Optimization of Flotation Reagents’ Specific Consumption by Modeling During Mineral Enrichment

By A. Alouani, A. Arbaoui, K. Benkhouja, A. Khmich, Y. Alouani, K. Sbiaai & B. Nacer

Introduction- Flotation is a process of separating precious minerals from the gangue, based on the differences in the surface properties of the particles, using reagents added in the presence of air bubbles. The consumption of flotation reagents represents a very important part in the mineral enrichment cost. In this study of optimizing the mineral flotation reagents consumption, we have empirically modeled the concentrate contents according to the influence of elements, based on the experimental designs theory[1-4].

The purpose of this study is to determine the optimal experimental conditions, in order to study the main effects of the different parameters and the effects of possible interactions between them, which cannot be revealed by conventional methods. The method of factorial design was applied to optimize the specific consumption of flotation reagents[5-7].

GJRE-J Classification: FOR Code: 291899

Strictly as per the compliance and regulations of:

© 2017. A. Alouani, A. Arbaoui, K. Benkhouja, A. Khmich, K. Sbiaai, Y. Alouani, A. Hasnaoui & B. Nacer. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Optimization of Flotation Reagents’ Specific Consumption by Modeling During Mineral Enrichment

A. Alouani, A. Arbaoui, K. Benkhouja, A. Khmich, Y. Alouani, K. Sbiaai & B. Nacer

I. INTRODUCTION

Flotation is a process of separating precious minerals from the gangue, based on the differences in the surface properties of the particles, using reagents added in the presence of air bubbles. The consumption of flotation reagents represents a very important part in the mineral enrichment cost. In this study of optimizing the mineral flotation reagents consumption, we have empirically modeled the concentrate contents according to the influence of elements, based on the experimental designs theory[1-4].

The purpose of this study is to determine the main effects of the different parameters and the effects of possible interactions between them, which cannot be revealed by conventional methods. The method of factorial design was applied to optimize the specific consumption of flotation reagents[5-7].

The important parameters which affect the concentrate y (%) are the flotation reagents R1 (g/t), R2 (g/t) and R3 (g/t)[8]. The other parameters are assumed to be constant by working on the same ore quality with laboratory tests. These parameters were respectively coded x1, x2 and x3, and were studied between two levels -1 (low level) and +1 (high level).

The flotation tests are based on the fixation of the specific concentration of two reagents and changing the third, in order to identify the test that leads to maximum percentage of concentrate y (useful product) and minimum undesirable products (impurities).

II. THE EXPERIMENTAL DESIGN THEORY

The experimental design methodology is also an effective experimental strategy for determining optimal conditions. This method is a set of statistical and mathematical techniques, used for the development, improvement and optimization of some processes, in which a response of interest is affected by several process variables, whose objective is to optimize this response. To quantify the effects of influential factors and their interactions on the studied response, we identify the form of this influence by developing a mathematical equation that allows describing the studied response according to influential factors, in order to obtain a significant empirical model[9].

Several possible mathematical models are assigned to the experimental designs. The aim is to build a model that uses the action of all factors.

Let X1, X2, … Xk be the k factors and Y the response. The model is written in the following form:

\[Y = \beta_0 + \sum_{i=1}^{k} \beta_i X_i + \sum_{i=1}^{k} \beta_{ij} X_i^2 + \sum_{j=1}^{k} \beta_{ij} X_i X_j + \cdots + \varepsilon \]

\[\beta_0 : \text{Constant Term} \quad \beta_i : \text{Linear Term} \quad \beta_{ij} : \text{Squarish Term} \quad \beta_{ij} : \text{Right-angled Term} \quad \varepsilon : \text{Error Term} \]

The problem is to determine the values of the coefficients \(\beta_0, \beta_i, \beta_{ij}, \) and \(\beta_{ij} \) of the model. Thus, it is necessary to carry out more than k experiments.

