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Abstract- The paper devotes the proximity control for linear 
features that will apply for ship control in closed approach. In 
nautical practice of Vietnam, the ship has been encountered in 
the special situations, such as: coming approach ship to ship, 
ship to floating object, ship to mobile object... In order to solve 
this issue, the author presents his researches about task of the 
problem of the regulator of the optimal time; also he gives the 
solution of the problem of time-optimal controller for a linear 
system with constant parameters. Accordingly, the result is 
applied to design and create a control system to ensure the 
meeting of movements of ships. 
Keywords: proximity control for linear features, ship 
control in closed approach, linear system with constant 
parameters. 

I. Introduction 

n nautical practice of Vietnam, the ship has been en-
countered in the special situations, such as: coming 
approach ship to ship, ship to floating object, ship to 

mobile object,…In order to control the ship safely in 
these cases, this researcher has been developing the 
algorithm of proximity control for linear features which 
will apply for ship control in closed approach. For this 
purpose, it’s applied the results obtained for the 
problem to the case of linear systems with constant 
parameters. Throughout this paper, an area Sand the 
origin of the phase space will be considered. This task 
will be called the problem of the regulator of the optimal 
time. 

II. The Problem of Time-Optimal 
Controller for a Linear System with 

Constant Parameters 

It developed a set of control models for ships in 
closed approach. The linear production is considered 
that there is a dynamic system[1, 4, 11, 12]. 

                              ( ) ( ) ( )x t Ax t Bu t= +     (2.1) 

Where 
− Status of system x(t)is an n-dimensional vector; 
− Matrix A of the system is a constant matrix size n x 

n;  
− The matrix coefficients of the control 

functions(“gain”) B is a constant matrix size n x r; 
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  We consider
 

that the system
 

is completely 
controllable

 
and components

 
u1(t),

 
u2(t),…, ur(t)limited

 
in 

size.
 

                              
( ) 1, 1, 2,...,ju t j r≤ =

                  
(2.2)

 
At a given

 
initial time t0

 
= 0

 
the initial

 
state of the 

system is equal to
 

                                  (0)x ξ=                                  (2.3)
 

Find
 
the control u*(t)

 
transforming

 
the system 

from
 
ξ
 
to 0

 
at the minimum time.

 
We denote λ1, λ2,…,λn

 
the eigen values of the 

matrix system A, and through b1, b2,…, br -column 
vectors

 of the matrix B 

                     

1 2 rB b b b
 ↑ ↑ ↑
 

=  
 ↓ ↓ ↓ 

  

   

  
             

(2.4) 

The system is fully controllable. This means that 
the control transferring system(3.1) from any initial state 
ξ and the origin 0, exist. This occurs if the matrix size n × 
(rn) 

                      
2 1nG B AB A B A B− =    

              
(2.5) 

It contains n linearly independent column 
vectors. 

Entrance y(t)(3.1) is connected with its state x(t) 

and the control u(t)by the equation: 

                      ( ) ( ) ( )y t Cx t Du t= +                 (2.6)
 

The algorithm for calculating
 
the optimal control

 

is shown in
 
the following

 
block diagram

 
in Fig.3.1

 

  
 
 
 
 
 
 
 
 
 
 

I 
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− The control u(t)is an r-dimensional vector



 
 

Fig. 3.1 : The structure of the algorithm is an open 

problem of optimal high-speed 

Block diagram of an optimal feedback system is 
shown in Fig. 3.2. Functions x1(t), x2(t),…, xn(t)measured 

at each time and are introduced into a subsystem, 
designated C(“computer”). RF outputs are switching 
function h1[x(t)], h2[x(t)],…, hr([x(t)] which are then fed to 
the ideal relay R1, R2,…, Rr

 for the control variables, time-
optimal. Receiving and developing of functions h1[x(t)], 
h2[x(t)],…, hr([x(t)]is the basis of the problem of optimal 
control. 

 

Fig. 3.2 :
 
Structure of the

 
time-optimal

 
control systems

 

with feedback
 

III.
 

The
 

Geometric Properties of
 

the 
Optimal Time Control 

a)
 

The Surface of the Minimum Time
 

Previously, the author discussed the
 
geometric 

nature of
 
the problem of optimal

 
time

 
basing on the

 

reachable states areas
 

[2, 12]. Then
 

we went from
 

geometric considerations
 
to the analytical

 
results that 

obtained
 
from

 
the necessary conditions

 
given by

 
the 

principle of
 
minimum.

 
In this section we

 
try to give

 
a 

geometric interpretation of
 
the necessary conditions. We 

assume
 
that the task

 
is normal [12].Note also

 
that the 

material
 
in this section

 
is a

 
specification of

 
the above

 

mentioned
 
remarks.

 

Consider the surface of the minimum time, and 
we will treat the optimal control that causes the system 
to move along the surface of the minimum time in the 
direction of fastest decrease. After that we will be able to 
establish a correspondence between the additional 

variable gradient and surface of minimum time. Our 
arguments are inherently heuristic, since we are 
primarily interested in giving a geometric interpretation 
of the necessary conditions.

 

Let

 

x -the state

 

in the space

 

of phase 
coordinates. Suppose that there is

 

an optimal 
control(only) that send sx

 

to 0.

