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Abstract- Digital intercept receivers are currently moving away from Fourier-based analysis and 
towards classical time-frequency analysis techniques, such as the Wigner-Ville distribution, Choi-
Williams distribution, spectrogram, and scalogram, for the purpose of analyzing low probability of 
intercept radar signals (e.g. triangular modulated frequency modulated continuous wave and 
frequency shift keying). Although these classical time-frequency techniques are an improvement 
over the Fourier-based analysis, they still suffer from a lack of readability, due to cross-term 
interference, and a mediocre performance in low SNR environments. This lack of readability may 
lead to inaccurate detection and parameter extraction of these radar signals. In this paper, the 
use of the Hough transform, because of its ability to suppress cross-term interference, separate 
signals from cross-terms, and perform well in the presence of noise, is proposed as an improved 
signal analysis technique. With these qualities, the Hough transform has the potential to produce 
better readability and consequently, more accurate signal detection and parameter extraction 
metrics. 
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Daniel L. Stevens α & Stephanie A. Schuckers σ

Abstract- Digital intercept receivers are currently moving away 
from Fourier-based analysis and towards classical time-
frequency analysis techniques, such as the Wigner-Ville 
distribution, Choi-Williams distribution, spectrogram, and 
scalogram, for the purpose of analyzing low probability of 
intercept radar signals (e.g. triangular modulated frequency 
modulated continuous wave and frequency shift keying).  
Although these classical time-frequency techniques are an 
improvement over the Fourier-based analysis, they still suffer 
from a lack of readability, due to cross-term interference, and 
a mediocre performance in low SNR environments.  This lack 
of readability may lead to inaccurate detection and parameter 
extraction of these radar signals.  In this paper, the use of the 
Hough transform, because of its ability to suppress cross-term 
interference, separate signals from cross-terms, and perform 
well in the presence of noise, is proposed as an improved 
signal analysis technique.  With these qualities, the Hough 
transform has the potential to produce better readability and 
consequently, more accurate signal detection and parameter 
extraction metrics.  Two different triangular modulated 
frequency modulated continuous wave low probability of 
intercept radar signals and two different frequency shift keying 
low probability of intercept radar signals (4-component and 8-
component) were analyzed.  The following metrics were used 
for evaluation of the analysis: percent error of chirp rate, 
percent detection, number of cross-term false positives, and 
lowest signal-to-noise ratio for signal detection.  Experimental 
results demonstrate that the qualities of suppressing cross-
term interference, separating signals from cross-terms, and 
performing well in a low SNR environment did lead to 
improved readability over the classical time-frequency analysis 
techniques, and consequently, provided more accurate signal 
detection and parameter extraction metrics (smaller percent 
error from true value) than the classical time-frequency 
analysis techniques.  In addition, the Hough transform was 
utilized to detect, extract parameters, and properly identify a 
real-world low probability of intercept radar signal in a low 
signal-to-noise ratio environment, where the classical time-
frequency analysis failed.  In summary, this paper provides 
evidence that the Hough transform has the potential to 
outperform the classical time-frequency analysis techniques.  
Future work will include automation of the metrics extraction 
process, analysis of additional low probability of intercept 
radar waveforms of interest, and analysis of other real-world 
low probability of intercept radar signals utilizing more 
powerful computing platforms.

Keywords: radar detection, hough transform, low 
probability of intercept.

I. Introduction

n order to perform their functions properly, many of 
today’s radar systems must be able to ‘see without 
being seen’ [PAC09], [WIL06].  This necessitates that 

they be low probability of intercept (LPI) radars.  These 
radars typically have very low peak power, wide 
bandwidth, high duty cycle, and power management, 
making them difficult to be detected and characterized 
by intercept receivers.

Fourier analysis techniques using the FFT have 
been employed as a tool of the digital intercept receiver 
for detecting and extracting parameters of LPI radar 
signals [PAC09].  When a practical non-stationary signal 
(such as an LPI radar signal) is processed, the Fourier 
transform cannot efficiently analyze and process the 
time-varying characteristics of the signal’s frequency 
spectrum, because time and frequency information 
cannot be combined to tell how the frequency content is 
changing in time [XIE08], [STE96].  The non-stationary 
nature of the received radar signal mandates the use of 
some form of time-frequency analysis for signal 
detection and parameter extraction [MIL02].  

Some of the more common classical time-
frequency analysis techniques include the Wigner-Ville 
distribution (WVD), Choi-Williams distribution (CWD), 
spectrogram, and scalogram.  The WVD exhibits the 
highest signal energy concentration [WIL06], but has the 
worse cross-term interference, which can severely limit 
the readability of a time-frequency representation 
[GUL07], [STE96], [BOA03].  The CWD is a member of 
Cohen’s class, which adds a smoothing kernel to help 
reduce cross-term interference [BOA03], [UPP08].  The 
CWD, as with all members of Cohen’s class, is faced 
with a trade-off between cross-term reduction and time-
frequency localization. The Spectrogram is the 
magnitude squared of the short-time Fourier transform 
[HLA92], [MIT01]. It has poorer time-frequency 
localization but less cross-term interference than the

I
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WVD or CWD, and its cross-terms are limited to regions 
where the signals overlap [ISI96].  The Scalogram is the 
magnitude squared of the wavelet transform, and can 
be used as a time-frequency distribution [COH02], 
[GAL05], [BOA03].  Like the Spectrogram, the 
Scalogram has cross-terms that are limited to regions 
where the signals overlap [ISI96], [HLA92].

Though classical time-frequency analysis 
techniques, such as those described above, are a great 
improvement over Fourier analysis techniques, they 
suffer in general from cross-term interference and a 
mediocre performance in low SNR environments, as 
described above.  This may result in degraded 
readability of time-frequency representations, potentially 
leading to inaccurate LPI radar signal detection and 
parameter extraction metrics.

