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I. Introduction 

he boundary element method [1, 2] is a helpful tool 
to solve the problems of computational 
mechanics. Many researchers and scientists use 

standard BEM, with the boundary approximation done 
by using linear segments (boundary elements), or 
standard BEM is improved by considering the 
conditions of a given problem [1-19]. The advantage of 
using linear boundary elements is the opportunity to 
analytically calculate the integrals, while with curvilinear 
elements generally, it is possible to do numerical 
integration [20].  

The boundary element method, in particular, the 
fictitious load method formulated to solve the boundary 
value and boundary-contact problems of elasticity for a 
circular ring and its parts are improved in the present 
paper if considering that the circular segment of the 
boundary is divided into arcs instead of linear segments. 
This allows to describe the considered area more 
accurately and to arrive at a more accurate solution of 
the problem. So, when the considered area is limited 
with circles or their parts, i.e., with the coordinate axes of 
the polar coordinate system, then by dividing the circle 
into small arcs, we can formulate BEM in the polar 
coordinate system with all integrals solved analytically. 
In particular, a fictitious load method is considered in the  
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polar coordinate system, whereas it was described in a 
Cartesian coordinate system by Crouch and Star        
field [1]. 

The article gives a fundamental solution written 
down in polar coordinate systems serving as a basis to 
obtain a numerical solution, and a problem of constant 
forces distributed along the arc is considered. A 
numerical procedure is presented and boundary 
coefficients of influence are written out.  
Two test boundary-contact problems are solved:  
1. Elastic equilibrium of an infinite area with a circular 

hole is studied when a circular ring inserts near the 
hole; normal constant stress is given on the internal 
surface of the ring, the body is free from stresses in 
the infinity, and the conditions of continuity of 
displacements and stresses are given on the 
contact line. Numerical values are obtained by 
using: a) analytical solution, b) standard BEM, i.e., 
when a circular boundary divides into linear 
segments, and c) PCSBEM, i.e., when the boundary 
divides into arcs, and the results obtained in all 
three cases are compared to one another.  

2. A boundary-contact problem is solved for a double-
layer circular ring when the internal circular 
boundary is loaded with a normal variable force, the 
outer boundary is not loaded, and conditions of a 
rigid contact are given for the contact line. The 
numerical results are obtained by using standard 
BEM and PCSBEM and are compared to one 
another. MATLAB software was used to obtain the 
relevant numerical values and graphs for both 
problems.  

II. The Fundamental Solution in the 
Cartesian Coordinate System 

Let us consider the problem shown in Fig. one 
known as Kelvin’s problem of plane deformation [1]. 

T 
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Abstract- The article presents an exact version of the boundary 
element method, in particular, the fictitious load method used 
to solve boundary value and boundary-contact problems of 
elasticity. The method is developed in the polar coordinate 
system. The circular boundary of the area limited with the 
coordinate axes of this system is divided not into small 
segments like in case of a standard boundary element method 
(BEM), but into small arcs, while the linear part of the boundary 
divides into small segments. In such a case, the considered 
area can be described more accurately than when it divides 
into small segments, and as a result, a more accurate solution 
of the problem is obtained. Two test boundary-contact 
problems were solved by using a boundary element method 
developed in the polar coordinate system (PCSBEM), and 
the obtained numerical values are presented as 
tables and graphs.
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( )yx FFF ,= forces  in Fig. 1 are a line of the 

point force applied along axis z in the infinite elastic 
plane. 

The solution to this problem is given by the 
following function [1]:

where ν is the Poisson’s ratio.
The displacements will be written down as 

follows: 

where ( )ν+=
12
EG is shear modulus, and E is

Young’s modulus.
For the plane deformation, the stresses for 

Kelvin’s problem will be written down as follows: 

( ) ( )[ ] ( )
( ) ( )[ ]

( ) ( )[ ] ( )[ ].2121,
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,212,

,,,,

,,,,

,,,,

xyxyxxyxxy
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−−+−−=

−−+−=

−+−−=

ννσ

ννσ

ννσ

As it can be seen from (1), (3), the stress at 
point 0    ,0 == yx has the singularity.  It can be 
shown that these stresses correspond to the point force 
at the origin of coordinates [21].

