

GLOBAL JOURNAL OF RESEARCHES IN ENGINEERING: F
ELECTRICAL AND ELECTRONICS ENGINEERING
Volume 18 Issue 2 Version 1.0 Year 2018
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4596 & Print ISSN: 0975-5861

An Innovative Zero-Emission Energy Model for a Coastal Village in Southern Myanmar

By Aung Ze Ya

Yangon Technological University

Abstract- Myanmar boosts the Renewables harvesting with On-Grid and Off-Grid options to implement 2030 Agenda. Reversing the degradation of the Coastal Eco-System is also the prioritized Agenda. The research and deployment of Photovoltaic (PV), Wind, and Hybrid Mini-Grids are at the initial state and separated. This work imagined for supporting and bridging these. Thus, a village Lel Hpet, located in Palaw Township, Tanintharyi Region chose due to its blessings of PV and Wind resources. The villagers currently use the Diesel Generators for the industrial loads and the fuelwood for the cooking. These cause the negative impacts. Hence, Zero-Emission Energy Model analyzed. The total demand separated into Primary and Deferrable Loads. The simulation innovated with four Models on the excellent platform for Energy Planning, HOMER (Hybrid Optimization of Multiple Energy Resources) Pro (version 3.11.5). Then, the Best Model is selected.

Keywords: southern Myanmar, Tanintharyi coast, village lel hpet, HOMER Pro, zero-emission energy model, simulation, standalone PV-wind-battery hybrid mini-grid.

GJRE-F Classification: FOR Code: 090699

AN INNOVATIVE ZERO EMISSION ENERGY MODEL FOR A COASTAL VILLAGE IN SOUTHERN MYANMAR

Strictly as per the compliance and regulations of:

An Innovative Zero-Emission Energy Model for a Coastal Village in Southern Myanmar

Aung Ze Ya

Abstract- Myanmar boosts the Renewables harvesting with On-Grid and Off-Grid options to implement 2030 Agenda. Reversing the degradation of the Coastal Eco-System is also the prioritized Agenda. The research and deployment of Photovoltaic (PV), Wind, and Hybrid Mini-Grids are at the initial state and separated. This work imagined for supporting and bridging these. Thus, a village Lel Hpet, located in Palaw Township, Tanintharyi Region chose due to its blessings of PV and Wind resources. The villagers currently use the Diesel Generators for the industrial loads and the fuelwood for the cooking. These cause the negative impacts. Hence, Zero-Emission Energy Model analyzed. The total demand separated into Primary and Deferrable Loads. The simulation innovated with four Models on the excellent platform for Energy Planning, HOMER (Hybrid Optimization of Multiple Energy Resources) Pro (version 3.11.5). Then, the Best Model is selected. Its simulative results proved Wind is more feasible than PV on the Tanintharyi Coast, PV and Wind can compensate each other during their less generation months, and the larger Off-Grid Mini-grid is more cost-effective. The savings of the Diesel fuel usage and its costs, and the reduction of GHG (greenhouse gas) Emissions predicted. The proposed Climate-friendly, standalone PV-Wind-Battery Hybrid Mini-Grid can improves the Green penetration in Southern Myanmar.

Keywords- southern Myanmar, Tanintharyi coast, village lel hpet, HOMER Pro, zero-emission energy model, simulation, standalone PV-wind-battery hybrid mini-grid.

I. INTRODUCTION

Myanmar, 40th largest nation in the world, geographically located between 9° 32' and 28° 31' N latitude; and 92° 10' and 101° 11' E. It situated as the strategic link of South Asia and South East Asia. It covers a land area of over 676,577 square kilometers and stretches over 2280 kilometers [3].

a) Myanmar's Three Coasts

Myanmar is very susceptible to extreme weather risks, landslides, sea-level rise related to air-current, and predicted future climate change. Coastal erosion and flooding are further risks which are predicted to grow. Tropical storms, occasional cyclones suffer regularly. The coastline is nearly 3000 km, extending about 1900 km from 10° to 21° North of the Equator, and 93° to 97° East of Greenwich [4].

Author: PhD, Post Doc, Honorary Professor and Honorary Doctor of Science, Professor of Department of Electrical Power Engineering, and Director of Department of Maintenance Engineering, Yangon Technological University (YTU), Myanmar.

e-mails: profazym10@gmail.com, dr.aungzeya010@gmail.com

Fig. 1 shows Myanmar's three Coasts, Rakhine Coast, Ayeyarwady Delta Coast, and Tanintharyi Coast. Mayu and Kaladan rivers flow into the Rakhine Coast. Ayeyarwady, Sittaung and Thanlwin rivers flow into Ayeyarwady Delta Coast, and Ye, Dawai, Tanintharyi, Lenya rivers flow into the Tanintharyi Coast [3].

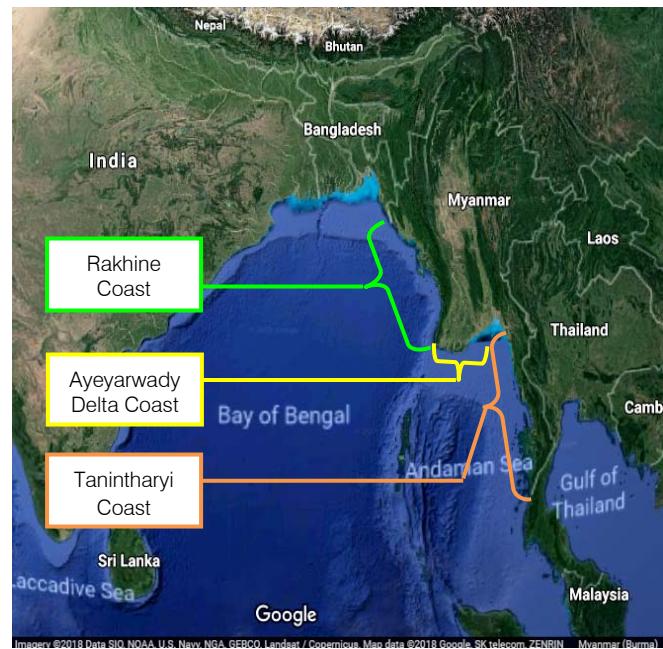
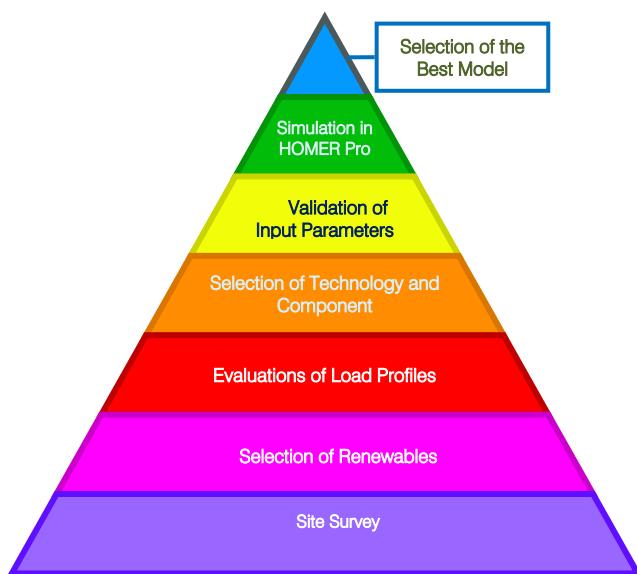


Fig. 1: Myanmar's Three Coasts [6]

Tanintharyi Coast is the longest among three. It bounded by the Andaman Sea in the West. It scopes South of the Gulf of Mottama up to the mouth of Pakchan River. It also included Myeik Archipelago, and Andaman Sea [3]. The Coasts are abundant with the coral reefs, mangroves, seagrass beds, mudflats, estuaries, and the dunes. These all play the role to uplift the quality of life of local community, and the environmental diversity. Also, these are paramount for the development of the agricultural, forestry, fishery and the tourism sectors [5].

