

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: F
ELECTRICAL AND ELECTRONICS ENGINEERING
Volume 17 Issue 1 Version 1.0 Year 2017
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

FPGA Based Hybrid Digital PWM for DC-DC Voltage Regulator

Joseph Anthony Prathap & T.S. Anandhi

Annamalai University

Abstract- This In general, telecommunication applications require low voltage, high current and reduced size power supplies. Selection of high switching frequency helps in the reduction of the DC-DC converter size. In this work, Digital PI (DPI) enables the Digital Pulse Width Modulation (DPWM) generator for generating high switching frequencies are developed and implemented using VHDL coding and Xilinx Spartan 3A DSP Field Programmable Gate Array (FPGA) kit. Hardware result of voltage regulation depicts the superiority and robustness of the proposed DPI enabled DPWM (MD-DPWM) methods under line and load disturbances. The MD-DPWM technique can be used to generate a very high switching frequency up to 1 MHz and more. Also the MD-DPWM proves to be cost effective, as it consumes low power and area.

Keywords: *digital pulse width modulation, digital proportional integral-dc-to-dc buck converter, xilinx spartan 3A DSP field programmable gate array.*

GJRE-F Classification: FOR Code: 090607

FPGABASEDHYBRIDDIGITALPWMFORDCDCVOLTAGEREGULATOR

Strictly as per the compliance and regulations of :

RESEARCH | DIVERSITY | ETHICS

FPGA Based Hybrid Digital PWM for DC-DC Voltage Regulator

Joseph Anthony Prathap ^a & T.S. Anandhi ^a

Abstract- In general, telecommunication applications require low voltage, high current and reduced size power supplies. Selection of high switching frequency helps in the reduction of the DC-DC converter size. In this work, Digital PI (DPI) enables the Digital Pulse Width Modulation (DPWM) generator for generating high switching frequencies are developed and implemented using VHDL coding and Xilinx Spartan 3A DSP Field Programmable Gate Array (FPGA) kit. Hardware result of voltage regulation depicts the superiority and robustness of the proposed DPI enabled DPWM (MD-DPWM) methods under line and load disturbances. The MD-DPWM technique can be used to generate a very high switching frequency up to 1 MHz and more. Also the MD-DPWM proves to be cost effective, as it consumes low power and area.

Keywords: digital pulse width modulation, digital proportional integral-dc-to-dc buck converter, xilinx spartan 3A DSP field programmable gate array.

I. INTRODUCTION

Buck converter is a circuit which step downs the voltage and step ups the current. A basic buck converter circuits requires inductor, diode and transistor as switch. As per the control of the switch by the PWM signals the inductor acts against the input voltage. The DPWM design involves digital circuits like adders, flip-flops, multiplexers, counters and shift registers.

DPWM has advantages like easy design, high accuracy, low area and low power consumption. High resolution digitally controlled DC-DC buck converter is designed without the use of high frequency clock [1]. FPGA based implementation of the DPWM is very simple comparatively consuming of few memories, multipliers and adders [2]. DPWM architecture developed with FPGA implies high reliability, linearity and low latency [3]. A brushless DC machines can be digitally controlled by FPGA implementation with no additional hardware and hence has low design complexity [4].

A DPWM technique in [5] gives consistent off-time and on-time control under heavy load and light load conditions with reduced switching losses. FPGA based high resolution DPWM designed using a digital clock manager and I/O delay elements have low cost and higher clock frequency [6]. In this work, the performances of the DC-DC buck converter with the DPWM as voltage regulator is analyzed.

II. DC-DC BUCK CONVERTER

The closed loop DC-DC buck converter with the proposed DPI enables the DPWM technique is shown in the Fig.1.

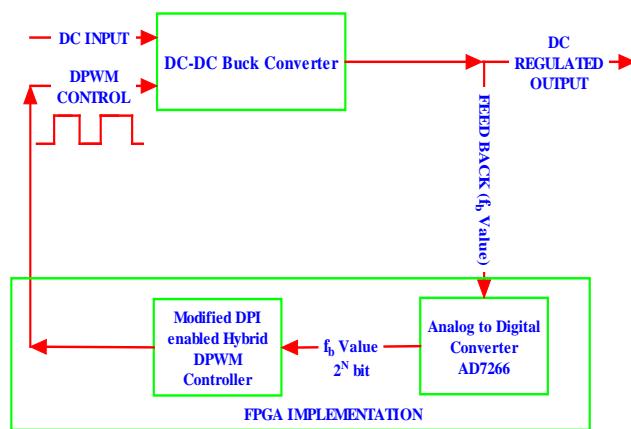


Fig.1: Closed loop DC-DC Buck Converter with MD-DPWM control

Author ^a: Research Scholar, Department of Electronics and Instrumentation Engineering, Annamalai University, Chidambaram, India.
e-mail: jap1116@yahoo.co.in

