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Levenberg – Marquardt’s Algorithm used for 
PID Controller Parameters Optimization 

Ahmed S. Abd El-Hamid α, Ahmed H. Eissa σ & ALy Radwan ρ

Abstract- The determination of parameters of controllers is an 
important problem in automatic control systems. In this paper, 
the Levenberg Marquardt (LM) Algorithm is used to effectively 
solve this problem with reasonable computational effort. The 
Levenberg Marquardt (LM) Algorithm for optimization of three 
term (PID) controller parameters with dynamic model of pH 
neutralization process is presented. The main goal is to show 
the merits of Levenberg Marquardt algorithm optimization and 
to determine its suitability in the area of control systems. 
Lastly, the application of this approach to the calculation of the 
parameters of PID controller shows that the Levenberg 
Marquardt (LM) algorithm has a better dynamic performance 
of pH neutralization process. 
Keywords: parameters optimization, PID controller, pH 
neutralization process, levenberg marquardt (LM) 
algorithm. 

I. Introduction 

n mathematics and computing, the Levenberg–
Marquardt Algorithm (LMA), also known as the 
damped least-squares (DLS) method, is used to solve 

non-linear least squares problems. These minimization 
problems arise especially in least squares curve fitting. 
The LMA interpolates between the Gauss–Newton 
Algorithm (GNA) and the method of gradient descent. 

The LMA is more robust than the GNA, which 
means that in many cases it finds a solution even if it 
starts very far off the final minimum. For well-behaved 
functions and reasonable starting parameters, the LMA 
tends to be a bit slower than the GNA. LMA can also be 
viewed as Gauss–Newton using a trust region 
approach. The LMA is a very popular curve-fitting 
algorithm used in many software applications for solving 

generic curve-fitting problems. However, as for many 
fitting algorithms, the LMA finds only a local minimum, 
which is not necessarily the global minimum [1]. The 
primary application of the Levenberg–Marquardt 
algorithm is in the least squares curve fitting problem: 
given a set of 𝑚𝑚 empirical datum pairs of independent 
and dependent variables,  (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)  optimize the 
parameters 𝛽𝛽  of the model curve  𝑓𝑓(𝑥𝑥,𝛽𝛽)  so that the 
sum of the squares of the deviations becomes minimal. 

𝑆𝑆(𝛽𝛽) = �[𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛽𝛽)]2
𝑚𝑚

𝑖𝑖=1

 

The Levenberg-Marquardt (LM) algorithm is an 
iterative technique that locates the minimum of a 
multivariate function that is expressed as the sum of 
squares of non-linear real-valued functions [4, 6].  

In the other hand, a common problem in control 
system design is establishing the appropriate value of 
controller gains. In general a low value of gain produces 
a slow system response, while high gain values can 
cause an excessively-oscillatory response with the 
possibility of instability. Somewhere between these 
extremes is a value of gain that produces the best 
system response. The essential function of a feedback 
control system is to reduce the error, 𝑒𝑒(𝑡𝑡) between any 
variable and its demanded value to zero as quickly as 
possible. Therefore, any criterion used to measure the 
quality of system response must take into account the 
variation of the error over the whole range of time. Four 
basic criteria are in common use: 

                                                        Integral of absolute error (IAE) = ∫ |𝑒𝑒(𝑡𝑡)|𝑑𝑑𝑡𝑡∞
0  

                                                        Integral of squared error (ISE) = ∫ {𝑒𝑒(𝑡𝑡)}2∞
0 𝑑𝑑𝑡𝑡 

                                                        Integral of time multiplied by absolute error (ITAE) = ∫ 𝑡𝑡∞0 |𝑒𝑒(𝑡𝑡)|𝑑𝑑𝑡𝑡 

                                                        Integral of time multiplied by squared error (ISE) = ∫ 𝑡𝑡∞0 {𝑒𝑒(𝑡𝑡)}2𝑑𝑑𝑡𝑡 

For any of the possible criteria, the best 
response corresponds to the minimum value of the 
chosen criterion. Note that in all cases it is either the 
absolute error or the squared error which is involved, 
straightforward integration of the error would produce 
zero  result,  even if the system response was a constant  
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amplitude oscillation. IAE is often used where digital 
simulation of a system is being employed, but it is 

inapplicable for analytical work, because the absolute 
value of an error function is not generally analytic in 
form. This problem is overcome by the ISE criterion. The 
ITAE and ITSE have an additional time multiplier of the 
error function, which emphasizes long-duration errors, 
and therefore these criteria are most often applied in 
systems requiring a fast settling time [3, 5].

