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Abstract- This chapter presents mainly, on the light of both main concepts; The first being the 
screw motion or/ and dual quaternions kinematics while the second concerns the classical 
‘Denavit and Hartenberg parameters’ method, the direct kinematics of a Puma 560 robot. 

Kinematics analysis studies the relative motions, such as, first of all, the displacement in 
space of the end effector of a given robot, and thus its velocity and acceleration, associated with 
the links of the given robot that is usually designed so that it can position its end-effector with a 
three degree-of-freedom of translation and three degree-of-freedom of orientation within its 
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First of all, examples of basic solid movements such as rotations, translations, their 
combinations and general screw motions are studied using both (4x4) rigid body transformations 
and dual quaternions so that the reader could compare and note the similarity of the results 
obtained using one or the other method.



The Kinematics of a Puma Robot using Dual 
Quaternions 

Mahmoud Gouasmi α, Belkacem Gouasmi σ & Mohamed Ouali ρ 

Abstract- This chapter presents mainly, on the light of both 
main concepts; The first being the screw motion or/ and dual 
quaternions kinematics while the second concerns the 
classical ‘Denavit and Hartenberg parameters’ method, the 
direct kinematics of a Puma 560 robot. 

Kinematics analysis studies the relative motions, 
such as, first of all, the displacement in space of the end 
effector of a given robot, and thus its velocity and acceleration, 
associated with the links of the given robot that  is usually 
designed so that it can position its end-effector with a three 
degree-of-freedom of translation and three degree-of-freedom 
of orientation within its workspace. 

 

 

 
We must emphasize the fact that the use of both 

Matlab software and quaternions and / or dual quaternions in 
the processing of 3D rotations and/or screw movements is 
and will always be the most efficient, fast and accurate first 
choice. Dual quaternion direct kinematics method could be 
generalised, in the future, to all kind of spatial and/ or industrial 
robots as well as to articulated and multibody systems.      
Keywords: dual quaternions, forward kinematics, screw 
motion, denavit and hartenberg parameters.  

I. Introduction 

any research students have a great deal of 
trouble understanding essentially what 
quaternions are [1], [2], [3]  and how they can 

represent rotation. So when the subject of dual-
quaternions is presented, it is usually not welcomed with 
open arms. Dual-quaternions are a break from the norm 
(i.e., matrices) which we hope to entice the reader into 
supporting willingly to  represent  their  rigid  transforms. 
 
Author α σ ρ: Algerian Structural Mechanics Research Laboratory, 
Mechanical Engineering Department, Blida 1 University.  
e-mail: ygouasmi@hotmail.com 

The reader should walk away from this analysis with a 
clear understanding of what dual-quaternions are and 
how they can be used [4]. First we begin with a short 
recent and related work that emphasises the power of 
dual-quaternions: 

The dual-quaternion has been around since 
1882 [5],[6],[7] but has gained less attention compared 
to quaternions alone; while the most recent work which 
has taken hold and has demonstrated the practicality of 
dual-quaternions, both in robotics and computer 
graphics can be resumed in: - Kavan [8] demonstrated 
the advantages of dual-quaternions in character 
skinning and blending. - Ivo [9] extended Kavan’s work 
with dual-quaternions and q-tangents as an alternative 
method for representing rigid transforms instead of 
matrices, and gives evidence that the results can be 
faster with accumulated transformations of joints if the 
inferences per vertex are large enough. - Selig [10] 
address the key problem in computer games. - Vasilakis 
[11] discussed skeleton-based rigid-skinning for 
character animation.  - Kuang [12] presented a strategy 
for creating real-time animation of clothed body 
movement.-Pham [13] solved linked chain inverse 
kinematic (IK) problems using Jacobian matrix in the 
dual-quaternion space. -Malte [14] used a mean of 
multiple computational (MMC) model with dual-
quaternions to model bodies. - Ge [15] demonstrated 
dual-quaternions to be an efficient and practical method 
for interpolating three-dimensional motions. -Yang -
Hsing [16] calculated the relative orientation using dual-
quaternions. - Perez [17] formulated dynamic 
constraints for articulated robotic systems using dual-
quaternions.- Further reading on the subject of dual 
numbers and derivatives is presented by Gino [18]. 

In the last three decades, the field of robotics 
has widened its range of applications, due to recent 
developments in the major domains of robotics like 
kinematics, dynamics and control, which leads to the 
sudden growth of robotic applications in areas such as 
manufacturing, medical surgeries, defense, space 
vehicles, under-water explorations etc. 

To use robotic manipulators in real-life 
applications, the first step is to obtain the accurate 
kinematic model [19]. In this context, a lot of research 
has been carried out in the literature, which leads to the 
evolution of new modeling schemes along with the 
refinement of existing methodologies describing the 
kinematics of robotic manipulators. 

M 
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First of all, examples of basic solid movements such 
as rotations, translations, their combinations and general 
screw motions are studied using both (4x4) rigid body 
transformations and dual quaternions so that the reader could 
compare and  note the similarity of the results obtained using 
one or the other method. Both dual quaternions technique as 
well as its counterpart the classical ‘Denavit and Hartenberg 
parameters method’ are finally applied to the first three degree 
of freedom of a Puma 560 robot. Finally, we and the reader, 
can observe that the two methods confirm exactly one another 
by giving us the same results for the considered application, 
while noting that the fastest, simplest more straightforward and 
easiest to apply method, is undoubtedly the one using dual 
quaternions. As a result this chapter may as well act as a 
beginners guide to the practicality of using dual-quaternions to 
represent the rotations and translations in character-based 
hierarchies. 



elements of screw theory can be traced to the work of 
Chasles and Poinsot [20], [21], in the early 1800’s and  
Whittaker [22]. Using the theorems of Chasles and 
Poinsot as a starting point, Robert S. Ball developed 
[23] a complete theory of screws which he published          
in 1900. Throughout the development of kinematics, 
numerous mathematic theories [24] and tools have 
been introduced   and applied. The first pioneer effort for 
kinematic modeling of robotic manipulators was made 
by Denavit and Hartenberg in introducing a consistent 
and concise method to assign reference coordinate 
frames to serial manipulators, allowing the (4×4) 
homogeneous transformation matrices to be used (in 
1955) [25], followed by Lie groups and Lie Algebra by 
J.M Selig and others, [26], [27], [28]) and quaternions 
and dual quaternions introduced by Yang and 
Freudenstein (1964) [29], see also Bottema and Roth 
(1979) [30] and McCarthy (1990) [31].The original D–H 
parameter method has many counterparts: Distal 
variant, proximal variant, …to name but a few. There 
even exist different options for these counterparts. 

In this method, four parameters, popularly 
known as D–H parameters, are defined to provide the 
geometric description to serial mechanisms. Out of the 
four, two are known as link parameters, which describe 
the relative location of two attached axes in space. 
These link (See appendix 10,3,1.) parameters are: The 
link length (ai) and the link twist (αi).  

The remaining two parameters are described as 
joint parameters, which describe the connection of any 
link to its neighboring link. These are the joint offset (di) 
and the joint angle (θi ). 

Modeling the movement of the rigid body by the 
theory of the helicoidal axis: a combination of an amount 
of rotation about and an amount of translation along a 
certain axis, hence the term helicoidal axis is used in 

various fields such as computer vision and 
biomechanics. The application of this theory in the field 
of robotics is taking more and more space. We can 
consider the motion of a joint segment as a series of 
finite displacements. In this case the movement is 
characterized by an angle of rotation about and an 
amount of translation along an axis defined in space by 
its position and its orientation.   This axis is referred to as 
the finite helicoidal axis (FHA), because of the 
discretization of the movement into a series of 
displacements. On the other hand and by taking the 
continuity of the movement into account, this movement 
will be characterized by a rotational speed (angular 
velocity) about and translation speed along an axis 
defined by the instantaneous position and orientation in 
space. One speaks in this case of an instantaneous 
helicoidal axis (IHA).The application of the helicoidal 
theory with its two versions (FHA and IHA) is used to 
describe and understand the joint movement, and to 
study in biomechanics, for example, the different 
positioning techniques of prothèses. Thus there are 
several methods to estimate the helicoidal axis from a 
set of points representing a rigid body. 

Any displacement of a rigid body is a helicoidal 
motion which may be decomposed into an angular 
rotational movement about and a linear translational 
movement along a certain axis in 3D space. The 
methods differ in the way of mathematically representing 
these two movements. These movements can be 
expressed using rotation matrices and translation 
vectors, homogeneous matrices, unit quaternions, dual 
quaternions, ....  

