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Spectral Kurtosis Theory: A Review through 
Simulations
Venkata Krishna Rao M

Abstract- Kurtosis of a time signal has been a popular tool for 
detecting nongaussianity. Recently, kurtosis as a function 
frequency defined in spectral domain has been successfully 
used in the fault detection of induction motors, machine 
bearings. A link between the nongaussianity and 
nonstationaity  has been established through Wold-Cramer’s 
decomposition of a nonstationary signal, and the properties of 
the so-designated conditional nonstationary (CNS) process 
have been analytically obtained. As  the nonstationary signals 
are abundantly found in music, the spectral kurtosis could find 
applications in audio processing e.g. music instrument 
classification and music-speech classification. In this paper, 
the theory of spectral kurtosis is briefly reviewed from the first 
principles and the spectral kurtosis  properties of  some 
popular stationary signals, nonstationary signals and mixed 
processes are analytically obtained.  Extensive Monte Carlo 
simulations are carried out to support the theory. The spectral 
kurtosis of the simulated stationary, nonstationay and mixed 
signals or processes at different signal-to-noise ratios (SNRs) 
is estimated and the results are in perfect match with the 
previous analytical findings. 
Keywords: spectral kurtosis, stft, random amplitude 
sinusoid, chirp, harmonic sinusoid, higher order 
statistics, wold-cramer’s decomposition, mixing 
processes. 

I. Introduction

haracterization of a given signal as noise like or 
tone like finds several applications in music-
speech classification [1,2,3],  perceptual  audio

coding [4], Multi Band Excitation (MBE) model based 
perceptual coding of speech [5] and voice activity 
detection [6].  Within each category, the signals may be 
stationary/nonstationary/transient signal or 
gaussian/nongaussian. The Nongaussianity and/or 
nonstationary signal also occur when a radar signal is 
reflected by a fluctuating target or clutter [7] or when a 
communication signal passes through a fading wireless 
channel [8,9]. The fourth-order cumulant based kurtosis  
of the time signal was traditionally used for 
nongaussianity detection [10], Harmonic Retrieval from 
nongaussian processes[11], nonminimum phase 
system identification [12]. Recently the frequency 
dependent kurtosis defined in spectral domain was 
proposed and successfully used in bearing fault 
detection  [13,14,15]   and   vibratory   surveillance   and 
diagnostics of rotating machines [16]. Spectral Kurtosis 

(SK) was originally introduced by Dwyer [17] where it 
was defined on the real part of the STFT filter bank 
output to overcome the deficiency of the power spectral 
density to detect and characterize the signal transients. 
Vrabie [18] justified the theoretical definition of SK and 
proposed an unbiased estimator of SK. Antoni [19,20] 
formulated SK differently by using Wold-Cramér 
decomposition with  a theoretical basis for the SK 
estimation of non-stationary processes. He also 
practically used it for machine surveillance and 
diagnostics [16,21]. Other applications of spectral 
kurtosis reported in the literature include SNR estimation 
in speech signals [22], denoising [23] and subterranean 
termite detection [24].

In this paper, the important aspects of original 
spectral kurtosis  theory is reviewed from fundamentals. 
The spectral kurtosis  properties of both stationary and 
nonstationary signals as well as the stochastic mixtures 
are analytically obtained.  Extensive Monte Carlo 
simulations are carried out to support the theory 
reviewed and the spectral kurtosis of several processes 
at different signal-to-noise ratios (SNRs) is estimated.
The results are in perfect match with the previous 
analytical findings.  

The paper is organized section wise as follows. 
The mathematical basics of spectral kurtosis are 
introduced in the section II. The Test Signal Set 
comprising several popular signals are analytically 
described in section III. Short time fourier transform 
(STFT) for dynamically estimating the magnitude 
spectrum and the expression for estimation of SK from 
STFT is given in section IV.  In Section V the details of 
Monte Carlo simulations of the Test Signal Set and the 
derived mixture processes, and the simulation results 
are presented. Finally the review summary and future 
work is given in Section VI.

II. Spectral Kurtosis

a) Background
Wold-Cramer’s decomposition uniquely 

describes a non-stationary signal y(t) as the response of 
a causal linear system with time varying impulse 
response h(t, s) excited by a signal X(t) i.e. 