 

I 

              
                                     

            

© 20 15    Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)

V
ol
um

e 
 X

V
  

Is
su

e 
I 
 V

er
si
on

 I
  

  
  
 

  

25

Y
e
a
r

20
15

C

In this paper, the shape of the complete closed 
loop response, from time 𝑡𝑡 = 0, until steady state has 
been reached, could be used for the formulation of a 



 
 

  
dynamic performance criterion. The simple criteria of 
this category are based on the entire response of the 
process and the integral of the Square Error (ISE) 
criterion

 

used here, where

 𝐼𝐼𝑆𝑆𝐼𝐼 = � 𝑒𝑒2(𝑡𝑡)
∞

0
𝑑𝑑𝑡𝑡 = � �Ysp (t)–

 

Y(t)�2
∞

0
𝑑𝑑𝑡𝑡

      

(1)

 
Where 𝑒𝑒(𝑡𝑡)

 

=

 

𝑌𝑌𝑠𝑠𝑠𝑠(𝑡𝑡)

 

–

 

𝑌𝑌(𝑡𝑡)

 

is the deviation 
(error) of the response from the desired set point.

 
The ideal continuous time domain PID controller 

for a SISO process is expressed in the Laplace domain 
as follows:

 
𝐺𝐺(𝑠𝑠) = 𝐾𝐾𝑠𝑠 +

𝐾𝐾𝑖𝑖
𝑠𝑠

+ 𝐾𝐾𝑑𝑑𝑆𝑆
   

(2)

 

With Kp  = proportional gain, Ki = integral time 
constant and Kd  = derivative time constant.  

II. Mathematical  Model of ph 
Neutralization Process 

Consider a pH neutralization process as shown 
in Fig. 1. The flow rates of acid, buffer, base and effluent 
streams are denoted by 𝑞𝑞1,𝑞𝑞2,𝑞𝑞3, and 𝑞𝑞4 , respectively. 
Output of the process is the pH value of the effluent 
stream, and the flow rate of base stream,  𝑞𝑞3  is the 
control input. A dynamic model is derived using the 
conservation laws and reactions equilibrium. The 
modeling assumptions include perfect mixing, constant 
volume of the neutralization tank ( V ), and complete 
solubility of the ions involved. The chemical reactions in 
the system are as follows [8]: 

 Fig. 1
 
:
 
pH neutralization process

𝐻𝐻2𝐶𝐶𝐶𝐶3 ↔𝐻𝐻+ + 𝐻𝐻𝐶𝐶𝐶𝐶3
−

 
𝐻𝐻𝐶𝐶𝐶𝐶3

− ↔𝐻𝐻+ + 𝐶𝐶𝐶𝐶3
2−

 
𝐻𝐻𝑁𝑁𝐶𝐶3 →𝐻𝐻+ + 𝑁𝑁𝐶𝐶3

−
 

𝑁𝑁𝑁𝑁𝐻𝐻𝐶𝐶𝐶𝐶3 →𝑁𝑁𝑁𝑁+ + 𝐻𝐻𝐶𝐶𝐶𝐶3
−

 
𝑁𝑁𝑁𝑁𝐶𝐶𝐻𝐻 →𝑁𝑁𝑁𝑁+ + 𝐶𝐶𝐻𝐻−

 
The equilibrium constants for these reactions 

are: 

𝐾𝐾𝑁𝑁1 =
[𝐻𝐻𝐶𝐶𝐶𝐶3

−][𝐻𝐻+]
[𝐻𝐻2𝐶𝐶𝐶𝐶3]  

𝐾𝐾𝑁𝑁2 =
[𝐶𝐶𝐶𝐶3

2−][𝐻𝐻+]
[𝐻𝐻𝐶𝐶𝐶𝐶3

−]  

𝐾𝐾𝐾𝐾 = [𝐻𝐻+] + [𝐶𝐶𝐻𝐻−] + [𝐶𝐶𝐶𝐶3
2−] 

The chemical equilibrium equations are 
modeled using the reaction invariant concept. For this 
system, concentrations of reaction invariants are defined 
as: 

 
 

𝑥𝑥1 = [𝑁𝑁𝐶𝐶3
−]

 

𝑥𝑥2 = [𝑁𝑁𝑁𝑁+]

 