The two representations; using (3x3) matrices or 
(4x4) homogeneous matrices and dual quaternions will 
be simultaneously used for all and each examples or 
applications studied so that comparisons for each case 
could be done. 

II. Dual Quaternions 

a)
 

«
 
Product type

 
» dual quaternions

 

The dual quaternions have two forms thus two readings which are complementary and simultaneous: The 
first is the << product type >>

 
description:

 

𝑇𝑇�𝐺𝐺= �𝑇𝑇𝑅𝑅 + 𝜀𝜀 𝑇𝑇𝑇𝑇 .𝑇𝑇𝑅𝑅
2
�  With: 𝑇𝑇𝑅𝑅

 
= �cos 𝜓𝜓

2
, n. sin 𝜓𝜓

2
� = �cos 𝜓𝜓

2
, sin 𝜓𝜓

2
.𝑛𝑛𝑥𝑥 , sin 𝜓𝜓

2
.𝑛𝑛𝑦𝑦 , sin 𝜓𝜓

2
.𝑛𝑛𝑧𝑧�

 

and     𝑇𝑇𝑇𝑇
 
= (0,�𝑇𝑇𝑥𝑥 ,𝑇𝑇𝑦𝑦 ,𝑇𝑇𝑧𝑧�=

 
(0

 
,{𝑇𝑇} 

)
 

Then, the transformation is:
 

𝑇𝑇�𝐺𝐺= �𝑇𝑇𝑅𝑅 + 𝜀𝜀 𝑇𝑇𝑇𝑇 .𝑇𝑇𝑅𝑅
2
� = �cos 𝜓𝜓

2
, n sin 𝜓𝜓

2
� + 

 𝜀𝜀 �0, 𝑇𝑇
2
�.�cos 𝜓𝜓

2
, n sin 𝜓𝜓

2
� 

𝑇𝑇�𝐺𝐺=�cos 𝜓𝜓
2

, n sin 𝜓𝜓
2
� + 𝜀𝜀 �– �𝑇𝑇.𝑛𝑛

2
� sin 𝜓𝜓

2
, �𝑇𝑇𝑇𝑇𝑇𝑇

2
 sin 𝜓𝜓

2
+ 𝑇𝑇

2
cos 𝜓𝜓

2
��        << product type

 
>>    (1)

 

b)
 

«
 
Dual type

 
» dual quaternions

 

Indeed a general transformation, screw type, can be also described using dual angles and dual vectors and 
have therefore the following form << Dual type

 
>>:
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Screw theory based solution methods have 
been widely used in many robotic applications. The 



𝑇𝑇�=�cos 𝜃𝜃
�

2
, sin 𝜃𝜃�

2
𝑤𝑤�� = �cos 𝜃𝜃

2
, sin 𝜃𝜃

2
𝑛𝑛� + 𝜀𝜀 �−  𝑑𝑑

2
sin 𝜃𝜃

2
 , �m sin 𝜃𝜃

2
+ 𝑑𝑑

2
𝑛𝑛 cos 𝜃𝜃

2
��   << 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >>         (2) 

  
 

 

    
 

   
 

 
  

 

 

 

                                                                 Figure 1: Helicoidal or screw motion 

Note that this form resembles that used for 
classic quaternions; using the dual angle and the dual 
unitary vector instead of the classical ones.  

And as a matter of fact: The screw 
displacement is the dual angle  𝜃𝜃�  = 𝜃𝜃 + 𝜀𝜀 d, along the 

screw axis defined by the dual vector 𝑙𝑙 or  𝑠̂𝑠 or in our 
case  𝑤𝑤�  = n +𝜀𝜀 m; such that we will obtain (respecting 
the rules of derivation and multiplication of dual 
numbers), dual vectors, quaternions and dual 
quaternions    (see appendix 10,2. and  eq (A15)): 

𝑇𝑇�=�cos 𝜃𝜃
�

2
, sin 𝜃𝜃�

2
𝑤𝑤�� = [cos 𝜃𝜃

2
  − 𝜀𝜀 𝑑𝑑

2
sin 𝜃𝜃

2
 , (sin 𝜃𝜃

2
 + 𝜀𝜀 

𝑑𝑑
2

 cos 𝜃𝜃
2
 ) ( n +𝜀𝜀 m )] = 

cos 𝜃𝜃
2
 −𝜀𝜀 𝑑𝑑

2
sin 𝜃𝜃

2
 , n sin 𝜃𝜃

2
 +𝜀𝜀 (n 𝑑𝑑

2
cos 𝜃𝜃

2
 + sin 𝜃𝜃

2
 m) = ( cos 𝜃𝜃

2
, n sin 𝜃𝜃

2
 ) + 𝜀𝜀(−𝑑𝑑

2
sin 𝜃𝜃

2
 , sin 𝜃𝜃

2
 m + n 𝑑𝑑

2
cos 𝜃𝜃

2
 )   (2) 

The geometric interpretation of these quantities 
is related to the screw-type motion. The angle 𝜃𝜃 is the 
angle of rotation around n, the vector unit n represents 
the direction of the rotation axis. The element d is the 
translation or the displacement amplitude along the 
vector n, m being the vector moment of the vector axis n 
relative to the origin of the axes. The vector m is an 
unambiguous description of the position of an axis in 
space, in accordance with the properties of Plückér 
coordinates defining lines in space. 

This form gives another interesting use: 
Whereas the classics quaternions can only represent 
rotations whose axes pass through the origin O of the 
coordinate system (O, x, y, z), the dual quaternions can 
represent rotations about arbitrary axes in space, 

translations as well as any combination of both these 
two basic spatial motions.  

These two forms << product type >> eq (1) or 
<< 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >> 𝑒𝑒𝑒𝑒  (2) represent the same motion 
that describe the same movement ‘the screw motion’:                                   

III. Example 1: Rotations Represented         
by Quaternions 

Let’s apply two successive rotations to a rigid 
body: the first one of amplitude  𝜃𝜃1 = 𝜋𝜋

2
  around the axis 

Ox followed by a second rotation of the same 
amplitude  𝜃𝜃2 =  𝜋𝜋

2
   around the Oy axis: 
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It is defined by the dual angle 𝜃𝜃� and the dual 
vector 𝑤𝑤� the rotation being represented by the angle 𝜃𝜃
around the axis n = (nx, ny, nz) of norm 1, and a 
translation d along the same vector n.

The vector m = (mx, my, mz) is the moment of 
the vector n about the origin of reference (O, x, y, z); it is 
named the moment of the axis n, with: 𝜃𝜃� = 𝜃𝜃 + 𝜀𝜀 d  
with d being the amplitude of the translation along the 
dual vector  𝑤𝑤�    = n +𝜀𝜀 m with  m = p x n (the green 
vector see figure 1) that defines the vector according to 

Plücker coordinates, p, (the blue vecor), being the 
vector that gives the position of n ,(the red vector), using 
the vector OO1 (see figure (1)). 

The parameters of the transformation, the angle  
𝜃𝜃, the  axis of rotation n, the magnitude of the translation 
d and the moment m are the four characteristics of all, 
any and every 3D  rigid body transformation (4x4) 
matrix, a screw motion or a helicoidal movement of any 
kind (or type ).