                      𝑌𝑌(𝑡𝑡) = � ℎ(𝑡𝑡, 𝑡𝑡 − 𝜏𝜏)𝑋𝑋(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

−∞
                    (1)

   

C

           
     

© 20 15    Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
    
 

(
)

V
ol
um

e 
 X

V
  

Is
su

e 
V
I 
 V

er
si
on

 I
  

  
  
 

  

49

Y
e
a
r

20
15

F

Author: Vidya Jyothi Institute of Technology, Hyderabad, India. 
e-mail: mvk_rao@hotmail.com

Here h(t,s) means the linear causal impulse response of 
the system at time instant t when excited by an impulse 



 
 

 

 

   

 

 

 
 

 
 

  
 

  

 
 

 
 

 

 
  

   

    

 
 

 
 

 
 

  

     

 

  
 

 
 

  

 
 

 

  

 
 

 

   

 
 

 
  

 

    

 

   

     

 
 

                          

 
   

  
 

  

 

   

 

  

 

            

at time instant t-s. The frequency counterpart of eq.(1) is 
given by 
  

            𝑌𝑌(𝑡𝑡) = � 𝐻𝐻(𝑡𝑡, 𝑓𝑓) exp(𝑗𝑗2𝜋𝜋𝑓𝑓𝑡𝑡)𝑑𝑑𝑋𝑋(𝑓𝑓)
∞

−∞
            (2)

           
where H(t, f) is the time varying transfer function of the 
system, which can be interpreted as the complex 
envelope of signal Y(t) at frequency f and dX(f ) is an 
ortho-normal spectral process associated with input 
driving process X(t). In many cases, H(t, f) is stochastic 
and can be represented with 𝐻𝐻(𝑡𝑡, 𝑓𝑓, 𝜉𝜉) where 𝜉𝜉  is a 
representative random parameter of filter’s time varying 
transfer function. Let  H(t, f)  be conditioned to 𝜉𝜉 i.e. the 
shape of H(t, f) depends on the outcome of the random 
variable 𝜉𝜉. H(t, f, 𝜉𝜉) can be assumed to be time 
stationary, stochastic  and independent of the spectral 
process dX(f). Thus the signal X(t) is stationary in 
general but non-stationary for a particular outcome 𝜉𝜉.
Such a process was designated as conditionally 
nonstationary (CNS) process in [19]. It may be noted 
down that the simplest way  to convert a nonstationary 
process to a CNS process is the time datum 
randomization. Any CNS process driven by a white 
process X(t) of order p ≥ 4 is likely to be leptokurtic i.e. 
its probability density function having tails flatter than 
those of its generating gaussian process and hence 
non-gaussian. In fact, this connectivity between the CNS 
and nongaussianity makes the kurtosis, originally defined 
on time processes to characterize the nongaussianity, a 
very useful in analyzing the nonstationary processes 
through kurtosis defined in spectral domain. 

For the stationary white driving process X(t) of 
order p ≥ 2n , the spectral kurtosis of the nonstationary 
signal Y(t) is defined as the normalized fourth-order 
spectral cumulant [19] as 

К𝑌𝑌(𝑓𝑓) =
𝑆𝑆4𝑌𝑌 (𝑓𝑓)
𝑆𝑆2𝑌𝑌 (𝑓𝑓) − 2 

                                                            
=  

𝐸𝐸{|𝐻𝐻(𝑛𝑛, 𝑓𝑓)|4}
𝐸𝐸{|𝐻𝐻(𝑛𝑛, 𝑓𝑓)|2}2 (2 + 𝜅𝜅𝑋𝑋   ) − 2 ≥ 𝜅𝜅𝑋𝑋                 

=  𝛾𝛾4𝐻𝐻(𝑓𝑓) (2 + 𝜅𝜅𝑋𝑋) − 2 ≥ 𝜅𝜅𝑋𝑋        𝑓𝑓 ≠ 0     (3)

where the factor 2 in place of 3 as in usual definition of 
cumulants comes from the fact that dX(f) is a circular 
random variable, 𝛾𝛾4𝐻𝐻(𝑓𝑓) is the kurtosis of the 
(stochastic) frequency response of the time varying filter 
and 𝜅𝜅𝑋𝑋 is the time kurtosis of the input process.

If Y(t) is a purely stationary process, then  
𝛾𝛾4𝐻𝐻(𝑓𝑓) is independent of frequency and is unity, then 
spectral kurtosis of Y(t) is given by

                                К𝑌𝑌(𝑓𝑓) = 𝜅𝜅𝑋𝑋                                  (4)

which is a constant and independent of the frequency. 
In particular, the spectral kurtosis of a stationary 
gaussian process is zero (i.e. 𝜅𝜅𝑋𝑋  = 0).

b) Mixing Processes
Let Z(t) be the mixture of two processes (i) a 

non-stationary process Y(t) and (ii). a stationary additive 
noise N(t) .