For the sake of simplicity, we mean that 
( )yxi FFF ,= force is applied to the origin of 

coordinates.

III. The Fundamental Solution in the 
Polar Coordinate System

Let us write down formulae (1), (2) and (3) in 
polar coordinate system ϑ,r ( )πϑ 20,0 <≤∞<≤ r

[22]. Following certain algebraic transformations, we 
obtain the following expression for the function ( )yxg , :

( ) ( ) ( )    .ln
14
1,, 1 rrgyxg
νπ

ϑ
−

−=≡

For the components of a displacement vector, 
we will obtain the following equations: 
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and for the components of the stress tensor we will obtain: 

( ) ( )[ ] ( )
( ) ( ) ( )[ ]

( ) ( )[ ] ( )[ ],sin21cos21,~

          ,sin12cos2,
~
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Figure 1:  Kelvin’s problem for plane deformation
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wher e xg ,1 , yg ,1 , xxg ,1 , yyg ,1 , xyg ,1   in the polar coordinate system have following form:

( ) ( )

( )
( )

( )
( )

( )
( )       .2sin

14
1

   ,2cos
14
1   ,2cos

14
1

     ,sin
14
1     ,cos

14
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2,1

2,12,1

,1,1

r
g

r
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r
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r
g

r
g

xy

yyxx

yx

ϑ
νπ

ϑ
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ϑ
νπ

ϑ
νπ

ϑ
νπ

−
=

−
−=

−
=

−
−=

−
−=

By using the superposition principle, we can 
solve the problem for an infinite elastic body, with a set 
of point forces acting at any of its points. If distributing 
such forces continuously along some line of the plane, 
we will obtain a problem with the forces given along this 
line. 

IV. Constant Forces Distributed 
the Curve

Let us consider the following problem: constant 

rr Pt = and ϑϑ Pt = forces are applied to the 

21 ϑϑϑ ≤≤ arc of a circle with radius r in an infinite 
body. This problem can be solved by integrating a 
fundamental solution. 

Figure 2: Integration of a fundamental solution

Let us divide arc MN into the elements with a 
length of ξd (See Fig. 2). Then, the sum of the forces 
acting on the arc element with its center at the point 
( )ξ,r , equals ( ) ξξ rdPF ii ⋅= , where index i denotes 

r or ϑ . To solve this problem, let us insert the 
expressions of ( )ξrF and ( )ξϑF forces  in (4) and (5), 

change ϑ with ξϑ − and integrate the obtained 

expressions with ξ from 1ϑ to 2ϑ . The following 
formulae are obtained for displacements:

  

( ) ( )( ) ( )[{

( )( ) ( )( )( )]
( )( ) ( )( )}
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(6)
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and the following formulae are obtained for stresses:
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Equations (6) and (7) are displacements and 
stresses in an infinite elastic body when constant 

rr Pt =   and ϑϑ Pt = forces  are applied to 

21 ϑϑϑ ≤≤ arc  of a circle with the radius r . These 
equations are the basis for the boundary element 
method considered later. The following peculiarity of the 
analytical solution given above is worth mentioning. 

Displacements from the origin of coordinates to 
the infinitely distanced points are not limited because of 
the logarithm included in them. Therefore, equations (6) 
show only relative displacements. In any concrete case, 
we must choose a reference point and determine the 
displacement in respect of such a point. 

V. Numerical Procedure

The analytical solution obtained above is the 
basis for the boundary element method used to obtain a 
numerical solution of the boundary value problem of the 
theory of elasticity. Let us explain the physical aspect of 
this method by using a specific example. Let us 
consider a boundary value problem for an infinite body 
with a hole (with a circular hole in our case). We will 

consider a plane deformation. Let us denote the 
boundary of the cut, which is a circle in our case, by C
(See Fig. 3). At any point of the C curve, local s and n
coordinates have the direction of a tangent and its 
perpendicular. Therefore, they change at different points 
along the border. We take these coordinates so that the 
direction of n should coincide with the direction of an 
outer normal at the same point as the border and s
should coincide with the direction of the boundary line. 
In this case, the direction of the boundary line is 
anticlockwise. Let us assume that the same normal 
stress ( pn −=σ ) acts at all points of the hole wall    

(i.e., there is compression) and tangential stress
0=sσ . Let us calculate the displacements and 

stresses in the body caused by such a load of the 
boundary. 