 

We denote

 

the minimum

 

time required

 

for translation

 

x

 

to 0 through:

 

                              ( )T x∗
                           (3.1)

 

We show that

 

the minimum time

 

T*(x) depends 
on the state of

 

the x and does not depend explicitly

 

on 
the time that

 

                         
( ) 0T x
t

∗∂
=

∂                          
(3.2)

 

It

 

is true, as

 

the time-invariant of systems,

 

( ) ( ) ( )x t Ax t Bu t= + it implies that the minimum time

 

may

 

be

 

only

 

a function of state. In other words,

 

if x

 

is the 
state of

 

the system at

 

t = 0

 

and the minimum

 

time 
required

 

for translation

 

x

 

in 0 is

 

T*(x) and x -state while

 

t 
= t0, then the optimal control

 

will translate

 

x

 

into 0

 

at 
time

 

t0+ T*(x).

 

Since

 

the time required to

 

transfer

 

the system 
from 0 to 0

 

is zero

 

and we are considering

 

only

 

positive

 

solutions

 

times,

 

it is obvious that

 

T*(x)

 

has properties

 

as

 

    ( ) 0, 0T x x∗ = =

  

                        (3.3)

 

                        
( ) 0, 0T x x∗ > ≠                           (3.4)

 

In the future,

 

for the gradient

 

of function

 

T*(x) of

 

x

 

we use the notation[11]

 

          
1

( )

( )

( )

n

T x
x

T x
x

T x
x

∗

∗

∗

 ∂
 

∂ ∂  =
 ∂
 ∂
 ∂ 



 

  (3.5)

 

We next consider

 

some

 

properties of the 
function T*(x).

 

It is useful to consider T*(x)

 

as

 

the 
minimum time

 

surface

 

and present it

 

graphically

 

as

 

shown in Fig. 3.3
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Fig.
 
3.3 :

 
The surface of

 
the minimum

 
value (minimum 

time) T*(x)
 
as a function

 
of x

 

Next, we define
 

the concept of
 

minimum
 

isochrones.  

b)
 

The Minimum
 
Isochrones

 

Let
 
S(τ)-the set of states

 
from which you can

 
go

 

to 0
 
for

 
the same

 
minimum time

 
τ, τ≥ 0. We call

 
S(τ)-

minimal
 
isochrone τ. This function

 
S(τ) is defined by

 

                   { }( ) : ( ) ; 0S x T xτ τ τ∗= = ≥
            

(3.6)

 

Suppose that

 

( )S τ is the set of

 

states from 
which

 

you can go

 

to the origin

 

by using of the

 

optimal 
control

 

for

 

a timeless than

 

or equal to

 

τ

 

[3, 7]:

 

                  { }( ) : ( ) ; 0S x T xτ τ τ∗= ≤ ≥


             (3.7)

 

Equations (3.5) and (3.6), we conclude that 
there is

 

a subset ( )S τ


of ( )S τ . It can

 

be sure

 

that

 

( )S τ

 

is 

the boundary

 

and closed ( )S τ


[4, 13].

 

We prove that

 

the set of

 

( )S τ


 

is strictly

 

convex. 
Let

 

x1

 

and x2-two different states

 

at the τ –minimum

 

isochrones.

 

                     1 2( ), ( )x S x Sτ τ∈ ∈                  (3.8)

 

In view

 

of normality, we know that there are

 

only

 

optimal

 

control { }'
1 1( ) ( )u t SIGN B p t∗ ∗= −

 

transform x1

 

to 

0, and { }'
2 2( ) ( )u t SIGN B p t∗ ∗= −

 

transform x2

 

to 0. Thus,

 

the equations

 

should be valid:

 

             
{ }'

1 1
0

( )Atx e BSIGN B p t dt
τ

− ∗= ∫
                

(3.9)

 

             
{ }'

2 2
0

( )Atx e BSIGN B p t dt
τ

− ∗= ∫
              

(3.10) 

Suppose that x -on the condition (open) 
segment joining x1 and x2, as shown in Fig. 3.4.Choose: 

                         0 1α< <                           (3.11) 

and consider the state of x, defined by the relation: 

                1 2(1 ) , (0,1)x x xα α α= + − ∈              (3.12) 

  

 
Fig. 3.4 : Illustration convexity 

From (3.12), (3.10) and (3.9), we obtain: 

                      

{ }

{ }

'
1

0

'
2

( )

(1 ) ( )

Atx e B SIGN B p t

SIGN B p t dt

τ

α

α

− ∗

∗

= +


+ −


∫

             

(3.13)  

Now let { }'( ) ( )u t SIGN B p t∗ ∗= − optimal control, 

sending x to 0 and 'τ -the corresponding minimum time 
( '( )T x τ∗ = ) . We show that 

                                       
'τ τ<               (3.14) 

To prove this, we note: 

                       
{ }

'

'
1

0

( )Atx e BSIGN B p t dt
τ

− ∗= ∫   
           

(3.15) 

From (2.14) it follows that the control
 

                

{ }
{ }

'
1 2 1

'
2

( ) (1 ) ( ) ( )

(1 ) ( )

u t u t S IGN B p t

SIGN B p t

α α α

α

∗ ∗ ∗

∗

+ − = +

+ −  
(3.16)