                              𝑍𝑍(𝑡𝑡) = 𝑌𝑌(𝑡𝑡) +  𝑁𝑁(𝑡𝑡)                            (5)

The spectral kurtosis of this mixture is given by [19]

К𝑧𝑧(𝑓𝑓) =
К𝑌𝑌(𝑓𝑓)

[1 + 𝜌𝜌(𝑓𝑓)]2 +
𝜌𝜌(𝑓𝑓)2К𝑁𝑁(𝑓𝑓)
[1 + 𝜌𝜌(𝑓𝑓)]2         𝑓𝑓 ≠ 0       (6)

where 𝜌𝜌(𝑓𝑓) is the local Noise-to-Signal power ratio at 
the frequency f  given by

                                 𝜌𝜌(𝑓𝑓) = 𝑆𝑆2𝑁𝑁 (𝑓𝑓)
𝑆𝑆2𝑌𝑌 (𝑓𝑓)

                                 (7)

If the mixing process N(t) is stationary (white or 
colored) gaussian process, then  К𝑁𝑁(𝑓𝑓) vanishes at all 
frequencies except at 𝑓𝑓 ≠ 0. Thus eq.(6) becomes

                К𝑧𝑧(𝑓𝑓) =
К𝑌𝑌(𝑓𝑓)

[1 + 𝜌𝜌(𝑓𝑓)]2        𝑓𝑓 ≠ 0                       (8)

     
If the noise power is zero i.e. signal is clean, 

then 𝜌𝜌(𝑓𝑓) = 0 and hence

                   К𝑧𝑧(𝑓𝑓) = К𝑌𝑌(𝑓𝑓)               𝑓𝑓 ≠ 0                      (9)

When the process Y(t) is gaussian, eq.(6) 
becomes

                      К𝑧𝑧(𝑓𝑓) =
𝜌𝜌(𝑓𝑓)2К𝑁𝑁(𝑓𝑓)
[1 + 𝜌𝜌(𝑓𝑓)]2 𝑓𝑓 ≠ 0     (10)

where 𝜌𝜌(𝑓𝑓) is finite. If the noise power becomes larger 
and larger, 𝜌𝜌(𝑓𝑓) → ∞, the process Z(t) becomes purely 
the mixing noise process, the spectral kurtosis becomes

                      К𝑧𝑧(𝑓𝑓) = К𝑁𝑁(𝑓𝑓)                 𝑓𝑓 ≠ 0               (11)

III. Test Signal Set

In what follows, some commonly found signals 
are considered for analytically computing the spectral 
kurtosis. The spectral kurtosis of some other signals not 
considered earlier is also obtained analytically.

a) Real Sinusoids
A real sinusoid of constant amplitude and 

constant frequency is given by
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                     𝑦𝑦(𝑡𝑡) = 𝐴𝐴 cos(2𝜋𝜋𝑓𝑓0𝑡𝑡 + 𝜑𝜑)                          (12)

where 𝜑𝜑 is  a constant initial phase from 𝑈𝑈(−𝜋𝜋,𝜋𝜋). 

К𝑌𝑌(𝑓𝑓0) =
𝑆𝑆4𝑌𝑌 (𝑓𝑓0)
𝑆𝑆2𝑌𝑌 (𝑓𝑓0) − 2 =

𝐸𝐸{|𝐴𝐴|4}
𝐸𝐸{|𝐴𝐴|2}2 − 2 = −1         (13)



 

 
  

 

 
 

  

 
 

 
 

 

 
                      

 

 

    

   
 

 

  

 

 
 

    

  

 

 

  
 

  
  
 

 

  

   

 

     

  
 

 

  
  

 
 

 

    

 

 

  

 
  

  

 

  

 
 

 

   

  

  
   

 
  

 
 

 

 

  
 

  

 

A real sinusoid of time varying amplitude and 
constant frequency is given by

                  𝑦𝑦(𝑡𝑡) = 𝐴𝐴(𝑡𝑡) cos(2𝜋𝜋𝑓𝑓0𝑡𝑡 + 𝜑𝜑)   (14)

If the amplitude decreases exponentially, the 
signal is called a damped sinusoid and is given by

                  𝑦𝑦(𝑡𝑡) = 𝐴𝐴 𝑒𝑒−𝑘𝑘𝑡𝑡 cos(2𝜋𝜋𝑓𝑓0𝑡𝑡 + 𝜑𝜑)                    (15)

where k is the damping (bandwidth) factor, 𝑒𝑒−𝑘𝑘𝑡𝑡 is the
decaying real envelope  and 𝜑𝜑 is the constant initial 
phase from 𝑈𝑈(−𝜋𝜋,𝜋𝜋).  

b) Random Amplitude Sinusoid
When a radar transmitted carrier signal is 

reflected by a fluctuating target, the carrier amplitude of 
the echo signal undergoes random fluctuations [7]. 
Similarly, a communication signal passing through a 
fading wireless channel, the amplitude of the signal at 
the receiver input undergoes random fluctuations [8,9]. 
In these cases, the time varying amplitude 𝐴𝐴(𝑡𝑡) in 
eq.(14) can be represented by