Author ^a: Associate Professor, Department of Electronics and Instrumentation Engineering, Annamalai University, Chidambaram, India.
e-mail: ans.instrus@gmail.com

The output voltage of the buck converter is less than the input voltage and is controlled by the duty cycle "d". The duty cycle "d" is the ratio of the ON period to the total period cycle of the controlling square pulse.

$$d = \frac{T_{on}}{T}$$

Where "Ton" refers to the ON period.

"T" refers to the total time period of the cycle.

The operation of the buck converter is related to the duty cycle as given below

$$V_{out} = d \cdot V_{in}$$

Where "d" is the duty cycle.

"Vin" is the input voltage of the buck converter.

"Vout" is output voltage of the buck converter.

The digital switching control has more advantages like easy designing, high manipulation power, upgradable, immune to environmental changes, easy debugging.

In our work, the FPGA based DPWM DC-DC buck voltage regulator, is implemented which satisfies the demand of low voltage and high current application. ADC is utilized for the purpose of acquiring the feedback values of the DC-DC buck converter into the FPGA. ADC IC AD7266 has Successive Approximation Circuit (SAC) and is used for real time implementation. The FPGA based ADC architecture helps in the evaluation of digital error with high accuracy [7]. The Digital PI (DPI) control algorithm is designed using VHDL coding enables the DPWM. The Modified DPI enabled DPWM (MD-DPWM) generators are implemented by FPGA and found to perform efficiently for the disturbances and component variation. The AD7266 is provided to access the analog value in the form of digital equivalence (2N).

III. DIGITAL PULSE WIDTH MODULATION METHODS

The Digital Pulse Width Modulated (DPWM) signal is generated using logical design. The DPWM is generated by three methods. They are

- Counter DPWM method. (CDPWM)
- Delay line DPWM method. (DDPWM)
- Hybrid DPWM method. (HDPWM)

Using ModelSim, the three DPWM methods are simulated. From the simulated results, the HDPWM generator is found to be advantages when compared to the CDPWM and DDPWM. The CDPWM require high frequency system clock and thus has high power consumption. The DDPWM occupies more area increasing the cost. The relationship of the clock frequency and the switching frequency for the DPWM generator is

$$F_{CLK} = F_{sw} \times 2^n$$

F_{sw} -Switching frequency

F_{CLK} -Clock frequency

2^n - Resolution in bits

In this work, the design of the Modified DPI enabled DPWM using 2^{11} -bit resolution is used which yields F_{sw} of 12.5 KHz and achieved the F_{CLK} of 21 MHz. Hybrid DPWM generator is the combination of both counter based DPWM and delay-line based DPWM methods. The DC input signal of 2^{11} -bit resolution is bit split into 2^5 -bit and 2^6 -bit resolutions. In which 2^5 -bit resolution is used for the generation of the DDPWM and 2^6 -bit resolution for the generation of the CDPWM generation. The HDPWM has two set of SET and RESET signal (each from CDPWM and DDPWM generations) which are logically ANDed to give a SET and RESET signal for the SR-flip-flop are shown in Fig.2.

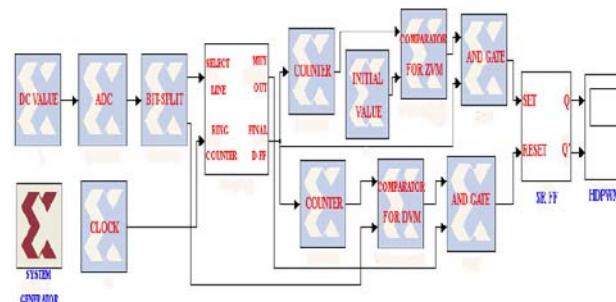


Fig. 2: SIMULINK-MATLAB block of Hybrid based DPWM

IV. THE PROPOSED METHOD: MODIFIED DPI ENABLED DPWM GENERATOR

The modified DPWM generator utilizes the DPI controller to manipulate the duty cycle proportionate to the error as well as enable the DPWM generator. Real time feedback equivalence value of 0 to 5V is selected by the VHDL coding and fed to the ADC for processing. The resolution for the ADC is 2^{11} bits. The DPI controller

gain parameters are $k_p=0.6$ and $k_i=0.055$. The DPI controller values are made visible by interfacing the 12 LEDs of the FPGA. The increase and decrease push buttons available in the FPGA kit is also activated for varying the voltage reference value. These push switch values are coded along with the limiter. These values are interfaced with the LCD display of the FPGA in order to monitor the variable set values and the settling values. Initially the set value is maintained at 10V by default in

the VHDL code. The structural style of VHDL code is used in the design of MD-DPWM

