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Multi-Body Dynamic Modeling and Simulation of
Crawler-Formation Interactions in Surface

Mining Operations —

Crawler Kinematics

Samuel Frimpong * & Magesh Thiruvengadam °

Abstract- Surface mining operations use large tracked shovels
to achieve economic bulk production capacities. Shovel
reliability, maintainability, availability and efficiency depend on
the service life of the crawlers. In rugged and challenging
terrains, the extent of crawler wear, tear, cracks and fatigue
failure can be extensive resulting in prolonged downtimes with
severe economic implications. In particular, crawler shoe wear,
tear, cracks and fatigue failures can be expensive in terms of
maintenance costs and production losses. This research study
is a pioneering effort for understanding and providing long-
term solutions to crawler-formation problems in surface mining
applications. The external forces acting on the crawler shoes
and oil sand are formulated to determine system kinematics.
The dynamic model focuses on the external force from
machine weight, the crawler contact forces, the contact friction
forces and the inertia and gravity forces using multi-body
dynamics theory. A virtual prototype simulator of the crawler
dynamics is simulated within the MSC ADAMS environment.
The simulation results for kinematics (displacement, velocities
and accelerations) of selected crawler track shoes are
presented. The results show that during translation motion, the
track's maximum lateral slide and vertical bounce from the
equiliorium position are 1 cm and 3.5 cm respectively. The
corresponding magnitudes of maximum lateral and bouncing
velocities and accelerations are about 0.06 m/s and 0.45 m/s
and 1.8 m/s2 and 27.0 m/s2 respectively. The crawler track
also rotates while translating with angular velocities about x, y
and z axes reaching maximum magnitudes of 12.5 deg/s, 73.0
deg/s and 1.6 deg/s. During the turning motion, the crawler
track experiences varying bouncing and rolling motions
causing its maximum lateral velocity to increase 5 times and
vertical bouncing velocities to increase 9 times the maximum
values encountered during translation. This study provides
guidelines to simulate flexible crawler track-bench interactions
in oil-sand mine for predicting and improving fatigue life during
dynamic loading of the crawler shoes.

Keywords: surface mining, crawler-terrain interactions,
multi-body dynamic theory, crawler dynamic modeling,
virtual prototype simulation.

. [NTRODUCTION

able shovels are widely used in surface mining
operations. The lower works of this shovel

comprise propel and crawler systems, which
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The crawler tracks are made up of shoes that
are connected together by link pins to form a continuous
chain [2]. Multi-body dynamics study on crawler-terrain
interactions is non- existent for large shovels in surface
mining operations but it is required to provide
knowledge of crawler performance and fatigue life.
Fatigue life modeling and analysis are also required to
develop preventive maintenance plans, component
replacements and rebuilds to extend the life of the
crawlers and reduce their maintenance costs. Nakanishi
and Shabana (1994) used a 2-D hydraulic excavator
model to study the multi-body dynamics of a tracked
vehicle. The track interaction with sprockets, rollers and
ground were modeled using the spring-damper force to
calculate the track-terrain normal contact forces. The
tangential force was modeled using a simple Coulomb
friction model. Choi et al. (1998) and Lee et al. (1998)
extended the 2-D study of Nakanishi and Shabana
(1994) to a 3-D contact force models of a hydraulic
excavator.
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Figure 1: 4100C BOSS Electric Mining Shovel [1]

Rubinstein and Hitron (2004) used an LMS-
DADS simulation to develop a multi-body dynamic M113
armored carrier tracked vehicle simulator. Hertz theory
was used to model the track- terrain contact force, and
user-defined force elements to calculate normal and
tangential forces between the track and the terrain.
Rubinstein and Coppock (2007) extended this model by
including grousers in the track-terrain model. Ferretti
and Girelli (1999) developed a 3-D dynamic model of an
agricultural tracked vehicle using Newton-Euler rigid-
body theory. They introduced a track-terrain model
using soil mechanics theory to generate the dynamics of
the system. They used these parameters as input in the
dynamic model to calculate sinkage and shear
displacement of the track.

Ryu et al. (2000) developed a computational
method for a non-linear dynamic model of military
tracked vehicle. They used compliant force elements
between the pins and track links to increase the degrees
of freedom (DOF) based on the track-terrain contact
force model by Choi et al. (1998). Madsen (2007) used
MSC ADAMS to simulate a complex tracked hydraulic
excavator. The model used the contact force model in
ADAMS to define the crawler-terrain interactions. Ma
and Perkins (1999) developed a hybrid track model for a
large mining shovel crawler using continuous and multi-
body track model. A commercial multi-body dynamics
code, DADS, was used to assemble the continuous and
multi-body track vehicle model. Their study was limited
to studying a 2-D dynamic contact between track and
sprocket during the propel motion.

Previous research on multi-body dynamic
models has also focused on shovel dipper-bank
interactions. Frimpong et al. (2005) used an iterative
Newton-Euler method to develop a dynamic model of

boom, dipper handle and dipper assembly. Their
dynamic model identified the important factors that
determine the performance of the shovel during its
digging phase. Frimpong and Li (2007) also modeled
the interaction between the dipper of a cable shovel and
oil sands formation using multi-body dynamics theory. In
addition, the shovel boom was made flexible to
determine its deformation and stress distribution during
shovel operations.

Frimpong and Thiruvengadam (2015) have
formulated the kinematics of the crawler-flexible terrain
interactions of a large mining shovel in surface mining
operations (P&H 4100C BOSS Electric Shovel in Figure
1). They showed that 132 DOFs in the crawler-terrain
system are driven by external forces and dynamic
analysis is required to generate the remaining DOFs.
This paper advances the kinematic models to formulate
the dynamic models for the crawler-terrain interactions
based on the rigid multi-body dynamics theory [14, 15,
16 and 17].