Using quaternions the first rotation will be written; since   𝜃𝜃1
2

  = 𝜋𝜋
4
  then  cos 𝜃𝜃1

2
 = sin 𝜃𝜃1

2
  =  √2

2
  

𝑞𝑞1 =  (√2
2

 , √2
2

 , 0 , 0 ) ;  having    𝜃𝜃1
2

  = 𝜋𝜋
4
  then  cos 𝜃𝜃1

2
 = sin 𝜃𝜃1

2
  =  √2

2
 

The second rotation will have the form: 𝑞𝑞2 =  (√2
2

 , 0 , √2
2

 , 0 ) 

The final composition of the two movements will be given by the quaternion 𝑞𝑞 such that: 

𝑞𝑞 = 𝑞𝑞2. 𝑞𝑞1 =  (√2
2

 , 0 , √2
2

 , 0 ) . (√2
2

 , √2
2

 , 0 , 0 ) = ( 1
2
 ,  1

2
 ,  1

2
 , − 1

2
 ) 

Using quaternion’s  definition (A5) and quaternions properties: 

𝑞𝑞 = ((1
2
 , √3 

2
 ( 1
√3

 , 1
√3

 , − 1
√3

 ))  or  ((1
2
 ,− √3 

2
 (−  1

√3
 ,− 1

√3
 ,  1

√3
 )) 

It is then easy to extract both the amplitude and the resulting axis of the rotation from the result  q: 

cos  𝜽𝜽
𝟐𝟐
  = 𝟏𝟏

𝟐𝟐
  and  sin  𝜽𝜽

𝟐𝟐
  = √𝟑𝟑 

𝟐𝟐
;  wich implies the first solution  𝜽𝜽 = + 120 º, around the unitary axis  ( n) =  𝟏𝟏

√𝟑𝟑
�
𝟏𝟏 
𝟏𝟏
−𝟏𝟏

� 

or  

cos  𝜽𝜽
𝟐𝟐
  = 𝟏𝟏

𝟐𝟐
  and sin  𝜽𝜽

𝟐𝟐
  = − √𝟑𝟑 

𝟐𝟐
; wich implies a second solution 𝜽𝜽 = −120 º, around the unit axis (− n) = 𝟏𝟏

√𝟑𝟑
�
−𝟏𝟏 
−𝟏𝟏
𝟏𝟏
� 

In fact the two solutions represent the same and similar solution since for any q we have q (𝜽𝜽, n) = q (−𝜽𝜽, −n). 

Using our classical (3x3) rigid transformations we get:  

R21 = R2.R1 = �
0 0 1
0    1 0

 −1 0 0
��

1 0 0
0 0 −1
0 1  0

 � =  �
0 1 0
0  0 −1
−1 0 0

� 

Here it is very important to note that unlike the quaternion method we cannot extract the needed results 
easily and straightforwardly but we must follow a long and sometimes complicated process (determinant, trace, 

 

Whichever used technique we will find: A rotation of  𝜽𝜽 = 𝟐𝟐𝝅𝝅
𝟑𝟑   =  120 º around the unit axis  n =  𝟏𝟏

√𝟑𝟑
�
𝟏𝟏 
𝟏𝟏
−𝟏𝟏

�   

To show the anti commutativity of the product let’s do the inverse and start by the second rotation instead: 

𝒒𝒒𝒊𝒊 =  𝒒𝒒𝟏𝟏. 𝒒𝒒𝟐𝟐 = (√𝟐𝟐
𝟐𝟐

 , √𝟐𝟐
𝟐𝟐

 , 0 , 0 ) .(√𝟐𝟐
𝟐𝟐

 , 0 , √𝟐𝟐
𝟐𝟐

 , 0 ) = ( 𝟏𝟏
𝟐𝟐
 ,  𝟏𝟏

𝟐𝟐
 ,  𝟏𝟏

𝟐𝟐
 ,  𝟏𝟏

𝟐𝟐
 ) = ((𝟏𝟏

𝟐𝟐
 , √𝟑𝟑 

𝟐𝟐
 ( 𝟏𝟏
√𝟑𝟑

 , 𝟏𝟏
√𝟑𝟑

 , 𝟏𝟏
√𝟑𝟑

 )) = 𝒒𝒒𝒊𝒊 = ((𝟏𝟏
𝟐𝟐
 , − √𝟑𝟑 

𝟐𝟐
 (−  𝟏𝟏

√𝟑𝟑
 , − 𝟏𝟏

√𝟑𝟑
 , 

−  𝟏𝟏
√𝟑𝟑

 )) 

and that will imply 𝜃𝜃i  =  120 º around the axis  n =  1
√3
�
1 
1
1
� ,   or  𝜃𝜃i = − 120 º around the axis  (– n) = 1

√3
�−
−1 

1
−1

� ; 

Which of course will imply that:     𝑞𝑞1. 𝑞𝑞2 ≠  𝑞𝑞2. 𝑞𝑞1 

Using matrices : Ri = R1 R2 = �
1 0 0
0 0 −1
0 1  0

 ��
0 0 1
0 1 0

 −1 0 0
� =  �

0 0 1
1  0 0
0 1 0

� ≠ Rii = R2 R1  which implies: 

A rotation of 𝜃𝜃 = 2𝜋𝜋
3   =120º  around the unit axis  n= 1

√3
�
1 
1
1
�  equivalent to a rotation of 𝜃𝜃 = − 2𝜋𝜋

3   = −120 º around the 

unit axis  n =  − 1
√3
�
1 
1
1
� 

Using MATLAB (See Appendix 10,1.) we can calculate easily both the two quaternions multiplications: q= 
n1 = q2.q1 and qi = n2 = q1.q2 and the two equivalent product of matrices R21 = R2R1  and Ri = R1 R2. 
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H antisimmetry, angle and axis of rotations signs,axis/angle (or conversions to Olinde Rodrigues (Axis, Angle) 
parameters) …



 
IV. Important Notes: What about Translations? 

We must recall that rotations act on translations, the reverse being not true; in fact when multiplying by 
blocks:    

For a rotation followed by a translation: �𝐼𝐼 𝑡𝑡
0 1�  �𝑅𝑅 0

0 1� =  �𝑅𝑅 𝑡𝑡
0 1� ; the rotation is not affected by the 

translation. 

While for a translation followed by a rotation: �𝑅𝑅 0
0 1� �

𝐼𝐼 𝑡𝑡
0 1� = �𝑅𝑅 𝑅𝑅𝑅𝑅

0 1 � ;  the translation is affected by the 

rotation. 
When translations are performed first we can thus assume that the translation vector of the resulting matrix 

product; Rt  acts as the translation vector t of a rotation followed by a translation .Or more generally speaking 
considering two six degree of freedom general rigid body transformations T1 followed by T2 we will have:  

 

T2 .T1 = �𝑅𝑅2 𝑡𝑡2
0 1� �

𝑅𝑅1 𝑡𝑡1
0 1� = �𝑅𝑅2𝑅𝑅1 𝑅𝑅2𝑡𝑡1 + 𝑡𝑡2

0 1 � = �𝑅𝑅 𝑡𝑡
0 1� 

The translation vector t of the product of the two transformations is �𝑡𝑡1
�  =  𝑅𝑅2𝑡𝑡1 + 𝑡𝑡2 = �𝑅𝑅2 0

0 1� �
𝑡𝑡1
1
� + �𝑡𝑡2

1
�  

The same analysis as the last one could then be done whatever the order and the number of the successive 
transformations being performed over the rigid body: The final result of the products of all the  undertaken rigid body 
transformations will be finally the helicoidal, the helical or the screw motion given by the (4x4) matrix: 

[T] = Tn… Ti...T2 .T1 = �𝑅𝑅 𝑡𝑡
0 1�       (3) 

With Ti representing either a rotation, a translation, a rotation followed by a translation, a translation followed by a 
rotation or even simply a no movement (ie: the 4x4 identity matrix I ). 

  

Any screw motion would be given by the following (4x4) matrix [ T ]:   

�𝑅𝑅 𝑡𝑡
0 1� = �𝐼𝐼 𝑢𝑢

0 1� �
𝑅𝑅 (𝜃𝜃,𝑛𝑛) θ  p

2𝜋𝜋
𝑛𝑛

0 1
� �𝐼𝐼 − 𝑢𝑢

0 1 � = �𝑅𝑅(𝜃𝜃,𝑛𝑛) θ  p
2𝜋𝜋
𝑛𝑛 + (𝐼𝐼 − 𝑅𝑅(𝜃𝜃,𝑛𝑛)𝑢𝑢 

0 1
� = [T]  ( 3 )

The middle matrix is a screw about a line 
through the origin; that is, a rotation of 𝜽𝜽 radians around 
the axis n followed by a translation along n. The outer 
matrices conjugate the screw and serve to place the line 
at an arbitrary position in space. The parameter p is the 
pitch of the screw, it gives the distance advanced along 
the axis for every complete turn, exactly like the pitch on 
the thread of an ordinary nut or bolt. When the pitch is 
zero the screw is a pure rotation, positive pitches 
correspond to right hand threads and negative pitches 
to left handed threads. 