                              𝐴𝐴(𝑡𝑡) = 𝐴𝐴𝑐𝑐 + 𝐴𝐴𝑟𝑟(𝑡𝑡)                        (16)

where 𝐴𝐴𝑐𝑐 is the constant part and the random part 𝐴𝐴𝑟𝑟(𝑡𝑡)
which is also called as the multiplicative noise. In case 
of deep fluctuations the constant part becomes zero 
and then 𝐴𝐴(𝑡𝑡) = 𝐴𝐴𝑟𝑟(𝑡𝑡). The spectral kurtosis of such a 
process is totally dependent on the probability density 
function of 𝐴𝐴𝑟𝑟(𝑡𝑡). In [25] the spectral kurtosis of such a 
random amplitude sinusoid was shown to be 

                            К𝑌𝑌(𝑓𝑓) = 𝜅𝜅𝐴𝐴𝑟𝑟 + 1                               (17)

where 𝜅𝜅𝐴𝐴𝑟𝑟 is the coefficient of kurtosis or time kurtosis of 
the random amplitude. The coefficient of kurtosis 𝜅𝜅𝐴𝐴𝑟𝑟
based on cumulants can be obtained from the following 
expressions [26, 27]. 

𝐶𝐶2 = 𝑀𝑀2 − 𝑀𝑀1
2

𝐶𝐶4 = 𝑀𝑀4 − 4𝑀𝑀1𝑀𝑀3 + 6𝑀𝑀1
2𝑀𝑀2 − 3𝑀𝑀1

4

𝛾𝛾2 = 𝐶𝐶2

𝛾𝛾4 = 𝐶𝐶4 − 3𝛾𝛾2
2 = 𝐶𝐶4 − 3𝐶𝐶2

2

𝜅𝜅𝐴𝐴𝑟𝑟 =
𝛾𝛾4

𝛾𝛾2
=
𝐶𝐶4

𝐶𝐶2
2 − 3                                     (18)

where 𝑀𝑀𝑘𝑘 are the k-th standard moments, 𝐶𝐶𝑘𝑘 are the k-
th central moments and 𝛾𝛾𝑘𝑘 are the cumulants.
a) If the amplitude of the random sinusoid in eq.(16) is 

totally random with a gaussian density function, then 
from eq.(17) and eq.(18), the spectral kurtosis is 
given by 

            К𝑌𝑌(𝑓𝑓) = 𝜅𝜅𝐴𝐴𝑟𝑟 + 1 =
3𝜎𝜎4

(𝜎𝜎2)2 − 3 + 1 = 1          (19)

b) If the amplitude of varies uniformly in the range (a, 

b), then the spectral kurtosis from eq.(17) and 
eq.(18) is given by

  К𝑌𝑌(𝑓𝑓) =
(𝑏𝑏 − 𝑎𝑎)4

80�

�(𝑏𝑏 − 𝑎𝑎)2

12� �
2 − 3 + 1 =

144
80

= −0.2  (20)

c) For a rayleigh distributed random amplitude, the 
standard moments are given by 

                 𝑀𝑀2𝑘𝑘 = 2𝑘𝑘𝑏𝑏2𝑘𝑘𝑘𝑘!        𝑘𝑘 = 1,2                

Then from eq.(17) and eq.(18), the spectral 
kurtosis can be obtained as

                                     К𝑌𝑌(𝑓𝑓) = 0                                        (21)

c) Harmonic and Inharmonic Sinusoids
A harmonic sinusoid comprises a sine wave of 

fundamental frequency 𝑓𝑓0and its finite number of 
harmonics 𝑓𝑓𝑚𝑚 = 𝑚𝑚𝑓𝑓0  as denoted by  

            𝑦𝑦(𝑡𝑡) = ∑ 𝐴𝐴𝑚𝑚 cos(2𝜋𝜋𝑚𝑚𝑓𝑓0𝑡𝑡 + 𝜑𝜑)       𝑀𝑀−1
𝑚𝑚=0   (22)

where M is the number of harmonics. The amplitudes of 
the harmonics decay at different rates depending on the 
instrument or the note played. A typical profile of the 
harmonic amplitudes is given by 𝐴𝐴𝑚𝑚 = 1/𝑚𝑚.
If the frequencies are independent and no harmonic 
relation among them i.e. 𝑓𝑓𝑚𝑚 ≠ 𝑚𝑚𝑓𝑓0, then the sinusoids 
are called inharmonic sinusoids. Both harmonic and 
inharmonic sinusoids appear frequently in music 
produced by several instruments.

d) Additive Gaussian Noise
Additive White Gaussian Noise (AWGN) signal 

is a noise commonly found in communication channel 
which adds to the transmitted signal.   The spectrum of 
this signal is flat with a constant one-sided power 
spectral density η within the channel bandwidth.