[I.  RIGID MULTI-BODY DYNAMICS OF
CRAWLER-TERRAIN INTERACTIONS

Figure 2 illustrates the geometry of the crawler
track assemblies for the P&H 4100C Boss shovel. The
track is modeled using the crawler track dimensions
given in Table 1. Only the open track chain of the
crawler assembly, in contact with the ground (Figure 1),
is used for this study. Since the crawler track is made up
of crawler shoes, a simplified crawler shoe model is
developed first and then connected together to form the
multi-body model of track assembly. This simplified
model is generated in Solidworks based on the actual
crawler shoe model for P&H 4100C Boss shovel [18].

Table 1. Mass properties of system [13, 18]

Body Density (kg/m°) Volume (m®) Mass (kg)
Crawler Shoe 7847.25 0.5966 4681.67
Oil-sand unit 1600.0 98.0 1.568 x 105

© 2015 Global Journals Inc. (US)



0il Sand units

Figure 2 : Crawler track assembly interacting with the ground

The mass moment of inertia of each body in the
system used for the dynamic analysis [19, 20 and 21] is

obtained directly from MSC ADAMS. The crawler shoes
2-14 are identical and all of them have the same mass
moment of inertia about their centers of mass.

[1I.  DyNAMIC EQUATIONS OF MOTION

The shovel weight (W), supported by two
crawlers, is uniformly distributed on the crawler shoes
that are in contact with the ground [2]. This study

focuses only on the crawler shoes in contact with the
ground for one crawler track. This crawler track segment

along with one half of the vehicle load (W/2) acting on it
is shown in Figure 3. From Wong (2001), when the
vehicle sinks vertically to the ground the ground exerts
normal force (FN), and tangential force (FT) (longitudinal
and lateral) on the crawler track segment as shown in
Figure 3. These normal and tangential forces are
modeled using inbuilt contact force mechanism in MSC
ADAMS.

w/z

q -.‘ i s‘%s‘i\‘i'ﬁu\‘isﬁsﬁfﬁ-ﬂiﬁsﬁm\

Figure 3 : Ground Forces acting on the shovel crawler track

Crawler shoes dynamic equilibrium for link i: In the multi-
body model shown in Figure 2, the weight (W/2) is
assumed to be equally shared by thirteen crawler shoes.

The uniformly distributed load( W) applied on each shoe

is in addition to its self-weight. The mass of the crawler
shoe is assumed as mi. The free body diagram of a
crawler shoe i with inertia forces in dynamic equilibrium
with external and joint constraint forces is shown in
Figure 4 [14, 22 and 23]. The external forces acting on
the crawler shoe # i are the gravity force (mig) due to
selfweight of the shoe, uniformly distributed load (wi)
due to machine weight and contact forces (Fj, M )
due to the interaction between crawler shoe and ground
as shown in Figure 3. The joint forces are due to reactive

forces at the spherical joints (Fsi_l'i,Ms‘;‘ll and
FSi'Hl,MSi'i“) and parallel primitive joints (F;'—l'i'

Mp" and FYY ME™Y) as shown in Figure 4.

The following dynamic equation of motion uses
the notations and formulation described in Shabana [14,
15]. The dynamic equations of motion for the
constrained rigid body / wusing centroidal body
coordinate system from Shabana [14, 15] is given by
equation (1).

MG’ -Q, =Q. +Q. (1)

i =2,3,...,14 for crawler shoes and/ = 15, 16,...,64 for
oil sand units.

Generalized Inertia Forces of Crawler shoe i = 2, 3,...,14:
The generalized inertia force is given by the left hand
side of the equation 1. From Shabana [14, 15]

C|mye 0
M'= = Mass matrix of the crawler shoej (2)

i
0 my,
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External and Joint Forces

Z
Y
Body coordinate system
o .
X Inertia Forces
M'G - Q;
Figure 4 : Dynamic equilibrium of the rigid crawler shoe
' 0
Q, =|, . |= Vector of generalized quadratic velocity vector )
L(Qv)e
q =[R’ R’y R 4" 0 "= of generalized dcceleration of body (4)
m 0 0 — .
4 . o =GO ©)
my, =0 m 0 5)
0 0 m
IXX IXY IXZ
I,=|1, I, I
; — i T= —; 00 YX YY YX
m,, =G I,,G 6) (10)
(@)= -G'[o x(,;0' )+1;,G'6] ™ on (8) is the uni
Q. o~ [(0 X\Lgp@ |+ Ly ] Equation (8) is the unit vectors along the‘x, Y, Z
axis of the centroidal coordinate system of body £ and
Equation (7) is the generalized quadratic [’ = inertia tensor [14, 22 and 23] of shoe i in its
velocity vector associated with the orientation  centroidal coordinate system aligned with global
coordinates (0). In equation (7), coordinate system shown in Figure 2. Equation (9) is the
angular velocity vector in the body coordinate system.
C i e ; Generalized External Forces acting on crawler
sin@’siny’  cosy’ 0 shoe i = 2, 3..., 14: The first term on the RHS of
G'=|sin®’ Sim/ji _Sim//i 0 8) equation (1) gives the generalized external forces in the

crawler track multi-body system [14].
cos @)’ 0 1

© 2015 Global Journals Inc. (US)



(11)

(Qi)Ris the vector of generalized applied forces
associated with the translation coordinates R);

(Q’e) is the vector of generalized applied forces
associated with the orientation coordinates ().

The gravity force, distributed machine load, and
contact forces are the external forces acting on
the crawler system. The generalized external forces are
obtained from Shabana [14, 15].

The self-weight of the crawler shoe due to its
mass (m hcting at its centroid C is shown in Figure 4.
The mass of the crawler shoe from Table 1 = m' =
4681.67 kg and the gravity force acting at the center of

mass of each crawler shoe = m'g = 432.3 KN. The
gravity force vector (Fg’ ) acting on each crawler shoe i

in the global coordinate system = [0 0 —mig]T The

generalized forces, associated with the gravity force, are
given as equations (12) and (13).

Q. 0
Qr=|Q, |=F.=| 0 (12)
Q! -m'g

Q, =—(AT.G)F!