Unsustainable development can exacerbate the rural poverty in the coastal areas, and cause to leave the native villagers and weaken the majority of the population. Consequently, the rural population is behind the urban populations grow and prosper. Rural poverty remains the problem, and in the context of rising sea levels, and increasingly unstable weather. Coastal resilience is an issue of ever growing importance [4].


b) Standalone Mini-Grids in Myanmar

National Electrification Planning (NEP) of Myanmar Agenda 2030 aimed to electrify 7.2 million households, and achieve universal access to electricity by 2030. In the long term, the least cost extension of the National Grid System (NGS) included. For pre-electrification, the standalone Mini-Grids and Solar Home Systems (SHS) are the options for the rural areas far from that National Grid will take many years to reach [13]. The criteria to implement the standalone Mini-Grid are the village can't electrify by the NGS in the next five to ten years, its location is at least 10 kilometers from the NGS, the sufficient demand for Mini-Grid scale, and the number of households should be 150 to 200 with the concentrated group. Large villages with high demands are preferable as a high possibility of the stronger revenue streams to achieve Sustainable Mini-Grids [9].

c) Motivation

The motivation of this work is to energize the village with the Innovative Hybrid System to conserve the Coastal Eco-System. Also, it targeted to promote the Rural Electrification rate by improving the Green Growth.

d) Hierarchical Methodology

Fig. 2: The Pyramid of the Hierarchical Methodology

The hierarchical methodology is comprehensive process that involved the seven steps depicted as the pyramid in Fig. 2. The site survey is the fountain and essential work to know the real ground situation. The problems of the existing Energy access identified. Then, the appropriate Energies selected due to the potentials of the site and the priorities of the country. As the third step, the relevant technology and components chose. The load profiles predicted. The input parameters

validated as the fifth step. The principal work is the Techno-Economic Optimizations of different models performed in the well-proven tool, HOMER Pro (version 3.11.5). The final step is the selection of the Best Model.

e) Identification of the Problems

The inhabitants are commonly using the small Diesel Generators for the water pumping and the industrial loads. All the houses apply the Compact Fluorescent Lamps (CFL) for the lightings and the fuelwood for the cookings. The identified problems are:

- 1) Contribution to the Global Warming due to the GHG Emissions from the burning of the Diesel fuels and the fuelwood [15-18],
- 2) Deforestation and Climate Change from the application of the fuelwood for the cooking,
- 3) Degradation of the bio-diverse eco-systems in the Coastal Region,
- 4) Health problems from the burning of the Diesel fuels and the fuelwood [20-22],
- 5) Easy to be fire hazards from the applications of the Diesel Generators and the firewood,
- 6) Insufficient and the limited supply from the existing SHS and the Diesel Generators, and
- 7) Environmental (Negative) impacts from the usages of the Fluorescent Lamps [19-21].

II. ZERO-EMISSION ENERGY (STANDALONE PV-WIND- BATTERY HYBRID) MODEL IN HOMER PRO

To solve above problems, the Standalone PVWind-Battery Hybrid Mini-Grid modeled in HOMER Pro.

a) Project Location in Tanintharyi Coast

Fig. 3 mentions the project location in the map box of HOMER Pro. The village Lel Hpet in Tanintharyi Coast placed according to its geographical coordinates (13.10019806°N and 98.60114288°E). Also, Time Zone adjusted due to Myanmar Standard Time: six hours and thirty minutes ahead of GMT (Greenwich Mean Time).

Fig. 3: Project Location (Village Lel Hpet)

b) Selection and Inputs of the Resources

Due to the geographical location, Myanmar has a rich Solar potential, and 60% of the land area appears suitable for PV deployments [10]. Fig. 4 [11] illustrates GHI (Global Horizon Irradiation) of Myanmar. From it, it is clear that the project location has the potential of Solar PV Energy. There are a few months (June, July, and August), which cannot favor for the PV generation. Hence, PV Energy is firstly selected to harvest.

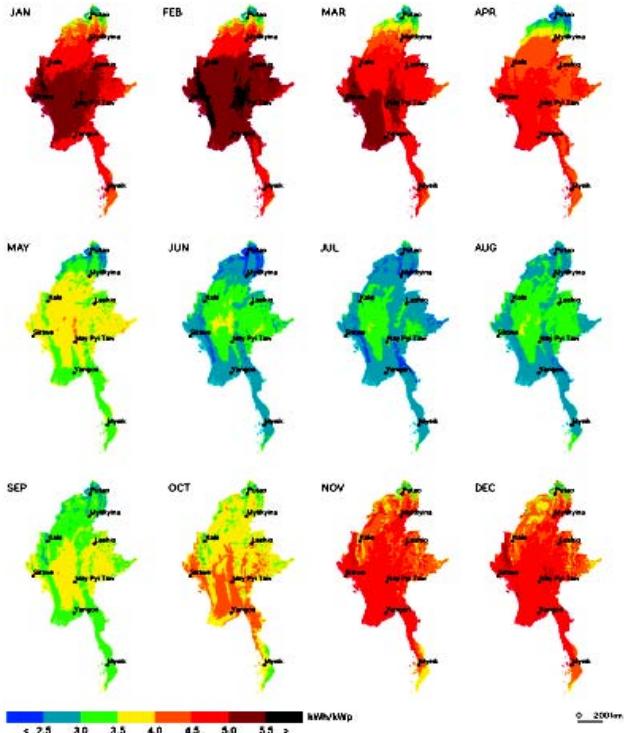


Fig. 4: GHI of Myanmar [11]

Fig. 5: GHI of a Village Lel Hpet

The input resources data of GHI downloaded from NREL (National Renewable Energy Lab) database in HOMER Pro highlighted in Fig. 5. Also, the required temperature data and Wind resources data downloaded from NREL in HOMER Pro.

According to the research of New Energy and Industrial Technology Development Organization (NEDO) in 1997, Myanmar has the strong potential of Wind Energy, with an estimated potential of 365 terawatt-hours (TWh) per year, especially abundant in the Chin and Shan states, and along the Coast [14]. Therefore, Wind Energy selected for the proposed project. To conserve the Eco-System of the Coast, and to protect from the Social Impacts, Hydropower did not consider in this study.

The strong winds can damage not only PV modules but also the construction components. However, the positive impacts can cause the low and medium speed winds. These winds create the cooling effects on PV modules and increase the power generation [11]. Hence, the Wind potential showed in Fig. 6 is not high, but, it can be beneficial for PV system. In June, July, and August, Wind has the high potentials. Thus, Wind System can compensate the less generation of PV System in these months. This point is the advantage of PV-Wind Hybrid System.

Fig. 6: Wind Resources Data of a Village Lel Hpet

c) Load Profiles

The Eco-friendly and the Energy Efficient loads are considered. To apply the effective simulation-features of HOMER Pro, the total demand divided into two main types, Primary Load (PL) and Deferrable Load (DL) as depicted in Fig.7.

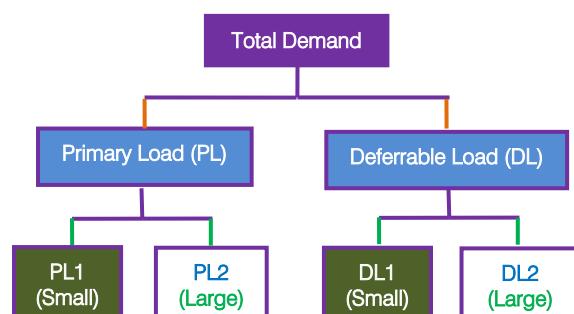


Fig. 7: The Composition of the Total Demand

PL is sub-divided into two types. PL1 (small) includes the LED lamps, flat TVs, and other small loads. PL2 (large) consists of the kitchen loads (the rice-cookers, the cooking pots), the cooling loads (the fans, the air-coolers, and the water-coolers) and the small industrial loads listed in Table 1. DL composed of two categories. DL1 (small) contains the mobile chargers, the power banks, and the rechargeable LEDs. DL2 (large) involves the fifteen 1.5 kW water pumping loads.

Table 1: Small Industrial Loads of PL2 and DL2

Load Type	Description	Power (kW)	Amount
PL2	Carpentry Workshop	1000	8
	Cold Storage	140	20
DL2	Water Pumping	1500	15

Based on the collected data from a site visit in January 2018, the load profiles predicted for a one

Pagoda, a one Monastery, 250 households (HH), and the school, the street lightings, the water pumping loads, and the small industrial loads. The households (HH) are classified as the three groups depending on the demands. The low and high demand groups have 25 and 50 households. The medium demand group has 175 households. Table 2 listed the total demands of each HH group. Figs.8 to 10 described the inputs of the Primary Loads (PL1, PL2) and Deferrable Load (DL).