 

converts x
 
to

 
0. However, this

 
control

 
is not optimal in 

performance, since it is not a
 
vector

 
whose components
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are functions of
 
the type of sign. To prove this,

 
let us 

assume that
 
at some time

 
t
  

we have:
 

            

1 2

1 1
1 1

( ) , ( )

1 1

u t u t∗ ∗

+ −   
   − −   = =
   
   
− −   

 

 

              

(3.17)

 

From here you can

 

get

 

         

1 2

2 1
1

( ) (1 ) ( ) 1

1

u t u t

α

α α∗ ∗

− 
 − 
 + − = −
 
 
 − 

 


  

              

(3.18)

 

But since

 

0 < α

 

˂

 

1, we have the inequality:

 

                          -1 < 2α – 1< +1                          (3.19)

 

and therefore the control(3.17)cannot be the optimal 
time. If

 

this control

 

is not optimal

 

and transform s x to 0 
during τ, then the optimal control

 

will require τ’ < τ. Thus 
the statement(2.14) is proved. We have seen that

 

S(τ) is 

a border of ( )S τ


. Consequently, the state

 

x

 

= αx1+(1–

α)x1, α ϵ

 

(0,1) is an element of

 

the interior ( )S τ


and 

therefore the set

 

( )S τ


 

is strictly convex.

 

c)

 

The Heuristic Geometric Proof

 

Note that

 

the minimal

 

isochrones

 

τ

 

“grow”

 

with 
the τ

 

increase [2, 12, 18]. Suppose

 

that

 

τ1–τ2 two 
arbitrary

 

time, wherein

 

τ

 

                              1 20 τ τ< <

  

                               (3.20)

 

Then we can show

 

that:

 

                          1 20 ( ) ( )S Sτ τ⊂ ⊂
 

  

                       
(3.21)

 

 

Value for

 

inclusion (3.21) means that

 

the 
minimum

 

isochrones s increase their “distance” from the 
origin

 

with increasing time, and this increase

 

is 
“smooth”. To clarify

 

this provision, we

 

will give

 

a 
heuristic

 

geometric proof.

 

Suppose that ξ -state when

 

t

 

= 0, and assume

 

that for

 

transferξ

 

to 0 by means

 

of optimal control

 

u*(t)takes time 0 ≤ t ≤ τ. Thus

 

( )Sξ τ∈ . Fig. 3.5shows 
the

 

optimal trajectory

 

x*connectingξ

 

with

 

0. Let

 

0ε >

     

-small positive

 

time. Consider the

 

state ( )x ε∗ when 
t ε= . 

  

Fig. 3.5 :
 
Minimum

 
isochrones S(τ)and S(τ-ε), ε>0. –

Optimal
 
path

 
from

 
x*(ε) to 0is a part-optimal path

 
from 

to 0 

According to the principle
 

of optimal control
 

u*(t)
 
to

 
tε τ≤ ≤ have

 
optimal

 
control taking

 
the ( )x ε∗  

to 

0
 
in a minimum time t ε= . Thus

 
( ) ( )x Sε τ ε∗ ∈ − . Since

 

the phase trajectory
 
is continuous, 0ε →

 
then the state 

( )x ε∗ is committed toξ . If you repeat
 
this experiment

 
for 

all, ( )Sξ τ∈
 
then you may find that

 
isochrones

 
( )S τ  and

( )S τ ε−
 
“approaching each other closer”

 
when 0ε → . 

Let us now discuss
 
the geometric properties of

 

optimal control u*(t). Suppose
 
that

 
ξ -the initial state, 

and ( )Sξ τ∈ . Fig. 3.6
 
shows that

 
there is a region Xξ

 
of 

phase space
 
where the gradient

( )T x
x

∗∂
∂

 
is defined for all

x Xξ∈ . 

 
 
 Fig. 3.6 :

 

Optimal Control u*(0)

 

flushes

 

vector, which is 
aimed, as far as possible to

 

be more precise, in the 
direction

 

of fastest decrease
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In other
 
words, the components

 
of the gradient

 

vector:
 

                      

1

( )

( )( )

( )

n

T x
x

T xT x
x

T x
x

∗

∗
∗

∗

 ∂
 

∂ ∂  ∇ = =
 ∂
 ∂
 ∂ 



  
              

(3.22)
 

It is well-defined
 

functions
 

for all x Xξ∈ . 

Gradient T*
 

at. The vector
( )

x

T x
x

ξ

∗

=

∂
∂

determines the 

direction of
 

the most
 

rapid
 

changes in the function
 

T*(x)at the point . As  shown
 
in Fig. 3.6

 
gradient

 
is 

normal to the
 
curve ( )S τ at the point x ξ= and directed

 

from “origin”. The direction
 
of the vector 

( )

x

T x
x

ξ

∗

=

∂
−

∂

 

(shown in phantom in Fig. 3.6)
 
determines the direction 

of
 
“fastest decrease” on the surface T*(x)

 
at a point. So,

 

if we construct
 
the surface

 
T*(x)

 
and put

 
it
 
in

 
a ballpoint , 

it begins
 
to roll

 
down the

 
surface T*(x)

 
in the direction

 
of 

the vector .
 