Body coordinate system

=i

0 -z 7.
(14)
Z |_y X 0

A'is a transformation matrix given in Frimpong
and Thiruvengadam (2015); equation (14) is a skew
symmetric  malrix associated with the vector

U andﬁé = )‘C; yé ZC" is the position vectorof

center of mass of body i with respect to the origin of the
body coordinate system. Since the origin of the
reference point of body i coincide with the center of the

mass of body i, the vector U =0.Therefore, Qj, =0.
These generalized forces are added to the generalized
external force vector Q, in equation (1).

The distributed load on each crawler shoe is
due to the weight of the machine. The total machine
load, excluding the weight of the crawler shoes in
contact with the ground, is assumed to be distributed
uniformly on each crawler shoe as shown in Figure 4.
For example, the total machine weight [1] is 1,410,184
kg. Half of this weight is 705,092 kg. The total number of
crawler shoes in contact with the ground (for the P&H

4100C BOSS) is 16, and thus, the total weight of 16
crawler shoe is 74,907 kg. Therefore the distributed

weight (w') on each crawler shoe in contact with the
ground is equal to 39,387 kg. This research focuses on
the total force and moment exerted by the distributed
load.

wg

Figure 5: Equivalent distributed load on the crawler shoe

This distributed load can be represented by a
single equivalent force ( o= 386.4 kN) and is
assumed to pass through the centroid (d) of the top
surface of each crawler shoe i as shown in Figure 5. The
distributed force vector ( F) ) acting on each crawler

shoe i in the global coordinate system =|0) (0 — wig]T'

The generalized forces  associated with the

distributed force from Shabana (2010) are given
by equations (15) and (16).
0, 0
Q= |0 [=F;=| 0 (15)
0! ~w'g
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Q, =—(A WG )F (16)

u; = [x; y; 5;]1 is the position vector of point of
application of equivalent force F with respect to the
origin of the body coordinate system. These generalized
forces are added to the generalized external force vector
Q. in equation (1).

Contact force between crawler shoe and ground: Figure
4 also shows the 3-D contact forces (normal and
tangential) and the torque between track shoe i and
ground [21, 24 and 25]. These forces will act on the
crawler shoe bottom surface at a point | [28] as shown
in Figure 4. The normal force (Fy)shown in Figure 6 is
calculated using the impact function model in MSC
ADAMS. In this model, when two solid bodies come in
contact with each other a nonlinear spring damper
system is introduced to determine the normal force [26,
27,28 and 29].

B kx® —c, x*Step(x,0,0,d,1) if x>0
"o if x<0

(17)

k — stiffness of the spring = 1 x10°N;mx
— penetration depth = distance variable used in the
impact function model; and e — force exponent = 2.0.
Cmax ~maximum damping coefficient =1x10* N —s/m
and d- penetration depth at which maximum
damping is applied = 0.0001 m. The normal force
vector acting at point | for the crawler shoe i is

F]’;,= [FNx FNy F, .| The coulomb friction model in

Adams is used for calculating tangential frictional force
(Fr)shown in Figure 6. Based on this model, the
frictional force acting at point | is calculated based on
equation (18) [21, 25, 28 and 29].

Fi? v )FiN

u(V ) = friction coefficient defined as a function of
slip velocity vector ~ V =[V_ V  V .] atcontact

point | [28, 29]. The friction parémetérs listed in Table 2
are used in the study for calculating tangential forces.

(18)

Table 2 : Friction Parameters used in the study28, 29]

Static Friction
Coefficient (us)

Dynamic Friction
Coefficient (uq)

Static Transition
velocity (Vy, m)

Dynamic Transition
velocity (Vgy, m)

0.4 0.3

0.01

0.1

Figure 6 . Normal and Tangential Force and Torque calculations

The tangential force vector at contact point | is
given by F} =[FTX Fr, FTZ] The components
of the tangential forces £y, F7, and  Fp.
are calculated by substituting p obtained from
friction coefficient-slip velocity relationship into equation
18 [28, 29]. The friction torque T' about the contact
normal axis shown in Figure 6 impedes any relative
rotation of shoe i with respect to the ground [29]. This

torque is proportional to the friction force FT’ [29].

© 2015 Global Journals Inc. (US)
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R = radius of the contact area [29]. The generalized
forces associated with contact force vector at point |

(FI’ :F]’;/ +F}) and torque T from Shabana (2010).



Q,lr FN,x +FT,x
QIR = Q)l/ :Fll = FN,y +FT,y (20)
Q; FN,Z +FT,z

Q, =—(ATG ) F+@AG)YT @)

u, = [)_C} » 5}]T is the position of contact point | on
body i with respect to the coordinate system. The

generalized forces are added to the generalized external
force vector Q! in equation (1)

Generalized External Forces acting on Oil sand unit | =
15, 16,..., 64. The contact forces, and spring damper

forces are the external forces acting on each oil sand
unit i as shown in Figure 7. The crawler shoes exert
equal and opposite contact forces (F;) and frictional
torque (T*) on oil sand unit i at point J as in Figure 7.
Consequently, the generalized forces associated with
contact force vector F} and friction torque T' on oil
sand unit i is given by equations (22) and (23).

Q. =F,=-F, (22)

Q, =—(ATG ) F +(AGY'T @9

—i _ =i
u, = [xJ
with respect to the body coordinate system shown in
Figure 7.

)7} E;]T= position of contact point J on unit i

Fj, Tt

Z
2-DOF

pit J « PU2
<+——— Qil Sand unit
Z Body fixed Spring-Damper -2
L coordinate F.,
Spring-Damper - 1 system '
Fgq
pi1 P2

Figure 7 : External forces on Oil Sand unit i

In addition to the contact force, two spring-
damper forces are also exerted on the oil sand unit as
shown in Figure 7. This spring damper force acts along
the line connecting points Pi'l and P“2on oil sand unit i
to corresponding points PJ'tand PJ20n default ground
link of MSC Adams (Figure 7). The spring damper force
E;, ‘acting along the line connecting points pit
and P/ from Shabana (2010) can be expressed as in
equation (24).