Table 2: Total Demands of Each HH Group

Group	Primary Load 1 (kilowatt, kW)	Primary Load 2 (kW)	Small Deferrable Loads (kilowatt hour, kWh)
Low	1.320	22.5	1.305
Medium	13.833	192.5	13.020
High	11.600	60	4.350

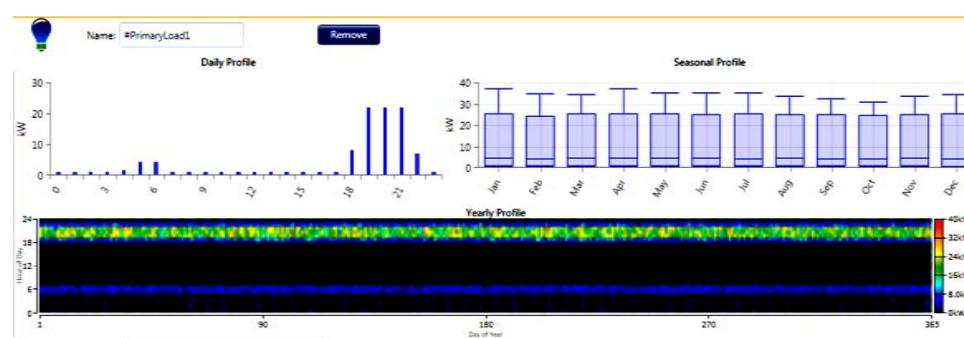


Fig. 8: PL1 Input in HOMER Pro

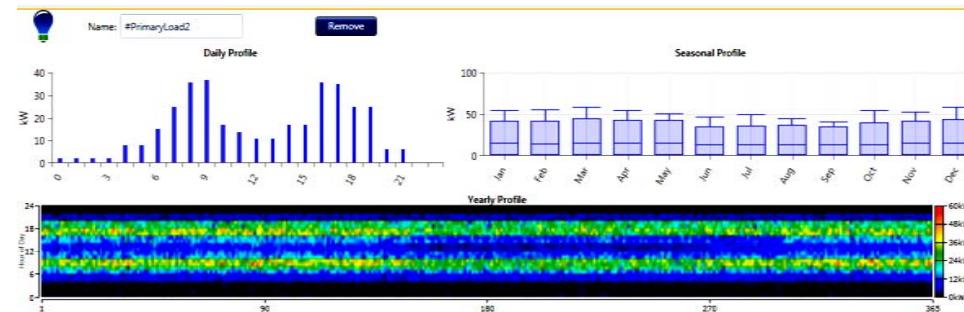


Fig. 9: PL2 Input in HOMER Pro

Electrical Bus
AC DC

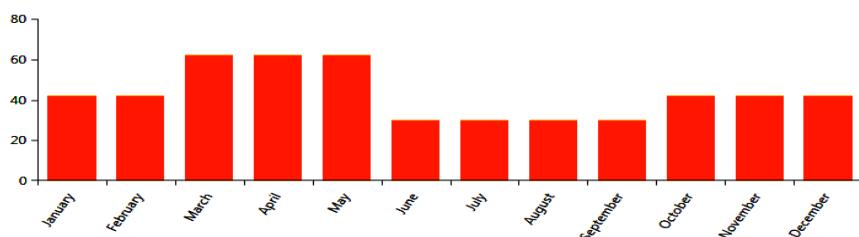


Fig. 10: DL Input in HOMER Pro

d) *Different Models in HOMER Pro*

The modeling and the simulation are innovative. The different Models analyzed in HOMER Pro as shown in Table 3. HOMER performs the energy balance predictions, and then determines the feasible configurations to meet the demands under the specified conditions [1].

Table 3: Different Models

Model	Components	Demands
Model1 (M1)	PV-Wind-Battery Hybrid	PL1 and DL
Model2 (M2)	PV-Wind-Battery Hybrid	PL1 and PL2
Model3 (M3)	PV-Wind-Battery Hybrid	PL1, PL2, and DL
Model4 (M4)	Diesel Generators (50 kW & 25 kW)	PL1, PL2, and DL

The four Off-Grid Models explored in Figs.11 to 14. Models 1 to 3 investigated to know how the influence of the demands on the technological designs, and the economical aspects. Thus, their generating, the storage, and the converting components are the same with the different demand scenarios. Single-phase, 20 kW Wind Turbine is connected to AC (Alternating Current) Bus. The DC (Direct Current) outputs of the PV Arrays are stored into the Battery, and then converted into AC. All loads are connected to the AC Bus.

All demands (PL1, PL2 and DL) connected in the M3 and M4. PL1 is 108.6 kWh per day and 37.34 kW peak. PL2 is 336.14 kWh per day and 59.28 kW peak. Deferrable Load is 43 kWh per day and 28.75 kW peak.

Globally, the largest amount of GHG is significantly emitted from the fossil fuels utilizations for Electricity Generations [23]. Hence, the notable point is Diesel Mini-Grid (M4) modeled with the same demands as M3 to determine the specific amount of GHG Emissions, also, the fuel usage and the fuel cost from it.

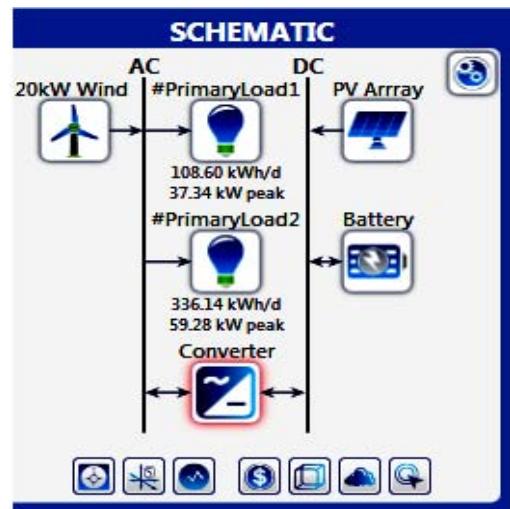


Fig. 12: M2

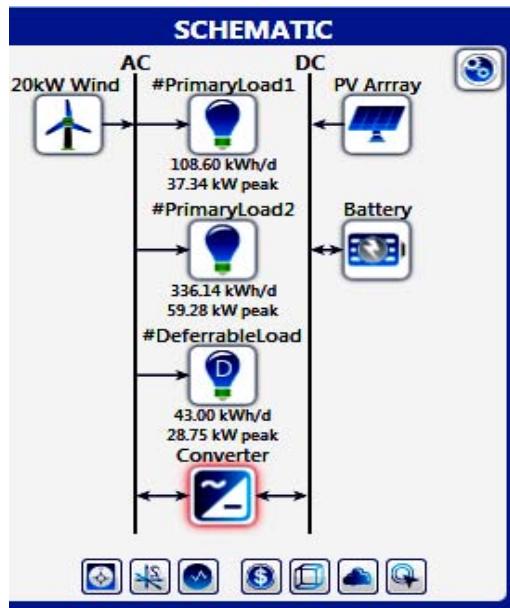


Fig. 13: M3

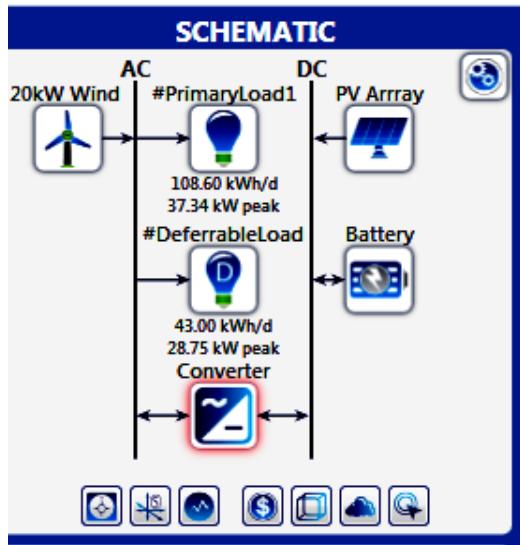


Fig. 11: M1

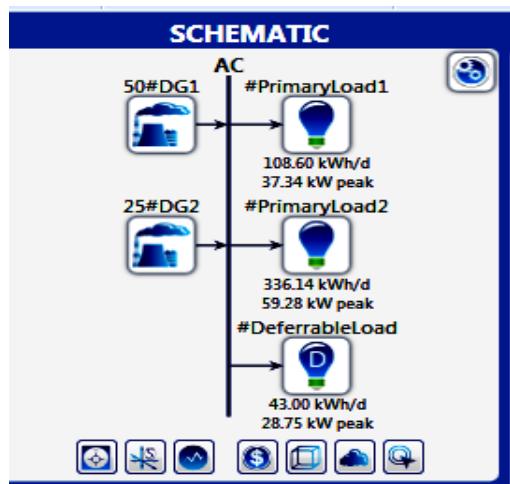


Fig. 14: M4

e) Economics, Constraints and Sensitivity Values

The Economics and the Constraints are the key parameters for the optimization, as well as the Energy Planning. From [7, 8], the nominal discount rate and the expected inflation rate set with the sensitivity values for the analysis. The other parameters also inputted in the Economics menu box of HOMER Pro as shown in Fig. 15. It is needed to change the System fixed capital cost, and System fixed O&M cost for the other models.