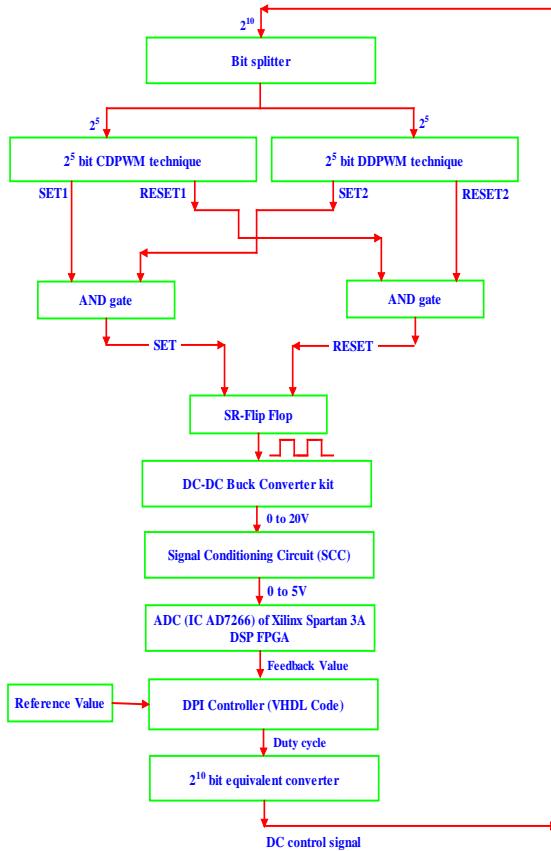


Fig. 3: Design flow for the Modified DPI enabled Hybrid DPWM controlled DC-DC buck converter using FPGA

The VHDL code uses mixed style of modeling. The FPGA implementation of the Modified DPI enabled Hybrid DPWM generator (MD-HDPWM) demands more real-time considerations like selection of resolution, uniformity of resolution, accurate digital equivalence for the obtained analog value, digitized comparison of AV and SP, and stabilizing the MD-DPWM control. The desired set point/ voltage reference (SP), k_p and k_i are fixed within the VHDL code. All these values are converted to bits. The actual value (AV) is measured as bit equivalents by the use of ADC AD7266. The values of the SP and AV are compared to evaluate the errors. Fig.3 shows the flowchart for the VHDL coded Modified DPI enabled DPWM controller.

a) Resolution

Resolution refers to the number of bits used in the design. In this work, the three MD-DPWM generators are designed using 2^{11} bit resolution. The MD-CDPWM generator uses a 2^{11} bit (2047 count) counter. The MD-DDPWM generator uses the 2048:1 multiplexer. The MD-HDPWM generator uses 2^{11} bit resolution in which 2^5 bit is used for the MD-DDPWM generation part and 2^6 bit is used for the MD-CDPWM generation part. The frequency of the DPWM generator is 12.5 KHz in the hardware due to the limitations in frequency range with

the laboratory prototype. To achieve this frequency, the VHDL coding utilizes the scaled value given by the formula.

$$\text{Scaled_value} = \frac{1}{2^n \times \text{Output frequency} \times \text{Clock period}}$$

Where Clock period is 100 ns
Output frequency is 12.5 KHz

V. HARDWARE DETAILS

The Xilinx Spartan 3A DSP FPGA is used for the design of the DC-DC buck type voltage regulator using MD-HDPWM. The Xilinx Spartan 3A DSP has IC AD7266 for the design of ADC. The set point variations are provided by the two variable push switches. The 16*4 LCD display is activated by the VHDL code. The VHDL codes for the DPI and ADC are designed with 10 times of the actual values to accomplish the FPGA requirements. This scaling is done to make sure that the fractional changes of the ADC and DPI are considered in the design, as the Xilinx Spartan 3A DSP kit do not support the float value implementation.