To show that a general rigid motion is a screw 
motion, we must show how to put a general 
transformation into the form derived above. The unit 
vector in the direction of the line n is easy since it must 
be the eigenvector of the rotation matrix corresponding 
to the unit eigenvalue.(This fails if R = I, that is if the 
motion is a pure translation). The vector u is more 
difficult to find since it is the position vector of any point 
on the rotation axis. However we can uniquely specify u 
by requiring that it is normal to the rotation axis. So we 
impose the extra restriction that n.u = 0. So to put the 

general matrix   �𝑹𝑹 𝒕𝒕
𝟎𝟎 𝟏𝟏�  into the above form we must 

solve the following system of linear equations: 
𝛉𝛉 𝐩𝐩
𝟐𝟐𝝅𝝅
𝒏𝒏 + (𝑰𝑰 − 𝑹𝑹)𝒖𝒖 = t 

Now  n.Ru = n.u = 0, since the rotation is about 
n. So we can dot the above equation with n to give:          
0 = n.( t −𝛉𝛉 𝐩𝐩

𝟐𝟐𝝅𝝅
) this enables us to find the pitch:                   

p = 𝟐𝟐𝝅𝝅 
𝛉𝛉 
𝒏𝒏. t  
All we need to do now is to solve the equation 

system:  (𝑰𝑰 − 𝑹𝑹)𝒖𝒖 = (t – (𝒏𝒏. t) 𝒏𝒏) ; 
This is possible even though det (𝑰𝑰 − 𝑹𝑹) = 0, 

since the equations will be consistent. 
This entire analysis established through this 

long paragraph concerning the helicoidal motion or rigid 
(4x4) transformation matrix [T] is contained in only one 
line enclosed in its counterpart dual quaternion 𝑻𝑻� of the 
form: 
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V. Screw Motion



𝑇𝑇�  = �cos 𝜃𝜃
�

2
, sin 𝜃𝜃�

2
𝑤𝑤�� = 𝑇𝑇�𝑛𝑛 . .𝑇𝑇�𝑖𝑖 . .𝑇𝑇�2.𝑇𝑇�1=  �cos 𝜃𝜃

2
, sin 𝜃𝜃

2
.𝑛𝑛� + 𝜀𝜀 �−  𝑑𝑑

2
sin 𝜃𝜃

2
 , �m sin 𝜃𝜃

2
+ 𝑑𝑑

2
.𝑛𝑛 cos 𝜃𝜃

2
� �  or  eq (2)  ≡  eq (3) 

These equations are best represented by the figures (2,1)  or/and  (2,2) : 

 

Figure: (2, 1): A semi cubic solid performing simultaneously a rotation θ around the axis 𝒍̂𝒍  and a displacement d 
along the same axis. 

Figure: (2, 2): The same rigid (4D) transformation (R,t) represented by its screw axis S and displacement d. 

VI. Example 2: General Movement or A Screw Motion 

Let’s apply two successive screw motions to a rigid body: the first one around the Oy axis of 
amplitude  𝜽𝜽𝟏𝟏 = 𝝅𝝅

𝟐𝟐
  and of pitch ( p = 𝟐𝟐𝝅𝝅

𝛉𝛉
 t = 4) followed by a second one around the axis Ox and of the same 

amplitude  𝜽𝜽𝟐𝟐 =  𝝅𝝅
𝟐𝟐

  and same pitch p = 4 corresponding to a translation of 1 unit along any of  the two chosen axes: 

 T2 .T1 =  �
1 0 0 1
0
0  01

−1
0

0
0

0 0 0 1
��

0 0 1 0
0
−1

1
0

0
0

1
0

0 0 0 1
� = �

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
�                                       (4) 

The rotation part of the product corresponds to that of the precedent example of successive rotations Ri = R1 R2                  

with amplitude 𝜃𝜃 = 2𝜋𝜋
3   =  120 º around the unit axis  n =  1

√3
�
1 
1
1
�  ; its translation part being  t = �

1 
0
1
�   

We can find its pitch  p  =  2𝜋𝜋
𝜃𝜃

 (n. t )  =  2𝜋𝜋
2𝜋𝜋
3

 1
√3
�
1 
1
1
�. �

1 
0
1
� =  6

√3
 = 2√3 

The axis of rotation will keep its same original direction n =  1
√3
�
1 
1
1
�, it will go through a new centre C  given by the 

shifting  vector u which could be found by the linear equations system : (I – R) u = t – 𝛉𝛉 𝐩𝐩
𝟐𝟐𝝅𝝅

 n  

�−
1 0 −1
1 1 0
0 −1 1

� �
𝑢𝑢𝑥𝑥  
𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧
� = �

1 
0
1
� − 2𝜋𝜋

3.2𝜋𝜋
 6
√3

⎩
⎪
⎨

⎪
⎧

1
√3

 
1
√3
1
√3

� = �
1 
0
1
� − 2

√3

⎩
⎪
⎨

⎪
⎧

1
√3

 
1
√3
1
√3

� = 

⎩
⎪
⎨

⎪
⎧

−

 1
3
2
3
1
3

� 

The vector translation T (or t ) of the movement  �
1 
0
1
� is the sum of the two main perpendicular vectors  T1 + 

T2 such as T1  is to be chosen parallel to n while the rest T2 is the translation vector part responsible for the shifting of 
the axis to its final position through the new center C as such we have:  

T1 = 

⎩
⎪
⎨

⎪
⎧
𝟐𝟐
𝟑𝟑
 
𝟐𝟐
𝟑𝟑
𝟐𝟐
𝟑𝟑

�   and   T2 = 

⎩
⎪
⎨

⎪
⎧

−

𝟏𝟏
𝟑𝟑
 
𝟐𝟐
𝟑𝟑
𝟏𝟏
𝟑𝟑

�;    T1 being the translation part parallel to n while T2 being the perpendicular part with n. 
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The solutions to the system of linear equations are:  𝒖𝒖𝒙𝒙 − 𝒖𝒖𝒛𝒛 =  𝟏𝟏
𝟑𝟑
 ;  −𝒖𝒖𝒙𝒙+ 𝒖𝒖𝒚𝒚 = −  𝟐𝟐

𝟑𝟑
 ;  and   − 𝒖𝒖𝒚𝒚+ 𝒖𝒖𝒛𝒛 =   𝟏𝟏

𝟑𝟑
    (5)                                      

Choosing the centre C to belong to the plane ( y-z); 𝒖𝒖𝒙𝒙  = 0  or (Cx = 0 ) would imply the two coordinates 

Cy = −  𝟐𝟐
𝟑𝟑
    and    Cz =−

 𝟏𝟏
𝟑𝟑
 . 

  

For the ( z-x) plane ;  𝒖𝒖𝒚𝒚 = 0 or (Cy = 0 ) :  Cz =  𝟏𝟏
𝟑𝟑
   and  Cx =  𝟐𝟐

𝟑𝟑
. 

And finally considering the (x-y) plane ;  𝒖𝒖𝒛𝒛 = 0 or (Cz = 0 ):  Cx =  𝟏𝟏
𝟑𝟑
  and   Cy = −  𝟏𝟏

𝟑𝟑
 

So that to confirm these results ; we can finally check the following conjugation matrices : 

       

⎝

⎜
⎛

0 0 1 0

1
0

0
1

0
0

−2
3
−1
3

0 0 0 1⎠

⎟
⎞

⎝

⎜⎜
⎛

0 0 1  2
3

1
0

0
1

0
0

 2
3
 2
3

0 0 0 1⎠

⎟⎟
⎞

 

⎝

⎜
⎛

0 0 1 0

1
0

0
1

0
0

 2
3
 1
3

0 0 0 1⎠

⎟
⎞

 = �
0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
� ≡ (4)  Or, 

⎝

⎜
⎛

0 0 1  2
3

1
0

0
1

0
0

0
1
3

0 0 0 1⎠

⎟
⎞

⎝

⎜⎜
⎛

0 0 1  2
3

1
0

0
1

0
0

 2
3
 2
3

0 0 0 1⎠

⎟⎟
⎞

 

⎝

⎜
⎛

0 0 1 −2
3

1
0

0
1

0
0

0
−1
3

0 0 0 1⎠

⎟
⎞

 = �
0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
� ≡ (4) 

     Or finally; 

⎝

⎜
⎛

0 0 1 1
3

1
0

0
1

0
0

−1
3
0

0 0 0 1⎠

⎟
⎞

⎝

⎜⎜
⎛

0 0 1  2
3

1
0

0
1

0
0

 2
3
 2
3

0 0 0 1⎠

⎟⎟
⎞

 

⎝

⎜
⎛

0 0 1 −1
3

1
0

0
1

0
0

1
3
0

0 0 0 1⎠

⎟
⎞

 = �
0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
� ≡ (4) 

Whenever necessary, Matlab was, throughout the chapter implemented, concerning all kinds of products or 
multiplication of quaternions or matrices. 