A promising avenue for overcoming these 
shortfalls is the utilization of the Hough Transform, which 
is very similar to the Radon transform, and is used, for 
the detection of straight lines and other curves [BAR95], 
[BEN05], [ZAI99], [INC07].  The Hough transform of a 
particular time-frequency representation is found by 
computing the integral of the time-frequency 
representation along straight lines at different angles.  
The presence of a ‘spike’ in the Hough transform 
representation reveals the presence of high positive 
values concentrated along a line in the time-frequency 
representation – whose parameters (such as chirp rate) 
correspond to the coordinates of the spike (theta and 
rho values) [BAR92], [YAS06], [BAR95].  Detection can 
be achieved by establishing a threshold value for the 
amplitude of the Hough transform spike.  Therefore the 
Hough transform can be used to convert a difficult 
global detection problem in the time-frequency 
representation into a more easily solved local peak 
detection problem in the Hough transform 
representation.

Since cross-terms have amplitude modulation, 
the integration implicit in the Hough transform reduces 
the cross-terms, while the useful contributions, which 
are always positive, are correctly integrated [TOR07], 
[BAR92], [BAR95].  Likewise, in the presence of noise, 
the integration carried out by the Hough transform 
produces an improvement in SNR [INC07], [YAS06], 
[NIK08].  These qualities make the Hough transform a 
viable candidate for analyzing LPI radar signals.

In related work, [WON09] performed research 
using the WVD followed by the Hough transform as one 
of their detection and parameter estimation algorithms, 
but this was utilized for a single chirp signal, which 
presents no cross-term interference like the triangular 
modulated FMCW and FSK waveforms that are 
examined in this paper.  [GUL08] utilized the pseudo 
Wigner-Ville distribution followed by the Radon 
transform, but used it only for parameter extraction, and 
not for signal detection.  This paper utilized the Hough 
transform for both parameter extraction and signal 

detection.  [GER09] used an algorithm similar to the 
WVD followed by the Hough transform, called the 
periodic Wigner-Ville Hough transform. This algorithm 
was used on a sawtooth FMCW waveform, which is a 
viable LPI radar waveform. Their research assumed that 
phase is coherent from on LFM ramp to the next which 
is not always the case. Also, for their research, one 
needed to search for the right repetition period, the right 
starting frequency and the right slope. Overall, it 
appears that little research has been done in the area of 
using the Hough transform for the analysis of triangular 
modulated FMCW LPI radar signals and FSK LPI radar 
signals.  

In this paper, the Hough transform is evaluated
as a technique for improving the readability of the 
classical time-frequency analysis representations by 
suppressing cross-term interference, separating signals 
from cross-terms, and performing well in a low SNR 
environment. This approach is assessed using 2 
triangular modulated FMCW LPI radar signals and 2 
FSK LPI radar signals (4-component and 8-component).  
Metrics designed include: percent error of chirp rate, 
percent detection, number of cross-term false positives, 
and lowest SNR for signal detection.

The rest of this paper is organized as follows:  
Description of the proposed methodology is presented 
in section II. Experimental results comparing the 
reassignment method and classical time-frequency 
analysis techniques are presented in section III, followed 
by discussion and conclusions.

II. Methodology

The methodologies detailed in this paper 
describe the processes involved in obtaining and 
comparing metrics between the classical time-frequency 
analysis techniques and the Hough transform for the 
detection and parameter extraction of LPI radar signals. 

The tools used for this testing were:  MATLAB 
(version 7.7), Signal Processing Toolbox (version 6.10), 
Wavelet Toolbox (version 4.3), Image Processing 
Toolbox (version 6.2), Time-Frequency Toolbox (version 
1.0) (http://tftb.nongnu.org/).

All the testing was accomplished on a desktop 
computer (HP Compaq, 2.5GHz processor, AMD Athlon 
64X2 Dual Core Processor 4800+, 2.00GB Memory 
(RAM), 32 Bit Operating System).

Testing was performed for 4 different 
waveforms (2 triangular modulated FMCWs and 2 
FSKs), each waveform representing a different task 
(Task 1 through Task 4).  For each waveform, 
parameters were chosen for academic validation of 
signal processing techniques.  Due to computer 
processing limitations they were not meant to represent 
real-world values.  The number of samples for each test 
was chosen to be either 256 or 512, which seemed to 
be the optimum size for the desktop computer.  Testing 
was performed at three different SNR levels:  10dB, 0dB, 
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and low SNR (the lowest SNR at which the signal could 
be detected).  The noise added was white Gaussian 
noise, which best reflected the thermal noise present in 
the IF section of an intercept receiver [PAC09].  Kaiser 
windowing was used, when windowing was applicable.  
25 runs were performed for each test, for statistical 
purposes.  The plots included in this paper were done at 
a threshold of 5% of the maximum intensity and were 
linear scale (not dB) of analytic (complex) signals; the 
color bar represented intensity. The signal processing 
tools used for each task were:  

Classical time-frequency analysis techniques: 
WVD, CWD, spectrogram, scalogram

Hough transform method: Hough transform of 
WVD and Hough transform of CWD

Task 1 consisted of analyzing a triangular 
modulated FMCW signal (most prevalent LPI radar 
waveform [LIA09]) whose parameters were: sampling 
frequency=4KHz; carrier frequency=1KHz; modulation 
bandwidth=500Hz; modulation period=.02sec.  

Task 2 was similar to Task 1, but with different 
parameters: sampling frequency=6KHz; carrier 
frequency= 1.5KHz; modulation bandwidth=2400Hz; 
modulation period=.15sec.  The different parameters 
were chosen to see how the different shapes/heights of 
the triangles of the triangular modulated FMCW would 
affect the cross-term interference and the metrics.  

Task 3 consisted of analyzing an FSK (prevalent 
in the LPI arena [AMS09]) 4-component signal whose 
parameters   were:  sampling   frequency=5KHz;  carrier 

Figure 1 : Percent detection (Hough transform).  This plot is a theta-intensity (x-z view) of the HT of an RSPWVD (512 
samples, SNR=10dB).  Signal declared a (visual) detection because at least a portion of each of the signal 

components exceeded the noise floor threshold.

frequencies=1KHz, 1.75KHz, 0.75KHz, 1.25KHz; 

modulation bandwidth=1000Hz; modulation period=.
025sec.  