(7)
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Development of Boundary Element Method in Polar Coordinate System for Elasticity Problems

Figure 3: Illustration of the problem statement

The numerical solution of this problem can be 
obtained as follows: first, let us divide circle C into N 
small arcs (elements). As these elements are small, we 
can consider that normal pn −=σ stress acts along 

the whole length of every element, and the tangent is 
free from stress. In this case, the boundary conditions 
will be as follows: 

( ).,1          ,0       , Nip i
s

i
n ==−= σσ

Let us imagine that constant normal and 
tangent stresses act on every element of the circle, e.g., 
let us denote the normal and tangent stresses acting on 

the element j by j
nP and j

sP , respectively. 

It should be noted that the real normal and 
tangent tresses acting on the element j do not equal to 

j
nP and j

sP , if stresses act on other elements, too. 

Therefore, there are two different kinds of stresses for 
every element. For example, for the  element j , we 

have applied stresses j
nP and j

sP and real stresses 
j

nσ and j
sσ caused by the action of the stresses 

applied to all N elements.

By using (6) and (7), we can calculate real i
nσ

and i
sσ stresses, Ni ,,1= in the middle point of 

each element with the following formula: 

( )

( )                     ,,,1     ,

     ,

1

1

NiPAPA

PAPA

N

j

j
n

ij
nn

j
s

ij
ns

i
n

N

j

j
n

ij
sn

j
s

ij
ss

i
s

=+=

+=

∑

∑

=

=

σ

σ

where ,ij
ssA are the boundary coefficients of 

the influence of the stresses for the considered problem. 

For example, ij
snA is the real tangent stress in the center 

of the element i caused by the constant normal unit 

load ( 1=j
nP ) applied to the element j .

By considering the boundary conditions, we will 
obtain the following equations: 

( )

( )
          

          ,,,1     ,
,

    ,0

1

1 Ni
PAPAp

PAPA

N

j

j
n

ij
nn

j
s

ij
ns

N

j

j
n

ij
sn

j
s

ij
ss

=











+=−

+=

∑

∑

=

=

which is a system of N2 linear algebraic 

equations with N2 j
nP and j

sP ( Nj ,,1= )  

unknown values.

(9)

(8)
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It should be noted that j
nP and j

sP stresses in 

these equations are fictitious values. They are 
introduced as an intermediate quantity to obtain the 
numerical value of the problem, and they have no 
physical essence. However, a linear combination of a 
fictitious load presented with formulae (8) has a physical 
essence in the considered problem, and is the basis to 
obtain a system of algebraic equations (9). After solving 
this system, we can express displacements and 
stresses at any point in a body with another combination 

of j
nP and j

sP , ( Nj ,1= ) fictitious load. 

The above-described boundary element 
method is called a fictitious load method [1]. 

VI. Influence Coefficients 

Let us write down the expressions of the 
tangent and normal displacements and stresses in the 
middle point of the i -th element caused by fictitious 

loads j
nP and j

sP , Nj ,1= applied to the j -th 

element. For the displacements, we will have:

( ) ( )( ) ( )[

( )( ) ( )( )]}

( ) ( )( ) ( )( )[ ]

( ) ( )( ) ( )( )[ ]

( ) ( )( ) ( )[

( )( ) ( )( )( )]},2sin2sin25.0               

5.0ln43
18

     

2cos2cos

                        ,2cos2cos
132

        

2sin2sin25.0               

5.0ln43
18

21
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2

21
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21
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21
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ϑϑϑϑ
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ϑϑϑϑ

ϑϑϑϑν
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−−−−





−−−−
−

+









−−−
−

−=









−−−
−

−
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−−−+





−+−−
−
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r
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G
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G
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r
G
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j
n

j
s

i
n

j
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i
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(10)
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( ) ( ) ( ) ( )( )[
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i
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j
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i
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wher e r and ϑ are coordinates in the local 
coordinate system, with its center coinciding with the 
middle point of the i -th element. Generally, the 
displacements and stresses in the i -th element are 

functions of the j
sP   and j

nP fictitious load on all N
elements. So, by (10) and (11), we can write down:
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=

=
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=

=

+=

+=

N

j

j
n

ij
nn

j
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j
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j
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σ

In these equations, boundary influence ,ij
ssB

and ,ij
ssA coefficients are calculated with the 

expressions in the curly braces of equations (10) and 

(11). For example, the ij
snA coefficient is calculated with 

the expression given in curly braces at j
nP   of the first 

equation of (10). 