If power spectral density of the noise within the 
channel bandwidth is function of frequency, then the 

Spectral Kurtosis Theory: A Review through Simulations
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Similarly the spectral kurtosis for other density 
functions can be obtained.  The focus of this paper is 
not to derive such expressions, but to show that  К𝑌𝑌(𝑓𝑓)
is a positive constant depending on the probability
density function. However for some more density 
functions, the simulations are carried out as described in 
the section V. 

noise is called colored noise and is characterized by 
η(f). 

e) Modulated Signals
An amplitude modulated signal with a carrier 

frequency fc modulated by a sine wave of a low 
frequency fm and is given by

   𝑦𝑦(𝑡𝑡) = 𝐴𝐴𝑐𝑐(1 + 𝑚𝑚𝐴𝐴 𝑚𝑚𝑒𝑒𝑚𝑚(t) cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜑𝜑)   (23𝑎𝑎)
where 𝐴𝐴𝑐𝑐 is the amplitude of the carrier and 𝑚𝑚𝐴𝐴 is the 
modulation index, 𝑚𝑚𝑒𝑒𝑚𝑚(𝑡𝑡) is the low frequency message 



  

 
  

 

  

 
   

  

 

 

    

 

  

 
 

  

 
 

 
  

 
 

  

   
  
 

 
 

 
 

 
  

  
 

 

 
 

 

  
 

 
 

 
 

  
 

 

  
 

 
 

 

 
   

 

 
 

 
 

  
 

  
 

 

 

 

 

 
 

  

signal. The Double Side Band (DSB) signal, the  Lower 
Side Band (LSB) signal and the Upper Side Band (USB) 
signal can be formed by appropriate processing the AM 
signal.  

The Frequency Modulated (FM) signal can be 
obtained as

𝑦𝑦(𝑡𝑡) =  𝐴𝐴𝑐𝑐 cos�2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 2𝜋𝜋 𝑘𝑘𝑓𝑓 �𝑚𝑚𝑒𝑒𝑚𝑚(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0

�    (23𝑏𝑏)

f) Chirp Signal
A chirp signal is a frequency modulated signal 

in which the frequency of the carrier is linearly or 
hyperbolically varied. This kind of chirp signal is 
extensively used in pulse radars for achieving higher 
range resolution using a longer transmitted pulse, which 
is otherwise possible with a shorter transmitted pulse 
[14]. A phase modulated signal is given by

          𝑦𝑦(𝑡𝑡) = 𝐴𝐴 cos 𝜑𝜑(𝑡𝑡) = 𝐴𝐴 cos  2𝜋𝜋𝑓𝑓(𝑡𝑡)𝑡𝑡                   (24)

  
where 𝜑𝜑(𝑡𝑡) is the time-varying phase of the carrier. The 
frequency profile f(t) can be linear, quadratic or 
logarithmic. 

In a linear chirp signal, the carrier frequency f is 
varied as 𝑓𝑓𝑐𝑐 + 𝛼𝛼𝑡𝑡, where α=df/dt is the chirp rate. Then 
time-varying phase of the carrier is given by

𝜑𝜑(𝑡𝑡) = 2𝜋𝜋� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡

0
= 2𝜋𝜋� (𝑓𝑓𝑐𝑐 + 𝛼𝛼𝑡𝑡 )𝑑𝑑𝑡𝑡

𝑡𝑡

0
              

= 2𝜋𝜋 � 𝑓𝑓𝑐𝑐𝑡𝑡 + 1
2𝛼𝛼𝑡𝑡

2�         (25)

Substituting eq.(23) in eq.(22), we get

              𝑦𝑦(𝑡𝑡) = 𝐴𝐴 cos 2𝜋𝜋 � 𝑓𝑓𝑐𝑐𝑡𝑡 + 1
2𝛼𝛼𝑡𝑡

2�             (26)

If the start frequency at 𝑡𝑡 = 0 is fc and the end 
frequency at 𝑡𝑡 = 𝑡𝑡1 is f1, then the chirp rate is given by α
= (f1-f0)/t1. 

In a quadratic chirp signal, the instantaneous 
frequency is given by

                             𝑓𝑓(𝑡𝑡) = 𝑓𝑓𝑐𝑐 + 𝛼𝛼𝑡𝑡2
  

                         (27)

where  𝛼𝛼 = (𝑓𝑓1 − 𝑓𝑓0)/𝑡𝑡1
2.

In a logarithmic chirp signal, the instantaneous 
frequency is given by

                                 

𝑓𝑓(𝑡𝑡) = 𝑓𝑓𝑐𝑐𝛼𝛼𝑡𝑡1                          (28)

where  𝛼𝛼 = (𝑓𝑓1/𝑓𝑓0)1/𝑡𝑡1 .