F,= k(ll _lo)"'Cil (24)
k — spring stiffness; ¢ — damping constant; /; — length of
spring 1 at any time ¢; /, - undeformed spring length;
/ - time derivative of [;.and the spring coefficient,
damping coefficient and length /, are listed in Table 3.

Table 3: Oil Sand Properties

Stiffness (K), (MN/m)

Damping (c), (KN-s/m)

Spring length (l,), (m)

20

120

5.0

The generalized forces associated with spring force F/ 1 can be derived from Shabana (2010) as  in equations

(25) and (26)
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Qi{ = st, f'g1 (25)
j i=i ~i \aii
Qle,l =F, (Alup,lG ) r}{,l (26)
7 =-2L=unit vector along the line of action of force F,, (27)
> Zl
Yy, =Ty — T, (28)
l‘,ia,l is the global position vector of point pi.t Q =-C" (29)
. c qz

on oil sand unit I; 1y, is the global position vector of
point pJ.1 on default ground in MSC ADAMS;
ﬁ;’l = I:’)_C;’,l y;,l 5}"3,1] is the position of contact point
pilon oil sand unit i with respect to its body coordinate
system. Similarly, the generalized forces can be derived
for the spring damper-2 system shown in Figure 7.
These generalized forces are added to the generalized
external force vector | e Q in equation (1).

Generalized Constraint Forces acting on crawler
shoe and oil sand unit i: The crawler shoe j is connected
to crawler shoei-1 andi+1 by four joints (two spherical
and two parallel primitive joints) as shown in Figure 4.
Similarly an oil sand unit i is connected to four adjacent
oil sand units by two spherical joints and two inplane
primitive joints as defined in the kinematics part of this
paper. The generalized constraint forces are obtained
using Lagrange multipliers (A) defined in Shabana [14,
15] and can be expressed in general form as in equation
29.

In equation (29),C =C(q,¢)is the vector of
system kinematic constraint equations (both joint and
driving constraints) and A is the corresponding vector of
system Lagrange multipliers. The number of Lagrange
multipliers in the vector A = total number of constraint
equations in thevector C(q,¢)=n. = 346 or 347 as
defined in kinematics part of this paper. Substituting the
expression for Q! into equation (1), the equation of
motion for part i is given by equation (30).

Mg’ +C}x=Q;+ Q (i=2,3,4,...... ,64) (30)

For m, = 63 interconnected rigid multi-body
system shown in Figure 2, the differential equations of

motion can be written from Shabana (2010) as in
equation (31).

M{+Cih=Q + Q, (31)

_Mz 7 _C:2 ] _Qz T 'Qz 7
T 3 3
M’ 0 C Q. Q; (32)
M = ;Ci=| * [5Q.=]."° [;andQ, =
0 :
64 64 64
L M . _C:64_ _Qe _ _QV _
The total number of differential equations in M CY T T
equation (31) is 6xn, =6x14 = 378, while the number af = Q.+Q,
of unknowns are the sum of n=6xn, = 378 C, 0][4 Qq (34)
generalized accelerations and  n. = 346 or 347
Lagrange multipliers. From Shabana (2010), the The above system of differential algebraic

additional nc equations needed to solve for n + nc
unknowns are obtained from kinematic constraint
acceleration equation defined in Frimpong and
Thiruvengadam (2015) and by equation (33). Equations
(31) and (33) can be combined and can be expressed in
matrix form as in equation (34).

C,i=Q, 33)

2015 Global Journals Inc. (US)

equations is solved numerically using MSC ADAMS
to predict motion parameters and reaction forces.

[V. SOLUTIONS TO THE DYNAMIC EQUATIONS

Adams numerical procedure is verified by solving a
simple two-body dynamic problem analytically and



comparing the analytical results with the numerical
results obtained by solving the same problem with MSC
ADAMS. A two-body dynamic problem in which a
rectangular block whose dimensions and mass
properties are within the same order of magnitude as
the crawler shoe is assumed to slide on a flat
rectangular terrain. The flat terrain is in turn fixed to the
ground. The rectangular block and flat plane interact
through contact forces. The objective of this problem is
to determine the generalized accelerations, joint reaction
forces and driving constraint forces analytically for given
initial conditions at time t, as shown in Figure 8.

In this multi-body system, the flat plane and
rectangular block are labelled as body 2 and body 3 in
Figure 8. respectively. The global and centroidal body
coordinate systems are also shown in Figure 8. The
dimension of the flat terrain is 30m x 1m x 10m and that
of the rectangular block is 0.5m x 0.5m x 3.5 m. The
densities of rectangular block and flat terrain are
assumed to be same as the density of crawler shoe
(Table 1)

2 3 2 2 2 2 2 2 3 3 3 3 3 39T
a=la> ¢’ =[R2 R2 R2 ¢* 0" y* RI R} R} ¢ @ ']
q=[R} R} R} ¢ 0" y* R} R} R} ¢ & y'T
q(t=0)=[15.0 5 —0.5 37/2 n/2 =/2 325 50 025 0 z/2 0]"

qt=0=[0 0000000000 0]

Body 2 is fixed to the ground using fixed joint as
shown in Figure 8 and has zero degrees of freedom.
The position and orientation of the centroidal coordinate
system of body 2 shown in Figure 8 are fixed with
respect to the global coordinate system. The six
constraint equations for body 2 can be written as
equation (39) from Shabana (2010).

C/(q,t)=R’-15.0=0
C,(q.0)=R; -5.0=0

C,(q,t)=R>+0.5=0

C’(a.1)=[C/(a.t) C,(a.7) Cyla.t) C,la.t) Csla.r) Colq.)]