Task 4 was similar to Task 3, but for an FSK 8-
component signal whose parameters were:  sampling 
frequency=5KHz; carrier frequencies=1.5KHz, 1KHz, 
1.25KHz, 1.5KHz, 1.75KHz, 1.25KHz, 0.75KHz, 1KHz; 
modulation bandwidth=1000Hz; modulation period=.
0125sec. The different number of components and 
different parameters between Task 3 and Task 4 were 
chosen to see how the different number/lengths of FSK 
components would affect the cross-term interference 
and the metrics.  

Because of computational complexity, the WVD 
tests and the Hough transform of WVD tests for 512 
samples, SNR=0dB and 512 samples, SNR=low SNR –
were not able to be performed for any of the 4 
waveforms.  It was noted that a single run was still 
processing after more than 8 hours.  The WVD is known 
to be very computationally complex [MIL02].

After each particular run of each test, metrics 
were extracted from the time-frequency representation 
and the Hough transform plot.  The metrics extracted 
were as follows (TF=time-frequency representation; 
HT=Hough transform):  

a) Percent detection

HT:  percent of time signal was detected – signal was 
declared a detection if any portion of each of the signal 
components exceeded the noise floor threshold (see 
Figure 1).



TF: percent of time signal was detected - signal was 
declared a detection if any portion of each of the signal 
components (4 chirp components for triangular 
modulated FMCW, and 4 or 8 signal components for 
FSK) exceeded a set threshold (a certain percentage of 
the maximum intensity of the time-frequency 
representation).   

Threshold percentages were determined based 
on visual detections of low SNR signals (lowest SNR at 
which the signal could be visually detected in the time-
frequency representation) (see Figure 2).   

 

Figure 2 : Threshold percentage determination.  This plot is an amplitude vs. time (x-z view) of CWD of FSK 4-
component signal (512 samples, SNR= -2dB).  For visually detected low SNR plots (like this one), the percent of 
max intensity for the peak z-value of each of the signal components was noted (here 82%, 98%, 87%, 72%), and the 
lowest of these 4 values was recorded (72%).  Ten test runs were performed for each time-frequency analysis tool, 
for each of the 4 waveforms.  The average of these recorded low values was determined and then assigned as the 
threshold for that particular time-frequency analysis tool.    Note - the threshold for CWD is 70%. 

Thresholds were assigned as follows:  CWD 
(70%); spectrogram (60%); scalogram, WVD (4-
component FSK) (50%); WVD (triangular modulated 
FMCW) (35%); WVD (8-component FSK) (20%).   

For percent detection determination, these 
threshold values were included in the time-frequency 
plot algorithms so that the thresholds could be applied 
automatically during the plotting process.  From the 
threshold plot, the signal was declared a detection if any 
portion of each of the signal components was visible 
(see Figure 3).   
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Figure 3 : Percent detection (time-frequency).  CWD of 4-component FSK (512 samples, SNR=10dB) with threshold 
value automatically set to 70%.  From this threshold plot, the signal was declared a (visual) detection because at 

least a portion of each of the 4 FSK signal components was visible. 
Automatically applying a threshold value to the 

time-frequency plot algorithms for percent detection 
determination can be seen as a first step towards the 
future work of automating the metrics extraction 
process. 

b) Cross-term false positives (XFPs)  
The number of cross-terms that were wrongly 

declared as signal detections. For the time-frequency 

representation, the XFP detection criteria is the same as 
the time-frequency signal detection criteria listed in the 
percent detection section above.  For the HT, the XFP 
detection criteria is the same as the HT signal detection 
criteria listed in the percent detection section above.  
Figure 4 shows a WVD plot with 4 true signals and 6 
cross-terms, all 6 of which were XFPs. 
 

Figure 4 : Example of cross-term false positives (XFPs). WVD of a 4-component FSK signal at SNR=10dB (512 
samples). There are 4 true signals (fc1=1KHz, fc2=1.75KHz, fc3=0.75KHz, fc4=1.25KHz) and 6 XFPs (cross-terms 
that were wrongly declared as signal detections because they passed the signal detection criteria listed in the 
percent detection section above) (ct1=0.875KHz, ct2=1KHz, ct3=1.125KHz, ct4=1.25KHz, ct5=1.375KHz, 
ct6=1.5KHz).   
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c) Chirp rate 

HT: 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (− tan𝜃𝜃) �max 𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣 −𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖
max 𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣 −𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖

� – 

(for Task 1 and Task2 only). 
TF:  (modulation bandwidth/modulation period) – (for 
Task 1 and Task 2 only). 

d) Lowest detectable SNR 
HT: the lowest SNR level for which each signal 
component exceeded the noise floor threshold (see 
Figure 5). 
 

Figure 5 : Lowest detectable SNR (Hough transform). This plot is a theta-intensity (x-z view) of the HT of an RSPWVD 
(512 samples, SNR=-5dB). Signal declared a (visual) detection because at least a portion of each of the signal 
components exceeded the noise floor threshold. For this case, any lower SNR would have been a non-detect.  
Compare to Figure 1, which is the same plot, except that it has an SNR level equal to 10dB.  

TF:  the lowest SNR level at which at least a portion of 
each of the signal components exceeded the set 
threshold listed in the percent detection section above.   

For lowest detectable SNR determination, these 
threshold values were included in the time-frequency 
plot algorithms so that the thresholds could be applied 
automatically during the plotting process. From the 
threshold plot, the signal was declared a detection if any 
portion of each of the signal components was visible.  
The lowest SNR level for which the signal was declared 
a detection is the lowest detectable SNR (see Figure 6). 
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Figure 6 : Lowest detectable SNR (time-frequency). CWD of 4-component FSK (512 samples, SNR=-2dB) with 
threshold value automatically set to 70%. From this threshold plot, the signal was declared a (visual) detection 
because at least a portion of each of the 4 FSK signal components was visible.  For this case, any lower SNR would 
have been a non-detect.  Compare to Figure 3, which is the same plot, except that it has an SNR level equal to 
10dB. 