The AD7266 is 8 channels SAR ADC with maximum resolution of 2^{12} bits. The AD7266 is a 32 pin IC which operates from 2.7V to 5.25V of supply. The

ADC performs two functions of sampling and conversion of two channels simultaneously. These conversion values are concurrently accessible in separate data lines. When operated at 3V, the AD7266 gives a throughput rate of 1.5 MSPS with maximum power dissipation of 11.4 mW. Thus low power consumption for high throughput is achieved. The AD7266 has zero pipeline delay; since the sampling control of the two SAR ADCs are accurate. The ADC has two input ranges like 0V to VREF and 2*VREF

VI. RESULTS AND DISCUSSIONS

a) Simulated Results

The simulation outputs of the MD-DPWM generator using the above mentioned three techniques are given below in Fig.4,5,&6 using ModelSim. The open loop response under line disturbance for the DC-DC buck converter is given for the three MD-DPWM techniques in Fig.7(a),(b)&(c). Fig.8(a),(b)&(c) depict the open loop response under load disturbance for the DC-DC buck converter for the three MD-DPWM techniques.

b) Experimental Results

Fig.9 show the start-up transient response along with the set-point variation of closed loop DC-DC buck converter using MD-HDPWM. The CSV file format is plotted using excel sheet format. The time transient parameters like settling time (t_s), rise time (t_r), delay time (t_d), peak time (t_p) and overshoot percentage (%MP) are also calculated and displayed in the graph. The input voltage is 20V. The set point variation is from 11V to 12.8V for MD-HDPWM.

Fig.10 shows the analysis for the closed loop response under increased line disturbance from 10.4V to 12V and Fig.11 shows the analysis for the closed loop response under decreased line disturbances from 10.4V to 8.8V for the MD-HDPWM technique. The line voltage in this work are suddenly increased from 18V to 20V and decreased from 20V to 18V. Timing performance indices of the hybrid method are found to have less settling time comparatively and hence hybrid is selected. Fig.12 shows experimental DSO response for

the set-point change and Fig.13 shows experimental DSO output for the positive and negative line disturbances.

Fig.14&15 indicate the performance of the MD-HDPWM based DC-DC buck converter in closed loop with load disturbances from 445Ω to 595Ω and 595Ω to 445Ω respectively. The set point is 10 V and input voltage is 20V. The settling time measured during the negative load disturbance with MD-HDPWM seems to be very minimal. Fig.16&17 show the experimental DSO response of load disturbance from 445Ω to 595Ω and from 595Ω to 445Ω respectively for the MD-HDPWM in closed loop. Fig.18 shows experimental output response when the load is changed from 470Ω to 495Ω and from 495Ω to 470Ω using MD-DDPWM. Fig.19 shows experimental output for the negative load disturbance from 445Ω to 295Ω using MD-DDPWM. The RTL schematic for the MD-HDPWM technique is presented in Fig.20. Fig.21,22,&23 show the design utilization chart for the MD-CDPWM, MD-DDPWM and MD-HDPWM respectively. The experimental setup of DC-DC buck converter using the Xilinx Spartan 3A DSP is shown in Fig.24.

VII. COMPARISON AND ANALYSIS

Table I shows that the Modified DPI enabled HDPWM has lower steady state error and low settling time for the step change variation. The peak overshoot percentage is also less in MD-HDPWM. Table I also show that MD-HDPWM used with the closed loop DC-DC buck converter has less settling time and rise time when compared to the other two like MD-CDPWM and MD-DDPWM methods. Table II & III show the settling time for both the positive and negative line disturbances are good for the MD-HDPWM. Table IV shows that the MD-HDPWM has lower area utilization in FPGA device compared to the MD-DPWM and also the clock frequency of the MD-HDPWM is less in comparison of the MD-CDPWM. Thus the modified DPI enabled HDPWM method is cost effective in comparison with the other methods.