IV. STFT Based Spectral Kurtosis 
Estimation 

In this section a means of estimating the 
spectral kurtosis from the short time fourier transform 
(STFT) is presented. Here the input signal y(n)  is 
divided  into overlapping or  non overlapping frames 
each of size N, multiplied by a window function w(k) like  
a hamming window of same size and analyzed by using  
the Fourier Transform. A matrix popularly known as a 
spectrogram is formed by arranging STFT coefficients 
as columns as given by

𝑆𝑆(𝑘𝑘, 𝑙𝑙) =
1

𝑀𝑀𝑊𝑊𝑛𝑛𝑁𝑁
�� 𝑦𝑦 (𝑛𝑛 + 𝑙𝑙𝑀𝑀) 𝑤𝑤(𝑛𝑛)𝑒𝑒−𝑗𝑗

2𝜋𝜋𝑛𝑛𝑘𝑘
𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

�

2

0 ≤ 𝑘𝑘 ≤ 𝐾𝐾 − 1, 0 ≤ 𝑙𝑙 ≤ 𝐿𝐿 − 1                (29)

where k is the frequency index,  l is the time frame 
index, M  is  the hop  size,  K is the total number of 
frequency bins of one-sided STFT and L is the total 
number of frames contained in the signal.

An un-biased estimator of the spectral kurtosis 
is proposed in [19] based on L realizations of K-sample 
signal. The discrete fourier transform (DFT) on a K-
sample signal computes the signal spectrum at K-
number of discrete frequencies. If the L number of 
nonoverlapping frames used in the STFT analysis are 
considered as L number of the independent stochastic 
signal realizations, the spectral kurtosis К𝑆𝑆(𝑘𝑘0) at the
frequency index 𝑘𝑘0 can be computed from the 𝑘𝑘0-th row 
of the spectrogram matrix 𝑆𝑆(𝑘𝑘0, . )The spectral kurtosis 
at all frequency indices   0 ≤ 𝑘𝑘 ≤ 𝐾𝐾 − 1 is given by

К𝑆𝑆(𝑘𝑘) =
𝐿𝐿

𝐿𝐿 − 1
�
(L + 1)∑ ∙ |𝑆𝑆(𝑘𝑘, 𝑙𝑙)|4𝐿𝐿−1

𝑙𝑙=0

{∑ |𝑆𝑆(𝑘𝑘, 𝑙𝑙)|2𝐿𝐿−1
𝑙𝑙=0 }2 − 2�

0 ≤ 𝑘𝑘 ≤ 𝐾𝐾 − 1          (30)
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V. Simulations and Results

The following signals are simulated using 
eq.(12),  eq.(14),  eq.(15) and eq.(20) through eq.(28).  

1. A Constant Amplitude Sinusoid signal
2. A Random Amplitude Sinusoid signal

a. A Uniform Amplitude Sinusoid signal
b. A Gaussian Amplitude Sinusoid signal
c. A Exponential Amplitude Sinusoid signal
d. A Rayleigh Amplitude Sinusoid signal
e. A Lognormal Amplitude Sinusoid signal
f. A Gamma Amplitude Sinusoid signal
g. A Weibull Amplitude Sinusoid signal
h. A Chisquare Amplitude Sinusoid signal

3. A Damped Sinusoid signal
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Different mixture processes are formed by 
adding two or more of the above simulated signals.  The 
spectral kurtosis is estimated for each mixture process. 
In all simulations a sampling frequency of 44100Hz is 
used. Customized Matlab code is developed for 
generating the test signals, for computing STFT and for 
estimating the spectral kurtosis. 

a) Mixture-1
A composite signal if formed by summing four 

sinusoids of frequencies 1800Hz, 4000Hz, 9000Hz and 

18000Hz with respective amplitudes: 1.0, 0.25,   0.7 and  
2.0 is formed. An additive white gaussian noise (AWGN) 
is added to the composite signal to form the first mixture 
process. Thus the mixture comprises a total five signals: 
four constant amplitude sinusoids and gaussian noise. 
The variance of AWGN is adjusted so as to obtain 
signal-to-noise ratios of  30dB, 20dB, 10dB, 0dB, -5dB 
and  -10dB.

The mixture signal is generated for a duration of 
1.1610 seconds. STFT is computed for frames or 
window size of 256 samples with 50% (i.e. 128 samples) 
overlap. Each frame is multiplied by a hamming window 
of 256 samples and a 256-point FFT is computed thus 
giving a spectrogram matrix of size 256 × 399

𝑆𝑆(𝑘𝑘, 𝑙𝑙) ; 0 ≤ 𝑘𝑘 ≤ 255, 0 ≤ 𝑙𝑙 ≤ 398

each of 256 frequency bins of spectrogram matrix is 
averaged over 399 frames to obtain a mean STFT 
spectrum 𝑆𝑆𝑀𝑀(𝑘𝑘) = 〈𝑆𝑆(𝑘𝑘, . )〉; 0 ≤ 𝑘𝑘 ≤ 255 which is 
called here as Averaged STFT Spectrum. Fig.1a gives 
the Averaged STFT Spectrum of Mixture-1 for different 
SNRs. Four peaks of different amplitudes observed in 
the spectrum correspond to four sine waves in the 
mixture. The low amplitude second peak is submerged 
in the noise floor at low SNRs below 0dB. As the SNR 
decreases, the noise floor also increases.