𝑥𝑥3 = [𝐻𝐻2𝐶𝐶𝐶𝐶3] + [𝐻𝐻𝐶𝐶𝐶𝐶3
−] + [𝐶𝐶𝐶𝐶3

2−]

 

Denoting,

 

𝑦𝑦

 

=

 

𝑠𝑠𝐻𝐻

 

the ions neutrality balance in 
the tank results the following static equation:

 

ℎ(𝑥𝑥,𝑦𝑦) = −𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3𝑐𝑐𝑥𝑥3 + 10−𝑦𝑦 − 10𝑦𝑦−𝑃𝑃𝐾𝐾𝐾𝐾 = 0      (3)

 

𝑐𝑐𝑥𝑥3 =
2 + 10𝑃𝑃𝐾𝐾2−𝑦𝑦

1 + 10𝑃𝑃𝐾𝐾2−𝑦𝑦 + 10𝑃𝑃𝐾𝐾1+𝑃𝑃𝐾𝐾2−2𝑦𝑦

 

𝑃𝑃𝐾𝐾1 = − log10 𝐾𝐾𝑁𝑁1

 

𝑃𝑃𝐾𝐾2 = − log10 𝐾𝐾𝑁𝑁2

 

The dynamic equations are given by:

 

𝑑𝑑�̇�𝑥1
𝑑𝑑𝑡𝑡

= 𝑞𝑞1
𝑉𝑉

(𝐾𝐾11 − 𝑥𝑥1) + 𝑞𝑞2
𝑉𝑉

(𝐾𝐾21 − 𝑥𝑥1) + 𝑞𝑞3
𝑉𝑉

(∝1− 𝑥𝑥1)   

 

(4)

 

𝑑𝑑�̇�𝑥2
𝑑𝑑𝑡𝑡

= 𝑞𝑞1
𝑉𝑉

(𝐾𝐾12 − 𝑥𝑥2) + 𝑞𝑞2
𝑉𝑉

(𝐾𝐾22 − 𝑥𝑥2) + 𝑞𝑞3
𝑉𝑉

(∝2− 𝑥𝑥2)

  

(5)

 

𝑑𝑑�̇�𝑥3
𝑑𝑑𝑡𝑡

= 𝑞𝑞1
𝑉𝑉

(𝐾𝐾13 − 𝑥𝑥3) + 𝑞𝑞2
𝑉𝑉

(𝐾𝐾23 − 𝑥𝑥3) + 𝑞𝑞3
𝑉𝑉

(∝3− 𝑥𝑥3)

  

(6)

 

Where:

 

© 2015  Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)

V
ol
um

  
  
 

  Y
e
a
r

20
15

26

C
e 

 X
V
  

Is
su

e 
I 
 V

e r
si
on

 I
  

      
     

Levenberg – Marquardt’s Algorithm used for PID Controller Parameters Optimization

𝑉𝑉: Volume of the mixing tank, ml
𝐾𝐾𝐾𝐾: Dissociation constant of water, 10−14

𝐾𝐾𝑁𝑁𝑖𝑖 : ith dissociation constant of acid
𝐾𝐾𝑖𝑖 : Concentration of the ith species in the process 
stream, mol/l



 
 

 
 

  
 

 

𝐾𝐾1𝑖𝑖 :

 

Concentration of the ith species in the acid stream, 
mol/l

 

𝐾𝐾2𝑖𝑖 :

 

Concentration of the ith species in the buffer 
stream, mol/l

 

𝑞𝑞𝑖𝑖 :

 

Flow rate of acid, buffer and base stream in 
simulation, ml/s

 

∝𝑖𝑖 :

 

Concentration of the ith species in the titrating 
stream, mol/l

 

𝑥𝑥𝑖𝑖 :

 

Reaction invariant of ith species, mol/l

 

𝑦𝑦:

  

Process variable, pH

 

𝑢𝑢:

 

Flow rate of the titrating stream, ml/min or ml/s

 

III.