)“2:[11 iz 13 ’14 ’15 }%]T

Body 3 is constrained to move in the x-direction
with a constant velocity of 0.5 m/s without changing its
orientation. But it can move freely in z and y-directions.
The required driving force is assumed to act at the
centroid of body 3. The four driving constraint equations

Rectangular Block (Body 3)

Figure 8 . Schematic of the two body dynamic problem

This two-body system has twelve absolute
Cartesian coordinates. The vector of system generalized
coordinates from Shabana (2010) is expressed as in
equation (35). The absolute velocity vector can be
written as equation (36). At time t = 0, the system
generalized coordinates and velocity vector are defined
by equations (37) and (38).

C,(q0)=¢"~2 =0
2
Cyla.n=0"~7=0

T
C6(q>t) :l/lz _5:0

The constraint equations for body 2 can be

written in a vector form as equation (40) and the

corresponding vector of
equation (41).

Lagrange Multipliers as

(40)

(41)

for body 3 are given by equation (42). The vector of

constraint equations for body 3 is given by equation (43)
and the corresponding vector of Lagrange multipliers is
also given by equation (44).

© 2015 Global Journals Inc. (US)
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OPERATIONS — CRAWLER KINEMATICS

C,(q,1)=R?-3.25-0.5*1=0 2=k A Ay Ayl (44)
_ 43 _ (42)
S(q’t) ¢ =0 The vector of system constraint equations and
C (q t):493 _fzo Lagrange multipliers are given by equations (45) and
o 2 (46). There areltwelve absolute coordinates and ten
clan)=lc"an) Claro e o o S0 o e
Cuola,t)=y* =0
C(a.0)=[C(a1) Glar) Glar) Colas)] ©3
Clat)=[C(a1) Glar) Glat) Clat) Glat) Glat) Clar) Glat) Clar) Colar)] (45)

M=D2 T =T A A A ds d d g Ty ] e

The free-body diagram of flat plane (Body 2) respect to the global coordinate system 0 = [¢
and rectangular block (Body 3) is shown in Figures 9 2

t//z]T at any time is equal to the initial orientation at
and 10. Due to fixed joint constraints (Figure 9), the fgz 0. Thus, the time rate of change of  @?% is also

orientation of body 2 coordinate system vegtor witk; equal to zero.

Joint
Reaction Forces F, (Contact Force)

External Forces

Fixed Joint

Figure 9: Free-body diagram of flat plane (body 2)

Driving Constraint Forces

External Forces

Inertia Forces

Figure 10 : Free-body diagram of rectangular block (body 3)

Similarly  due  to grivings cosnstrgaipts the  The mass inertia matrix of body 2 and body 3 are
orientation of the body 3, 0° =[¢” @° w”] does givenin Table 4.

not change with time . Therefore ,Gs(t): 03(t = 0):

[0 7/2 O]" for anygiven time .Since  6° (t)
isfixed with respect to time 0% ()=[0 0 0]" .
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Table 4 : Mass and Inertia tensor of Body 2 and Body 3

m” (kg) 1;,(kgm®)
Body 1.95025E+008 0 0
2 2-3f863 X 0 1.75717525E+008 0
0 0 1.9697525E+007
m’ (kg) 15
Body 7110.2864583 0 0
3 6825.875 0 7110.2864583 0
0 0 284.4114583

The rectangular block (body 3) sinks vertically to
the ground ( body 2) and hence Fy,=F,,=0
The values of the penetration (X) and penetration velocity
(x) in equation (17 ) to calculate normal force ( x )
and slip velocities (V) in equation (18) to calculate
tangential forces ( F, ) at any time t are obtained by

ADAMS. These values are shown in Table 5 for t = 0.5s.
The friction parameters used in the tangential force
calculation are listed in Table 6. It can be seen from
Table 5 that the tangential forces F7,
since slip velocities in y and z directions, I/sy =V, _=0.

simulating the schematic model in Figure 8 in MSC
Table 5 : Contact Force calculation att = 0.5s using MSC ADAMS
Normal Force (N) Tangential Force (N)
Penetration Penetration Slip Velocities (m/s)
Depth (x), m | Velocity (x), m/s Vs x Vsy Vs.2
-0.0208 -0.1011 0.5 0 0

Table 6 . Friction Parameters for the Analytical Study [28, 29]

Static Friction
Coefficient (us)

Dynamic Friction
Coefficient (uq)

Static Transition
velocity (Vs, m)

Dynamic Transition
velocity (Vy, m)

0.3 0.1

0.0001 0.01

The contact force vector on body 2 is equal and
opposite to that of body 3 as shown in Figure 9
(ie F?=-F}).

The data used to obtain mass matrixIV
Jacobian of the kinematic constraints Cq, generalized
external forces Q, and generalized quadratic velocity
vector Q, in equation (31) for body 2 and body 3 are
listed in Table 7.
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Table 7 : Data used in equation (31)

2.340E6 0 0 0 0 0
0 2.340E6 0 0 0 0
M 0 0 2.340E6 0 0 0
0 0 0 1.9503E8 0 0
0 0 0 0 1.75718E8 0

0 0 0 0 0 1.96975E7
QjT 0 0 -23002618 0 5091625 0
1 0 0 0 0 0
Body 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
C 0 0 0 0 1 0
¢ 0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Q¥ 0 0 0 0 0 0
6825.875 0 0 0 0 0
0 6825.875 0 0 0 0
M? 0 0 6825.875 0 0 0
0 0 0 7110.28646 0 0
0 0 0 0 7110.28646 0

0 0 0 0 0 284.41146
QjT 0 0 -23002618 0 5091625 0
0 0 0 0 0 0
B‘;dy 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
C 0 0 0 0 0 0
¢’ 0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Q¥ 0 0 0 0 0 0

Using Cq = [qu ng] from equation (32)  substituted in to equation 34 and solved for 4 and &.
and equation 45,|t can be shown that Qd = 0 in The results are listed in Tables 8 and 9.
equation 33. The data from Table 7 and Qd‘_=0 are
Table 8 : Solution for q
g | (m/s?) | (mis?) | (m/s?) | (dis?) | (d/is?) | (dfs®) | (mis?) | (m/s?) (m/s?) (dis?) | (dfs?) | (d/s?)
0 0 0 0 0 0 0 0 -3.3236521 | O 0 0
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Table 8 : Solution for q