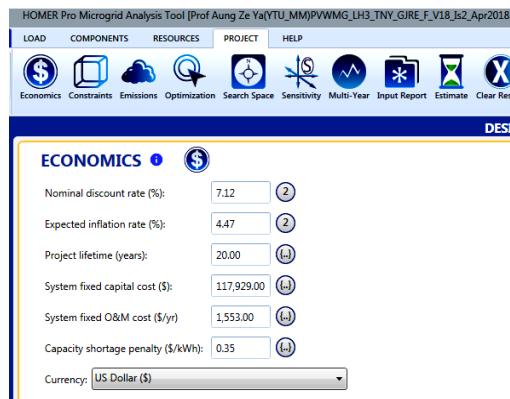


Fig.15: Economics Parameters of M3

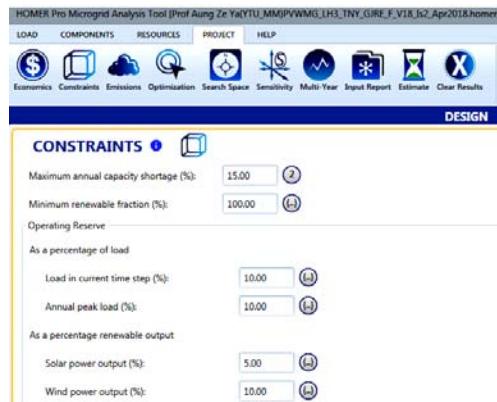


Fig.16: Constraints of M1 to M3

Fig. 16 explores the parameters of the Constraints of M1 to M3. Also, it required to the relevant change of the Constraints setting of the M4.

f) Inputs of Main Components

The parameters of the main components of the standalone PV Mini-grid modeled in HOMER Pro.

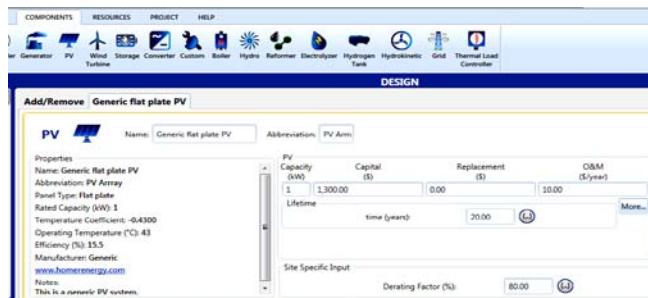


Fig.17: Inputs of PV System in HOMER Pro (M1 to M3)

The costs of PV for 1 kW are: Capital cost 1300 \$; Replacement cost 0 \$; Operation and maintenance cost 10 S/year, and lifetime 20 years. The advanced input is the ground reflectance 20%, and the array (panel) slope is 20.92°. Temperature inputs also set with PV Array temperature coefficient (%/°C) -0.43, and PV Array operating cell temperatures 43; and efficiency of the standard test condition is 15.5% as reflected in Fig. 17. The battery inputs for 1 kWh are: Capital cost 360 \$; Replacement cost 300 \$; Operation and maintenance cost 20 S/year; lifetime ten years. The converter inputs are: for 1 kW are: Capital cost 500 \$; Replacement cost 450 \$; Operation and maintenance cost 10 S/year and lifetime fifteen years. The costs of 20 kW Wind Generator is: Capital cost 14500 \$; Replacement cost 0 \$; Operation and maintenance cost 400 S/year, and the lifetime 20 years. It can easily imagine that the input components of Renewables are high-quality products due to their high costs.

For Diesel Mini-Grid (Model4, M4), 50 kW Diesel Generator costs are: Capital cost 10000 \$; Replacement cost 8000 \$; Operation and maintenance cost 1.5 \$ per hour; and the lifetime 15000 hours as shown in Fig.18. The Diesel fuel price inputted 0.62 and 0.72 \$/L. 25 kW Diesel Generator costs are: Capital cost 4500\$; Replacement cost 4000 \$; Operation and maintenance cost 0.75 \$ per hour; and the lifetime 15000 hours.

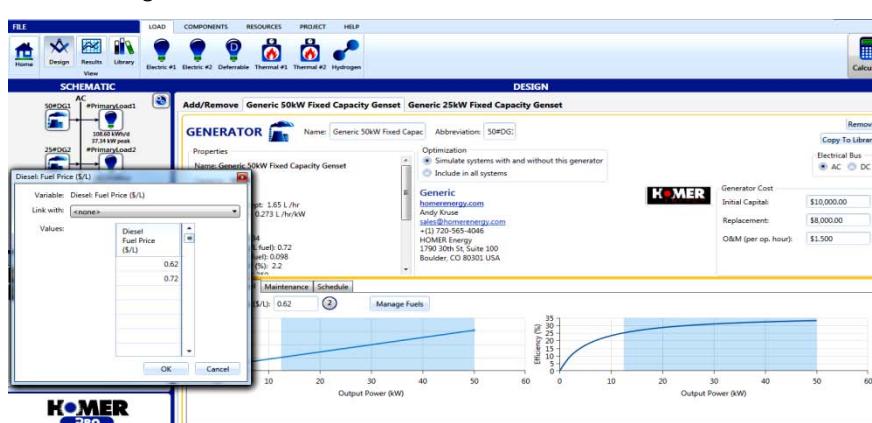


Fig.18: Inputs of Diesel Generator1 (50 kW of Diesel Mini-Grid, M4)

III. RESULTS AND DISCUSSIONS

The thousands of Techno-Economic designs simulated for the four Models in HOMER Pro. Then, the optimum designs calculated with the Tabular results of two: the upper portion is the Sensitivity Cases and the lower portion is the Optimization Results as reflected in Figs. 19 to 22. The displayed results are listed for the

models from the top to bottom of the optimistic to the least cost-effective options [24]. M1 to M3 connected with the different demands. Hence, the different capacities of the Architecture, the costs, system and other respective results predicted. The outcomes of M4 (the same demands as M3 with the different type of generation) reflected its consequent negative impacts.

RESULTS																	
Sensitivity Cases																	
Optimization Results																	
Sensitivity																	
NominalDiscountRate (%)	ExpectedInflationRate (%)	Capacity Shortage (%)	PV Array (kW)	20kW Wind	Battery	Converter (kW)	Dispatch	COE (\$)	NPC (\$)	Operating cost (\$/yr)	Initial capital (\$)	Ren Frac (%)	System				
7.12	4.47	15.0	29.4	3	144	28.8	LF	\$0.597	\$479,476	\$13,990	\$262,097	100					
8.63	4.47	15.0	29.1	3	144	28.3	LF	\$0.644	\$452,252	\$14,020	\$261,449	100					
7.12	7.50	15.0	29.2	3	144	30.0	LF	\$0.513	\$550,753	\$13,878	\$262,557	100					
8.63	7.50	15.0	29.3	3	144	28.8	LF	\$0.553	\$512,720	\$13,969	\$261,979	100					
7.12	4.47	20.0	15.4	4	126	26.1	LF	\$0.611	\$472,999	\$14,168	\$252,852	100					
8.63	4.47	20.0	28.9	3	126	26.1	LF	\$0.653	\$448,038	\$14,260	\$253,959	100					
Export...																	
Architecture																	
▲	✚	✖	PV Array (kW)	20kW Wind	Battery	Converter (kW)	Dispatch	COE (\$)	NPC (\$)	Operating cost (\$/yr)	Initial capital (\$)	Ren Frac (%)	Total Fuel (L/yr)	PV Array	20kW Wind		
■	✚	✖	29.4	3	144	28.8	LF	\$0.597	\$479,476	\$13,990	\$262,097	100	0	35,232	43,504	45,000	122,876
■	✚	✖	29.2	3	144	29.1	LF	\$0.597	\$479,499	\$13,989	\$262,133	100	0	35,090	43,328	45,000	122,876
■	✚	✖	29.3	3	144	29.1	LF	\$0.597	\$479,645	\$13,997	\$262,153	100	0	35,106	43,348	45,000	122,876
■	✚	✖	28.9	3	144	29.6	LF	\$0.598	\$479,661	\$14,011	\$261,959	100	0	34,687	42,830	45,000	122,876
■	✚	✖	29.3	3	144	29.9	LF	\$0.598	\$479,769	\$13,979	\$262,563	100	0	35,116	43,360	45,000	122,876
■	✚	✖	29.2	3	144	28.6	LF	\$0.598	\$479,780	\$14,032	\$261,743	100	0	34,984	43,197	45,000	122,876
Export...																	
Optimization Results																	
▲	✚	✖	PV Array (kW)	20kW Wind	Battery	Converter (kW)	Dispatch	COE (\$)	NPC (\$)	Operating cost (\$/yr)	Initial capital (\$)	Ren Frac (%)	Total Fuel (L/yr)	PV Array	20kW Wind		
■	✚	✖	29.4	3	144	28.8	LF	\$0.597	\$479,476	\$13,990	\$262,097	100	0	35,232	43,504	45,000	122,876
■	✚	✖	29.2	3	144	29.1	LF	\$0.597	\$479,499	\$13,989	\$262,133	100	0	35,090	43,328	45,000	122,876
■	✚	✖	29.3	3	144	29.1	LF	\$0.597	\$479,645	\$13,997	\$262,153	100	0	35,106	43,348	45,000	122,876
■	✚	✖	28.9	3	144	29.6	LF	\$0.598	\$479,661	\$14,011	\$261,959	100	0	34,687	42,830	45,000	122,876
■	✚	✖	29.3	3	144	29.9	LF	\$0.598	\$479,769	\$13,979	\$262,563	100	0	35,116	43,360	45,000	122,876
■	✚	✖	29.2	3	144	28.6	LF	\$0.598	\$479,780	\$14,032	\$261,743	100	0	34,984	43,197	45,000	122,876
Export...																	