 

Simulation Results

 

The closed loop control system was solved 
using   Levenberg–Marquardt’s   optimization   approach 

 

with sampling time of 0.001 s. The simulation method 

combines SIMULINK module for pH neutralization 
model and M-file for LMA approach. A list of M-file 
programs used in the paper is provided in Appendix 1 
and 2. Figure (1 and 2) show the responses of the pH 
neutralization obtained with change in pH set point. The 
optimal gains of PID controller are calculated to 
minimize the error function which described in equation

 (2). Also the values of gains of PID controller are plotted. 
The response of pH value tends to set point value with 
minimum steady state error and the values of gains tend 
to minimum values once the error reaches to zero value. 
Figure (3) show the change in set point from pH = 6 to 
7, noticed that the spike value of manipulated variable 
(q3) and the values of gains (Kp and Ki) tend to 
increasing while the gain (Kd) tends to decreasing. In 
other hand, figure (4) show the change in set point from 
7 to 6, the

 
value of manipulated variable (q3) and the 

value of gains (Kp, Ki and Kd) tend to decreasing.
 

 
 
 
 
 

 

Fig. 1

 

:

 

Simulation results of PID controller and values of parameters
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Fig. 2 : Simulation results of PID controller and values of parameters 

 

Fig. 3
 
:
 
Simulation results of PID controller and values of parameters
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Fig. 4 : Simulation results of PID controller and values of parameters 

IV. Conclusion 

The paper presents an application of the 
Levenberg-Marquardt Algorithm (LMA) to optimization of 
parameters (Kp, Ki, Kd) of the PID controller structure 
according to minimum of integral square error. The 
simulated results were obtained of parameters by 
means of computer program implemented in Matlab 
software. As an example, the optimization of parameters 
of PID controllers with reference to a ph Neutralization 
process was presented. 
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Appendix
 
(1)

 

%Determination of PID controller prameters using "Levenberg-Marquardt %Algorithm"
 

%Step 1: Write an M-file tracklsq.m.
 

function [Kp,Ki,Kd] = phpidL2015k
 

ph2015 % Load the simulink model
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k0 = [0 0 0]; % Set initial values of parametrs 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 

%%%Create or edit optimization options structure 

options = optimset('Algorithm','levenberg-marquardt','Display','iter',... 

'TolX',1e-5,'TolFun',1e-9,'TolCon',1e-6); 

k = lsqnonlin(@tracklsq, k0, [], [], options); 

Kp = k(1); Ki = k(2);Kd = k(3); 

function F = tracklsq(k) 

Kp = k(1); 

Ki = k(2); 

Kd = k(3); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 

% Choose solver and set model workspace to this function 

%Step 2: Invoke optimization routine. 

simopt = simset('solver','ode5','SrcWorkspace','Current'); 

[t,x,y1,y2,y3] = sim('ph2015',[0 400],simopt); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%F = set point - actual value; % Compute error value 
F = y2-y1; 
end 
% 
% Put variables back in the base workspace 
Kp = k(1) 
Ki = k(2) 
Kd = k(3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%plot(tout,yout,'r',tout,yset,'-b'); 
% Set axes and labels. 
%axis([0 30 -1.6 1.6]); xlabel('Time'); ylabel('Amplitude'); 
clf reset 
     subplot(2,1,1),plot(t,y1,'r',t,y2,'-.b','LineWidth',2);

    title('levenberg-marquardt')

    legend({'pH','pH setpoint'},'Location','SE','FontSize',8')

    xlabel('Time (min)','FontSize',12')

    ylabel('pH','FontSize',12) 

    grid on

 
   

 
   subplot(2,1,2),plot(t,y3,'r','LineWidth',2);

 
   xlabel('Time (min)','FontSize',12')

 
   ylabel('q3 (ml/s)','FontSize',12') 
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   grid on
   end
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Appendix

 

(2)

 
% Read Mat. Files of PID gains

 

% ki(First number, second number)first number points to raw number

 

%

 

second number points to col. number

 

%

 

load ki.mat; %# assume this contains a matrix called ki

 

load kp.mat

 

load kd.mat

 

for i=1:1:51 %# numbers of columns

 

x(i) = ki(1,i); %# numbers from all rows, column 1, into X

 

x1(i)=kp(1,i);

 

x2(i)=kd(1,i);

 

y(i)= ki(2,i); %# numbers from all rows, column 2, into Y

 

y1(i)= kp(2,i);

 

y2(i)=kd(2,i);

 
  

subplot(3,1,1),(plot(x,y,'o'));

 

title('PID Parameters','FontSize',12')

 

ylabel('Ki','FontSize',12) 

 

subplot(3,1,2),(plot(x1,y1,'+'));

 

ylabel('Kp','FontSize',12) 

 

subplot(3,1,3),(plot(x2,y2,'*'));

 

xlabel('Time (min)','FontSize',12')

 

ylabel('Kd','FontSize',12) 

 
  

end
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