Automatically applying a threshold value to the 
time-frequency plot algorithms for the determination of 
the lowest detectable SNR can be seen as a first step 
towards the future work of automating the metrics 
extraction process. 

The data from all 25 runs for each test was used 
to produce the mean, standard deviation, variance, 
actual, error, and percent error for each of these metrics 
listed above. 

The metrics from the classical time-frequency 
analysis techniques were then compared to the metrics 
from the Hough transform.  By and large, the Hough 
transform outperformed the classical time-frequency 
analysis techniques, as will be shown in the results 
section. 

For Task 5, data from a CD was analyzed, with 
the only a priori knowledge being that the data 
contained an LPI radar signal in a low SNR environment 
(between -5dB and -10dB), and that the data was 
collected at a sampling frequency of 4GHz.  The data 
(19 megabytes) was first processed using the 
Spectrogram (because it is the fastest time-frequency 
analysis tool).  The signal was not visible in the 
Spectrogram time-frequency representation, due to low 
SNR.  The data was then processed with the Hough 
transform of the Spectrogram, and the signal was 
detected, but had almost zero slope (like an FSK (tonal) 
signal).  A MATLAB script was written which allowed for 
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decimation of the Y-axis for the receiver IF bandwidth (~ 

750MHz to 1250MHz), and then the data was re-
processed with the Hough transform of the 
Spectrogram, this time for the purpose of determining if 
the signal had slope or if it was tonal.  From the Hough 
transform plot it was observed that the signal had slope 
(i.e. was a chirp signal).  The Hough transform plot 
allowed for not only detection of the chirp signal, but 
also for extraction of the chirp rate.  A back-mapping 
from the Hough plot to the time-frequency 
representation was then performed.  The signal was 
located in the time-frequency representation, and the 
modulation bandwidth and modulation period (and 
consequently the chirp rate) were extracted from the 
time-frequency representation.  From these metrics, the 
type/source of the signal was identified.  Additional 
details/results of Task 5 testing are addressed later in 
this chapter.

III. Results

Some of the graphical and statistical results of 
the testing are presented in this section.

Table 1 presents the overall test metrics (signal 
processing tool viewpoint) for the 4 time-frequency 
analysis techniques and the 2 Hough transform 
methods used in this testing.



Table 1 : Signal Processing Tool viewpoint of the overall test metrics (average percent error) for the 4 classical time-
frequency analysis techniques (WVD, CWD, spectrogram, scalogram) along with their combined average (TF) and 
for the 2 Hough transform methods (WVD + HT, CWD + HT), along with their combined average (HT).  The 
parameters extracted are listed in the left-hand column:  chirp rate (cr), percent detection (% det), # of cross-term 
false positives (#XFP), lowest detectable SNR (low snr). 

params wvd cwd spectro scalo TF wvd+ht  cwd+ht  HT  
cr 5.29% 11.49% 16.25% 28.5% 15.4% 5.40%  2.74%  4.07%  

% det 94.6% 92.5% 96.4% 90.4% 93.4% 100%  98.7%  99.4%  
# XFP 25 0 0 0 25 4 4 8 
low snr -2db -2.4db -3db -2.8db -2.5db -3db  -4.4db  -3.7db  

From Table 1, the WVD had the best percent 
error of chirp rate (5.29%) of any of the classical time-
frequency analysis tools, but performed the poorest out 
of all of the 6 signal processing techniques in the areas 
of number of cross-term false positives (25) and low 
SNR (-2dB).  Figure 7(left-hand side) shows the cross-
term interference problem that the WVD has.   

The CWD performed ‘middle-of-the-road’ in 
every category (cr=11.49%; % det=92.5%; #XFP=0; 
low snr= -2.4dB) , as compared to the other classical 
time-frequency analysis techniques. 

The spectrogram had the best low SNR (-3dB) 
and percent detection (96.4%) of the classical time-
frequency analysis techniques, but had a poor percent 
error of chirp rate (16.25%).   

The scalogram had the worst percent detection 
(90.4%) and percent error of chirp rate (28.5%) of the 
classical time-frequency analysis techniques, but did 
well in low SNR (-2.6dB).  

 

The WVD + HT had a good percent error of 
chirp rate (5.40%) that was on par with that of the WVD 
(5.29%), and also had the best percent detection (100%) 
of all the 6 signal processing techniques.  In addition, 
the WVD + HT had a low SNR value (-3dB) that equaled 
the best low SNR value of the classical time-frequency 
analysis techniques (spectrogram),  and its number

 
of 

cross-term false positives (4) was lower thanthat of the 
WVD (25) (see Figure 7 for comparison).

 
 

Figure 7 : Cross-term comparison between classical time-frequency analysis techniques (left) and the Hough 
transform (right).  Top left: WVD of a triangular modulated FMCW signal (512 samples, SNR=10dB) (left).  Top right: 
the Hough transform of the WVD of a triangular modulated FMCW signal (512 samples, SNR=10dB).  Bottom left: 
WVD of an FSK (8-component) signal (512 samples, SNR=10dB).  Bottom right: the Hough transform of theWVD of 
an FSK (8-component) signal (512 samples, SNR=10dB).  Upper 2 plots – the Hough transform (right) has 
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eliminated the cross-term interference that the WVD (left) displays, making it easier to see the signal (better 
readability) in the Hough transform plot (the four bright spots which represent the four legs of the triangular 
modulated FMCW signal).  The WVD appears to have another triangle signal between the outer two triangle signals.  
Lower 2 plots - In the WVD plot (left) there are 8 signal components and 9 cross-term components that appear to be 
signal components, all melded in together with one another.  The 8 signal components are located at 5 distinct 
frequencies (one at 0.75KHz, two at 1KHz, two at 1.25KHz, two at 1.5KHz, and one at 1.75KHz).  In the Hough 
transform plot (right) there are 8 signal components (located at 5 different frequencies (3 on the left-hand side of the 
plot and 2 in the middle of the plot)) plus 2 cross-term components, clearly separated from the signal components.  
The Hough transform plot makes it easier to see the signal components (better readability) as compared to the WVD 
plot. 