It is then possible to calculate only an estimation of the coefficients \(\beta \), denoted \(\beta \), calculated by the method of the least squares. The estimated model equation is then written:

\[y = b_0 + \sum_{i=1}^{k} b_i x_i + \sum_{i=1}^{k} b_{ii} x_i^2 + \sum_{j=1}^{k} b_{ij} x_i x_j + \cdots + \varepsilon \]

y: is called predicted or estimated response.

The latter general equation can be simplified by eliminating non-significant terms. This depends on the choice of the experimenter, according to the level of confidence in regards to the model, which allows obtaining a reduced equation.

III. SOFTWARE USED

The statistical and graphical analysis software used in this study to interpret the results of the experimental design is Design-expert 7 version 7.0.0.
This software was used to analyze the regression of the data obtained and to estimate the coefficients of the regression equation[10].

IV. EXPERIMENTAL DESIGN

To find the optimum conditions for the y concentrate (%), the experiments were designed using the experimental design methodology. For our tests, the three independent variables chosen for this study are: R1 (g/t), R2 (g/t) and R3 (g/t). The ranges and levels of these parameters are represented in coded and natural values (xi, X_i) in table 1, therefore, it would take two levels for each factor. This makes a total of 8 necessary experiments, for a polynomial model of individual effects and interactions between the three factors. The matrix defining the conditions of the three-variable experiments is presented in table 1.

Table 1: Coded and natural levels of independent parameters used

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Coded and natural levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1: R1 (g/t)</td>
<td>-1</td>
</tr>
<tr>
<td>X2: R2 (g/t)</td>
<td>300</td>
</tr>
<tr>
<td>X3: R3 (g/t)</td>
<td>200</td>
</tr>
</tbody>
</table>

The general equation of the model for the response Y (concentrate) in percentage is in the form:

\[Y = b_0 + \sum_{i=1}^{3} b_i x_i + \sum_{i=1}^{3} \sum_{j=i+1}^{3} b_{ij} x_i x_j + \varepsilon \]

Where \(x_i \) is the coded value of the independent variable i, \(X_i \) the natural value of the independent variable i, \(\varepsilon \) that represents the residual error.

In order to test the validity of the model, the variance analysis (ANOVA) was used to examine the significance and adequacy of the model. This latter makes it possible to plot the response surfaces and to estimate the interaction between the different factors and their influence on the concentrate.

To find the optimum conditions for the y concentrate (%), the experiments were designed using the experimental design methodology. For our tests, the three independent variables chosen for this study are: R1 (g/t), R2 (g/t) and R3 (g/t). The ranges and levels of these parameters are represented in coded and natural values (xi, X_i) in table 1, therefore, it would take two levels for each factor. This makes a total of 8 necessary experiments, for a polynomial model of individual effects and interactions between the three factors. The matrix defining the conditions of the three-variable experiments is presented in table 1.

Table 2: Experimental and calculated results of the concentrate(%) factorial design

<table>
<thead>
<tr>
<th>N° Exp.</th>
<th>Coded Values</th>
<th>Natural Values</th>
<th>Concentrate(%)</th>
<th>Residuals (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x1</td>
<td>x2</td>
<td>x3</td>
<td>X1 (g/t)</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>600</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>600</td>
</tr>
</tbody>
</table>
VI. Determining The Model Significant Terms

Design-Expert classifies the absolute values of effects from the bottom up and builds a plot of half-normal probability. Significant effects fall to the right on this plot. To the right, select the most important effects. Look for a final gap between the guardians and the many trivial effects near zero. On the other hand, if the effects are negative, a reduction in response occurs at a high level of the same factor[11], and a positive value indicates a synergistic effect that promotes optimization[12].

From figure 1 we notice that the significant effects are A, B, C, AB and AC, which are respectively \(R_1, R_2, R_3 \), the interaction \(R_1-R_2 \) and the interaction \(R_1-R_3 \). These parameters are the only ones that affect the response of the concentrate (%), so the empirical model is a function of the factors’ individual effects and the previous interactions.