VII. Numerical Examples and Discussion 

There are two test problems of using a fictitious 
load method given below. We have an exact solution to 
one problem. Therefore, in the case of dividing the 
boundary into segments and arcs, the numerical results 
obtained by using the boundary element method will be 
compared to the exact values. Another problem will 
compare the numerical values obtained by using the 
fictitious load method to one another in case of dividing 
the boundary into segments on the one hand and into 
arcs on the other hand.

and for the  stresses, the expressions will be as follows:

(11)
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a) Ring in an infinite plate with a circular hole
The study area consists of the bra ≤≤ ring

with 1ν and 1E as its elastic characteristics and infinite 

area with a circular hole with br = radius, with 2ν and

2E as its elastic characteristics (See Fig. 4). prr −=σ
normal stress  is given on the internal surface of the ring, 
while in the infinity, the body is free from stresses, and 
the continuity conditions of displacements and stresses 
are given on br = contact surface. So, we will have the 
following boundary conditions: 

( ) ( )

( ) ( )   ,0        ,0   :

,0        ,   :

22

11

==∞→

=−==

ϑ

ϑ

σσ

σσ

rrr

rrr

r

par

and contact conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   .    ,    ,    ,    : 21212121
ϑϑϑϑ σσσσ uuuubr rrrrrrrr −=−====

The solution to this problem is obtained from 
standard formulae [23, 24] for a thick-wall cylinder. In 

particular, the radial and tangential stresses are 
calculated with the following formulae [1]:
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A numerical solution of this problem is obtained 
with a fictitious load method for the following parameter 

values: 
2
1

=
b
a

, 25.021 ==νν , 2
2

1 =
E
E

, 3

2

10−=
E
p

.

Because of the symmetry of the problem, one-fourth of 
the area, in particular, the space between 0=ϑ and 

2
πϑ = is considered. Within this range, the ar =

boundary surface  and both sides of the br = contact 
surface  are  divided into  n=90  elements each, and the 
obtained visual and numerical results are presented in 
Fig. 5, Fig. 6, Table 1 and Table 2, while in cases shown 
in Fig. 7, Fig. 8, Table 3 and Table 4, they are divided 
into 180 elements each. 

  
 

Figure 4: A circular ring in an infinite plate with a hole



Figure 5: Shearing stress p/ϑϑσ in the ring 15.0 ≤≤
b
r

 and infinite body 1≥
b
r

 (n=90) 

Table 1: Shearing stress p/ϑϑσ  in
 
the ring 15.0 ≤≤

b
r

 and infinite body 1≥
b
r

 (n=90) 

No. br /  Exact solution 
Approximate solution Relative error, percent 

In case of the division 
into segments 

In case of the 
division into arcs 

Segments Arcs 

1 0.5500 1.0294 0.9726 1.0010 5.5160 2.7574 
2 0.6000 0.8827 0.8446 0.8637 4.3169 2.1543 
3 0.6500 0.7686 0.7437 0.7561 3.2348 1.6174 
4 0.7000 0.6780 0.6621 0.6701 2.3412 1.1706 
5 0.7500 0.6049 0.5950 0.6000 1.6392 0.8196 
6 0.8000 0.5451 0.5392 0.5422 1.0956 0.5478 
7 08500 0.4956 0.4923 0.4939 0.6601 0.3300 
8 0.9000 0.4540 0.4528 0.4534 0.2769 0.1395 
9 0.9500 0.4189 0.4194 0.4191 0.1096 0.0548 