Fig. 19: Simulative Tabular Results of M1 in HOMER Pro

RESULTS																	
Sensitivity Cases																	
Optimization Results																	
Sensitivity																	
NominalDiscountRate (%)	ExpectedInflationRate (%)	Capacity Shortage (%)	PV Array (kW)	20kW Wind	Battery	Converter (kW)	Dispatch	COE (\$)	NPC (\$)	Operating cost (\$/yr)	Initial capital (\$)	Ren Frac (%)	System				
7.12	4.47	15.0	84.8	7	270	55.7	LF	\$0.388	\$909,898	\$29,893	\$445,410	100					
8.63	4.47	15.0	83.9	7	270	56.6	LF	\$0.415	\$852,484	\$29,955	\$444,801	100					
7.12	7.50	15.0	91.8	8	243	54.1	LF	\$0.338	\$1,06M	\$28,876	\$458,819	100					
8.63	7.50	15.0	93.0	8	243	54.0	LF	\$0.362	\$979,521	\$28,933	\$460,190	100					
7.12	4.47	20.0	94.8	7	198	51.1	LF	\$0.393	\$895,811	\$29,937	\$430,639	100					
8.63	4.47	20.0	83.3	7	207	53.6	LF	\$0.420	\$835,321	\$30,431	\$421,171	100					
Export...																	
Architecture																	
▲	✚	✖	PV Array (kW)	20kW Wind	Battery	Converter (kW)	Dispatch	COE (\$)	NPC (\$)	Operating cost (\$/yr)	Initial capital (\$)	Ren Frac (%)	Total Fuel (L/yr)	PV Array	20kW Wind		
■	✚	✖	84.8	7	270	55.7	LF	\$0.388	\$909,898	\$29,893	\$445,410	100	0	101,713	125,593	105,000	286,711
■	✚	✖	87.0	7	270	55.8	LF	\$0.388	\$910,652	\$29,761	\$448,220	100	0	104,451	128,973	105,000	286,711
■	✚	✖	86.2	7	270	57.0	LF	\$0.388	\$910,898	\$29,804	\$447,790	100	0	103,406	127,683	105,000	286,711
■	✚	✖	87.6	7	270	56.5	LF	\$0.388	\$911,126	\$29,724	\$449,268	100	0	105,152	129,839	105,000	286,711
■	✚	✖	81.2	7	279	55.7	LF	\$0.388	\$911,148	\$30,053	\$444,179	100	0	97,403	120,270	105,000	286,711
■	✚	✖	89.5	7	270	55.2	LF	\$0.387	\$911,255	\$29,633	\$450,810	100	0	107,366	132,573	105,000	286,711
Export...																	