G | (m/s%) | (mis?) | (m/s?) | (dis®) | (dIs?) | (dis®) | (mis®) | (m/s?) (m/s?) (d/s?) | (dfs?) | (d/s?)
0 0 0 0 0 0 0 0 -3.3236521 | O 0 0

Table 9 : Solution for A

Ao A A3 A4 As %3 A7 g | Ao Ao
A | (N) | (N) (N) (Nm) | (Nm) | (Nm) | (N) | (Nm) | (Nm) | (Nm)
0 0 | -23002618 | 0 |509162.5| 0 |-44275| O 0 | -1106.875

Generalized Constraint Forces

Using the vector A in Table 9, the generalized constraint
forces for body 2 and body 3 is given by equation (47)
from Shabana (2010). These force values are listed in

Table 10. "
2 2 T 2\ T T
Q: = [(Qc )R (Qc )e ] =4 4 4 A A5 ]
(47)
3 3\ T 3\ T T
Q. :[(QC)R (Qc)e ]1:_[/17 00 4 A Ayl
Table 10 : Generalized Constraint Forces
T T
(Qc )R (N) (Qc )0 (N'm)
Body 2 QfT 0 0 23002618 0 -509162.5 0
Body 3 Q¥ 44275 0 0 0 0 1106.875
Actual Fixed Joint Forces on body 2 joint (point K) shown in Figure 9 for body 2 can be
The actual reaction forces R? = [FZ M? u found using generalized constraint forces . From

where  F? and M? are joint reaction forces and Shabana (2010),

moments in the global x, y, and z directions at the fixed

N A O
W=t ] =t <@, o7 ) ®
w2 =A%, 0 =[-150 5.0 -05] and G*' =(A%G?)
Actual Driving Forces on body 3 moments at point D for body 3 (Figure 10) can be

Similarly the actual driving forces D3:[F3 obtained from the generalized driving constraint forces3

M3]T where F? and M? are driving forces and Qi

From Shabana (2010), [F° F° F* (Q?)
M= M M = x(QY), +(G3T)1(Qi ), (49)
u = A% =0 since, ud =[0 0 0] and G¥' = (A3§3)T
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The fixed joint and driving forces are tabulated in Table

11.

Table 11 : Joint and Driving Forces

EE (N) E(N) EZ (N) MZ(N-m) | Mj(N-m) | MZ(N-m)
Body 2 0 0 23002618 115013090 | -344530107.5 0
Body 3 4427.5 0 0 0 -1106.875 0
The comparison between analytical and from Table 12, the absolute value of maximum error

simulated values from Adams is summarized in Table
12. The table 12 shows the generalized accelerations on
body 2 and body 3, actual reaction forces and moments
due to fixed joint on body 2 and driving forces and
moments on body 3 at time t = 0.5 s. It can be seen

between the analytical solution and Adams simulated
results is within 2%. Hence Adams can be used with
confidence for simulating complex multi-body dynamic
simulation problems.

Table 12 : Comparison between Analytical and MSC Adams results att = 0.5s

Quantities Body 2 Body 3
. Error .
Analytical Adams (%) Analytical Adams Error (%)
a, (m/s°) 0 0 0 0 0
ay (m/s%) 0 0 0 0 0
a, (m/s%) 0 0 -3.3236521 -3.3846 -1.83376
Fx (N) 0 0 4427.5 4383.5822 0.991932
Fy (N) 0 0 0 0
F., (N) 23002618 22994000 0.037465 0 0
M, (N-m) 115013090 114970000 0.037465 0 0
My (N-m) -344530107.5 | -344410000 | 0.034861 -1106.875 | -1095.5246 1.025446
M, (N-m) 0 0 0 0 0

The differential algebraic equations (DAE) for
the complex crawler-formation interaction given in
equation (34) are solved in MSC ADAMS using GSTIFF
integrator with 13 formulation [29]. The GSTIFF is a
variable-order, variable-step, multi-step integrator based
on backward difference formula (BDF). It has maximum
integration order of six to calculate solution for the first
order ODE’s wusing multi-step predictor-corrector
method. The solution methodology for the GSTIFF
integrator described below follows the procedure

defined in MSC Adams/Solver user manual [29]. In
Adams the equations of motion in equation (34) are
formulated as

Mg +Ck=Q(g,4.7)

C(q,)) =0 (50)

To use GSTIFF integrator equation (50) is
converted to first order ODE by introducing a new
velocity variable w=q [29] in equation (50). This
substitution results in equation (51).

2015 Global Journals Inc. (US)

M(q)u + Cqu -Q(qyu,2) =0
u—-q=0
C(q,1)=0

(51)

The index of the DAE is defined as the number
of time derivatives required to convert DAEs to a system
of ODEs [29]. The equation (50) or (51) is in the default
Index 3 (13) formulation of GSTIFF integrator. Equation
(51) can also be written in the form of equation (52)

F(y,y,1)=0 (52)

In equation (52) state vector y = [u,q, A]" .