10 1.0500 0.1512 0.1507 0.1509 0.3242 0.1621 
11 1.1000 0.1377 0.1370 0.1374 0.5607 0.2803 
12 1.1500 0.1260 0.1250 0.1255 0.7963 0.3981 
13 1.2000 0.1157 0.1146 0.1151 1.0238 0.5119 
14 1.2500 0.1067 0.1053 0.1060 1.2381 0.6192 
15 1.3000 0.0986 0.0972 0.0979 1.4361 0.7181 
16 1.3500 0.0914 0.0900 0.0907 1.6165 0.8083 
17 1.4000 0.0850 0.0835 0.0843 1.7787 0.8894 
18 1.4500 0.0793 0.0777 0.0785 1.9234 0.9714 

Average 1.6605 0.8306 
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Figure 6: Normal stress prr /σ in the ring 15.0 ≤≤
b
r

 and infinite body 1≥
b
r

 (n=90) 

Table 2:
 
Normal stress prr /σ in the ring 15.0 ≤≤

b
r

 
and infinite body 1≥

b
r

 
(n=90)

 

No.
 

br /
 

Exact solution
 

Approximate solution
 

Relative error, percent
 In case of

 
the division into 

segments
 

In case of
 
the 

division into arcs
 

Segments
 

Arcs
 

1
 

0.5500
 

-0.8072
 

-0.8160
 

-0.8116
 

1.0951
 

0.5498
 2

 
0.6000

 
-0.6605

 
-0.6725

 
-0.6665

 
1.8187

 
0.9093

 3
 

0.6500
 

-0.5463
 

-0.5588
 

-0.5526
 

2.2884
 

1.1438
 4

 
0.7000

 
-0.4558

 
-0.4671

 
-0.4615

 
2.4873

 
1.2545

 5
 

0.7500
 

-0.3827
 

-0.3921
 

-0.3874
 

2.4410
 

1.2239
 6

 
0.8000

 
-0.3229

 
-0.3300

 
-0.3265

 
2.1918

 
1.1097

 7
 

08500
 

-0.2734
 

-0.2782
 

-0.2758
 

1.7851
 

0.8939
 8

 
0.9000

 
-0.2318

 
-0.2347

 
-0.2333

 
1.2643

 
0.6365

 9
 

0.9500
 

-0.1967
 

-0.1980
 

-0.1973
 

0.6700
 

0.3173
 10

 
1.0500

 
-0.1512

 
-0.1521

 
-0.1516

 
0.6113

 
0.2834

 11
 

1.1000
 

-0.1377
 

-0.1379
 

-0.1378
 

0.0929
 

0.1777
 12

 
1.1500

 
-0.1260

 
-0.1256

 
-0.1258

 
0.3699

 
0.1777

 13
 

1.2000
 

-0.1157
 

-0.1148
 

-0.1153
 

0.7785
 

0.3808
 14

 
1.2500

 
-0.1067

 
-0.1055

 
-0.1061

 
1.1357

 
0.5313

 15
 

1.3000
 

-0.0986
 

-0.0972
 

-0.0979
 

1.4453
 

0.7294
 16

 
1.3500

 
-0.0914

 
-0.0899

 
-0.0907

 
1.7117

 
0.8195

 17
 

1.4000
 

-0.0850
 

-0.0834
 

-0.0842
 

1.9396
 

0.9808
 18

 
1.4500

 
-0.0793

 
-0.0776

 
-0.0784

 
2.1335

 
1.0984

 Average
 

1.4589
 

0.7343
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Figure 7: Shearing stress p/ϑϑσ  in the ring 15.0 ≤≤
b
r

 and infinite body 1≥
b
r

 (n=180) 

Table 3:
 
Shearing stress

 
p/ϑϑσ

 
in the ring 15.0 ≤≤

b
r

 
and infinite body

 
1≥

b
r

 
(n=180)

 

No.
 

br /
 

Exact solution
 

Approximate solution
 

Relative error, percent
 In case of

 
the division 

into segments
 

In case of the 
division into arcs

 