Fig. 20: Simulative Tabular Results of M2 in HOMER Pro

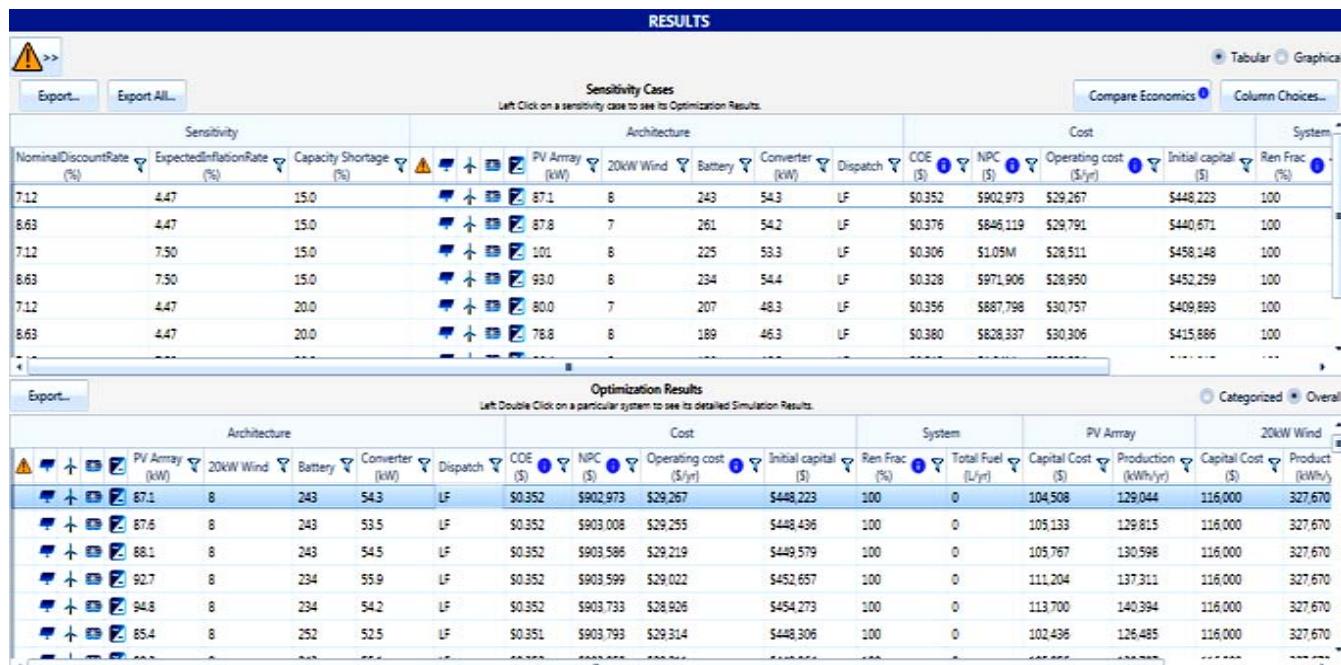


Fig. 21: Simulative Tabular Results of M3 in HOMER Pro

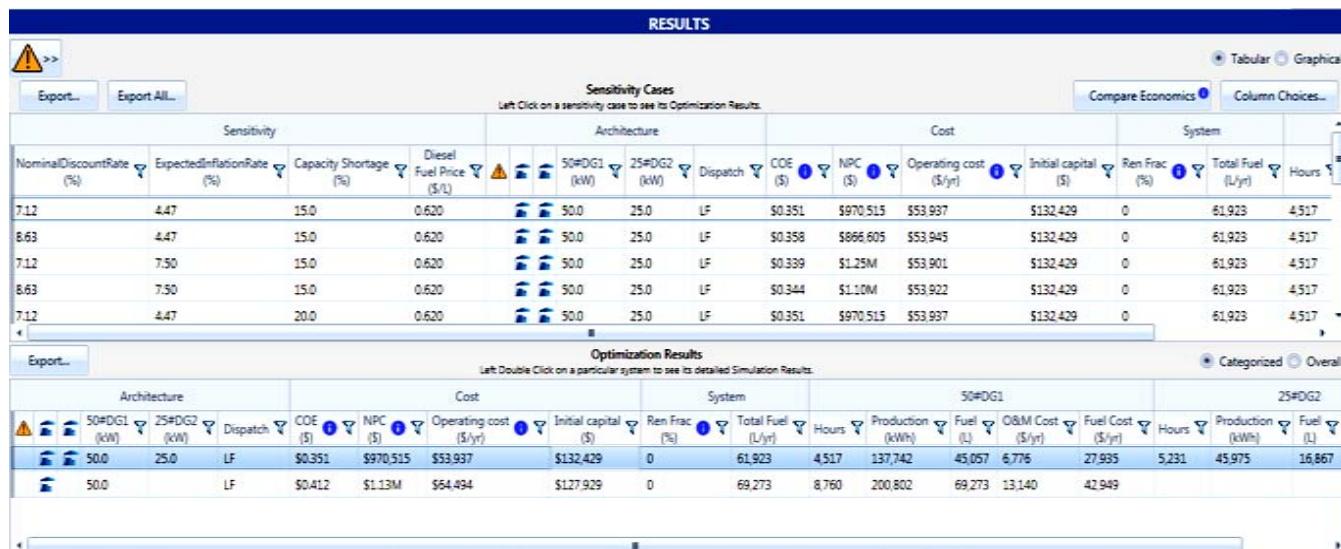


Fig. 22: Simulative Tabular Results of M4 (Diesel Mini-Grid) in HOMER Pro

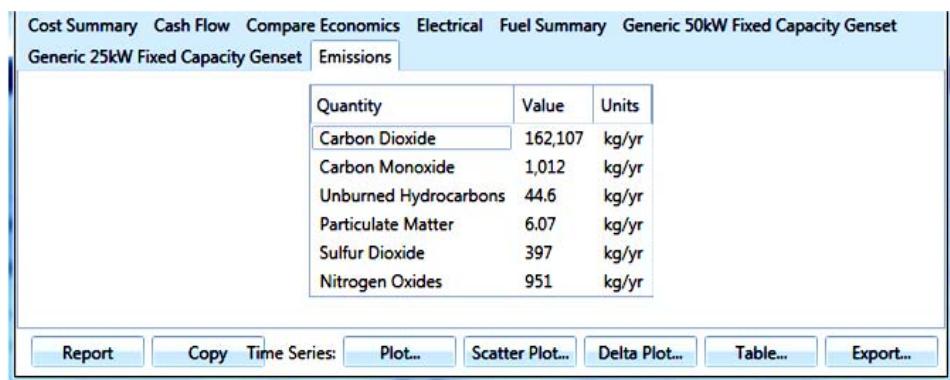


Fig. 23: Simulative GHG Emissions Results of M4 (Diesel Mini-Grid) in HOMER Pro

Table 4: Comparison of the Main Results of Four Models

Mo-del	Design	Capacity	Annual Production/Throughput (kWh/yr)	Cost of Energy (\$)	Net Present Cost (\$)	Operating Cost (\$/ yr)	Initial Capital (\$)	Diesel Fuel		
								(L/yr)	(\$/L)	(\$/yr)
M1	PV	29.4 kW	43504	0.597	479476	13990	262097	-	-	-
	Wind	60 kW	122876							
	Battery	144 kWh	19037							
	Converter	28.8 kW	-							
M2	PV	84.8 kW	125593	0.388	909898	29893	448220	-	-	-
	Wind	140 kW	286711							
	Battery	270 kWh	38361							
	Converter	55.7 kW	-							
M3	PV	87.1 kW	129044	0.352	902973	29267	448223	-	-	-
	Wind	160 kW	327670							
	Battery	243 kWh	34360							
	Converter	54.3 kW	-							
M4	DG1	50	137742	0.351	970515	53937	132429	45057	0.62	27935
									0.72	32441
	DG2	25	45975					16867	0.62	10457
									0.72	12144

The main results of four models mentioned in Table 4. M3 can supply all demands with the lowest cost of energy (COE) among three Models of PV-Wind-Battery Hybrid. Also, it observed that COE of M3 and M4 are not much differed. Fig. 23 mentioned the evident

Emissions, the six pollutants from M4. There are no Diesel fuel consumptions, Diesel fuel costs, and no impacts (zero GHG Emission) by M3. Thus, M3 is selected as the proposed system of this research. Figs. 24 to 33 revealed the graphical results of M3.

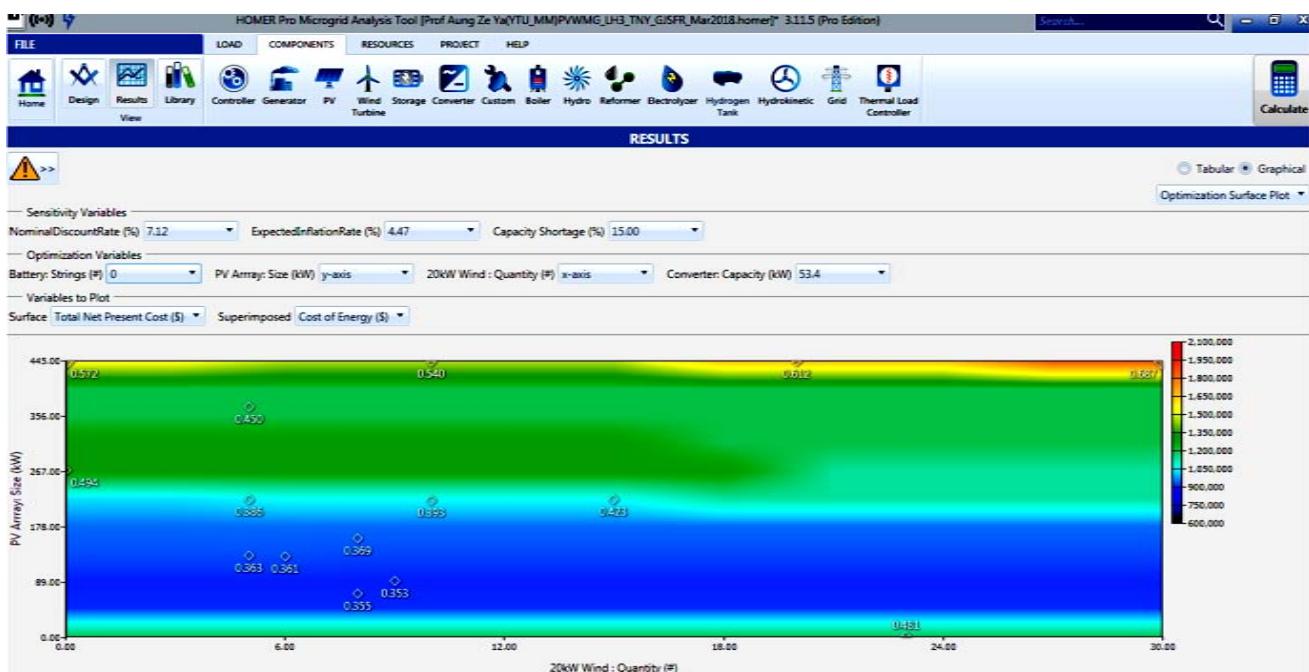


Fig. 24: Simulative Results: Optimization Surface Plot of PV Array vs. Wind with Variables: Total NPC and COE

In Fig.25, the less portion of yellow color around the middle of year (during rainy season) reflects the decrement of PV power output. In Fig. 26, the large portions of the red and yellow colors represent the large Wind power outputs near the middle and end of the year. Its blue color shows the less Wind power outputs.

It is clear that Wind power can compensate the period of less PV generation. PV can also support the large generation when Wind power decreases in the hot season. By implementing the PV or Wind only Mini-Grid at the focused village Lel Hpet, these advantages from PV-Wind Hybrid cannot be achieved.

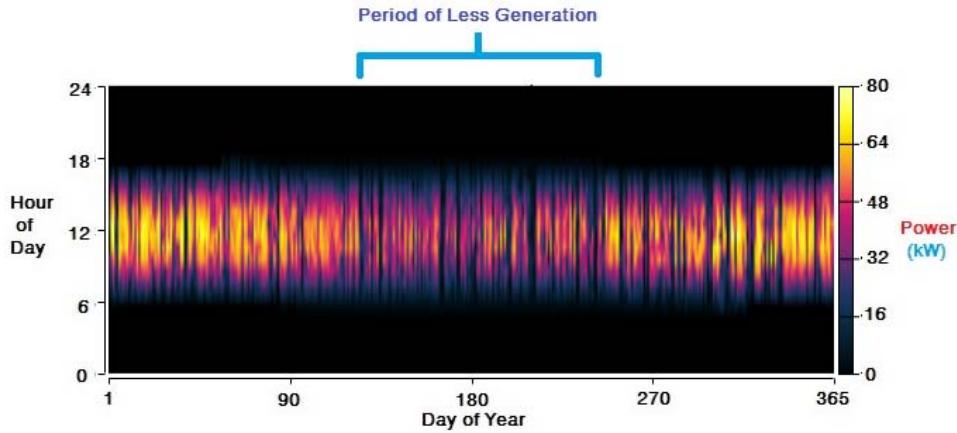


Fig. 25: Simulative Results: PV Power Output of Proposed Zero-Emission, PV-Wind-Battery Hybrid