a. exp(-kt)  envelope Sinusoid signal
b. exp(-kt2)  envelope Sinusoid signal

4. A Harmonic Sinusoid signal
5. An Additive Gaussian Noise

a. White Gaussian Noise
b. Colored Gaussian Noise

6. An Analog Modulated signals
a. An Amplitude Modulted signal
b. A Double Side Band (DSB) signal
c. A Lower Side Band (LSB) signal
d. A Upper Side Band (USB) signal
e. A Wideband Frequency Modulated Signal 

7. Chirp signals
a. A Linear Chirp signal
b. A Quadratic Chirp (Convex) signal
c. A Quadratic Chirp (Concave) signal
d. A Logarithmic Chirp Signal

Fig. 1 : Sum of sinusoids (a). Averaged SFT spectrum of  (b). Estimated Spectral Kurtosis for SNRs 30dB to -10dB
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The spectral kurtosis К𝑆𝑆(𝑘𝑘); 0 ≤ 𝑘𝑘 ≤ 255  is 
also computed from the spectrogram matrix using 
eq.(28) as explained in section IV. It may be noted that  
К𝑆𝑆(0)  is to be ignored, as the kurtosis is not defined at 
𝑓𝑓 = 0. The Fig.1b gives the spectral kurtosis (SK) of 
Mixture-1 for different SNRs.

The spectral kurtosis has four negative peaks 
corresponding to four sinusoids. For higher SNR (30dB) 
the peaks have a value of -1 irrespective of the sinusoid 
amplitudes. As the SNR decreases, the peaks values 
increase from -1 towards zero. Local SNR computed at 
peak locations vary depending upon the amplitude of 
the sinusoid. Here it is maximum at 18000Hz and 
minimum at 4000Hz. It may be noted down that the SNR 
referred in the legend of the figures1(a) and (b) is the 
global SNR, which is computed based on the aggregate 
of all sinusoids. For global SNRs below 0dB, where the 
AWGN power dominates the aggregate power of all 

sinusoids, the mixture becomes more and more 
gaussian, the spectral kurtosis tends to zero, relatively 
faster at 4000Hz where the local SNR is minimum.
b) Mixture-2

The second Mixture process comprises six 
components: constant amplitude sinusoid(CAS), two 
damped sinusoids(DS1 and DS2) with different damping 
factors, colored gaussian noise(CGN), colored 
uniform(i.e. nongaussian) noise(CnGN) and AWGN. 
Global SNR is computed with respect to AWGN 
considering the other five components as composite 
signal. The CGN is obtained by passing white gaussian 
noise through a 6-order butterworth band pass filter 
having passband between 10KHz and 13KHz.  The 
CnGN obtained by passing white uniform noise through 
a 6-order butterworth band pass filter having passband 
edges at 15KHz and 17KHz.  

Fig. 2 : Mixture-2 (a). Averaged SFT spectrum of  (b). Estimated Spectral Kurtosis for SNRs 0dB

Fig.2 gives the Averaged STFT Spectrum and 
SK of Mixture-2 for 0dB SNR. The first peak at 2500Hz 
having the spectral kurtosis of -1 the constant amplitude 
sinusoid. The peaks at 5000Hz and 8000Hz have the SK 
greater than zero indicate the nonstationary nature of 
the signals. In fact these signals correspond to damping 
sinusoids which amplitude is changing with time as 𝑒𝑒−𝑘𝑘𝑡𝑡

and 𝑒𝑒−𝑘𝑘𝑡𝑡2
. The other two components: CGN and CnGN 

being stationary noise processes take a zero SK. The 
AWGN also takes a zero SK as expected.

c) Mixture-3
The third Mixture process is made up eight 

sinusoids, each having a random amplitude following 
different probability density functions: gaussian, uniform, 
exponential, Rayleigh, etc. The frequencies of these 
sinusoids are  1KHz, 2.5KHz, 4KHz, 5.5KHz, 7KHz, 
8.5KHz, 10KHz, 11.5KHz, 13KHz, 14.5KHz and 16KHz. 
These sinusoids are generated one by one and 
processed separately to obtain the SK estimate 
separately. Then the SK functions of all sinusoids are 
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overlapped and shown in single figure.  Fig.(3) gives the 
STFT spectrum and the SK of these its random 
amplitude sinusoids for SNR=30dB.   The eight peaks in 
STFT spectrum correspond to eight  sinusoids.  As 
shown in Fig3(b), the SK of first sinusoid at 1000Hz is -
0.2, corresponding to uniformly distributed amplitude 
variations (see eq.20). The SK of the second sinusoid at 
2500Hz is +1.0, corresponding to gaussian distributed 

amplitude variations (see eq.19). The SK of fourth 
sinusoid at 5500Hz is 0.0, corresponding to rayleigh 
distributed amplitude variations (see eq.21).