If t= 0
 
we

 
have:

 

                  (0) (0), (0)x A Bu uξ= + ∈Ω                   (3.23)
 

The direction and magnitude
 
of the vector (0)x

 

is obviously
 
dependent on

 
a vector Aξ

 
that

 
depends on 

the stateξ , and
 

the vector
 

Bu(0), magnitude and
 

direction of which
 
can be selected

 
within the

 
constraints

(0)u ∈Ω . If
 
“try”

 
all

 
control

 
u(0)

 
of Ω , we get the set of 

vectors{ }(0)x
 
that

 
form a cone

 
K.

 
We assume that

 
this 

cone
 
is shown in Fig. 3.6.Thus, the restriction (0)u ∈Ω

 

defines
 
regional directions

 
in Fig. 3.6, and we

 
can do  so 

that the vector (0)x
 

is
 

directed along
( )

x

T x
x

ξ

∗

=

∂
−

∂

 
. 

However,
 
there is a

 
vector (0)x∗

 
pointing

 
in the direction

 

of fastest decrease
 
under the

 
restrictions imposed. We 

denote
 
the control

 
vector

 
u*(0)

 
such that:

 

                         (0) (0)x A Buξ∗ ∗= +                         (3.24)
 

Consider the difference between a
 
vector (0)x∗

 

from
 
all the other

 
possible vectors (0)x ? It is easy to

 
see 

that (0)x∗
 
satisfies(see. Fig.3.6)

 

           

( ) ( )(0), (0),
x x

T x T xx x
x x

ξ ξ

∗ ∗
∗

= =

∂ ∂
≤

∂ ∂
    

  

(3.25)
 

for all (0)x K∈ . Similarly, from (3.23) and (3.24), we find 
that for all (0)u ∈Ω  . 

                       

( )(0),

( )(0),

x

x

T xA Bu
x

T xA Bu
x

ξ

ξ

ξ

ξ

∗
∗

=

∗

=

∂
+ ≤

∂

∂
≤ +

∂             

(3.26) 

Or 

                          

'

'

( )(0),

( )(0),

x

x

T xu B
x

T xu B
x

ξ

ξ

∗
∗

=

∗

=

∂
≤

∂

∂
≤

∂

               (3.27) 

Thus, vector control  u*(0)satisfying(3.27), sets 
the direction of fastest decrease(compatible with 
restrictions)along the surface of the minimum time 

T*(x)at the point x ξ= . This control u*(0)satisfying(3.27) 
must also satisfy the relation; 

                            
' '(0), (0),u B u Bπ π∗ ≤                  

(3.28) 

Where π -arbitrary vector directed “outside” and the 
minimum normal isochrones ( )S τ  at the point ξ . 

                          

( ) , 0
x

T xc c
x

ξ

π
∗

=

∂
= >

∂
                  (3.29) 

for any positive constants c. 
Physically, it should beat the point x ξ= of 

optimal control u*(0), because it makes the state of the 
system or the representative point in the phase space to 
move, maximizing the rate of change in the minimum 
time. If u*(0) -optimal control, the prerequisite is known 
that there is a variable p*(0)in which the relation: 

                  

'

'

1 , (0) (0), (0)

1 , (0) (0), (0)

A p u B p

A p u B p

ξ

ξ

∗ ∗ ∗

∗ ∗

+ + ≤

≤ + +         

(3.30) 

For all  (0)u ∈Ω  

Or equivalent 

                     
' '(0), (0) (0), (0)u B p u B p∗ ∗ ∗≤           

(3.31) 

d) Remark 

If u*(0)-at optimal control (0)x ξ∗ = , the initial 
value p*(0)should be the same direction as the gradient

( )

x

T x
x

ξ

∗

=

∂
∂

 , if it exists. The same can be expressed in a 
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different way. The initial value p*(0) must be the outward 
normal to isochrones sSτat x ξ= . 

 

Fig. 3.7 :
 
If a minimum

 
angleξ

 
of

 
isochrones, the 

direction
 
of fastest decrease

 
indefinitely

 

Let us discuss further
 
the important case where

 

the initial state
 
is the “corner”

 
of minimum

 
isochrones. 

Assume that ( )Sξ τ∈ , and as shown
 
in Fig.3.7

 
is the

 

angle
 
isochrones; though 1ξ -and 2ξ

 
are states nearξ

 

in the isochronous ( )S τ . We say that 1ξ is
 
the “right”

 
of, 

ξ  
and 2ξ  - to the left. The statement “ξ

 
is in the corner 

isochrones ( )S τ ” means that the gradient
( )T x
x

∗∂
∂

 
with ξ

undefined. As shown
 

in Fig. 3.7, vectors
1

( )

x

T x
x

ξ

∗

=

∂
∂

  

and 
2

( )

x

T x
x

ξ

∗

=

∂
∂

determined for all 1ξ of
 
the right ξ  

and
 

all 2ξ
 
to

 
the left ofξ , but

 

         
1 2

1 2

( ) ( )lim lim
x x

T x T x
x xξ ξ ξ ξ

ξ ξ

∗ ∗

→ →
= =

   ∂ ∂   ≠   
∂ ∂      

  
      

(3.32)
 

Thus, if x ξ=
 

we cannot find

 

the direction of

 

the 
steepest

 

gradient

 

of decreasing just

 

when x ξ= , as the 
latter is not defined. This means that

 

optimal control

 

at 
this point

 

cannot be determined

 

by a geometrical

 

proof 
given

 

in the preceding discussion. If, p*(0)however, 
there is a vector corresponding to  ξ

 
and u*(0)

 

then 
(3.31) remains in force.

