that $g(X) \subset f(X)$. Let

$$p(x, y) = \frac{1}{4} \max \left\{ |2x - 1|, |2x - 4y + 1|, 2|x - y| \right\}$$

for $x, y \in X$,

which will be a w-distance on X. Also for any $t \in X$: $p(t, gx) = \frac{1}{4} |2t - 1|$ and

$$p(t, fx) = \frac{1}{8} \max \left\{ |2(2t - 1)|, |4(t - x)|, |(4t - 2x - 1)| \right\}$$

from which it follows $p(t, gx) \leq \frac{1}{2} p(t, fx) + \phi(fx) - \phi(gx)$ for any $x \in X$ where $\phi(x) = 1$ for all $x \in X$.

Note that for any $x_0 \in X$ there is only one base sequence $\langle x_n \rangle_{n=1}^{\infty}$ given by $x_n = \frac{1}{2}$ for all $n \geq 1$ so that both $\langle fx_n \rangle_{n=1}^{\infty}$ and $\langle gx_n \rangle_{n=1}^{\infty}$ are constant sequences with each term equal to $\frac{1}{2}$; and hence they converge to $\frac{1}{2} \in X$.

Lemma 2.3. Suppose (X, d) is a metric space with w-distance p on it. Let $f, g : X \to X$ and $\phi, \psi : X \to [0, \infty)$ be such that (a) of Theorem 1.1 and (f) of Theorem 1.2 hold. If (X, d) is a complete metric space, then for any $x_0 \in X$ and for any base sequence $\langle x_n \rangle_{n=1}^{\infty}$ at x_0, both the sequences $\langle fx_n \rangle_{n=1}^{\infty}$ and $\langle gx_n \rangle_{n=1}^{\infty}$ converge to the same point in X.

Proof. Suppose that $\langle x_n \rangle_{n=1}^{\infty}$ is a base sequence at some $x_0 \in X$ with the choice (2.1). Write

$$\gamma_n = p(fx_n, fx_{n+1}) = p(gx_{n-1}, gx_n) \text{ for } n \geq 1$$

Then by (f) of Theorem 1.2, we have
\[\gamma_n = p(gx_{n-1}, gx_n)\]
\[\leq a_1p(fx_{n-1}, fx_n) + a_2p(fx_{n-1}, gx_{n-1}) + a_3p(fx_n, gx_n)\]
\[+ a_4p(fx_{n-1}, gx_n) + a_5\sqrt{p(gx_{n-1}, fx_n)d(fx_n, gx_{n-1})}\]
\[+ [\phi(fx_{n-1}) - \phi(gx_{n-1})] + [(fx_n) - (gx_n)]\]
\[\leq \alpha \gamma_{n-1} + a_2\gamma_{n-1} + a_3\gamma_n + a_4(\gamma_{n-1} + \gamma_n)\]
\[+ [\phi(fx_{n-1}) - \phi(fx_n)] + [(fx_n) - (fx_{n+1})]\]
\[= (a_1 + a_2 + a_4)\gamma_{n-1} + (a_3 + a_4)\gamma_n\]
\[+ [\phi(fx_{n-1}) - \phi(fx_n)] + [(fx_n) - (fx_{n+1})]\]
from which we get
\[\gamma_n \leq \alpha \gamma_{n-1} + \beta \{ [\phi(fx_{n-1}) - \phi(fx_n)] + [(fx_n) - (fx_{n+1})] \}, \; n \geq 2,\]

where \(\alpha = \frac{a_1 + a_2 + a_4}{1 - a_3 - a_4}\) and \(\beta = \frac{1}{1 - a_3 - a_4}\)