Segments
 

Arcs 

1
 

0.5500
 

1.0294
 

0.9895
 

1.0095
 

3.8708
 

1.9317
 2

 
0.6000

 
0.8827

 
0.8539 0.8683

 
3.2648

 
1.6331

 3
 

0.6500
 

0.7686
 

0.7475 0.7580
 

2.7475
 

1.3757
 4

 
0.7000

 
0.6780

 
0.6622

 
0.6701

 
2.3276

 
1.1659

 5
 

0.7500
 

0.6049
 

0.5960
 

0.6005
 

1.4713
 

0.7274
 6

 
0.8000

 
0.5451

 
0.5400

 
0.5445

 
0.9356

 
0.1101

 7
 

08500
 

0.4956
 

0.4930
 

0.4940
 

0.5246
 

0.3228
 8

 
0.9000

 
0.4540

 
0.4531

 
0.4536

 
0.1982

 
0.0881

 9
 

0.9500
 

0.4189
 

0.4183
 

0.4185
 

0.1432
 

0.0955
 10

 
1.0500

 
0.1512

 
0.1509

 
0.1510

 
0.1984

 
0.1323

 11
 

1.1000
 

0.1377
 

0.1372
 

0.1375
 

0.3631
 

0.1452
 12

 
1.1500

 
0.1260

 
0.1252

 
0.1256

 
0.6349

 
0.3175

 13
 

1.2000
 

0.1157
 

0.1150
 

0.1154
 

0.6050
 

0.2593
 14

 
1.2500

 
0.1067

 
0.1058

 
0.1062

 
0.8435

 
0.4686

 15
 

1.3000
 

0.0986
 

0.0978
 

0.0983
 

0.3043
 

0.8114
 16

 
1.3500

 
0.0914

 
0.0907

 
0.0912

 
0.7659

 
0.2188

 17
 

1.4000
 

0.0850
 

0.0844
 

0.0847
 

0.7059
 

0.2353
 18

 
1.4500

 
0.0793

 
0.0788

 
0.0791

 
0.6305

 
0.2522

 Average
 

1.1408
 

0.5717
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Figure 8: Normal stress prr /σ  in the ring 15.0 ≤≤
b
r

 and infinite body 1≥
b
r

(n=180) 

Table 4: Normal stress prr /σ  in the ring 15.0 ≤≤
b
r

 and infinite body 1≥
b
r

(n=180) 

No. br /  Exact solution 

Approximate solution Relative error, percent 
In case of the division 

into segments 

In case of the division 
into arcs 

Segments Arcs 
1 0.5500 -0.8072 -0.8124 -0.8098 0.6519 0.3268 
2 0.6000 -0.6605 -0.6675 -0.6640 1.0552 0.5308 
3 0.6500 -0.5464 -0.5535 -0.5499 1.3036 0.6496 
4 0.7000 -0.4558 -0.4622 -0.4590 1.4077 0.7060 
5 0.7500 -0.3827 -0.3880 -0.3854 1.3926 0.7013 
6 0.8000 -0.3229 -0.3271 -0.3250 1.2871 0.6452 
7 08500 -0.2734 -0.2764 -0.2749 1.1177 0.5647 
8 0.9000 -0.2318 -0.2339 -0.2329 0.9077 0.4640 
9 0.9500 -0.1967 -0.1980 -0.1973 0.6761 0.3173 

10 1.0500 -0.1512 -0.1522 -0.1517 0.6921 0.3496 
11 1.1000 -0.1377 -0.1383 -0.1380 0.4447 0.1880 
12 1.1500 -0.1260 -0.1263 -0.1262 0.2216 0.1397 
13 1.2000 -0.1157 -0.1158 -0.1158 0.0207 0.0512 
14 1.2500 -0.1067 -0.1065 -0.1066 0.1600 0.0625 
15 1.3000 -0.0986 -0.0983 -0.0985 0.3226 0.1210 
16 1.3500 -0.0914 -0.0910 -0.0912 0.4690 0.2728 
17 1.4000 -0.0850 -0.08.45 -0.0848 0.6011 0.2752 
18 1.4500 -0.0793 -0.0787 -0.0790 0.7203 0.3415 

Average 0.7473 0.3726 

b) Double-layer circular ring 
Let us consider the boundary-contact problem 

shown in Fig. 9. This problem, too, is symmetrical to 
both coordinate axes and therefore, we will consider it 
for a one-fourth of a circular ring. So, the area to be 
considered is 21 Ω+Ω=Ω ,where 







 ≤≤≤≤=Ω

2
0,1

πϑ    bra ,







 ≤≤≤≤=Ω

2
0    ,2

πϑcrb .