 

When

 

this

 

line

 

is lost

 

between

 

p*(0)

 

and the normal to

 

the minimum

 

isochrone.

 

The preceding discussion

 

was limited to

 

the 
initial states

 

located

 

on this

 

minimum

 

isochrone. Note 
that the

 

same comments

 

by the principle of

 

optimalityare true of

 

any state

 

on x*(t)

 

the optimal 
trajectory

 

to the origin.

 

Let

 

x*(t)- the state

 

on the optimal trajectory

 

and 
let p*(t) –corresponding additional variable. Suppose

( ) ( )x t S T∗ ∈ . Then

 

p*(t)-the outer normal of S (T)

 

to

 

a 

point x*(t)in case
( )

( )

x x t

T x
x ∗

∗

=

∂
∂

, if the gradient is 

defined. 

IV. Conditions for the Existence of 
Optimal Control 

a) The Particular Problem of Existence of Optimal 
Control to the Origin with a Heuristic Point of View 

In this section is a discussion of consider the 
optimal control for the control system, which guarantees 
the existence of optimal control to the origin of any initial 
state in phase space [1, 15, 16]. 

The question of the existence of an optimal 
control when moving from an arbitrary initial state to an 
arbitrary area S is extremely complex. It is useful to 
consider the particular problem of existence of optimal 
control to the origin with a heuristic point of view. 

Suppose that we are given a dynamical system 
is fully controlled and control is limited in size ratio

( )u t ∈Ω . Using the assumption of controllability of the 
system, we can find at least one control that will 
translate any initial stateξ  to 0 for a finite time. It may, 
however, prove that the initial stateξ  is so far from the 
origin, which translate   to0 can only control that do not 
meet the limit ( )u t ∈Ω . In this case, there are initial 
states, which cannot be converted into offices 0 
satisfying the constraints. 

We can make the following observations: for a 
given plane controlled dynamical system

[ ]( ) ( ), ( )x t f x t u t=
 and the area limitationΩ , n –

dimensional phase space Rn can be divided into two 
subspaces and with the following properties: 
1. Ifξ Ω∈Ψ  there exists at least one admissible control 

transferring to 0for a finite time; 
2. If nRξ Ω∈ −Ψ , there is no optimal control taking ξ  

to any of the elements 
ΩΨ  for the final time (and 

therefore cannot be translatedξ  to 0 using a valid 
management). 

In essence, the control is not limited to provide 
sufficient “push” to convert from a state nR Ω−Ψ to ΩΨ  , 
and hence the origin. 

From a physical point of view, control u(t) can 
add or take away power from the dynamical system. If 
we imagine the state x = 0 as a state of zero energy, we 
can see that the system for which the set nR Ω−Ψ  is not 
empty, in fact unstable. For this reason, it is believed 
that a stable, fully controlled dynamic system is 
characterized by the ratio nRΩΨ = , and for unstable, 
there is a fully controlled system nRΩΨ ∈ , but nRΩΨ ≠ . 

The theorem is useful to confirm this and 
guarantees the existence of optimal control to the origin 
of any initial state, it can be formulated as follows. 
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b)
 

The
 
Optimal Control

 
for the

 
Control System

 

Consider the
 
optimal control

 
for

 
the controlled 

system ( ) ( ) ( )x t Ax t Bu t= + in accordance with the
 

objective of movement [1, 12].
 
If the eigen

 
values of

 
A 

are
 
not

 
positive (negative

 
or zero) real parts, then the 

optimal control
 
to the origin

 
exists for

 
any initial state

 
of

nR . 
A rigorous proof

 
of this theorem

 
can be found 

in[17]. Consider
 
the example of

 
the essence of

 
the proof

 

of a distinct real
 

eigen
 

values, and the sole
 

control 
variable

 
u(t).

 

              

( ) ( ) ( ), 1, 2,...,
( ) 1

(0); 1, 2,...,

i i i i

i i

x t x t b u t i n
u t

x i n

λ

ξ

= + = 
≤ 
= = 



  
            

(4.1)
 

The solution of (3.2-3.130) for any given
 
formula

 

                 0

( ) ( )i i

t
t

i i ix t e e b u dλ λτξ τ τ−
 
 = +
  

∫   

              

(4.2)

 

Suppose[1, 6, 15, 16]we

 

found

 

an admissible 

control ( )u t , for that

 

1 2( ) ( ) . . . ( ) 0nx T x T x T= = = =
  

. This

 

means that

 

the ratio:

 

                            0

( )i

T
t

i ie b u t dtλξ = −∫




 

               (4.3)

 

Satisfied

 

for all

 

i = 1, 2, …, n. 
Since[1, 11, 12], it can be concluded

 

that ( ) 1u t ≤

 

  

         
( )

0 0

0

( ) ( )

1

i i

i i

T T
t t

i i i

T
it T

i
i

e b u t dt e b u t dt

b
e b dt e

λ λ

λ λ

ξ

λ

− −

− −

= ≤ ≤

≤ = − −

∫ ∫

∫

 




 

  

       

(4.4)

 

For

 

i = 1, 2,…, n.

 

Assume that

 

one of the eigen

 

values, e.g.λ1positive[it means that the system (3.10) is 
unstable]. From (3.3) we obtain:

 

                          
( )11

1
1

1Tb
e λξ

λ
−≤ − −



                        (4.5)

 

from whence [1, 11, 12].