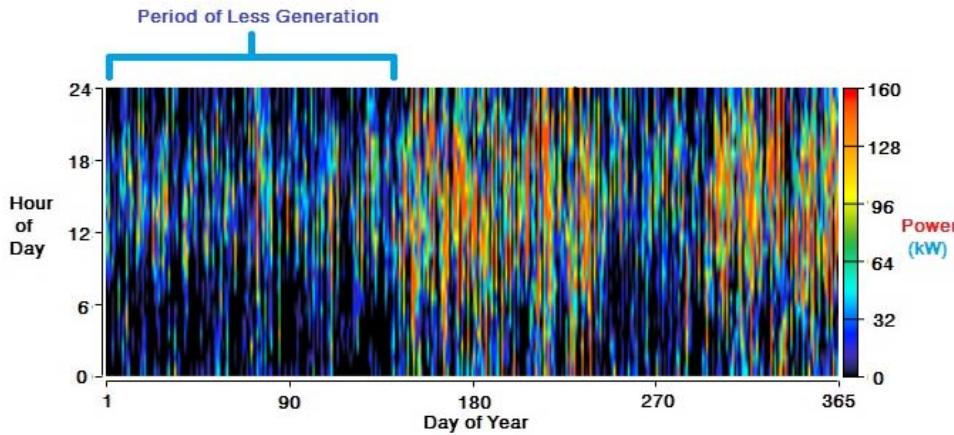


Fig. 26: Simulative Results: Wind Turbine Power Output of Proposed Zero-Emission, PV-Wind-Battery Hybrid

Fig. 27: Simulative Results: Storage Battery System of Proposed Zero-Emission, PV-Wind-Battery Hybrid

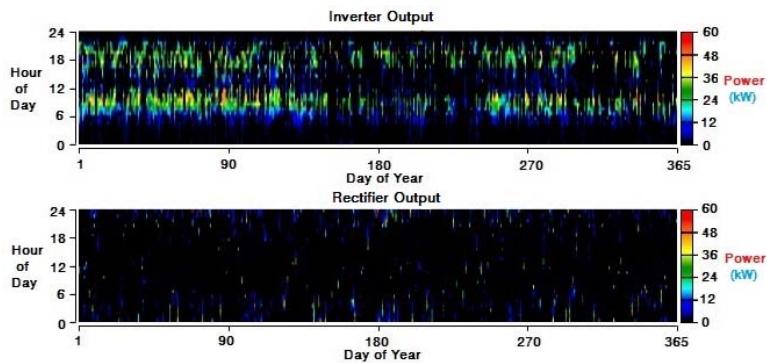


Fig. 28: HOMER Pro Simulative Results: Converter of Proposed Zero-Emission, PV-Wind-Battery Hybrid

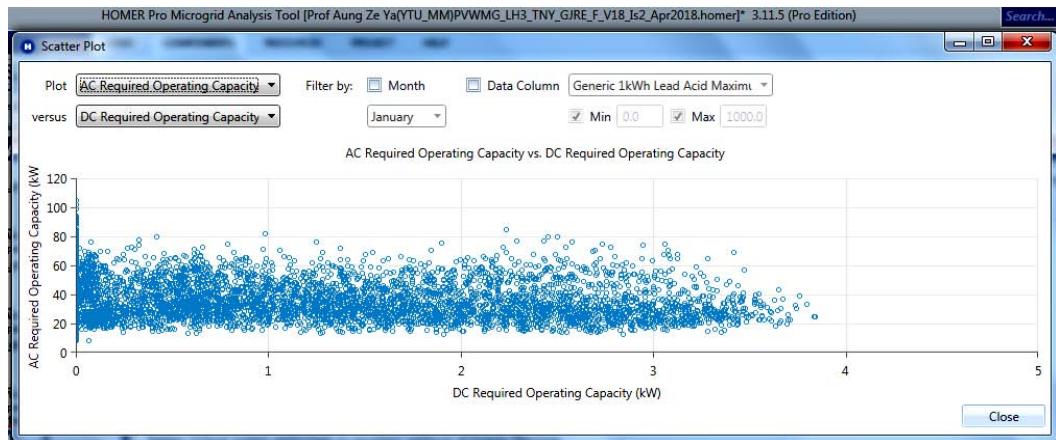


Fig. 29: Simulative Results: Scatter Plot of AC Required Operating Capacity vs. DC Required Operating Capacity

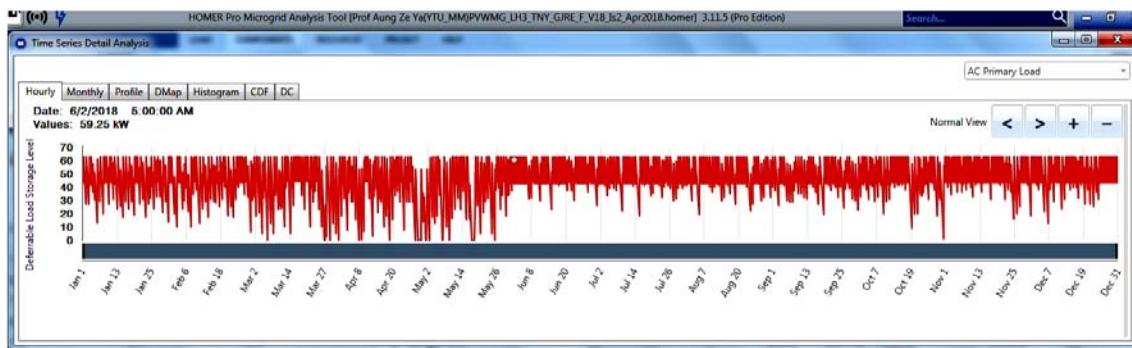


Fig. 30: HOMER Pro Simulative Results: Time Series Detail Analysis of the Deferrable Load Storage Level

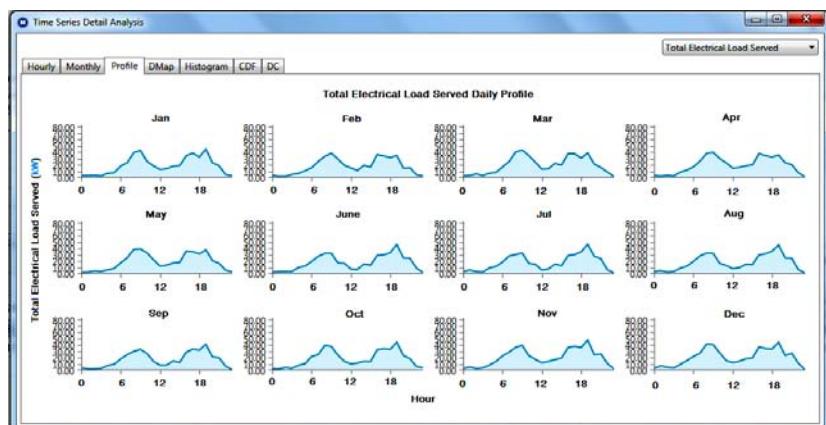


Fig. 31: HOMER Pro Simulative Results: Time Series Detail Analysis of the Total Electrical Load Served Daily Profile

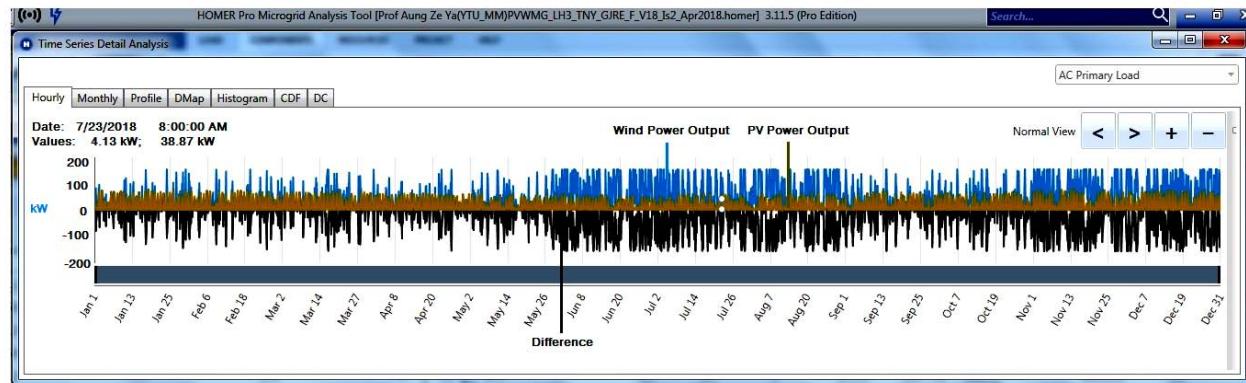


Fig. 32: Simulative Results: Time Series Detail Analysis of the Difference: Wind Power vs. PV Power Output

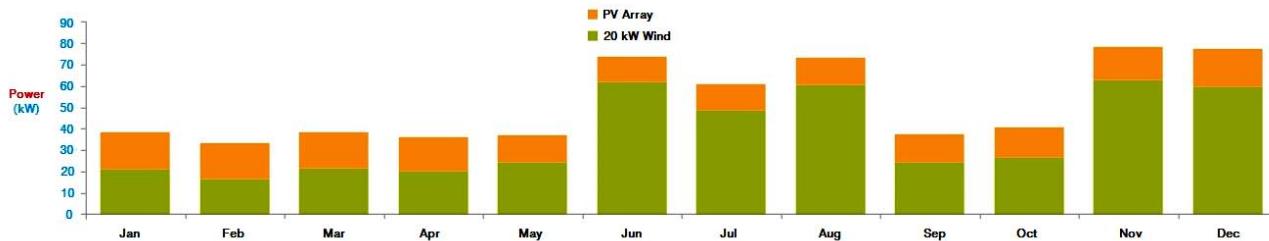


Fig. 33: Simulative Results: Monthly Average Generation of Proposed Zero-Emission, PV-Wind-Battery Hybrid

IV. CONCLUSIONS

The Off-Grid option is included in Myanmar's 2030 NEP (National Electrification Planning towards Universal Access). The Off-Grid Rural Electrification rate is about 36% by the end of 2017 [12]. It is in dire need to promote for the development of the whole country. This work contributes in that Mission as well as the priority of the conservation of Coastal Eco-System. Also, it is in line with the Goal 7 of the world's 2030 Agenda: 17 SDGs (Sustainable Development Goals) [25, 26].