Predictor Step: An explicit predictor step is used to
obtain the initial guess value of vector ¥, at current
time %,.1 in equation (52). In this step, Taylor series

polynomial of given order is fitted using the past values
of vector y to obtain Y .41 -



Corrector Step: The corrector equation for the state
vector y at the current time  Z,.1 can be obtained from
backward difference formula [29] as shown in equation
(53).

yn+l = yn + hﬂOYnJrl (53)

obtained from the previous predictor step. Adams solver
uses iterative Newton-Raphson numerical procedure for
solving newton difference vector Ay arising from
linearization of equation (52). Using first order Taylor's
series, equation (52) can be linearized about 'y =yk

and Y=Y at current time y= y";to obtain
In equation (53) B = constant value specific to  equations (54) and (55).
the order of backward difference formula and Y ,.1 is
. OF ..
Fy, 3,0 =Fly*,y“ o)+ | (y-y )+S| (7-3)=0 (85)
oy ye oy Vo
F F

F(yk,yk,t)+a— ay+ Ay =0

ay k -k ay k -k (56)
y .y Yoy

Using equation (53), equation (56) can be derived as
follows:

y=y = Ay =hB, [y - 3" )= hB,(Ay) (56)
1
Ay = —— Ay
hp,

Substituting equation (56) into equation 55 results in
equation (57)

From equations (51), (52) and (57), equation (58) can be derived as follows:

-Q, Mql'1+Cqu—Qq
%F: 1 0
0 C

q

OF 1 OF ;
— 4+ Ay = —F(y",y",t) (57)
oyl g hBo O,
c’ M 0 0
0 and a—F =10 -I (58)
0 0 0

Substituting equation (58) into equation (57), equation (59) is obtained as follows:

M @, Ma+cia
h,
1 _
hpB,
0 C,

Equation (59) is then solved iteratively using
Newton-Raphson algorithm until solution is converged
for the current time £,,.1 -

Convergence: When the value of residue (|F|) and
correotions|Ay|in equation (59) is small, the GTSTIFF
integrator in MSC Adams estimates local integration
error which is a function of difference between the
predicted and corrected value, step size h and the order
of integration [29]. When this integration error is less
than the specified integration error tolerance in MSC
Adams (specified error 1.0E-003), the solver

CT

q

-Q,

Ay = -F(y*,y*,1)

yh oyt

proceeds to the next time step. Otherwise the integrator
takes a smaller time step and recalculates the solution.
This predictor-corrector process is repeated until the
simulation end time is reached.

Stability: It can be seen in equation (59) when step size h
approaches zero the Jacobian matrix in equation (59)
becomes singular. Hence GSTIFF integrator with -3
formulation becomes unstable at small time steps and
hence an alternative formulation that reduces the index
of DAEs has to be used. The GSTIFF integrator with SI2
(Stabilized Index - 2) formulation modifies 22 equation
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(51) to DAEs with Index 2. This modification stabilizes
the DAEs and eliminates the singularity of the SI2
Jacobian matrix when step size h is closer to zero [29].

V.  RESULTS AND DISCUSSIONS

The crawler track assembly in Figure 2 is
modeled in SOLIDWORKS 2013 and the solid model is
imported into MSC ADAMS. A 3-D virtual crawler track
interacting with oil sands is created in MSC ADAMS to
simulate the dynamic propel action of the crawler track
for two types of motion constraints. It should be noted
that before any propelling operation begins, the oil sand
model along with crawler track is allowed to reach its
static equilibrium position. From the equilibrium position,
the simulation experiment for the 10s period of straight
line and turning motion of crawler track on oil sand
ground have been carried out to study the linear and
angular motion of crawler track, contact forces between
crawler shoes and ground and deflection of the oil sand

0

terrain. In this paper, only the kinematics (displacement,
velocity and accelerations) of crawler shoes are
presented. The dynamic results (contact forces,
constraint forces and total deformation of oil sand) are
presented separately in the force part of this paper.

Case 1: Only Translation: The time variation of
displacement of center of mass of different crawler
shoes in the X, y and z-direction is plotted and is shown
in Figure 11. The x-displacement (Figure 11a) follows
the motion constraint imposed on crawler shoe 13 while
the y and z displacement are determined based on the
external forces acting on each crawler shoes during the
translation motion. The y-displacement (Figure 11b)
shows negligible sliding motion of the crawler track
while the time variation of displacement in the z-direction
(Figure 11c) shows the vertical bouncing motion from its
equilibrium position at time t = 0.
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Figure 11 : Displacement of different crawler shoes

The time variation of velocity of different crawler
shoes in the x, y and z directions are shown in Figure
12. The x - velocity variation in Figure 12a shows that
with the exception of part 14, all other shoes have
fluctuating x - velocity variation in time during their
translation motion. This is because the longitudinal
driving constraint is only applied on part 14 while other

crawler shoes x-velocity behavior are also influenced by
external and joint forces. The lateral sliding velocity (y-
velocity) is the same for all crawler shoes as shown in
Figure 12b. The vertical velocity 23 (Figure 12c) also
shows fluctuating behavior due to vertical bouncing of
crawler track during its propelling motion.
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The accelerations of different crawler shoes in x,
y and z-directions is shown in Figure 13. The
acceleration of part 14 in the x-direction is dictated by
the driving constraint (maximum acceleration on part 14
is 0.03 m/s2), while other parts have large fluctuations in

their values as shown in Figure 13a. The magnitude of
acceleration in the y-direction is much smaller in
comparison to their values in z-direction as shown in
Figures 13b and 13c.
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Figure 14 shows the variation of angular
velocities in x, y and z directions. It can be seen from
Figure 14a that all crawler shoes have same angular
velocity variation with time in x-direction and hence the
whole crawler track rolls about the x-axis during its
propeling motion. This rolling angular velocity attains its
peak value when the crawler track attains its specified x-
translation velocity (Figure 12a) and decreases
thereafter as shown in Figure 14a. The crawler shoes

4 6
Time (s)

(b) (©)

Acceleration of different crawler shoes

also rotates about y-axis (joint axis) with large varying
angular velocity (Figure 14b) causing relative rotational
motion between adjacent shoes of the crawler track. The
crawler track also experiences small fluctuating
rotational velocities along the global z-direction with
average value approximately equal to zero as shown in
Figure 14c. This rotation velocity causes crawler track to
slide left or right from its direction of motion.
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The time variation of angular accelerations
about x, y and z-axes is shown in Figure 15. It can be
seen that the whole crawler track rolls back and forth
with varying x- angular acceleration as shown in Figure
15a. Due to the fluctuating rotational velocity arising
from equivalent revolute joint, the crawler shoes also
have unsteady angular acceleration variation about y-
axis (Figure 15b). The angular acceleration variation in z-
direction (Figure 15c) shows that its average value is
approximately zero and hence the crawler track will
maintain its straight line motion.