 

                         

1 1 1

1
1Te

b
λ λ ξ− ≤ −


                               (4.6)

 

It is obvious

 

that (3.6) cannot be satisfied

 

for 
any real,

 

positive and

 

finite of

 

T


, if

 

the initial value of

 

the 
coordinates

 

1ξ

 

of

 

the inequality

 

                                  

1
1

1

b
ξ

λ
≥                                  (4.7)

 

Thus,
 
if, 1 0λ ≥ and 1

1
1

b
ξ

λ
≥

 
it is impossible to 

find T


such that 1( ) 0x T =


and therefore
 

there is no
 

optimal control.
 

If all the eigen
 
values iλ

 
are not positive, it is 

easy to show that the equation (4.4) can be true for any 

iξ
 and i = 1, 2, …, n, as you can pick up a large 

enough valueT


. This, in turn, means that the optimal 
control exists for all initial states of the system.

 

c)
 

The
 
Optimal Control

 
System

 

Consider the

 

optimal control system: 

                  ( ) ( ) ( ), ( ) 1, (0 )x t a xt u t u t x ξ= + ≤ =
  

         (4.8)

 

If

 

a ≤ 0, then[1, 13]optimal control

 

to the state

 

x 
= 0

 

exists for all

 

ξ. If

 

a > 0

 

the

 

system is unstable.

 

We 
find the

 

region of initial

 

conditions

 

ΨΩ

 

for which there is

 

optimal control. If the

 

optimal control

 

u*(t)

 

exists,

 

and 
|u*(t)|

 

= 1 we have:

 

0

( )ate u t dt
τ

ξ ∗= −∫
 

Where

 

we find

 

               

( )
0 0

0 0

( ) ( )

1( ) 1

at at

at at a

e u t dt e u t dt

e u t dt e dt e
a

τ τ

τ τ
τ

ξ − ∗ − ∗

− ∗ − −

= ≤ =

= = = − −

∫ ∫

∫ ∫
(4.9)

 

The ratio(4.9) is satisfied for some

 

positive

 

end, 

you must have 
1
a

ξ ≤

 

Thus, the scope

 

of the initial values

 

ΨΩ, for

 

which there exists an optimal

 

control of

 

the origin

 

is 
determined

 

by the relation:

 

                       

1: , 0a
a

ξ ξΩ
 Ψ = < > 
 

               (4.10)

 

If
1
a

ξ ≥

 

then

 

there is

 

an optimal control. Thus, 

the region

 

is an open

 

set containing

 

the origin[1, 6, 9, 
13,16].
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V. The Hamilton-Jacobi Equation 

a)
 

The State
 
on

 
Optimal Trajectory and the Value of

 

Optimal Control
 

Previously, they discussed changes in the 
minimum of time along the optimal path, and examined 
geometric properties of optimal control problem [2, 12]. 
In this section we relate these concepts together and 
study Hamilton - Jacobi equation for the problem of 
optimal performance. The purpose of this section is to 
show how you can use the overall results for the 
problem of optimal performance [1,14, 15].

 

Throughout this section
 

we will deal with the
 

optimal control
 
to a

 
normal system ( ) ( ) ( )x t Ax t Bu t= +   

with field goal(the origin)S = 0. At the same time
 
we use

 

the following notation:
 
if we

 
set

 
the state x, denoted

 
by

 

T*(x)
 
the

 
minimum

 
time required

 
for translation

 
x
 
in

 
0 

and through
 
u*-

 
the value of

 
optimal control

 
in the state 

x. 

The specific objectives  of this section

 

are as follows:

 

1)

 
To show how

 

you can use the

 

Hamilton - Jacobi 
equation

 

to check

 

whether

 

the function

 

T(x)

 

is

 

found

 

by solving

 

the problem of

 

optimal control

 

to be

 

equal

 

T*(x); 
2)

 
To point out the

 

difficulties that arise

 

if

 

the 
assumption

 

that the

 

optimal

 

control

 

is wrong;

 

3)

 
Noted

 

the difficulties associated with

 

determining

 

optimal control

 

directly from the

 

Hamilton - Jacobi 
equation.

 

Let us turn

 

to a discussion of

 

the use

 

of the 
Hamilton-Jacobi, seeing it as a necessary condition. The 
general theory of

 

the minimum principle

 

can be 
deduced

 

the following.

 

Let

 

x*- the state

 

on-optimal trajectory and

 

u*-

 

the value of

 

optimal control at x*.Since

 

( ) 0T x
t

∗∂
=

∂
  for

 

any x,

 

need T*(x)to

 

satisfy the relation:

 

    

'( ) ( )1 , , 0
x x x x

T x T xAx u B
x x∗ ∗

∗ ∗
∗ ∗

= =

∂ ∂
+ + =

∂ ∂

  
(5.1)

 

Provided

 

( )

x x

T x
x ∗

∗

=

∂
∂

  that

 

exists.

 

This lemmais useful in

 

the case when

 

the 
problem of

 

optimal control

 

has been solved

 

and we 
want to

 

find out

 

whether this function T(x)

 

is

 

to be

 

an 
expression

 

that determines

 

the minimum time

 

as a 
function of

 

the state. If this function

 

does not satisfy the

 

equation (5.1), at least at one point, it can be 
immediately

 

excluded from

 

the number of

 

possible 
options for

 

the minimum time. We show this

 

in the 
following example.