VII. The Same General Example using Dual Quaternions 

𝑞𝑞� = 𝑞𝑞 + 𝜀𝜀𝑞𝑞𝜀𝜀 = 𝑞𝑞𝑅𝑅 + 𝜀𝜀
2
�𝑡𝑡𝑥𝑥𝑖𝑖 + 𝑡𝑡𝑦𝑦 𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘�⨂𝑞𝑞𝑅𝑅 = 𝑅𝑅 + 𝜀𝜀 𝑇𝑇𝑇𝑇

2
 

The two transformations T1  and T2 are basic centered helicoidal movements through the origin O of the 
axes, that can be written:    

For the first movement around and along  Oy:  𝑞𝑞�1 = 𝑞𝑞1 + 𝜀𝜀
2

 𝑞𝑞𝜀𝜀1 = 𝑞𝑞�𝑦𝑦  = (c  , 0  , s  ,  0) + 𝜀𝜀
2
 (− s𝑡𝑡𝑦𝑦  , 0 , c 𝑡𝑡𝑦𝑦  , 0 ) =                                                                

( cos 𝜋𝜋
4
 , 0 , sin 𝜋𝜋

4 
, 0) + 𝜀𝜀

2
 (− sin 𝜋𝜋

4 
. 1 , 0 , cos 𝜋𝜋

4
. 1 , 0 ) = ( √2

2
 , 0 ,  √2

2
 , 0 ) + 𝜀𝜀

2
 ( −√2

2
 , 0 ,  √2

2
 , 0 ) 

followed by the second movement around and along Ox:  𝑞𝑞�2 = 𝑞𝑞2 + 𝜀𝜀
2

 𝑞𝑞𝜀𝜀2 = 𝑞𝑞�𝑧𝑧  = (c  , 𝑠𝑠  , 0 ,  0  ) + 𝜀𝜀
2
 (− s𝑡𝑡𝑧𝑧  , c 𝑡𝑡𝑧𝑧  , 0 

, 0) = ( cos 𝜋𝜋
4
 , sin 𝜋𝜋

4 
 , 0, 0) + 𝜀𝜀

2
 (− sin 𝜋𝜋

4 
. 1 , cos 𝜋𝜋

4
. 1  , 0, 0) = ( √2

2
 , √2

2
 ,  0 , 0) +𝜀𝜀

2
 ( −√2

2
 , √2

2
 ,  0 , 0 )                                                                                                                  

The dual quaternion product of the two screw movements is: 

𝑞𝑞�2. 𝑞𝑞�1 = ( 𝑞𝑞2 + 𝜀𝜀
2

 𝑞𝑞𝜀𝜀2).( 𝑞𝑞1 + 𝜀𝜀
2

 𝑞𝑞𝜀𝜀1 ) = 𝑞𝑞2. 𝑞𝑞1 + 𝜀𝜀
2
 (𝑞𝑞2. 𝑞𝑞𝜀𝜀1 +  𝑞𝑞𝜀𝜀2. 𝑞𝑞1 ) = 

[ ( √𝟐𝟐
𝟐𝟐

 , √𝟐𝟐
𝟐𝟐

  , 0, 0) + 𝜺𝜺
𝟐𝟐
 ( −√𝟐𝟐

𝟐𝟐
 , √𝟐𝟐

𝟐𝟐
 , 0 .0 )]. [( √𝟐𝟐

𝟐𝟐
 , 0 , √𝟐𝟐

𝟐𝟐
 , 0) + 𝜺𝜺

𝟐𝟐
 ( −√𝟐𝟐

𝟐𝟐
 , 0 ,  √𝟐𝟐

𝟐𝟐
 , 0)] = 

( √𝟐𝟐
𝟐𝟐

 , √𝟐𝟐
𝟐𝟐

 , 0 , 0).( √𝟐𝟐
𝟐𝟐

 , 0 , √𝟐𝟐
𝟐𝟐

 , 0) + 𝜺𝜺
𝟐𝟐
 [ ( √𝟐𝟐

𝟐𝟐
 , √𝟐𝟐

𝟐𝟐
 , 0 , 0).( −√𝟐𝟐

𝟐𝟐
 , 0 ,  √𝟐𝟐

𝟐𝟐
 , 0) + ( −√𝟐𝟐

𝟐𝟐
 , √𝟐𝟐

𝟐𝟐
 , 0 .0 ). ( √𝟐𝟐

𝟐𝟐
 , 0 , √𝟐𝟐

𝟐𝟐
 , 0)] = 

( 𝟏𝟏
𝟐𝟐
 ,( 𝟏𝟏

𝟐𝟐
 , 𝟏𝟏
𝟐𝟐
 , 𝟏𝟏
𝟐𝟐
)) + 𝜺𝜺

𝟐𝟐
 [ (− 𝟏𝟏

𝟐𝟐
 , (−𝟏𝟏

𝟐𝟐
 ,  𝟏𝟏

𝟐𝟐
  ,  𝟏𝟏

𝟐𝟐
)) + (− 𝟏𝟏

𝟐𝟐
  ,( 𝟏𝟏

𝟐𝟐
  , − 𝟏𝟏

𝟐𝟐
 .  𝟏𝟏

𝟐𝟐
 ))] = 

( 1
2
 ,√3

2
( 1
√3

 ,  1
√3

 ,  1
√3

)) + 𝜀𝜀
2
  (−1, ( 0 , 0 , 1))                (6) 
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representing the point  C  intersection of the shifted axis n with the (y-z) plane to be: 



Another way of doing it: We could get this same result starting from the (4x4) rigid transformation eq(4) 

matrix defined before: A rotation of amplitude 𝜃𝜃 = 2𝜋𝜋
3   =  120 º around the unit axis  n =  1

√3
�
1 
1
1
�  followed by a 

translation t = �
1 
0
1
�  such that :  𝑞𝑞� = 𝑞𝑞 + 𝜀𝜀𝑞𝑞𝜀𝜀 = 𝑞𝑞𝑅𝑅 + 𝜀𝜀

2
�𝑡𝑡𝑥𝑥𝑖𝑖 + 𝑡𝑡𝑦𝑦 𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘�⨂𝑞𝑞𝑅𝑅 = 𝑅𝑅 + 𝜀𝜀 𝑇𝑇𝑇𝑇

2
  =  

( 𝟏𝟏
𝟐𝟐
 ,√𝟑𝟑
𝟐𝟐

( 𝟏𝟏
√𝟑𝟑

 ,  𝟏𝟏
√𝟑𝟑

 ,  𝟏𝟏
√𝟑𝟑

)) + 𝜺𝜺
𝟐𝟐
 [ (0 , 1 , 0 , 1) ( 𝟏𝟏

𝟐𝟐
 ,( 𝟏𝟏

𝟐𝟐
 , 𝟏𝟏
𝟐𝟐
 , 𝟏𝟏
𝟐𝟐
)) ]= 

( 𝟏𝟏
𝟐𝟐
 ,√𝟑𝟑
𝟐𝟐

( 𝟏𝟏
√𝟑𝟑

 ,  𝟏𝟏
√𝟑𝟑

 ,  𝟏𝟏
√𝟑𝟑

)) + 𝜺𝜺
𝟐𝟐
 [ (−1 , (0 , 0 , 0)) + (0 , (𝟏𝟏

𝟐𝟐
 , 0 , 𝟏𝟏

𝟐𝟐
)) + (0 , (−𝟏𝟏

𝟐𝟐
 , 0 , 𝟏𝟏

𝟐𝟐
))] = 

( 𝟏𝟏
𝟐𝟐
 ,√𝟑𝟑
𝟐𝟐

( 𝟏𝟏
√𝟑𝟑

 ,  𝟏𝟏
√𝟑𝟑

 ,  𝟏𝟏
√𝟑𝟑

)) + 𝜀𝜀
2
  (−1, ( 0 , 0 , 1))            (6) 

At this stage we know the complete integrality of informations concerning this movement thanks to our 
magic, rapid and powerful dual quaternion :The rotation part, as seen before, having amplitude  𝜃𝜃 = 2𝜋𝜋