![Half-Normal Plot](image)

Figure 1: Significant Effects

The polynomial general equation is as follows:

- According to coded factors
 \[y = 65.99 + 1.19 A + 1.96 B + 1.46 C + 0.56 AB + 0.41 AC \]

- According to natural factors
 \[y = 60.925 - 0.011583 R_1 + 2.7510^{-3} R_2 + 7.510^{-3} R_3 + 3.7510^{-5} R_1 R_2 + 9.16667 10^{-5} R_1 R_3 \]

VII. Evaluation of The Model Quality

a) Residuals Analysis

The actual values of the response \(y_{exp} \) are compared to the calculated values \(y_{cal} \) by the model and their differences are called residuals. These residuals allow verifying the model quality. They are shown in figure 2. The correlations between the theoretical and experimental responses we obtained are satisfactory[13]. The determination coefficient (0.9989) is close to the unit (statistical tests).

The differences between the experimental and calculated responses (residuals) do not exceed 0.13%, which is due to experimental results variability because of manipulation. These residuals are distributed equally in space[14]. The model was accepted. Moreover, this illustrates that this polynomial model describes well the studied phenomenon and shows a good adjustment of the experimental results.

In Figure 3, the plot of the experimental response is given as a function of the calculated one, in which we notice a strong correlation between the calculated response and that estimated by the model.
Figure 2: Diagram of response residuals (%) based on number of experiments

Figure 3: Comparison between calculated and experimental values of the concentrate y(%)
b) Residuals normal probability

The normality of the data can be verified by plotting a plot of residuals normal probability. If the data points on the ground fall close enough to the straight line, the data is normally distributed[15].

The residuals normal probability graph is given in figure 4. We find that in the response in concentrate function y (%), the data points are close enough to the straight line and this indicates that the experiments arise from a normally distributed population.

![Normal Plot of Residuals](image)

Figure 4: Residuals Probability

The results of the concentrate y (%) variance analysis are given in Table 3:

Table 3: Concentrate y (%) variance analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Freedom degree</th>
<th>Mean squares</th>
<th>F-value</th>
<th>p-value Prob>F</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>12.62</td>
<td>348.12</td>
<td>0.0029</td>
<td>Significant</td>
</tr>
<tr>
<td>A- R²</td>
<td>1</td>
<td>11.28</td>
<td>311.21</td>
<td>0.0032</td>
<td>Significant term</td>
</tr>
<tr>
<td>B- R²</td>
<td>1</td>
<td>30.81</td>
<td>849.97</td>
<td>0.0012</td>
<td>Significant term</td>
</tr>
<tr>
<td>C- R³</td>
<td>1</td>
<td>17.11</td>
<td>472.03</td>
<td>0.0021</td>
<td>Significant term</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>2.53</td>
<td>69.83</td>
<td>0.0140</td>
<td>Significant term</td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>1.36</td>
<td>37.55</td>
<td>0.0256</td>
<td>Significant term</td>
</tr>
</tbody>
</table>

*It appears from these results that:
- The Model F-value of 348.12 implies the model is significant. There is only a 0.29% chance that a "Model F-Value" this large could occur due to noise;
- Values of "Prob > F" less than 0.0500 indicate model terms are significant[16];
- In this case A, B, C, AB, AC are significant model terms. Values greater than 0.1000 indicate the model terms are not significant;
- The "Pred R-Squared" of 0.9816 is in reasonable agreement with the "Adj R-Squared" of 0.9960;
- "Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable[17]. Your ratio of*
55.948 indicates an adequate signal. This model can be used to navigate the design space.

VIII. Comparison Between the Empirical Model Responses and Experimental Ones

Based on the experimental responses found in the laboratory and the responses calculated by the empirical model and their differences, i.e. the residuals (table 2), we can plot the figure 5 that illustrates the comparison between these responses (experimental and model) for the 8 tests.