The CWD + HT performed the best of all the 6 
signal processing techniques in the areas of percent 
error of chirp rate (2.74%) and low SNR (-4.4dB) (see 

figure 8 (right-hand side)).  It also performed very well 
for percent detection (98.7%). 

 

Figure 8 : Low SNR comparison between classical time-frequency analysis techniques (left) and the Hough 
transform (right). Top left: CWD of a triangular modulated FMCW signal (512 samples, SNR=-6dB) (left).  Top right: 
the Hough transform of the CWD of a triangular modulated FMCW signal (512 samples, SNR=-6dB). Bottom left: 
CWD of an FSK (8-component) signal (512 samples, SNR=-3dB). Bottom right: the Hough transform of the CWD of 
an FSK (8-component) signal (512 samples, SNR=-3dB). Upper 2 plots - Though the signal is not visible in the CWD 
plot (left) (due to the low SNR (-6dB)), the four bright spots that represent the four legs of the triangular modulated 
FMCW signal are clearly seen in the Hough transform of the CWD plot (right).  Each bright spot has a unique rho 
and theta value that can be used to back-map to the time-frequency representation (here CWD) and find the location 
of the 4 (non-visible) chirps that make up the triangular modulated FMCW signal.  Lower 2 plots - Though the signal 
components are not visible in the CWD plot (due to the low SNR (-3dB)), the 5 bright spots (3 on the left and 2 in the 
middle) corresponding to the 5 different frequencies of the 8 FSK components are clearly visible in the Hough 
transform of the CWD plot (as are 2 cross-term components).  The Hough transform does a good job of detecting 
the signal components and separating the signal components from the cross-term components, all in a low SNR 
environment.  

Overall from Table 1, the Hough transform 
methods outperformed the classical time-frequency 
analysis techniques in percent error of chirp rate (4.07% 

to 15.4%), percent detection (99.4% to 93.4%), number 
of cross-term false positives (8 to 25), and low SNR (-
3.7dB to -2.5dB). 
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Table 2 presents the overall test metrics (SNR 
viewpoint) for the testing performed in this paper. 

 

Table 2 : SNR viewpoint of overall test metrics (average percent error) for the classical time-frequency analysis 
techniques (TF) and for the Hough transform methods (HT) for SNR=10dB, 0dB, and lowest detectable SNR (low 
SNR). The parameters extracted are listed in the left-hand column:  chirp rate (cr), percent detection (% det), number 
of cross-term false positives (#XFP).  

params TF  10dB TF  0dB TF  low snr HT 10dB HT  0dB HT low snr 
cr 13.73% 14.51% 17.04% 4.0% 6.23% 3.24% 

% det 100% 82.4% N/A 100% 98.7% N/A 
# XFP 21 2 2 2 0 4 

Table 2 shows that the percent error of chirp 
rate and percent detection tended to worsen with 
lowering SNR values (see Figure 9) for both the classical 
time-frequency analysis techniques and the Hough 
transform (except for HT low SNR).  The XFP numbers in 

Table 2 are representative of the fact that, due to 
computational complexity, there was no WVD testing 
accomplished at lower than 10dB (except for the 256 
sample cases). 

 

Figure 9 : Readability degradation due to reduction in SNR.  Spectrogram, triangular modulated FMCW, modulation 
bandwidth=500Hz, 512 samples. SNR=10dB (left), 0dB (center), -4dB (left). Readability degrades as SNR 
decreases, negatively affecting the accuracy of the metrics extracted, as per Table 2. 

Table 3 presents the overall test metrics (Task 
1, 2, 3, and 4 view point) for the testing performed in this 
paper. 

Table 3 : Task 1, 2, 3, and 4 viewpoint of overall test metrics (average percent error) for the classical time-frequency 
analysis techniques (TF) and for the Hough transform (HT).  Task1=triangular modulated FMCW signal (modulation 
bandwidth=500Hz), Task2=triangular modulated FMCW signal (modulation bandwidth=2400Hz), Task 3=FSK (4-
component) signal, Task 4=FSK (8-component) signal. The parameters extracted are listed in the left-hand column: 
chirp rate (cr), percent detection (% det), number of cross-term false positives (#XFP), lowest detectable SNR (low 
snr). 

params TF  Task1 TF  Task2 TF Task3 TFTask4  HTTask1  HTTask2  HTTask3  HTTask4  
cr 12.09% 5.47% N/A N/A  3.68%  0.31%  N/A  N/A  

% det 88% 93.7% 100% 100%  99.27%  100%  99.27%  100.0%  
# XFP 8 2 6 9 0 0 4 4 
low snr -2.8db -3.3db -2.67db -1.67db  -4.4db  -6.0db  -3.5db  -3.5db  

Table 3 shows that the percent error of chirp 
rate, percent detection, and low SNR were all better for 
Task 2 (triangular modulated FMCW, modulation 
bandwidth=2400Hz) than for Task 1 (triangular 
modulated FMCW, modulation bandwidth=500Hz) for 
both the classical time-frequency analysis techniques 
and the Hough transform (see Figure 10).  Also, the low 
SNR was lower for Task 3 (4-component FSK signal) 
than for Task 4 (8-component FSK signal). 
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Figure 10 : Comparison between Task 1 (left) and Task 2 (right).  The uppper two plots are both spectrogram plots 
of a triangular modulated FMCW signal (512 samples, SNR=10dB), Task 1 (modulation bandwidth=500Hz) is on 
the left and Task 2 (modulation bandwidth=2400Hz) is on the right.  The lower two plots are CWD plots of the same 
signals.  The Task 2 plots (right) have a larger modulation bandwidth than Task 1 plots, therefore the signals appear 
taller and more upright than the Task 1 signals. 