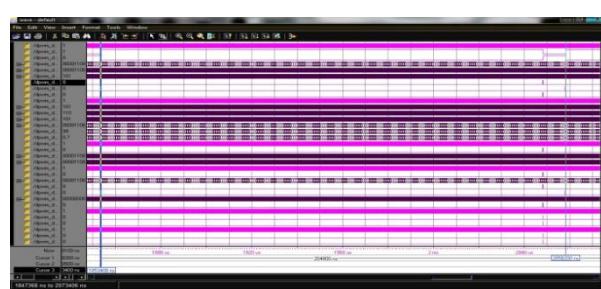


Fig. 4: Counter based DPWM generated in ModelSim

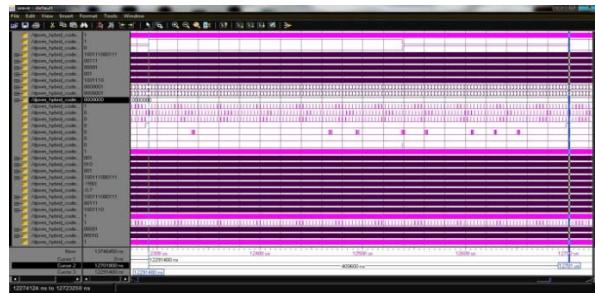


Fig. 5: Delay line based DPWM generated in ModelSim

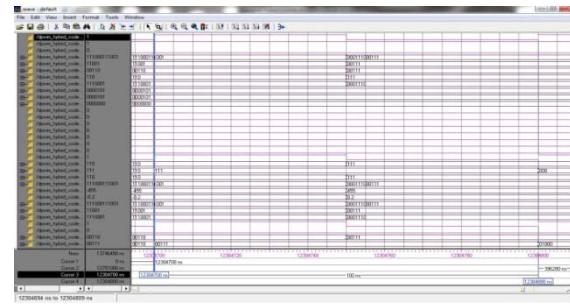


Fig. 6: Hybrid based DPWM generated in ModelSim

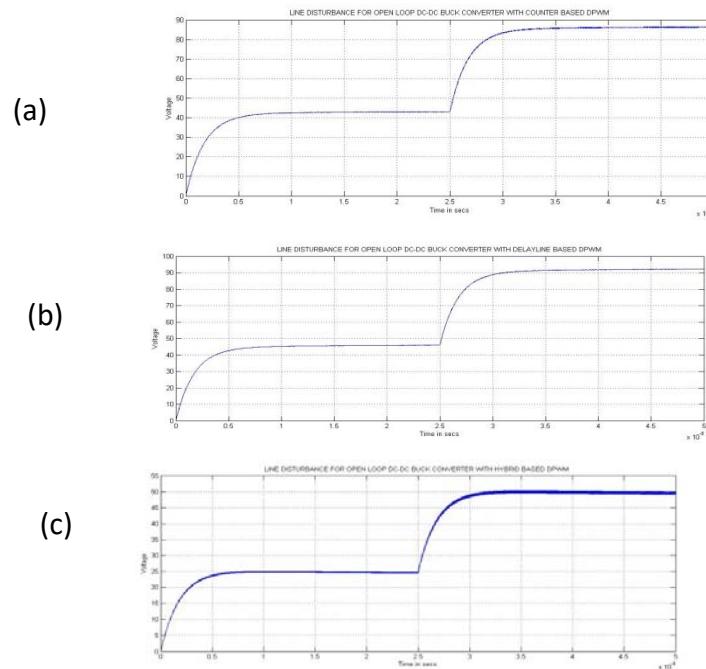


Fig. 7: Open loop deviated response of DC-DC buck converter with line disturbance using a) MD-CDPWM. b) MD-DDPWM. c) MD-HDPWM

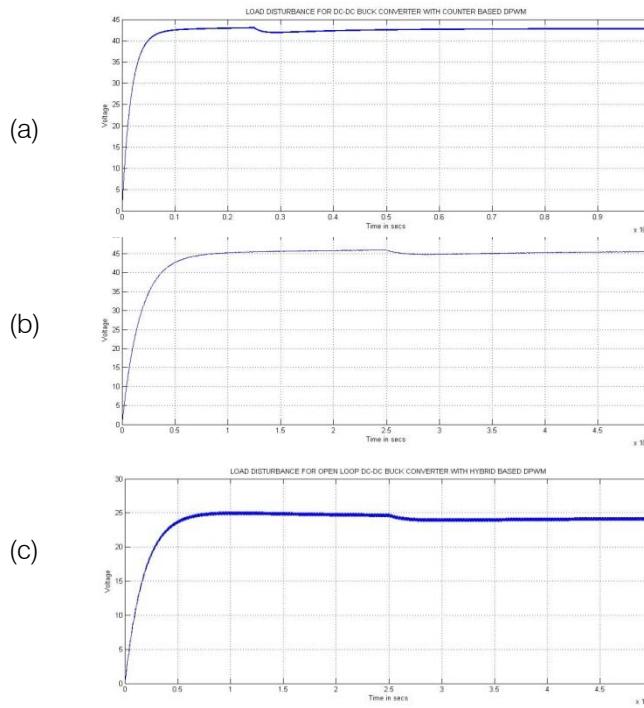


Fig. 8: Open loop deviated response of DC-DC buck converter with load disturbance using a) MD-CDPWM. b) MD-DDPWM. c) MD-HDPWM