 
 
 

b)
 

The Minimum Time Function
 

Suppose
 
that the linear

 
system is described by

 

the following equations:
 

               

1 1

2 2

( ) ( )0 1 0
( ) ( ) 1

( ) ( )0 0 1
x t x t

u t u t
x t x t
      

= + ≤      
      




   (5.2)

 

We can
 
be sure

 
that the best

 
is the control:

 

                   

1
1,

2
u for all x xα
∗  
= − = =  

 
                (5.3)

 

                     

1
1,

1
u for all x xβ
∗  
= − = =  

 

 
                 (5.4)

 

Suppose that
 
somehow

 
we

 
found a relationship:

 

                  
2 2

1 2 1 2
1( ) ( , )
2

T x T x x x x= = +
 
                     (5.5)

 

which expresses the
 

minimum time
 

as a function of
 

state.
 

This
 

suspicion
 

is not unfounded, because
( ) 0T x >   for

 
all x, (0) 0T =

 
and lim ( )

x
T x

→∞
= ∞ . 

We now show
 
that our

 
assumption is

 
wrong.

 

First of all,
 
we calculate the

 
gradient

 
T(x).From 

(5.5) we find that this gradient
 
is:

 

                          

1 1

2

2

( )
( )

( )

T x
x xT x

xT xx
x

∂ 
 ∂  ∂  = =   ∂∂  
 ∂ 

                    (5.6)
 

We calculate it by x = xα
 and x = xβ:

 

                           

1( )
4x x

T x
x

α=

 ∂
=  ∂  

                           (5.7) 

                            

1( )
2x x

T x
x

β=

 ∂
=  ∂  

                           (5.8)
 

At the left side of equation (5.1) is equal to: 

               

[ ]0 1 1 1 1
1 , 1 0,1

0 0 2 4 4

1 2 4 1 0

         + − =        
         

= + − = − ≠            

(5.9) 

It can be concluded that the T(x) ratio(5.4) 
cannot be a formula that expresses the minimum 
amount of time, because when x = xα

 equation(5.1) is 
not satisfied. Let's see what happens if we experience 

T(x) at x = xβ. In its left-hand side of (5.1) is equal to: 

                    

[ ]0 1 1 1 1
1 , 1 0,1

0 0 1 2 2

1 1 2 0

         + − =        
         

= + − =        

(5.10) 

This means that T(x) satisfies the necessary 
condition of item 5.1with x = xβ, and on the basis of this 
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test, we can conclude that T(x) may be the minimum 
time. However, the test for x = xα

 excludes this 
possibility. 

Suppose now that in determining the optimal 
control mistake. For example, we believe that. 

                   

1
1,

1
u for all x xβ
∗  
= + = =  

 
                   (5.11) 

Then, instead of (5.10), we obtain: 

             

[ ]0 1 1 1 1
1 , 1 0,1

0 0 1 2 2

1 1 2 4 0

         + + =        
         

= + + = ≠             

(5.12) 

and could be removed from consideration T(x). It is true 
that T(x) ≠ T*(x), but on the basis of the expression 
(5.12) it is impossible to conclude, as incorrectly set u* 
= +1 for xβ.

 In other words, if you make a mistake in 
determining the optimal control law, in the course of 
such checks can be excluded from consideration the 
correct dependence T*(x). 

In practice, this item (5.2) is not very useful, 
since the engineer often need to build an optimal 
feedback system, and not check if T(x)is equal this 
optimal T*(x) or not. Nevertheless, the use of the 
Hamilton - Jacobi is essential matters in theoretical 
studies and validates the results obtained by using the 
minimum principle. 

Hamilton - Jacobi equation was largely seen as 
a sufficient condition. Let us now discuss the problem of 
solving the Hamilton-Jacobi and finding the optimal 
control. We know that the Hamiltonian of the problem of 
the optimal control [6, 16]: 

              
[ ] ', , 1 , ,H x p u Ax p u B p= + +                 (5.13) 

Since the system x Ax Bu= +
 is normal, what is 

normal and the Hamiltonian, and therefore the H-
minimal control well: 

                        { }'u SIGN B p= −                          (5.14) 

From the relations(5.14) and (5.13), we obtain: 

    

[ ] { }' '

1 1 1 1

, , 1 , ,

1
n n r n

ik i k ik i k
i k j k

H x p u Ax p S IGN B p B p

a x p a x p
= = = =

= + − =

= + −∑∑ ∑∑
   

(5.15) 

Consider the partial differential equation(Hamilton -
Jacobi): 

   1 1 1 1

( ) ( )1 0
n n r n

ik i k ij
i ii k j i

T x T xa x p b
x x= = = =

∂ ∂
+ − =

∂ ∂∑∑ ∑∑
    

(5.16) 

Suppose that we were able to find a solution: 

                                   ( )T x


                                 (5.17) 

differential equation in partial derivatives(5.16), and 
1) Function 

                                (0) 0T =


                                (5.18) 

2) The control vector: 

                  

' ( )T xu SIGN B
x

 ∂ = −  
∂  




                        (5.19) 

Substituting this solution into the equation 
system, we have: 