Figure 11 shows a Spectrogram plot (left) of the 
area where the Task 5 real-world signal was located, 
though the signal was not visible in the Spectrogram 
plot (yellow area is in-band portion, and orange areas 
are out-of-band portion of band pass filter).  The Hough 
transform of the Spectrogram (right) was performed, 
and the signal became visible, despite the low SNR 
environment (-5dB to -10dB).  The Hough transform plot 
showed that the signal values were near theta=0 (or pi) 
and rho=0, which back-mapped to a nearly flat signal 

(i.e. tone) which was located near the center (frequency-
wise) of the time-frequency representation.  For this 
case, either the signal was a tonal (perhaps an FSK 
component), or the signal was a chirp; but because the 
bandwidth of the Spectrogram was so wide (2GHz) 
compared to the modulation bandwidth of the chirp, the 
chirp signal appeared ‘flat’.  For this case, the 
bandwidth of the Spectrogram needed to be reduced so 
that the slope of the signal (given that it is a chirp) would 
become apparent. 

Figure 11 :
 
Spectrogram (left) and Hough transform of Spectrogram (right) of area where Task 5 real-world signal 

was located.  Signal was not visible in the spectrogram, but was visible in the Hough transform, due to the Hough 
transform’s ability to extract signals from low SNR environments.
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To investigate this further, a MATLAB script was 
utilized that that allowed for ‘zooming-in’ on the receiver 
IF bandwidth (representing the yellow portion of the 
Spectrogram in Figure 11 (~750MHz to 1250MHz)) (Y-
axis zoom-in only).  The data was processed again 
using the Hough transform of the Spectrogram (Figure 
12). The signal appeared at theta=2.872 and 

rho=228.8, which indicatedthat the signal was indeed a 
chirp signal, with a chirp rate of  

𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (− tan𝜃𝜃) �
max 𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖
max 𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎 𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖� 

or  (-tan (2.872*57.3)(500MHz/471usec) = 0.28MHz/usec. 

 

Figure 12 : Hough transform of Spectrogram (zoomed-in on receiver IF bandwidth (~750MHz to 1250MHz)) of area 
where Task 5 real-world signal was located.  Signal is clearly visible at theta=2.872 and rho=228.8 

Using these theta and rho values, back-
mapping was performed from the Hough transform to 

the time-frequency representation (Spectrogram), which 
allowed the signal to be located (see Figure 13). 

Figure 13 : Spectrogram (zoomed-in on receiver IF bandwidth (~750MHz to 1250MHz)).  Shows how the Hough 
transform theta and rho values back-map to the time-frequency representation for signal location. 

© 2015  Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

  
 

(
)

V
ol
um

  
  
 

  
Y
e
a
r

20
15

20

J
e 

 X
V
  

Is
su

e 
V
I 
 V

er
si
on

 I
  

           
                 

Detection and Parameter Extraction of Low Probability of Intercept Radar Signals using the Hough 
Transform



Once the chirp signal was detected in the 
Spectrogram, the modulation bandwidth (103MHz) and 
modulation period (389.34usec) metrics were extracted.  
The chirp rate (modulation bandwidth/modulation 
period) was then calculated to be 0.264 MHz/usec (very 
close to the chirp rate of 0.28MHz/usec obtained from 
the Hough transform plot). 

Based on these parameters, it was determined 
that the signal was the front-end chirp of a particular LPI 
radar device, which was confirmed by the personnel 
who supplied the CD for testing. 

IV. Discussion 

This section of the paper will elaborate on the 
results from the previous section. 

From Table 1 (signal processing tool viewpoint 
of overall test metrics), the performance of each of the 6 
signal processing tools will be summarized, including 
strengths, weaknesses, and generic

 
scenarios in which 

a particular tool might be used.
 

The WVD had the best percent error of chirp 
rate (5.29%) of all of the classical time-frequency 
analysis tools, but performed the poorest of all the 6 
signal processing techniques in the areas of number of 
cross-term false positives (25) and low SNR (-2dB).  
Chirp rate can be seen as directly related to time-
frequency localization.  As per the methodology section, 
chirp rate is proportional to the modulation bandwidth.  
Since modulation bandwidth is a measure from the 
highest frequency value of a signal to the lowest 
frequency value of a signal, then the ‘thinner’ the signal 
(i.e. good time-frequency localization) the more accurate 
the modulation bandwidth (and therefore the more 
accurate the chirp rate), and the ‘thicker’ the signal (i.e. 
poor time-frequency localization) the less accurate the 
modulation bandwidth (and therefore the less accurate 
the chirp rate).  Based on this, it can be said that the 
WVD’s excellent chirp rate is due to its excellent time-
frequency localization. This can be attributed to the fact 
that the WVD exhibits the highest signal energy 
concentration in the time-frequency plane [GUL07], 
[PAC09] and is totally concentrated along the 
instantaneous frequency [CIR08], [GUA06].  The WVD’s 
cross-term interference problem, which is well-known 
[GUL07], makes it very difficult to see the actual signal 
[DEL02], [GUA06], [WON09], reducing the readability of 
the time-frequency distribution.  Figure 7 clearly shows 
the cross-term interference problem that the WVD has.  
The cross-terms produced a false positive (XFP) triangle 
in the middle of the two-triangle signal (upper-left plot), 
and also produced 9 XFPs in the FSK 8-component 
signal (lower-left plot).  Cross-terms are located half-way 
between signal components [DEL02], [WON09].  
Though the WVD is highly concentrated in time and 
frequency, it is also highly non-linear and non-local, and 
is therefore very sensitive to noise [AUG95], [FLA03], 

which accounts for its poor low SNR performance (-
2dB).  The WVD might be a good tool to use if excellent 
chirp rate (time-frequency localization) is a requirement, 
but readability and low SNR environments are not an 
issue, such as in a scenario where off-line analysis is 
performed, without any time constraints (because of the 
WVD’s slow plot time).  The readability issue can be 
alleviated if a single-component signal is used, which 
would eliminate the cross-term interference, but which is 
unrealistic for LPI radar signals. 