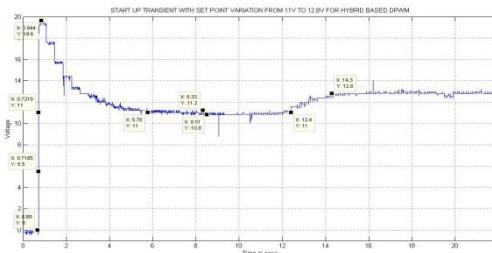


Fig. 9: Experimental regulated start-up transient response of MD-HDPWM buck converter with set point variation

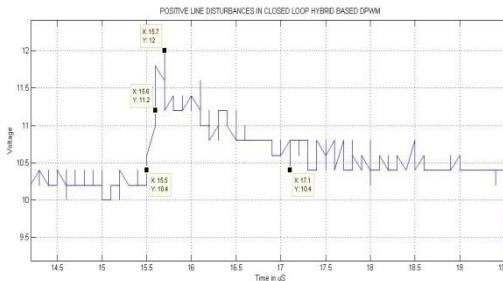


Fig. 10: Experimental response of MD-HDPWM based DC-DC buck converter with increased load disturbance from 10.4V to 12V

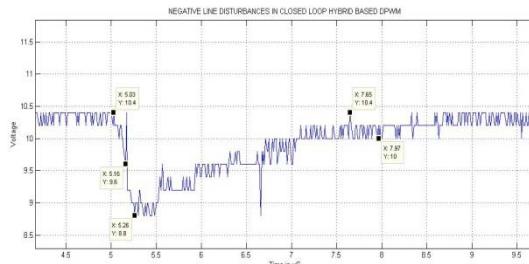


Fig. 11: Experimental response of MD-HDPWM based DC-DC buck Converter with decreased load disturbance from 10.4V to 8.8V

Fig. 12: Experimental DSO start-up transient response of MD-HDPWM buck type voltage regulator with set point variation

Fig. 13: Experimental DSO regulated response of MD-HDPWM buck type voltage regulator with line disturbances from 10.4V to 8.8V and 10.4V to 12V

Fig. 14: Experimental CSV plotted result for Load disturbance of MD-HDPWM buck type voltage regulator from 445Ω to 595Ω

Fig. 15: Experimental CSV plotted result for Load disturbance for MD-HDPWM buck type voltage regulator from 595Ω to 445Ω

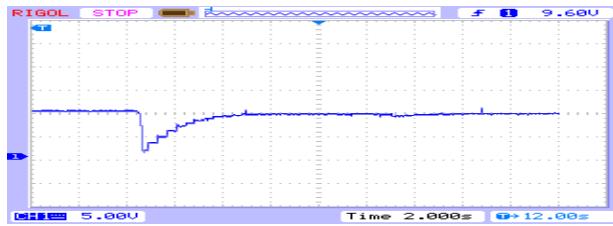


Fig. 16: Experimental DSO result for Load disturbance for MD-HDPWM buck type voltage regulator from 445Ω to 595Ω

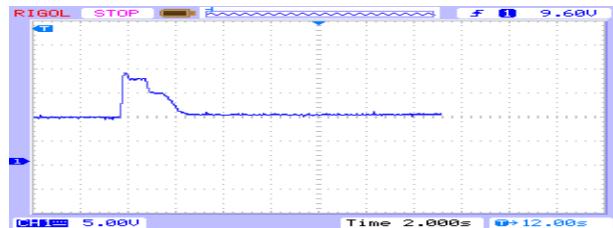


Fig. 17: Experimental DSO response for Load disturbance for MD-HDPWM buck type voltage regulator from 595Ω to 445Ω

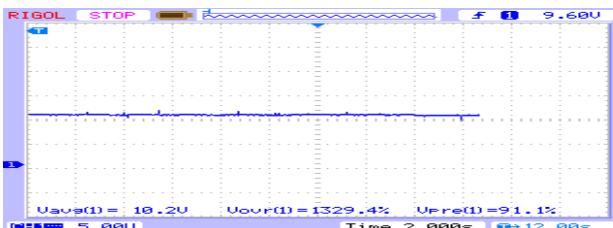


Fig. 18: Experimental DSO response for Load disturbance for MD-DDPWM buck type voltage regulator from 470Ω to 495Ω and from 495Ω to 470Ω