3   =  120 º 

around the unit axis n;    n =  1
√3
�
1 
1
1
�  ; the dual part will provide us gratefully with the translation along the axis of 

rotation; using eq (2):    𝜀𝜀 �−  𝑑𝑑
2

sin 𝜃𝜃
2

 , �m sin 𝜃𝜃
2

+ 𝑑𝑑
2
𝑛𝑛 cos 𝜃𝜃

2
�� =  𝜀𝜀

2
 (−1, ( 0 , 0 , 1)) = 𝜀𝜀 (− 1

2
, ( 0 , 0 , 1

2
)) 

We thus have the scalar part: −  𝑑𝑑
2

sin 𝜃𝜃
2
   = −  𝑑𝑑

2
√3
2

 = − 1
2
   implying that  d = 2

√3
 = 2√3

3
  and pitch  p = 2√3 

We can also have the vector part: �m sin 𝜃𝜃
2

+ 𝑑𝑑
2
𝑛𝑛 cos 𝜃𝜃

2
� = ( 0 , 0 , 1

2
 ) which implies: 

 mx  √3
2

+ √3
3

1
√3

 1
2
 = mx  √3

2
+ 1

6
  = 0 ;     my  √3

2
+ √3

3
1
√3

 1
2
 = my  √3

2
+ 1

6
  =  0    and  mz  √3

2
+ √3

3
1
√3

 1
2
 = mz  √3

2
+ 1

6
  =  1

2
     

We can then deduce the vector moment m = 

⎩
⎪
⎨

⎪
⎧
−1

3√3
 

−1
3√3

2
3√3

�  

Finally we can have the right position of the shifted axis u that have the same direction as the rotation axis n 
by defining the coordinates ux ,uy  and uz  of a point or a center C belonging to it so that:       m  = u Λ n 

Or  

⎩
⎪
⎨

⎪
⎧
−1

3√3
 

−1
3√3

2
3√3

� = �
ux  
uy
uz

� Λ 1
√3
�
1 
1
1
� = 1

√3
�
uy − uz 
uz − ux
ux − uy

�   implying that:  uy − uz =  −1
3

 ; uz − ux  = −1
3

    and  ux − uy  =  2
3
 

Which confirm the same obtained results eq (5) using the (4x4) rigid transformation matrix: 

𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑧𝑧  =  1
3
 ;       −𝑢𝑢𝑥𝑥+ 𝑢𝑢𝑦𝑦  = −  2

3
 ;      and      − 𝑢𝑢𝑦𝑦+ 𝑢𝑢𝑧𝑧  =   1

3
              ( 5 ) 

VIII. Application 2:  Kinematics of the      
Puma 560 Robot 

           The first three joints of this manipulator (Waist, 
Shoulder, Elbow) characterize for the first joint to be a 
rotation about a vertical axis , for the second and the 
third rotations about horizontal axes whose movements 
are identified by the variables   q1 , q2, and q3. The last 
three joints, which constitute the wrist of the robot arm, 
are characterized by the rotations q4 , q5,    and q6  

whose axes intersect at the center of the wrist  (See 
appendix 10,3. Figures (3),(4) and Table 1 for the 

forward kinematic solution using the Denavit and 
Hartenberg convention.  

The elegant , most accurate , rapid and finally 
the best manner to get the forward kinematic solutions 
of this Puma 560 robot is to use the dual quaternions: 

For the sake of comparaison let us choose the 
same home position for the robot with its geometry (ai 
and di) given in table (1) and the same absolute home 
initial frame (x0 ,y0 ,z0) with its origin O taken in link1 at 
the intersection of the base axis with the link1 axis (see 
figure (3)), assuming mobile frames at the centers of the 
six rotations: (xn ,yn ,zn) which axes remain parallel to the 

The Kinematics of a Puma Robot using Dual Quaternions
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‘home position’ or initial axes (x0 ,y0 ,z0). Let us 
begin, with the first two rotations  using either 

equations  A3 or A14 from appendix 10,2,1. to find the  
new vector position of the center O3 ( a2 , d2 , 0): 

𝑞𝑞�1 𝑞𝑞�2 𝑞𝑞�𝑣𝑣  𝑞𝑞��2
∗  𝑞𝑞��1

∗  = 𝑞𝑞�1 (𝑞𝑞�2 �𝑞𝑞�𝑣𝑣) 𝑞𝑞��2
∗  �𝑞𝑞��1

∗                                              (7) 

𝑞𝑞�2 
𝑞𝑞�𝑣𝑣  𝑞𝑞��2

∗   = (c2 , 0 , s2 , 0) [ 1+ 𝜀𝜀 (a2, d2, 0 )] (c2 , 0 , −s2 , 0) 

 Using correctly the rules for both quaternions eq (A1) and  dual quaternions multiplications eq (A7)  we have : 

𝑞𝑞�2 𝑞𝑞�𝑣𝑣 = (c2 , 0 , s2 , 0) + 𝜀𝜀 (−s2 d2 , c2 a2, c2d2, −s2 a2 )    and 

𝑞𝑞�2 𝑞𝑞�𝑣𝑣  𝑞𝑞��2
∗   = 1 + 𝜀𝜀 (0 , a2 cos 𝜃𝜃2 , d2 ,−a2sin 𝜃𝜃2)      thus 

𝑞𝑞�1 𝑞𝑞�2 𝑞𝑞�𝑣𝑣  𝑞𝑞��2
∗  𝑞𝑞��1

∗  = (c1 , 0 , 0 , s1)[ 1 + 𝜀𝜀 (0 , a2 cos 𝜃𝜃2 , d2 ,−a2sin 𝜃𝜃2)] (c1 , 0 , 0 , − s1) 

Performing the product and using the trigonometric properties we can have the  new quaternion vector position: 

1 + 𝜀𝜀 (0 , a2 cos 𝜃𝜃2 cos 𝜃𝜃1 − 𝑑𝑑2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1, a2 cos 𝜃𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1 + d2 cos 𝜃𝜃1,−a2 sin 𝜃𝜃2 ) 

or the three coordinates vector:      �
a2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 − 𝑑𝑑2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1
a2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1 + 𝑑𝑑2𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

−a2𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃2

�                                                      

This result is confirmed (see appendix 10,3,2.) by the fourth or last column of the matrix : 𝑇𝑇0
2

 =   𝑇𝑇0
1𝑇𝑇1

2 = R1 R2 =  �
𝑐𝑐1 0 – 𝑠𝑠1 0
𝑠𝑠1 0     𝑐𝑐1 0
  0 −1       0 0
 0       0       0    1

��

𝑐𝑐2 −𝑠𝑠2 0 𝑎𝑎2𝑐𝑐2
𝑠𝑠2 𝑐𝑐2   0 𝑎𝑎2𝑠𝑠2
0 0     1 𝑑𝑑2

0     0      0      1

� =  �

𝑐𝑐1𝑐𝑐2 −𝑐𝑐1𝑠𝑠2  −  𝑠𝑠1 𝑎𝑎2𝑐𝑐1𝑐𝑐2 − 𝑑𝑑2𝑠𝑠1
𝑠𝑠1𝑐𝑐2 −𝑠𝑠1𝑠𝑠2   𝑐𝑐1 𝑎𝑎2𝑐𝑐2𝑠𝑠1 + 𝑑𝑑2𝑐𝑐1
  −𝑠𝑠2 −𝑐𝑐2       0 −𝑎𝑎2𝑠𝑠2

0             0           0                    1

� 

The third rotation of the third link is around the axis O3y3 , with the center O3 being displaced or shifted and 
thus  having the position coordinates with respect to the asolute frame O3 (a2, d2, 0 ). 

