Hyperbolic Metamaterial Interface: Propagation of Surface Waves

By T. Gric, M. Cada & J. Pistora

Dalhousie University, Canada

Abstract- Herein we study propagation of surface waves at a boundary of an isotropic media and a multilayered hyperbolic metamaterial. The structure dispersion is discussed for various cases of a hyperbolic metamaterial. It is demonstrated that it is possible to tune the frequency range of surface waves by varying the thickness of dielectric sheets. It is also shown that this frequency range can be broadened by decreasing the thickness of the dielectric in the metal-dielectric compound or by replacing the isotropic media with a metal. It is also shown that the mentioned effect can be achieved by increasing the doping concentration of the semiconductor if the metamaterial/semiconductor structure is considered. The effective medium approximation is used and its validity in the long-wavelength limit is justified by investigating the electromagnetic field variations over one period of the proposed structure.

Keywords: surface wave; metamaterial; drude metal; surface plasmons; terahertz.

GJRE-J Classification : FOR Code: 020301

© 2016. T. Gric, M. Cada & J. Pistora. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract—Herein we study propagation of surface waves at a boundary of an isotropic media and a multilayered hyperbolic metamaterial. The structure dispersion is discussed for various cases of a hyperbolic metamaterial. It is demonstrated that it is possible to tune the frequency range of surface waves by varying the thickness of dielectric sheets. It is also shown that this frequency range can be broadened by decreasing the thickness of the dielectric in the metal-dielectric compound or by replacing the isotropic media with a metal. It is also shown that the mentioned effect can be achieved by increasing the doping concentration of the semiconductor if the metamaterial/semiconductor structure is considered. The effective medium approximation is used and its validity in the long-wavelength limit is justified by investigating the electromagnetic field variations over one period of the proposed structure.

Keywords: surface wave; metamaterial; drude metal; surface plasmons; terahertz.

I. INTRODUCTION

The waves at an interface between an isotropic medium and a uniaxial crystal characterized by its effective permittivities have been first demonstrated in [1]. The existence of these surface waves in some material examples is studied in [2], discussing the challenge posed by their experimental observation. The novelty and potential importance of Dyakonov waves for integrated optics applications were described in a stream of papers [3–5].

In near-infrared and visible wavelengths, the behavior of nanolayered metal-dielectric (MD) compounds is similar to plasmonic crystals. In this case a simplified description of the medium by using the long-wavelength approximation can be justified; the homogenization of the structured metamaterial can also be employed [6–8]. It is interesting to note that the second-rank tensor representing the medium permittivity includes elements of opposite signs, thus yielding extremely anisotropic metamaterials under certain conditions [9, 10]. This category of nanostructured media opens the wide avenues for the practical applications from biosensing to fluorescence engineering [11].

The existence of surface waves when dealing with anisotropic media possessing the indefinite permittivity was reported for the first time in [12]. This study was dedicated mainly to surface waves enabling sub-diffraction imaging in magnifying superlenses [13], where the surface waves exist at an interface between a metal and an all-dielectric birefringent metamaterial. Dealing with hyperbolic media, however, the authors concluded only with an indefinable analysis of surface waves.

In this paper we retake the task and perform a thorough analysis of surface waves traveling in infinite MD lattices. Our approach is to use the effective-medium approximation.

II. GEOMETRY OF THE PROBLEM

The waves at an interface between an isotropic medium and a uniaxial crystal characterized by its effective permittivities have been first demonstrated in [1]. The existence of these surface waves in some material examples is studied in [2], discussing the challenge posed by their experimental observation. The novelty and potential importance of Dyakonov waves for integrated optics applications were described in a stream of papers [3–5].

In near-infrared and visible wavelengths, the behavior of nanolayered metal-dielectric (MD) compounds is similar to plasmonic crystals. In this case a simplified description of the medium by using the long-wavelength approximation can be justified; the homogenization of the structured metamaterial can also be employed [6–8]. It is interesting to note that the second-rank tensor representing the medium permittivity includes elements of opposite signs, thus yielding extremely anisotropic metamaterials under certain conditions [9, 10]. This category of nanostructured media opens the wide avenues for the practical applications from biosensing to fluorescence engineering [11].

The investigated structure is shown in Fig. 1. It should be mentioned that an infinite periodic model consisting of alternating layers of a metal and a conventional dielectric is placed on the left of the homogeneous dielectric. The effective dielectric tensor components parallel (ϵ_\parallel) and perpendicular (ϵ_\perp) to the anisotropy axis are described in [14] as:

$$\epsilon_\parallel = \frac{\epsilon_m d_m + \epsilon_d d_d}{d_m + d_d}$$ \hspace{1cm} (1)

$$\epsilon_\perp = \frac{\epsilon_m / \epsilon_m + d_d / \epsilon_d}{d_m + d_d}$$ \hspace{1cm} (2)

where d_m (d_d) is the thickness and ϵ_m (ϵ_d) is the dielectric constant of the metallic (dielectric) component. The effective medium approximation in Eqs. (1) and (2) is...
valid in the long-wavelength limit. However, the field varies significantly on the scale of one period due to the excitation of surface plasmon (SP) polaritons at metal/dielectric interfaces. Therefore, the approximation in Eqs. (1) and (2) may not be applicable in some spectral ranges.