According to this curve, we notice that the response of the concentrate y (%) found starting from the empirical model are identical to those found in the laboratory with the same elaboration conditions. In other words, they are similar for most tests. Therefore, we infer that there is a strong correlation between the experimental and empirical models responses.

Figure 5: The correlation between experimental and model results

IX. 3D Response Surface and 2D Contour Graph

The 3D response surface is a three-dimensional graphical representation, it was used to determine the individual and cumulative effect of the mutual interaction between the variables[18]. The response surface analyzes the geometric nature of the surface, the maxima and minima of the response. The contour graph plot by this model is a graphical technique to represent a three-dimensional polynomial response surface by plotting z-slices on a two-dimensional format. Lines are plotted to connect the coordinates (x, y) where this z-value occurs[19].

The study of contour graphs provides a simple method of optimizing the rate of treatment, and identifying interactions between variables (Figs. 6-9). Each curve represents, in our case, the combinations between two variables when the third variable is maintained at a constant level. These constant levels are the central levels of each variable.

For the interaction R1-R2, the response surface of figure 6 shows that the concentrate y (%) increases progressively with the increase of the values of R2 and R1. The contour graph (figure 7) illustrates well these variations.
Figure 6: Response surface according to R_1-R_2.

Figure 7: Contour graph according to R_1-R_2.
Figure 8: Response surface according to R₁-R₃.

Figure 9: Contour graph according to R₁-R₃.
Figures 8 and 9 show that there is a strong interaction R_1-R_3. Indeed, the response surface indicates that the concentrate y (%) increases progressively with the increase of R_1 and R_3 consumption.

X. RESULTS INTERPRETATION

The increase of the concentrate y (%) with the increase in consumption of R_1, R_2 and R_3 is linked to several approaches; to the power of depression and precipitation of the concentrate particles because of the strong adsorption of R_1 on their surfaces that increases their masses and ensures their gravity in the recovered non-float product. This increase is due both to the strong collection of undesirable elements with R_2 and R_3 that improves their hydrophobicities and ensures their affinities with the air bubbles injected into the flotation pilot cell[20-21]. The undesirable elements are transported to the surface forming a foam (floating product) rich in percentages of undesirable elements. This migration or evacuation of the collected elements ensures an increase in the percentage of the concentrate particles in the non-floating product and thereafter the increase of the concentrate y (%) in the product (non-floating).

To validate these interpretations, figures 10 and 11 illustrate the concentrate y (%) maximum value obtained according to maximum consumption of flotation reagents.

Figure 10: Response surface according to R_1-R_2 for a maximum constant R_3 value
This study has shown that the experimental design methodology allows developing an empirical model that allows a good understanding and describing, in a satisfactory way of the concentrate y (%) at every point of the experimental field. The influence of R_1 (g/t), R_2 (g/t) and R_3 (g/t) was performed on the concentrate y (%). The results show that the optimization and modeling of the concentrate y (%) using the factorial design method allows us to correctly describe the influence of these three experimental parameters on the effectiveness of the treatment. Statistical analysis showed that the two interactions R_1-R_2 and R_1-R_3 are the most influential ones. This study shows that the model used is highly significant and in accordance with the experimental results.

In order to improve the flotation process overall performance, several flow recycling case studies were considered. The reduction of the recycling ratio increases the specific consumption of Flotation reagents, however its progressive increment reduces the need for reagents up to an optimal level. Moreover, any increase results in an accumulation of fine particles in the circuits, which causes saturation and a reduction of the production capacity in the Flotation unit. According to the “AA” curve below, the industrial optimization led to a remarkable reduction of the specific consumptions for the same raw product profile and for the same level of the production capacity[22].

Figure 11: Contour graph according to R_1-R_3 for a maximum constant R_2 value

We can conclude, through these figures analysis, that the flotation process using important consumption of reagents (g/t) (R_1, R_2 and R_3) allows obtaining high concentrate values which reach 71.7%. This is convenient with approximations or appropriate approaches with the interpretations in the previous paragraph.

BIBLIOGRAPHIC REFERENCES