Three HOMER Pro Models of PV-Wind-Battery Hybrid Mini-Grids with different demands compared and the lowest COE resulted from the Model with the largest capacities of main components. This recommends the capacity of Off-Grid Mini-Grid should be large from the economical point of view. The defined problems can be solved by the implementation of the proposed one. It can fulfill the villagers' dreams of the sufficient Electricity to the village Lel Hpet with 24-hour supply and improve their Socio-Economic Development.

The capacities of the proposed Model (M3) are: PV 87.1 kW (annual generation 129044 kWh/yr), Wind 160 kW (annual generation 327669 kWh/yr), Battery 243 kWh, and the converter 54.3 kW. In annual generation-mix, Wind shares 71.7% and PV shares 28.3%. Thus, it proved Wind power is more beneficial than PV power in Tanintharyi Coast, Southern Myanmar. 27 battery strings (9 batteries per string) are connected in parallel and the Bus voltage is 108 V. The battery capacities are: Energy

Input 38403 kWh/yr, Energy Output 30732 kWh/yr, Annual Throughput 34360 kWh/yr, Lifetime Throughput 194400 kWh/yr, and Expected Life 5.66 years. The financial parameters of M3 are: Net Present Cost 902973 \$, COE 0.352 \$, Operating Cost 29267 \$, and Initial Cost 448223 \$. The obvious savings by M3 are: the Diesel fuel consumption 61924 L/yr, the Diesel fuel cost; 38392 S/yr (for fuel price 0.62 \$/L) and 44585 \$/yr (for fuel price 0.72 \$/L). In addition, the evident reductions of GHG Emissions are: Carbon Dioxide 162107 kg/yr, Carbon Monoxide 1012 kg/yr, Unburned Hydrocarbons 44.6 kg/yr, Particular Matter 6.07 kg/yr, Sulfur Dioxide 397 kg/yr, and Nitrogen Oxides 951 kg/yr.

There is no doubt that this research work is instrumental for the strategic planning of standalone PV-Wind-Battery Hybrid Mini-Grid by applying Global Standard tool, HOMER Pro. This article obviously highlighted Sustainability benefits can be gained from Zero-Emission, 100 % Renewable Energy System at Off-Grid village that has abundant PV and Wind potentials.

ACKNOWLEDGEMENTS

The author expresses his deepest sense of gratitude to his beloved father, U Sein Hla (Ret. Executive Electrical Engineer, National Literatures Awarded Author, and the member of Central Executive Committee of Myanmar Writers Association), and his beloved mother, Daw Htway Lay for their infinite kindness and the greatest encouragements.

The author is very much obliged to SayarGyi Prof. Dr. U Nyi Hla Nge (Ret. Deputy Minister of Ministry of Science and Technology, Chairman of Steering Committee for Centre of Excellence Technological Universities, and Vice Chairman of National Education Policy Commission) for his great leadership and guidance. Also, the author is deeply indebted to Prof. Dr. Myint Thein, the Rector of Yangon Technological University for his kind permission.

The author has great pleasure in acknowledging the sincere gratitude to Dr. Peter Lilienthal (CEO and Founder of HOMER Energy, USA) for his kind supports.

The author offers special thanks to JICA EEHE (Japan International Cooperation Agency, Enhancement of Engineering Higher Education) Project at Yangon Technological University in Myanmar for funding the author charge.

REFERENCES RÉFÉRENCES REFERENCIAS

1. [HTTP://WWW.HOMERENERGY.COM/](http://WWW.HOMERENERGY.COM/)
2. A. Z. YA, "FEASIBILITY STUDY ON A STAND-ALONE PHOTOVOLTAIC HYBRID MINI-GRID POWER GENERATION SYSTEM TO PROMOTE THE RURAL ELECTRIFICATION RATE IN MANDALAY REGION OF MYANMAR", INTERNATIONAL JOURNAL OF TRANSACTIONS ON GIGAKU, VOL.2, NO.2, SO1009/1-7, NAGAOKA UNIVERSITY OF TECHNOLOGY, JAPAN, 2014.
3. HTTP://WWW.BOBLME.ORG/DOCUMENTREPOSITORY/NAT_MYANMAR.PDF
4. ZÖCKLER, C. DELANY, S. AND BARBER, J. "SCOPING PAPER: SUSTAINABLE COASTAL ZONE MANAGEMENT IN MYANMAR." ARCCONA ECOLOGICAL CONSULTANTS, CAMBRIDGE, UK, 2013.
5. <HTTP://WWW.BURMALIBRARY.ORG/DOCS23/GNLM2017-08-10.PDF>.
6. <HTTPS://WWW.GOOGLE.COM.MM/MAPS/>
7. <HTTP://WWW.CBM.GOV.MM/>
8. <HTTPS://WWW.ADB.ORG/COUNTRIES/MYANMAR/>
9. ADB, "DEVELOPING RENEWABLE ENERGY MINI-GRIDS IN MYANMAR". ADB: MANDALUYONG CITY, METRO MANILA, PHILIPPINES, 2017.
10. ADB, "MYANMAR ENERGY SECTOR ASSESSMENT: STRATEGY AND ROADMAP". ADB: MANDALUYONG CITY, METRO MANILA, PHILIPPINES, 2016.
11. THE WORLD BANK; ESMAP, "SOLAR RESOURCE AND PHOTOVOLTAIC POTENTIAL OF MYANMAR", WASHINGTON DC, USA, THE WORLD BANK, 2017.
12. DEPARTMENT OF RURAL DEVELOPMENT (DRD), LIST OF ELECTRIFIED VILLAGES WITH THE STAGE/REGION BY THE END OF FY 2016-2017, NATIONAL ELECTRIFICATION PROJECT", NAY PYI TAW, MYANMAR, 2018.
13. World Bank, "Myanmar National Electrification Project", Washington D.C, USA, 2015.
14. https://www.asiabiomass.jp/english/topics/1509_05.html
15. https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php
16. <https://carbonpositivelife.com/co2-per-litre-diesel/>
17. <https://www.transitionculture.org/2008/05/19/is-burning-wood-really-a-long-term-energy-descent-strategy/>
18. <http://www.kaltimber.com/blog/2017/6/19/how-much-co2-is-stored-in-1-kg-of-wood>
19. <https://www.litetronics.com/true-environmental-impact-of-mercury-in-cfls/>
20. <https://www.wondermakers.com/Portals/0/docs/Hidden%20Environmental%20Hazards%20of%20CFLs.pdf?ver=2014-03-25-093208-543>
21. <https://energy.gov/eere/articles/study-environmental-benefits-leds-greater-cfls>
22. WHO and The World Bank, "Access to Modern Energy Services for Health Facilities in Resource-Constrained Settings". Geneva, Switzerland: WHO, 2014.
23. A. Z. Ya, "French Green Growth Paradigm in-line with EU Targets Towards Sustainable Development Goals", European Center of Sustainable Development, Vol.5, No.2, Pp 143-169, Rome, Italy: European Center of Sustainable Development, June, 2016.
24. A. Z. Ya, "Comparative Analysis of Innovative PV Microgrids in Paris and Nice, France", European Center of Sustainable Development, Vol.5, No.3, Pp 297-310, Rome, Italy: European Center of Sustainable Development, October, 2016.
25. A. Z. Ya and P. Lilienthal, "Techno-Economic Analysis of Off-Grid PV-Diesel Hybrid Microgrid for Sustainable Rural Electrification in Central Myanmar", The 10th AUN/SEED-NET Regional Conference on Energy Engineering, Yangon Technological University, Myanmar, 2017.
26. A. Z. Ya, "Green improving by Autonomous PV Mini-Grid Model in Central Myanmar", Global Journal of Researches in Engineering (F), Electrical and Electronics Engineering, Volume 18, Issue 1, Version 1, Pp 49-64, Massachusetts, USA: March, 2018.