The CWD performed ‘middle-of-the-road’ in 
every category, as compared to the other classical time-
frequency analysis techniques.  Its decent performance 
for percent error of chirp rate (11.49%) (time-frequency 
localization) can be attributed to the fact that the CWD is 
part of the Cohen’s class of time-frequency distributions, 
which use a smoothing kernel to smooth out cross-term 
interference, but at the expense of time-frequency 
localization [CHO89], [WIL92].   In this sense, the CWD 
is seen as a mid-point between the WVD (good 
localization, poor cross-term interference) and the 
spectrogram (poor localization, good cross-term 
interference). The fact that it doesn’t smooth out all of 
the cross-term interference allows for decent localization 
(and therefore decent chirp rate).  The CWD might be 
used in a scenario where above average localization 
(chirp rate) is required (i.e. somewhere between the 
WVD and the spectrogram).  The goal of such a 
scenario would be to obtain above average signal 
metrics in a short amount of time (due to the CWD’s 
fairly quick plot time). 

The spectrogram had the best low SNR (-3dB) 
and percent detection (96.4%) of the classical time-
frequency analysis techniques, but had a poor percent 
error of chirp rate (16.25%).  It is known that the 
spectrogram suffers in time-frequency localization (and 
therefore chirp rate)[ISI96], [COH95], [HLA92].  The 
results of these 3 metrics can be attributed to the 
spectrogram’s extreme reduction of cross-term 
interference, which accounts for good low SNR, and 
percent detection, but at the expense of poor time-
frequency localization (chirp rate).  The spectrogram 
might be used in a scenario where a short plot time is 
necessary (since it is the fastest time-frequency 
technique), in a fairly low SNR environment, and where 
time-frequency localization (chirp rate) is not an issue.  
Such a scenario might be a ‘quick and dirty’ check to 
see if a signal is present, without precise extraction of its 
parameters. 

The scalogram had the worst percent detection 
(90.4%) and percent error of chirp rate (28.5%) of the 
classical time-frequency analysis techniques, but did 
well in low SNR (-2.8dB).  The scalogram suppresses 
almost all cross-terms [GRI07], [LAR92], accounting for 
its good low SNR performance.   Because of this cross-
term reduction, it is surprising that the scalogram did not 
perform better in the area of percent detection.  This 
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could be due to its bad time-frequency localization 
(chirp rate), or to the fact that a wavelet/scalogram 
performs better on signals that change rapidly in 
frequency over time, vice the triangular modulated 
FMCW and FSK signals used in this paper.  Like the 
spectrogram, the scalogram might be used in a 
scenario where short plot time is necessary (the 
scalogram has a very fast plot time), in a fairly low SNR 
environment, and where time-frequency localization 
(chirp rate) is not an issue, or in a scenario that 
detects/analyzes signals that change rapidly in 
frequency over time. 

The WVD + HT  and the CWD + HT both had 
good percent error of chirp rates (5.40%/2.74%), that 
were on par with or better than that of the WVD (5.29%). 
In addition, the WVD + HT and the CWD + HT both had 
good percent detections (100%/98.7%) and low SNRs (-
3dB/-4.4dB) (see Figure 8).  In the presence of noise, 
the integration carried out by the Hough transform 
produces an improvement in SNR [INC07], [YAS06], 
[NIK08].  The WVD + HT and the CWD + HT both had a 
lower number of cross-term false positives (4/4) than did 
the WVD (25) (see Figures 7 and 8 for 
comparison).Since cross-terms have amplitude 
modulation, the integration implicit in the Hough 
transform reduces the cross-terms, while the useful 
contributions, which are always positive, are correctly 
integrated [TOR07], [BAR95].  

Overall from Table 1, the Hough transform 
methods outperformed the classical time-frequency 
analysis techniques in percent error of chirp rate (4.07% 
to 15.4%), percent detection (99.4% to 93.4%), number 
of cross-term false positives (8 to 25), and low SNR (-
3.7dB to -2.5dB).   

From Table 2, it was seen that in general, the 
percent error of chirp rate and percent detection metrics 
tended to worsen with lowering SNR values, for both the 
classical time-frequency analysis techniques and the 
Hough transform (except for HT low SNR).  Figure 
9shows how readability is degraded as the SNR level is 
lowered.  It is noted that the for the chirp rate metrics, 
the classical time-frequency analysis techniques 
experienced a 17.4% degradation of metrics while going 
from 0dB to low SNR, while the HT experienced a 48% 
improvement in metrics while going from 0dB to low 
SNR.  This highlights the classical time-frequency 
analysis techniques mediocre performance in a low SNR 
environment, and also highlights the Hough transform’s 
robust performance in a low SNR environment.  This 
translates to improved readability of the Hough 
transform plot over the classical time-frequency analysis 
representation in low SNR environments.  As noted 
previously, the XFPs in Table 2 are representative of the 
fact that, due to computational complexity, there was no 
WVD testing accomplished at lower than 10dB (except 
for the 256 sample cases).  Had testing been able to be 
accomplished at lower than 10dB SNR levels for the 512 

sample cases, the XFP numbers would have likely 
increased as the SNR level decreased.  Table 2 shows 
by-and-large that the Hough transform’s metrics were 
more accurate than the classical time-frequency 
analysis techniques’ metrics at every SNR level. 