III. Numerical Analysis of Dispersion Characteristics

Herein we discuss the numerical solution to the dispersion relation [15], either obtained for metamaterial/air interface or for metamaterial/metal and metamaterial/semiconductor interfaces.

a) Metamaterial/Air Interface

The dispersion relation [15] is graphically represented in Fig. 2 for the MD crystal displayed in Fig. 1 at \(x < 0 \), considering different widths of the dielectric \(d_d \) and assuming that we are dealing with metamaterial/air interface.

Fig. 2: Dispersion curves of TM modes at a metamaterial/air interface for different widths of the dielectric layer \(d_d > 0 \) (red dots) in a Drude metal/dielectric compound. The light line is shown (dashed line), and \(d_m = 35 \) nm.

As can be seen from Fig. 2, the frequency range for surface waves can be controlled by the fill factors of the air and metal sheets in the MD compound.

If we decrease the thickness of the dielectric \(d_d \), the dispersion curve moves to a lower frequency. The dependence of the frequency range for the surface wave existence on the thickness of the dielectric layer provides additional degree of freedom to control surface waves.

Fig. 3 shows the profiles of the magnetic field along the \(x \) axis for the investigated case, i.e. metamaterial/air. The magnetic field has been obtained when \(\beta = 4 \cdot 10^6 \) 1/m. The wave field is tightly confined near \(x = 0 \) for all the thicknesses of the dielectric \(d_d \).

b) Metamaterial/Metal Interface

The dispersion curves for the metamaterial/metal structure are presented in Fig. 4. The calculations were performed using the following parameters for bulk silver: \(\omega_p = 2297.09 \) THz, \(\varepsilon_{\infty} = 5.2 \) [18]. As in previous cases we discuss the effects of the thickness of the dielectric \(d_d \) on the dispersion curve. It should be noticed that the upper and the lower limits move to lower frequencies when \(d_d \) is decreased. However the lower limit moves faster than the upper one. The mentioned issue leads to a broader frequency range for the surface wave existence.

![Fig. 3](image-url)
Fig. 5 shows the profile of the magnetic field along the x axis for the case under study. It is interesting to point out, that $\beta = 6 \cdot 10^6$ 1/m.

It should be mentioned, that the wave field is tightly confined near $x = 0$ for all the thicknesses of the dielectric d_d. It is interesting to note that in the case of a metamaterial/air interface (Fig. 3) the tighter confinement near the boundary $x = 0$ is exhibited in the metamaterial while in the case of a metamaterial/metal interface the tighter confinement is in the metal.

c) Metamaterial/Semiconductor interface

It is interesting to notice, that the case of heavy doped Si is considered, assuming that the doping level is $N_1 = 5 \cdot 10^{19}$ cm$^{-3}$ [19]. An average effective mass m_1 for electrons is $0.26m_0$ with m_0 being the free-electron mass, and $\varepsilon_{\infty 1} = 11.68$.
Fig. 8: Magnetic field (normalized) of SP modes at metamaterial/semiconductor interface for the points A, B, C, D and E highlighted in Fig. 2, when the doping level is \(N_i = 5 \times 10^{19} \) cm\(^{-3}\).

Fig. 8 shows the profile of the magnetic field along the \(x \) axis for the investigated case, i.e., metamaterial/semiconductor. Fig. 8 shows the magnetic field for the points when \(\beta = 1.5 \times 10^6 \) 1/m. The tight confinement of the wave field is observable near \(x = 0 \) for all the thicknesses of the dielectric \(d_d \). It is interesting to note that the tighter confinement near the boundary \(x = 0 \) is exhibited in the semiconductor.

Moreover, it is of particular interest to plot the profile of the magnetic field along the \(x \) axis, when the doping level of the silicon changes. The results are depicted in Fig. 9 being \(d_d = d_m = 35 \) nm.

Fig. 9: Magnetic field (normalized) of SP modes at metamaterial/semiconductor interface for the points A, B, C and D highlighted in Fig. 3, if \(d_d = d_m = 35 \) nm.

It is interesting to notice, that the lowest confinement in this case is produced for the lowest doping concentration of silicon.

It is valuable to confirm the presence of SP waves for all the investigated cases. In the insets of Figs. 2, 4 and 6 we show the nature of the magnetic fields for all the investigated cases.

IV. Conclusions

The surface waves at the boundary of hyperbolic metamaterial have been studied for three different cases: metamaterial/air, metamaterial/metal, metamaterial/semiconductor. The dependences of the longitudinal propagation constant on the propagation frequency have been examined. It is established that one can tune the frequency range of surface waves by varying the thickness of dielectric sheets. It is also revealed that this frequency range can be broadened by three different manipulations:

- decreasing the thickness of the dielectric in the metal-dielectric compound;
- dealing with the metamaterial/metal structure;
- increasing the doping concentration of the semiconductor, if considering the metamaterial/semiconductor interface.

V. Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by NSERC (Natural Sciences and Engineering Research Council) and NSERC’s CREATE (Collaborative Research Training Experience) Program ASPIRE (Applied Science in Photonics and Innovative Research in Engineering), both of Canada, also by the projects “New creative teams in priorities of scientific research” and the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), Czech Republic. We gratefully acknowledge helpful discussions with members of Cada’s photonics research group.

References Références Referencias