Fig.(4) gives the STFT spectrum and the SK of 
these random amplitude sinusoids for SNR=10dB. The 
SK values of the sinusoids at 10dB compared to the 
respective SK values at 30dB are different, but the trend 
is same.

Fig. 3 : Mixture-3 (a). Averaged SFT spectrum of  (b). Estimated Spectral Kurtosis for SNRs 30dB

Fig. 4 : Mixture-3 (a). Averaged SFT spectrum of  (b). Estimated Spectral Kurtosis for SNRs 10dB
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d) Mixture-4
The fourth Mixture is basically a harmonic 

sinusoid with a fundamental at  800Hz and having 10 
harmonics contaminated by an AWGN. The amplitude of 
n-th harmonic is 1/n, but this amplitude remains 
constant with time. The STFT spectrum of this mixture is 

shown in Figure 5(a) for SNRs of 20dB, 10dB and 0dB.  
The ten negative peaks in SK plot of Figure 5(b) 
correspond to seven sinusoids.  Please note that each 
peak is -1 irrespective of the harmonic number for 
higher SNRs. As SNR decreases, the negative peaks 
move from -1 towards zero.

Fig. 5 : Mixture-4 (a). Averaged SFT spectrum of  (b). Estimated Spectral Kurtosis for SNRs 20dB, 10dB and 0dB

e) Mixtures-5
In this category basically five analog modulation 

signals are considered; corresponding mixtures are are 
AM + AWGN, AM-SC (DSB) + AWGN,  LSB+ AGWN, 
USB+ AGWN and FM+AGWN  Fig.(6) through fig.(10) 
give the  STFT spectra and SKs of these mixtures.

The SK of AM signal is -1.0 since the carrier is 
strong due to low modulation index and resembles a 
constant amplitude at carrier frequency of 12KHz.. The 
SK of DSB is positive at carrier frequency of 12KHz 
showing its nonstationary nature.  The SK of the next two 
mixtures LSB and USB is over the signal  bandwidth. 
However, at the band edges, the SK takes exceptionally  
large values.

f) Mixture-6
The sixth Mixture is made up of different chirp 

signals: linear, quadratic and logarithmic chirps 
generated using the eq.(24) through eq.(28). Each chirp 
is shown in different colors in Fig 11. The STFT 
spectrum of this mixture is shown in Figure 11(a) for 

SNR of 10dB.  It may be noted down that the SK of a 
chirp signal is nonzero positive, over the chirp 
bandwidth. However, at the band edges, the SK takes 
exceptionally large values.

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Randy+Goldberg%22�
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Lance+Riek%22�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Makloi%2C%20N..QT.&newsearch=true�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chayawan%2C%20C..QT.&newsearch=true�
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Fig. 6 (a) : Averaged SFT spectrum of AM+AWGN (b).Estimated Spectral Kurtosis for SNR=30dB

Fig. 7(a) : Averaged SFT spectrum of DSB+AWGN (b).Estimated Spectral Kurtosis for SNR=30dB
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Spectral Kurtosis Theory: A Review through Simulations

Fig. 8(a) : Averaged SFT spectrum of LSB+AWGN (b).Estimated Spectral Kurtosis for SNR=30dB

Fig. 9(a) : Averaged SFT spectrum of USB+AWGN (b).Estimated Spectral Kurtosis for SNR=30dB
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Spectral Kurtosis Theory: A Review through Simulations

Fig. 10(a) : Averaged SFT spectrum of FM+AWGN (b).Estimated Spectral Kurtosis for SNR=30dB

Fig. 11 : Mixture-6 (a). Averaged SFT spectrum of (b).Estimated Spectral Kurtosis for SNRs 10dB,
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Spectral Kurtosis Theory: A Review through Simulations

VI. Conclusions and Future Work

The cumulant based spectral kurtosis defined in 
frequency domain originally proposed for bearing fault 
detection and monitoring of electrical machines, is a 
promising tool for analyzing nonstationary signals. It 
complements the traditional power spectrum based on 
second order statistics. In this paper, the theory of 
spectral kurtosis is briefly reviewed from the 
fundamentals. The properties of spectral kurtosis of  
popular stationary signals, nonstationary signals and 
mixed processes are analytically given.  Extensive 
Monte Carlo simulations were carried out to support the 
theory. The spectral kurtosis of the simulated stationary, 
nonstationay and mixed processes at different signal-to-
noise ratios (SNRs) is estimated and the results are in 
good match with the previous analytical findings. The 
review highlights the usage of spectral kurtosis for other 
areas of signal processing like communications and 
radar signal processing. Future work could be (i). 
Obtaining closed-form expressions for spectral kurtosis 
of communication and radar signals (analog or digital 
modulated) (ii). classification of communication signals 
using spectral kurtosis at different SNRs.(iii). radar signal 
classification using spectral kurtosis.
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