6 4 6
Time (s) Time (s)

() ©

Angular velocity of different crawler shoes
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Figure 15 : Angular acceleration of different crawler shoes

Case 2 — Translation and Rotation: In this case the
shovel translates and turns with a prescribed velocity as
discussed in kinematics part of this paper. Due to space
limitations, only results obtained for crawler shoe 9 (Part
10) is plotted and compared with the corresponding
results from translation only motion type. The
comparison results for other crawler shoes will follow the
same general behavior. The time variation of
displacement of center of mass of part 10 in x,y and z -

16.4

directions is shown in Figure 16. Due to the same
translation driving constraint, the x-displacement
overlaps with each other. The y-displacement increases
due to the sliding action of the crawler track arising from
the imposed turning motion. The z-displacement for
both motion type exhibits similar behavior except during
the middle of the turning motion (between 4.0 — 7.0 s)
where the z-displacement show large unsteady behavior
as shown in Figure 16c¢.
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Figure 16 : Displacement of crawler shoe 9

The time variation of velocities in x, y and z
directions for crawler shoe 9 for the case of translation
and turning motion is shown in Figure 17. The x-velocity
variation show similar behavior for both motion types as
shown in Figure 17a. The y-velocity (Figure 17b) shows
large fluctuations during the middle of the turning
motion when compared with translation motion type.
This is due to the irregular increase in the lateral
displacement of the crawler track (y-displacement in
Figure 16b) when the crawler is turning at its prescribed
maximum velocities. The unsteady lateral sliding
coupled with the flexibility of the oil sand unit causes
large amplitude in z-displacement (Figure 16c) and z-
velocity (Figure 17c¢) distributions. This unsteady motion

© 2015 Global Journals Inc. (US)

is brought back to the oscillating steady behavior in less
than 3 seconds as shown in Figures 16¢, 17b and 17c
due to the large damping characteristic of the oil sand
terrain.



0.2 03 5
Translation
Crawler Shoe # (Part10) L Translation+Rotatiop | 4
= Wil
015 it 02 R sk
1 I RAT 015 '
I | 1 2F Crawler Shoe #3 (Part10)
- 1t — s
» I i w g1l M)
E ol i i :'3 :E_ EF
s i > 005F 2 (A e
£ ] e B o —— A
g E oF S g ] Mﬁ},
@ @
05 “AF
> 008 7 oosf =
> J > N
i ok 2F
,‘/ Translation * il
ob—" Translation+Rotation o1sF afF !
Translation i
02 4 Translation+Rotation
L | L L L I I T 7 L I I 1 .
-0.05 -t T o 5 3 10 5o 2 I s B 0
Time (s) Time (s) Time (s}
(a) (0) ©)

Figure 17 : Velocity of crawler shoe 9

The comparison of time variation of acceleration
in x, y and z directions for crawler shoe 9 for both motion
types reveal similar general behavior as shown for
velocity distributions in Figure 17 and hence not plotted.
The angular velocity variation for crawler shoe 9 is
shown in Figure 18. The bouncing action of the crawler
track also produces simultaneous rolling motion as
shown by the angular velocity distribution about x-axis in
Figure 18a. But turning motion exhibits increased rolling
behavior when compared with translation motion due to

the unsteady lateral sliding of the crawler track. The
angular velocity in y-direction shows similar fluctuating
behavior for both motion types while the angular velocity
about z-axis for turning motion follows the rotation
motion constraint (1.0 deg/s) imposed on the moving z-
axis of the body fixed motion coordinate system on part
14. The angular acceleration comparison for both
motion types also shows similar unsteady behavior as
angular velocity (Figure 18) and hence not plotted here.
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Figure 18 : Angular Velocity of crawler shoe 9

VI. CONCLUSIONS

The dynamic equation of motion governing the
multi-body model of crawler track assembly is obtained

to study the propelling motion of crawler track on the oil
sand terrain. A simple two-body contact dynamic
problem is simulated in MSC Adams and the simulation
results for accelerations and constraint forces at a given
time is verified by solving the same problem analytically
using the dynamic equations of motion and comparing
the analytical solution to the simulation results.
Subsequent to analytical verification, a rigid 3D virtual
prototype model of the crawler track interacting with the

oil sand terrain is developed and simulated in ADAMS
environment. The simulation is carried out for the
prescribed translation and rotation motion constraints
on one of the crawler shoes in the track as reported in
the kinematics part of this paper. The interaction
between each crawler shoe and ground is modeled
using contact force formulation in MSC ADAMS. The
kinematic simulation results of the crawler track
propelling on the ground for both driving constraints
show that in 10 s the crawler slips forward for a
maximum longitudinal distance of 0.75 m with vertical
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bouncing, lateral sliding and rotation about the x, y and
z-axes. For translation motion, the maximum values of
lateral sliding and vertical bouncing are 1 cm and 3.5
cm from the equilibrium position. The corresponding
maximum sliding and bouncing velocities and
accelerations are 0.06 m/s and 0.45 m/s and 1.8 m/s2
and 27 m/s2. The maximum magnitude of angular
velocities and accelerations attained about the three
orthogonal axes are 12.5 deg/s, 73.0 deg/s and 1.6
deg/s and 350 deg/s2, 4420 deg/s2 and 115 deg/s2.
For turning motion, these values are 0.5 m and 0.15 m;
0.328 m/s and 4 m/s; and 16 m/s2 and 290 m/s2 for
lateral and vertical displacement, velocities and
accelerations. The maximum magnitude of angular
velocities and accelerations about the x, y and z-axes
are 70 deg/s, 225 deg/s and 7 deg/s; and 3150 deg/s2,
20176 deg/s2, and 350 deg/s2.
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