 The boundary conditions will be written down as 
follows:

 
( ) ( ) ( )

( ) ( )       .0     ,0   :

.0     ,2sin   :
02

131
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The conditions of a rigid contact will be written down as follows:
 

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   .    ,    ,    ,    : 21212121
ϑϑϑϑ σσσσ uuuubr rrrrrrrr −=−====

 

Figure 9: A double-layer circular ring

A numerical solution of the set problem is 
obtained by the boundary element method for the 

following data: 26
1 /10*2 cmkgE = ,  , 3.01 =ν , 

46.02 =ν ., cma 1= , cmb 5.1= , cmc 2= , 

2
0 πϑ ≤≤  within the range ar = , cr =  boundary 

surfaces and both sides of the br =  boundary surface  
is divided into n=50 elements each. 

Figure 10: Stress rrσ  on the circle ar =  
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Table 5: Values of stress rrσ on the circle ar =

ϑ In case of the division 
into segments

In case of the division 
into arcs

Load Relative error, percent
Segments Arcs

0.0157 -3.09909783×10-2 -3.09909790×10-2 -3.09909789×10-2 2.253×10-6 2.674×10-7

0.2042 -6.264072573×10 -6.26407257×10 -6.26407257×10 7.184×10-10 2.235×10-10

0.3927 -3.53553391×10+2 -3.53553391×10+2 -3.53553390×10+2 5.656×10-11 1.414e-10
0.6440 -8.85548231×10+2 -8.85548231×10+2 -8.85548230×10+2 1.128×10-11 6.776×10-11

0.7697 -9.98520411×10+2 -9.98520411×10+2 -9.98520411×10+2 1.001×10-11 4.007×10-11

0.8953 -9.29476324×10+2 -9.29476324×10+2 -9.29476325×10+2 1.075×10-11 3.227×10-11

1.1467 -4.22062458×10+2 -4.22062458×10+2 -4.22062458×10+2 2.369×10-11 4.738×10-11

1.3352 -9.35707896×10 -9.35707897×10 -9.35707896×10 7.481×10-11 1.175×10-10

Average 2.818e-07 3.351e-08

c) Discussion
The error of the numerical solutions of the 

problem considered in paragraph 7.1 obtained by using 
PCSBEM and BEM, in particular: a) shearing stress

p/ϑϑσ   (See Fig. 5, Table 1, when n=90 and Fig.7, 

Table 3, when n=180) and b) normal stress prr /σ in 

ring 15.0 ≤≤
b
r

and infinite body  1≥
b
r

(See Fig. 6, 

Table 2, when n=90 and Fig.8, Table 4, when n=180), 
is almost twice as less in terms of percents. It should be 
noted that in case of dividing the boundary into very 
small elements, e.g., when n=180, the error is more, as 
the arithmetic operations with very small numbers 
results in additional errors (counter error). 

Paragraph 7.2 considers the boundary-contact 
problem for a double-layer circular ring with a normal 

VIII. Conclusion

The article develops BEM, in particular, the 
fictitious load method in the polar coordinate system 
(PCSBEM) to solve the boundary value and boundary-
contact problems of the theory of elasticity for the areas 
limited by the coordinate axes of a polar coordinate 
system. The bodies relevant to such areas are quite 
frequent in practice, e.g., in building the underground  
structures (tunnels), in mechanical engineering, etc.
Consequently, the above-described method (PCSBEM)
is one of the means to obtain the adjusted solutions of 
the problems of computational mechanics, as the 
boundary of the considered area is divided not into 
small segments, like in case of a standard boundary 
element method (BEM), but into small arcs. In this case, 
the boundary of the considered area can be described 

more accurately, and consequently, the solution to the 
problem will be more accurate. To illustrate this case, 
two test boundary-contact problems are solved by using 
standard BEM and PCSBEM. The obtained numerical 
results given as tables and graphs are analyzed in 
paragraph 7.3.
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