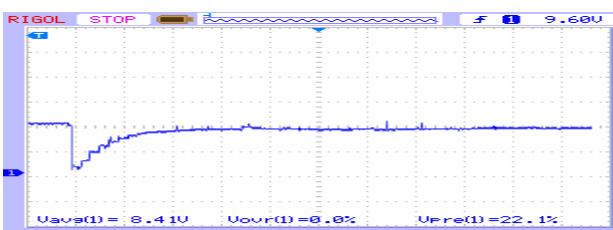


Fig. 19: Experimental DSO response for Load disturbance for MD-DDPWM buck type voltage regulator from 445Ω to 295Ω

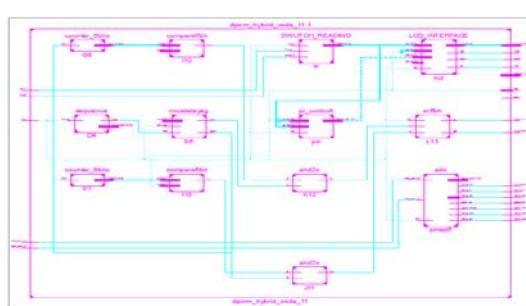


Fig. 20: Detailed RTL view of MD-HDPWM in Xilinx ISE

Device Utilization Summary			
Logic Utilization	Used	Available	Utilization
Number of Slice Flip Flops	665	33,280	1%
Number of 4 input LUTs	1,633	33,280	4%
Number of occupied Slices	1,090	16,640	6%
Number of Slices containing only related logic	1,090	1,090	100%
Number of Slices containing unrelated logic	0	1,090	0%
Total Number of 4 input LUTs	1,894	33,280	5%
Number used as logic	1,633		
Number used as a route-thru	261		
Number of bonded IOBs	37	519	7%
Number of BUFGMUXs	1	24	4%
Number of DSP48As	6	84	7%
Average Fanout of Non-Clock Nets	2.96		

Fig. 21: Design Utilization Table for MD-CDPWM in Xilinx Spartan 3A FPGA

Device Utilization Summary			
Logic Utilization	Used	Available	Utilization
Number of Slice Flip Flops	2,716	33,280	8%
Number of 4 input LUTs	2,670	33,280	8%
Number of occupied Slices	3,659	16,640	21%
Number of Slices containing only related logic	3,659	3,659	100%
Number of Slices containing unrelated logic	0	3,659	0%
Total Number of 4 input LUTs	2,931	33,280	8%
Number used as logic	2,670		
Number used as a route-thru	261		
Number of bonded IOBs	41	519	7%
Number of BUFGMUXs	1	24	4%
Number of DSP48As	6	84	7%
Average Fanout of Non-Clock Nets	2.59		

Fig. 22: Design Utilization Table for MD-DDPWM in Xilinx Spartan 3A FPGA

Device Utilization Summary			
Logic Utilization	Used	Available	Utilization
Number of Slice Flip Flops	697	33,280	2%
Number of 4 input LUTs	1,657	33,280	4%
Number of occupied Slices	1,130	16,640	6%
Number of Slices containing only related logic	1,130	1,130	100%
Number of Slices containing unrelated logic	0	1,130	0%
Total Number of 4 input LUTs	1,908	33,280	5%
Number used as logic	1,657		
Number used as a route-thru	251		
Number of bonded IOBs	37	519	7%
Number of BUFGMUXs	1	24	4%
Number of DSP48As	6	84	7%
Average Fanout of Non-Clock Nets	2.95		

Fig. 23: Design Utilization Table for MD-HDPWM in Xilinx Spartan 3A FPGA

Fig. 24: Experimental setup for the Modified DPI enabled DPWM based DC- DC buck converter using FPGA

Table 1: Performance analysis for start-up transient response of modified DPI enabled DPWM techniques with no disturbance

Method	MD-CDPWM	MD-DDPWM	MD-HDPWM
Settling Time (ts)	4.71	6.2	5.1
Rise Time (tr)	0.035	0.002	0.0419
Delay Time (td)	0.032	0.023	0.0385
Peak Time (tp)	0.04	0.03	0.164

Steady State Error (ess)	0.0425	0.0385	0.0357
Step change variation time(tsc)	3.6	2.4	1.9
Percentage Overshoot (%MP)	113.04%	96%	78.18%

Table 2: Performance Analysis For Start-Up Transient Response Of Modified DPI Enabled DPWM Techniques With Increased Line Disturbance