From Table 3, it was seen that the percent error 
of chirp rate, percent detection, and low SNR are all 
better for Task 2 (triangular modulated FMCW, 
modulation bandwidth=2400Hz) than for Task 1 
(triangular modulated FMCW, modulation bandwidth= 
500Hz) for both the classical time-frequency analysis 
techniques and the Hough transform.  As per Figure 10, 
the modulation bandwidth is a measure from the highest 
frequency point of a signal to the lowest frequency point 
of a signal.  Therefore, the ‘thickness’ of a signal will 
affect the modulation bandwidth measurement of a 
‘shorter’ signal (Task 1 – left-hand side of Figure 10)) 
more than that of a ‘taller’ signal (Task 2 – right-hand 
side of Figure 10)).  Because of this, the modulation 
bandwidth percent error will be lower for Task 2 (the 
‘taller’ signal) than for Task 1 (the ‘shorter’ signal).  Since 
chirp rate is proportional to modulation bandwidth, then 
chirp rate percent error will be lower for Task 2 (the 
‘taller’ signal) than for Task 1 (the ‘shorter’ signal).  As 
mentioned previously, chirp rate is proportional to time-
frequency localization; therefore time-frequency 
localization will be better for Task 2 than for Task1.  
Better time-frequency localization translates to better 
readability, which in turn makes for better percent 
detection and low SNR values, which accounts for Task 
2 having better metrics for these 2 parameters than Task 
1.  For the Hough transform, the ‘longer’, ‘tighter’ signal 
of Task 2 translates to a ‘higher’ (greater accumulator 
value) and ‘tighter’ spike in the Hough transform plot.  
The ‘higher’ spike accounts for the better percent 
detection and low SNR values of Task 2, because the 
signal (spike) is that much higher than the noise floor.  
The ‘tighter’ signal makes for a more accurate theta 
value extraction, which in turn makes for a more 
accurate chirp rate (since chirp rate is proportional to 
theta per the methodology section).  It was also noted 
that for the classical time-frequency analysis techniques, 
the low SNR value was lower for Task 3 (4-component 
FSK signal) than for Task 4 (8-component FSK signal).  
This may be due to the fact that the Task 3 signal has 
only 4 components, each of which is twice as long as 
the Task 4 signal’s 8-components.  This means that at 
low SNR levels, the Task 3 signal has a better chance of 
at least a portion of each of its 4 (longer) signal 
components exceeding the low SNR threshold than 
does the Task 4 signal with its 8 (shorter) components. 
Table 3 shows by-and-large that the Hough transform’s 
metrics were more accurate than the classical time-
frequency analysis techniques’ metrics for each of the 4 
Tasks. 

Figure 11 shows that the Spectrogram, though 
the fastest classical time-frequency analysis technique 
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[HLA92], did not have the ability to detect the signal in a 
low SNR environment (-5dB to -10dB).  However, in the 
presence of noise, the integration carried out by the 
Hough transform produces an improvement in SNR 
[INC07], [YAS06], [NIK08], and therefore the Hough 
transform was able to ‘dig’ the signal out of the noise.  
The ability to back-map from the Hough transform to the 
time-frequency representation, based on theta and rho 
values of the signal, allowed for a quick deduction that 
the signal (in the time-frequency representation) was 
nearly ‘flat’ and that it was located near the middle of the 
plot (frequency-wise).  The ability to zoom-in (Y direction 
only) on the receiver IF bandwidth (the yellow portion of 
the Spectrogram of Figure 11) and then perform a 
Hough transform of the Spectrogram (Figure 12) made 
possible the detection and chirp rate extraction 
(0.28MHz/usec) of  the signal, and also the 
determination that the signal was a chirp and not a tone.  
Back-mapping once again allowed for the signal 
location to be found in the time-frequency 
representation.  Once the modulation bandwidth 
(103MHz) and modulation period (389.34usec) values 
were extracted, and the chirp rate (modulation 
bandwidth/modulation period) was calculated 
(0.264MHz/usec, very close to the Hough transform 
calculated value of 0.28MHz/usec), then identification of 
the LPI radar device that emitted the signal was straight-
forward. 

Recapping, the metrics data backs up the 
following introductory assumptions:   

The classical time-frequency analysis 
techniques are deficient in the areas of cross-term 
interference and mediocre performance in low SNR 
environments, making for poor readability and 
consequently, inaccurate detection and parameter 
extraction of LPI radar signals.  

The Hough transform’s qualities of cross-term 
reduction, separating signals from cross-terms, and 
good performance in low SNR environments make for 
better readability and consequently, for more accurate 
signal detection and parameter extraction of LPI radar 
signals. 

V. Conclusions 
It was noted that digital intercept receivers are 

currently moving away from Fourier-based analysis and 
towards classical time-frequency analysis techniques, 
such as the Wigner-Ville distribution, Choi-Williams 
distribution, spectrogram, and scalogram, for the 
purpose of analyzing low probability of intercept radar 
signals (e.g. triangular modulated FMCW and FSK).  
Though these classical time-frequency techniques are 
an improvement over the Fourier-based analysis, it was 
shown through the testing plots that they suffer from a 
lack of readability, due to cross-term interference, and a 
mediocre performance in low SNR environments, as 
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brought out in the discussion section of this chapter. It 

was shown through testing metrics that this lack of 
readability led to inaccurate detection and parameter 
extraction of the LPI radar signals, which would 
undoubtedly make for a less informed (and therefore 
less safe) intercept receiver environment.  Simulations 
were presented that compared time-frequency 
representations of the classical time-frequency 
techniques with those of the Hough transform.  Two 
different triangular modulated FMCW LPI radar signals 
and two different FKS LPI radar signals (4-component 
and 8-component) were analyzed. The following metrics 
were used for evaluation of the analysis: percent error of 
chirp rate, percent detection, number of cross-term false 
positives, and lowest signal-to-noise ratio for signal 
detection.  Experimental results demonstrated that the 
Hough transform’s ability to suppress cross-term 
interference, separate signals from cross-terms, and 
perform well in the presence of noise did indeed lead to 
improved readability over the classical time-frequency 
analysis techniques, and consequently, provided more 
accurate signal detection and parameter extraction 
metrics (smaller percent error from true value) than the 
classical time-frequency analysis techniques. In 
summary, this paper provided evidence that the Hough 
transform has the potential to outperform the classical 
time-frequency analysis techniques.  In addition, the 
Hough transform was utilized to detect, extract 
parameters, and properly identify a real-world LPI radar 
signal in a low signal-to-noise ratio environment where 
classical time-frequency analysis failed.  Future plans 
include automation of the metrics extraction process, 
analysis of additional low probability of intercept radar 
waveforms of interest, and analysis of other real-world 
low probability of intercept radar signals utilizing more 
powerful computing platforms.
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