Note: The conjugation (  technique could be used in its dual quaternion form or its (4x4) rigid 
transformation form. 
The dual quaternion (  definition (2) may be used instead; 

𝑞𝑞� = 𝑇𝑇�=�cos 𝜃𝜃
�

2
, sin 𝜃𝜃�

2
𝑤𝑤�� = �cos 𝜃𝜃

2
, sin 𝜃𝜃

2
𝑛𝑛� + 𝜀𝜀 �−  𝑑𝑑

2
sin 𝜃𝜃

2
 , �m sin 𝜃𝜃

2
+ 𝑑𝑑

2
𝑛𝑛 cos 𝜃𝜃

2
��   << 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 >>    (2) 

So replacing 𝑑𝑑 = 0 in eq (2), will give:   𝑞𝑞�3 =�cos 𝜃𝜃
�

2
, sin 𝜃𝜃�

2
𝑤𝑤�� = [𝑐𝑐3, (0, 𝑠𝑠3, 0)] + 𝜀𝜀�0 , {m 𝑠𝑠3}� 

The moment m, w- r - t  the axis of rotation  y3 , is m = �
a2 
𝑑𝑑2
0
�Λ�

0 
1
0
� = �

0 
0
a2

� so that 𝑞𝑞�3 = [𝑐𝑐3, (0, 𝑠𝑠3, 0)]+ 𝜀𝜀�0, {(0,0, a2𝑠𝑠3}�   

(𝑞𝑞�1 𝑞𝑞�2 )𝑞𝑞�3 𝑞𝑞�𝑣𝑣 𝑞𝑞��3
∗  (𝑞𝑞��2

∗  𝑞𝑞��1
∗ )  = (c1 , 0 , 0 , s1) (c2 , 0 , s2 , 0) 𝑞𝑞�3 𝑞𝑞�𝑣𝑣 𝑞𝑞��3

∗ (𝑐𝑐2 , 0 ,−𝑠𝑠2 , 0) (𝑐𝑐1 , 0 , 0,−𝑠𝑠1) 

To find the  new vector position of the wrist center O4 :( a2 + a3, d2 + d3, 0) = ( A, D, 0)  result of the three 
successives rotations we must start from the central operation namely :  

𝑞𝑞� 𝑣𝑣3 =    𝑞𝑞�3 𝑞𝑞�𝑣𝑣 𝑞𝑞��3
∗  = [(𝑐𝑐3, 0, 𝑠𝑠3, 0 )+ 𝜺𝜺 ( 0,0,𝑎𝑎2𝑠𝑠3)] [(1+𝜺𝜺 ( A, D, 0))] [ 𝑞𝑞��3

∗ ] = 

[(𝑐𝑐3, 0, 𝑠𝑠3, 0 ) + 𝜺𝜺( 0,0,𝑎𝑎2𝑠𝑠3)+𝜀𝜀(−𝑠𝑠3D, 𝑐𝑐3A , 𝑐𝑐3D,−𝑠𝑠3A)] [ 𝑞𝑞��3
∗ ]= 

[(𝑐𝑐3, 0, 𝑠𝑠3, 0 +𝜀𝜀(−𝑠𝑠3D, 𝑐𝑐3A , 𝑐𝑐3D , 𝑠𝑠3(−A)] [(𝑐𝑐3, 0,−𝑠𝑠3, 0 )+ 𝜺𝜺 ( 0,0,𝑎𝑎2𝑠𝑠3)] = 

(𝑐𝑐3
2+ 𝑠𝑠3

2, 0, −𝑐𝑐3𝑠𝑠3 + 𝑐𝑐3𝑠𝑠3  , 0) +𝜀𝜀(−𝑐𝑐3𝑠𝑠3D + 𝑠𝑠3𝑐𝑐3D , 𝑠𝑠3
2𝑎𝑎2 + 𝑐𝑐3

2A + 𝑠𝑠3
2 (𝑎𝑎2 −A), 𝑠𝑠3

2D + 𝑐𝑐3
2D , 𝑐𝑐3𝑠𝑠3𝑎𝑎2 −𝑐𝑐3𝑠𝑠3 A 

+ 𝑎𝑎2𝑐𝑐3𝑠𝑠3 −𝑐𝑐3𝑠𝑠3 A ) 

Using the basic trigonometric rules and properties we can write the solution vector: 

q�  v3 =  q�3 q� v q��3
∗  = 1+ ε (0 , a2 + a3 cos θ3 , d2 + d3 , − a3 sin θ3 ) = 1+ ε (a2 + a3 cos θ3 , d2 + d3 , − a3 sin θ3 ) 

The Kinematics of a Puma Robot using Dual Quaternions
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𝑒𝑒� )

TRT-1)

(8)



For a better use of space we may adopt to write our result dual quaternions vectors under the form:

⎩
⎨

⎧
scalar part 
 Ox coord.
Oy coord.
Oz coord.

� 

So that the precedent result could be written 𝑞𝑞� 𝑣𝑣3 =  �

0
a2  +  a3 cos 𝜃𝜃3

d2  + d3
− a3 sin 𝜃𝜃3

�    or simply as a vector  �
a2  + a3 cos 𝜃𝜃3

d2  + d3
− a3 sin 𝜃𝜃3

� 

Following the second transformation we have: (c2 , 0 , s2 , 0) 𝑞𝑞� 𝑣𝑣3(𝑐𝑐2 , 0 ,−𝑠𝑠2 ,0 ) =  

𝑞𝑞� 𝑣𝑣2  = (c2 , 0 , s2 , 0)[ 1 + 𝜀𝜀 (0 , a2  +  a3 cos 𝜃𝜃3 , d2  +  d3 ,− a3 sin 𝜃𝜃3 ) ](𝑐𝑐2 , 0 ,−𝑠𝑠2 , 0 ) = 

(c2 , 0 , s2 , 0)� 1 + 𝜀𝜀 �

0
a2  +  a3 cos 𝜃𝜃3

d2  + d3
− a3 sin 𝜃𝜃3

� � � 𝑞𝑞��2
∗ � = 

⎣
⎢
⎢
⎡
 (𝑐𝑐2 , 0 , 𝑠𝑠2 , 0)  + 𝜀𝜀 �

−𝑠𝑠2(d2  +  d3)
𝑐𝑐2(a2  +  a3 cos 𝜃𝜃3) −𝑠𝑠2a3 sin 𝜃𝜃3

𝑐𝑐2(d2  + d3)
− 𝑐𝑐2a3 sin 𝜃𝜃3 −𝑠𝑠2(a2  +  a3 cos 𝜃𝜃3)

� 

⎦
⎥
⎥
⎤

(𝑐𝑐2 , 0 ,−𝑠𝑠2 , 0 ) = 

(𝑐𝑐2
2+ 𝑠𝑠2

2,0, −𝑐𝑐2𝑠𝑠2 +𝑐𝑐2𝑠𝑠2 , 0)+𝜀𝜀 

⎝

⎜
⎛

−𝑐𝑐2𝑠𝑠2(d2  +  d3) + 𝑐𝑐2𝑠𝑠2(d2  + d3)
𝑐𝑐2

2(a2 + a3 cos 𝜃𝜃3) −𝑐𝑐2𝑠𝑠2a3 sin 𝜃𝜃3
   𝑐𝑐2

2(d2  +  d3) + 𝑠𝑠2
2(d2  + d3)

−𝑐𝑐2𝑠𝑠2a3 sin 𝜃𝜃3−𝑠𝑠2
2(a2 + a3 cos 𝜃𝜃3)

− 𝑐𝑐2
2a3 sin 𝜃𝜃3 −𝑐𝑐2𝑠𝑠2(a2 + a3 cos 𝜃𝜃3)−𝑐𝑐2𝑠𝑠2(a2 + a3 cos 𝜃𝜃3) + 𝑠𝑠2

2a3 sin 𝜃𝜃3⎠

⎟
⎞

 = 

1+ 𝜀𝜀 

⎝

⎜
⎛

0
𝑐𝑐2

2(a2 + a3 cos 𝜃𝜃3) – 𝑐𝑐2𝑠𝑠2a3 sin 𝜃𝜃3
   𝑐𝑐2

2(d2  + d3) + 𝑠𝑠2
2(d2  +  d3)

−𝑐𝑐2𝑠𝑠2a3 sin 𝜃𝜃3−𝑠𝑠2
2(a2 + a3 cos 𝜃𝜃3)

− 𝑐𝑐2
2a3 sin 𝜃𝜃3 – 𝑐𝑐2𝑠𝑠2(a2 + a3 cos 𝜃𝜃3)−𝑐𝑐2𝑠𝑠2(a2 + a3 cos 𝜃𝜃3) + 𝑠𝑠2

2a3 sin 𝜃𝜃3⎠

⎟
⎞

 

= �

0
cos 𝜃𝜃2(a2  + a3 cos 𝜃𝜃3) − a3sin 𝜃𝜃2sin 𝜃𝜃3

(d2  +  d3)
−a3cos 𝜃𝜃2sin 𝜃𝜃3 − sin 𝜃𝜃2(a2  + a3cos 𝜃𝜃3)

� = 

We can finally get the transformed vector  𝑞𝑞� 𝑣𝑣2:                                              