Methods	MD-CDPWM	MD-DDPWM	MD-HDPWM
Rise Time in s (tr)	0.2	0.3	0.2
Time Delay in s (tp)	0.1	0.1	0.1
Settling Time in s (ts)	3.8	2.7	1.6
Percentage Overshoot(%MP)	14.286%	17.647%	15.38%
Output Voltage Ripple	0.04	0.04	0.03846
Initial Value before disturbance	9.8 V	10.2 V	10.4 V
Peak Value at disturbance	11.2 V	12 V	12 V

Table 3: Performance Analysis For Start-Up Transient Response Of Modified DPI Enabled DPWM Techniques With Decreased Line Disturbance

Methods	MD-CDPWM	MD-DDPWM	MD-HDPWM
Rise Time in s (tr)	0.2	0.2	0.23
Time Delay in s (tp)	0.142	0.135	0.13
Settling Time in s (ts)	3.26	2.82	2.62
Percentage Overshoot (% MP)	14.2857%	13.725%	15.38%
Output Voltage Ripple	0.04	0.04	0.04
Initial Value before disturbance	9.8 V	10.2 V	10.4 V
Minimum Value at disturbance	8.4 V	8.8V	8.8 V

Table 4: Device Utilization For The Modified DPI Enabled DPWM Techniques

Methods	MD-CDPWM	MD-DDPWM	MD-HDPWM
Resolution with specification	2^{11} -bit Counter Designed	2^{11} 2048 : 1 Mux Designed	$2^{11} = 2^6 + 2^5$ (2 ⁶ -bit Counter & 32:1 Mux Designed)
Number of Sliced Flip Flops	665	2716	697
Number of 4 input LUTs	1633	2670	1657
Number of occupied slices	1090	3659	1130
Number of bonded IOBs	37	41	37
Average Fan-out of Non-clock nets	2.96	2.59	2.95

VIII. CONCLUSION

Simulation results show the possibilities of achieving high switching frequency up to 16MHz DPWM. Hardware results show the feasibility of the proposed technique for the available prototype model in our laboratory and found to be satisfactory. The Modified DPI enabled DPWM generators also perform voltage regulation of the power supply. The FPGA based Modified DPI enabled Hybrid based DPWM voltage regulator is found to be immune to circuit component variations, and also to line-load disturbances.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Luca Corradini, Aleksandar Bjeletić, Regan Zane, and Dragan Maksimović, "Fully Digital Hysteretic Modulator for DC-DC Switching Converters" *IEEE Transactions on Power Electronics*, Vol. 26, No. 10, pp. 2969-2979, October 2011.
2. Bo Li, Xuefang Lin-Shi, Bruno Allard, and Jean-Marie Rétif, "A Digital Dual-State-Variable Predictive Controller for High Switching Frequency Buck Converter With Improved Σ -DPWM" *IEEE Transactions on Industrial Informatics*, Vol. 8, No. 3, pp. 472-481, August 2012.
3. Daniel Costinett, Miguel Rodriguez, and Dragan Maksimovic, "Simple Digital Pulse Width Modulator under 100 ps Resolution Using General-Purpose FPGAs" *IEEE Transactions on Power Electronics*, Vol. 28, NO. 10, pp.4466-4472, October 2013.
4. Nikola Milivojevic, Mahesh Krishnamurthy, Yusuf Gurkaynak, Anand Sathyan, Young-Joo Lee, and Ali Emadi, "Stability Analysis of FPGA-Based Control of Brushless DC Motors and Generators Using Digital PWM Technique" *IEEE Transactions on Industrial Electronics*, Vol. 59, No. 1, pp. 343-351, January 2012.
5. Chia-An Yeh, and Yen-Shin Lai, "Digital Pulse width Modulation Technique for a Synchronous Buck DC/DC Converter to Reduce Switching Frequency" *IEEE Transactions on Industrial Electronics*, Vol. 59, No. 1, pp. 550-561, January 2012.
6. Denis Navarro, Oscar Lucía, Luis Angel Barragañ, Jose Ignacio Artigas, Isidro Urrizaga, and Oscar Jiménez, "Synchronous FPGA-Based High-Resolution Implementations of Digital Pulse-Width Modulators" *IEEE Transactions on Power Electronics*, Vol. 27, No. 5, pp.2515-2525, May 2012.
7. Mukti Barai, Sabyasachi Sengupta, and Jayanta Biswas, "Digital Controller for DVS-Enabled DC-DC Converter" *IEEE Transactions on Power Electronics*, Vol. 25, No. 3, pp. 557-573, March 2010.

This page is intentionally left blank