Therefore for any integer \(k \geq 2\),
\[\sum_{n=2}^{k} \gamma_n \leq \alpha \sum_{n=2}^{k} \gamma_{n-1} + \beta \left[\phi(fx_1) - \phi(fx_k) \right] + \left[(fx_2) - (fx_3) \right] \]

which gives
\[\sum_{n=2}^{k} \gamma_n \leq \frac{\gamma_1 \alpha}{1 - \alpha} + \frac{\beta [\phi(fx_1) + (fx_2)]}{1 - \alpha}\]

showing that \(\sum_{n=2}^{\infty} \gamma_n\) converges and hence \(n \to 0\) as \(n \to \infty\). Also from the above lines, for \(m > n \geq 2\), we see that \(p(fx_n, fx_m) \leq \alpha_n\) where \(\alpha_n = \gamma_n + \gamma_{n+1} + \cdots + \gamma_{m-1}\). Since \(\alpha \to 0\) as \(n \to \infty\), it follows from (h) of Lemma 2.1 that \(\langle fx_n \rangle_{n=1}^{\infty}\) is a Cauchy sequence in \(X\) and hence converges to some \(z \in X\). Similarly we can prove that \(\langle gx_n \rangle_{n=1}^{\infty}\) converges to some \(z' \in X\). But \(gx_{n-1} = fx_n\) for all \(n \geq 1\) it follows that \(z = z'\), completing the proof of lemma.

Remark 2.3. The converse of Lemma 2.3 is not true. In fact, it is not difficult to exhibit a metric space \((x, d)\) with \(w\)-distance \(p\) on it for which (a) of Theorem 1.1 and (f) of Theorem 1.2 in which for any \(x_0 \in X\) and for any base sequence \(\langle x_n \rangle_{n=1}^{\infty}\) at \(x_0\) both sequences \(\langle fx_n \rangle_{n=1}^{\infty}\) and \(\langle gx_n \rangle_{n=1}^{\infty}\) converge to the same point, yet \((x, d)\) is not complete.

\[\lim_{n \to \infty} \max(p(z, fu_n), p(z, gu_n), p(fu_n, gu_n)) = 0.\]

(3.1)

Then \(z\) is a unique common fixed point of \(f\) and \(g\).

Proof. Writing \(x = x_n\) in (k) we get
\[p(z, fx_{n+1}) = p(z, gx_n) \leq rp(z, fx_n) + \phi(fx_n) - \phi(gx_n).\]
Then as in Lemma 2.2, we can prove that \(\sum_{n=1}^{\infty} p(z, f x_n) \) converges hence
\[
\lim_{n \to \infty} p(z, f x_n) = \lim_{n \to \infty} p(z, g x_n) = 0.
\]
Using this in (3.1), it follows that
\[
\lim_{n \to \infty} p(f g x_n, g f x_n) = 0.
\]

Now if \(z \) is not a common fixed point of \(f \) and \(g \), then either \(f z \neq z \) or \(g z \neq z \); and therefore, by the condition (1.4) of Theorem 1.1
\[
0 < \inf \{p(z, f x) + p(z, g x) + p(f g x, g f x) : x \in X\}
\]
\[
\leq \inf \{p(z, f x_n) + p(z, g x_n) + p(f g x_n, g f x_n) : n \geq 1\}
\]
\[
= 0,
\]
a contradiction. Hence \(f z \neq z \) and \(g z \neq z \).

The uniqueness of the common fixed point \(z \) follows as in the proof of Theorem 3.1 of [4].

Remark 3.1. In view of Remark 2.3, Theorem 3.1 generalizes Theorem 1.2. Also since \(d \) is a \(w \)-distance, the results proved by Dien [3] and Liuet.al [6] will be particular cases of Theorem 3.1.

Theorem 3.2. Let \((X, d) \) be a metric space with \(w \)-distance \(p \) on it. Suppose that \(f, g : X \to X \) and \(\phi : X \to [0, \infty) \) satisfy the inclusion (1.1) and the condition (1.4) of Theorem 1.1 and the condition (f) of Theorem 1.2. If \((j) \) and \((l) \) hold good, then \(z \) is the unique common fixed point of \(f \) and \(g \).

Proof. The proof is similar to the first main result and is omitted here.

Remark 3.2. In view of Remark 2.6, Theorem 3.2 generalizes Theorem 1.2. Also since \(d \) is a \(w \)-distance on \(X \), the fixed point theorem of Fisher [1] is a particular case of Theorem 3.2 with \(p = d \).

References Références Referencias