             

[ ]' ( )
( ) ( )

( )
T x t

x t Ax t BSIGN B
x t

 ∂ = −  
∂  





          
(5.20) 

The solution of this equation: 
( )x t  with the initial condition  (0)x ξ=                (5.21)  

It has property: 

                                
( ) 0x T ξ  = 


                              (5.22)  

In other words, the decision ( )T x


 of Hamilton - 
Jacobi equation(5.16) defines the control of u  [see. 
ratio(5.19)], which in turn produces the trajectory ( )x t , 

reaching the origin during ( )T ξ


, whereξ -given initial 
condition. If so, then control is ( )u t  - optimal, at least 
with respect to the offices close to it, that ( )u t is locally 
optimal. 

c) The Locally Optimal Control 
Suppose we are given a system of first order [1, 13]: 

                               

( ) 2 ( )
( ) 1
(0)

x t u t
u t
x ξ

= 
≤ 
= 



                               (5.23) 

Require to translate an arbitrary initial state ξ to 
0 in a minimum time. The Hamiltonian for this problem 
has the form: 

                           ( , , ) 1 2H x p u up= +                         (5.23) 

where the minimum control H is  defined by: 

                             { }u sign p= −                              (5.24) 

Hamilton - Jacobi equation
 

for this
 

problem has the 
form: 

                            

( )1 2 0T x
x

∂
− =

∂
                           (5.25)

 

We define
 

two areas
 

of
 

X1

 
and

 
X2

 
(one-

dimensional) phase space
 
as following:
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{ }
{ }

1

2

: 0

: 0

X x x

X x x

= > 


= < 
                             (5.26) 

It is easy to see that the function; 

                              
1( )
2

T x x=


                                 (5.27) 

is the solution of differential equations in partial 
derivatives(5.25) for all 1 2x X X∈ ∪ , because of: 

                  
1

( ) 1
2

T x when x X
x

∂
= ∈

∂


                         (5.28) 

                2
( ) 1

2
T x when x X

x
∂

= − ∈
∂


                        (5.29) 

Note that: 

  
0

( )

x

T x
x

=

∂
∂



undefined
 

                          (5.30)
 

And 

                              (0) 0T =


                                (5.31)
 

Consider the
 
control of u , defined as:

 

                 

( )T xu sign
x

 ∂ = −  
∂  




                             
(5.32)

 

from whence
 

                       11,u x X= − ∈  
                                 (5.33)

 

                     21,u x X= + ∈
                                  (5.34)

 

and u  undefined when x = 0
 

                         (5.35)
 

Assume that 1Xξ ∈ , then 0ξ >
 
As a result of

 

the substitution
 
of the expression (5.33) into (5.32), we 

obtain:
 

                              ( ) 2x t = −                                    (5.36)
 

                             1( ) 2 ;x t t Xξ ξ= − ∈
                     (5.37)

 

From (5.27) we have:
 

                            
1

1( ) ;
2

T Xξ ξ ξ= ∈


                          (5.38)
 

Therefore,
 

                         [ ]( ) 0x T ξ ξ ξ= − =
                         (5.39)

 

Further, for all 0, ( )t T ξ ∈  


we have:

 

                        ( ) 2 0x t tξ= − >
 

                                (5.40)

 

It means that:

 

                                  1( )x t X∈
                                 (5.41)

 

Thus, the control is unchanged:
 

                                   1u = −
                                  (5.42)

 

And is an optimal time control for all 1x X∈   
Similarly it is proved that, the control:

 

                 1u = +
                              (5.43)

 

is
 
also the optimal time control for all 2x X∈   

Thus, we find the area X1

 

and X2, such that
( )T x
x

∂
∂

 

is quite defined.

 

VI.

 

Conclusion

 

For this

 

system, we

 

did not encounter

 

any 
difficulties

 

in finding the

 

optimal control

 

using

 

the

 

Hamilton - Jacobi equation, as it was simple enough:

 

−

 

To guess the

 

solution of

 

Hamilton - Jacobi, 
satisfying the boundary conditions[5, 10, 12, 14];

 

−

 

Identify two areas of X1

 

and X2; 

−

 

Define

 

that

 

( ) 0x T ξ  = 


  . 

If we try to find the optimal control for systems 
of higher order, at once confronted with the following 
challenges:

 

It is almost impossible to find a solution of the 
Hamilton - Jacobi systems higher than second order.

 

For the system nth

 

order, it is necessary to 
subdivide the phase space at least 2nof areas X1, 
X2,…,Xn, indicate that for the systems of higher than 
second order is extremely difficult. Therefore, at present 
the optimal design of feedback systems often is carried 
out by using the necessary conditions of the minimum 
principle, but not the sufficient conditions of the 
equation Hamilton - Jacobi.[12, 15].

 

In general, we can conclude that:

 

−

 

A procedure for

 

obtaining

 

control for linear

 

objects

 

in closed approach which

 

is provided

 

in relation

 

to 
the

 

movement

 

of vessels [7, 8].

 

−

 

The analysis of

 

the structure of

 

the optimal

 

control 
system obtained by the

 

developed

 

control 
algorithms, based on

 

which we can

 

design and 
create a

 

control system to ensure

 

the meeting

 

of 
movements

 

of ships.

 

These results of further 
research will be presented in next article.
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