𝑞𝑞� 𝑣𝑣2 =1+ 𝜀𝜀 [(a3 cos (𝜃𝜃2 +  𝜃𝜃3 ) + a2cos 𝜃𝜃2 , (d2  +  d3) , −a3sin ( 𝜃𝜃2 + 𝜃𝜃3 ) −a2sin 𝜃𝜃2 )] 

      
  

(c1 , 0 ,0 , s1) 𝑞𝑞� 𝑣𝑣2 (𝑐𝑐1, 0, 0,−𝑠𝑠1) = 

(c1 , 0, 0, s1) [1+𝜀𝜀 (a3 cos (𝜃𝜃2 +  𝜃𝜃3 ) + a2cos 𝜃𝜃2 , (d2 +  d3) , −a3sin (𝜃𝜃2 + 𝜃𝜃3 ) −a2sin 𝜃𝜃2 )] 𝑞𝑞��1
∗  

(c1 , 0 , 0, s1)

⎣
⎢
⎢
⎡
 1 + 𝜀𝜀 

⎝

⎛

0
a3 cos (𝜃𝜃2 +  𝜃𝜃3 )  +  a2cos 𝜃𝜃2

d2  +  d3

−a3sin (𝜃𝜃2 + 𝜃𝜃3 ) – a2sin 𝜃𝜃2 ⎠

⎞ 

⎦
⎥
⎥
⎤
� 𝑞𝑞��1

∗ � = 

⎣
⎢
⎢
⎡
 (𝑐𝑐1 , 0 , 0, 𝑠𝑠1) + 𝜀𝜀 

⎝

⎛

a3 𝑠𝑠1sin (𝜃𝜃2 + 𝜃𝜃3 ) + a2𝑠𝑠1sin 𝜃𝜃2
a3 𝑐𝑐1cos (𝜃𝜃2 +  𝜃𝜃3 ) + a2𝑐𝑐1cos 𝜃𝜃2 − 𝑠𝑠1(d2  +  d3)
𝑐𝑐1(d2  + d3) + a3 𝑠𝑠1cos (𝜃𝜃2 +  𝜃𝜃3 )  +  a2s1cos 𝜃𝜃2

−a3𝑐𝑐1 sin (𝜃𝜃2 + 𝜃𝜃3 ) – a2𝑐𝑐1 sin 𝜃𝜃2) ⎠

⎞ 

⎦
⎥
⎥
⎤
 � 𝑞𝑞��1

∗ � = 

The Kinematics of a Puma Robot using Dual Quaternions
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We can finally perform the first but last transformation given by the following dual quaternions products:

            (c1 , 0 , 0 , s1) (c2 , 0 , s2 , 0) 𝑒𝑒�3 𝑒𝑒�𝑣𝑣 𝑒𝑒��3
∗ (𝑐𝑐2 , 0 ,−𝑠𝑠2 , 0)(𝑐𝑐1 , 0 , 0,−𝑠𝑠1) =



� (𝑐𝑐1 , 0 , 0, 𝑠𝑠1) + 𝜀𝜀 �

a3 𝑠𝑠1sin (𝜃𝜃2 + 𝜃𝜃3 ) + a2𝑠𝑠1sin 𝜃𝜃2
a3 𝑐𝑐1cos (𝜃𝜃2 + 𝜃𝜃3 ) + a2𝑐𝑐1cos 𝜃𝜃2 − 𝑠𝑠1(d2 + d3)
𝑐𝑐1(d2 + d3) + a3 𝑠𝑠1cos (𝜃𝜃2 + 𝜃𝜃3 ) + a2s1cos 𝜃𝜃2

−a3𝑐𝑐1 sin (𝜃𝜃2 + 𝜃𝜃3 ) – a2𝑐𝑐1 sin 𝜃𝜃2

� � (𝑐𝑐1 , 0 , 0, −𝑠𝑠1) =  

(𝑐𝑐1
2+ 𝑠𝑠1

2,0, −𝑐𝑐1𝑠𝑠1 + 𝑐𝑐1𝑠𝑠1,0)  + 

𝜀𝜀

⎝

⎜
⎛

a3 𝑐𝑐1𝑠𝑠1sin (𝜃𝜃2 + 𝜃𝜃3 ) + a2𝑐𝑐1𝑠𝑠1sin 𝜃𝜃2 − a3𝑐𝑐1 𝑠𝑠1sin (𝜃𝜃2 + 𝜃𝜃3 ) − a2𝑐𝑐1 𝑠𝑠1sin 𝜃𝜃2
a3 𝑐𝑐1

2cos (𝜃𝜃2 +  𝜃𝜃3 ) + a2𝑐𝑐1
2cos 𝜃𝜃2  − 𝑐𝑐1𝑠𝑠1(d2  + d3) − 𝑠𝑠1𝑐𝑐1(d2  +  d3) − a3 𝑠𝑠1

2cos (𝜃𝜃2 +  𝜃𝜃3 ) −  a2𝑠𝑠1
2cos 𝜃𝜃2

𝑐𝑐1
2(d2  +  d3) + a3 𝑐𝑐1𝑠𝑠1cos (𝜃𝜃2 + 𝜃𝜃3 )  + a2𝑐𝑐1s1cos 𝜃𝜃2 + a3 𝑠𝑠1𝑐𝑐1cos (𝜃𝜃2 +  𝜃𝜃3 ) +  a2𝑠𝑠1𝑐𝑐1cos 𝜃𝜃2 − 𝑠𝑠1

2(d2  + d3)
−a3𝑐𝑐1

2sin (𝜃𝜃2 + 𝜃𝜃3 ) – a2𝑐𝑐1
2sin 𝜃𝜃2 − a3 𝑠𝑠1

2sin (𝜃𝜃2 + 𝜃𝜃3 ) − a2 𝑠𝑠1
2sin 𝜃𝜃2 ⎠

⎟
⎞

 = 

1+ 𝜀𝜀 

⎝

⎛

0
a3 𝑐𝑐1

2𝑐𝑐23 + a2𝑐𝑐1
2cos 𝜃𝜃2  − 𝑐𝑐1𝑠𝑠1(d2  + d3) − 𝑠𝑠1𝑐𝑐1(d2  +  d3) − a3 𝑠𝑠1

2𝑐𝑐23 −  a2𝑠𝑠1
2cos 𝜃𝜃2

𝑐𝑐1
2(d2  + d3) + a3 𝑐𝑐1𝑠𝑠1𝑐𝑐23  + a2𝑐𝑐1s1cos 𝜃𝜃2 + a3 𝑠𝑠1𝑐𝑐1𝑐𝑐23 + a2𝑠𝑠1𝑐𝑐1cos 𝜃𝜃2 − 𝑠𝑠1

2(d2  + d3)
−a3𝑐𝑐1

2𝑠𝑠23  – a2𝑐𝑐1
2sin 𝜃𝜃2 − a3 𝑠𝑠1

2𝑠𝑠23 − a2 𝑠𝑠1
2sin 𝜃𝜃2 ⎠

⎞ 

With  𝑐𝑐23  = cos (𝜃𝜃2 +  𝜃𝜃3 )   and   𝑠𝑠23 = sin (𝜃𝜃2 +  𝜃𝜃3 ) 

The result vector is then:   �
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1 (a2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2  + a3 𝑐𝑐23) − 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1(d2  +  d3)
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃1(a2𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 +  a3 𝑐𝑐23) + 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1( (d2  +  d3)

− (a2𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃2  +  a3   𝑠𝑠23) 
�  

Which is confirmed by the last column (see appendix (10, 3, 2.) of the matrix  𝑇𝑇0
3 .  

We can also, using the Denavit and Hartenberg 
formalism or the dual quaternions alike easily calculate 
the coordinates of the terminal element (or the end 
effector) and so the final positioning of our Puma 560  
robot relative to the base or fixed absolute frame.  

IX. Conclusion 

We hope that the reader should not get us 
wrong: We never pretend that the D-H parameters 
method is wrong or obsolete and that it should be a 
thing of the past; recognising that this important 
classical method was the precursor that enlightened the 
path to modern robotics; we only say that there exist 
through the DQ parameters another short, free of 
singularities and easy to work with, when dealing with 
robot direct kinematics. On the light of the obtained 
results one has to say that the most perfect (not 
suffering singularities of any kind), easiest and rapid way 
to perform a 3D rigid transformation of any sort is to use 
the dual quaternion that caracterise that movement. 
Most of all we are free to use the 3D space, being sure 
that no loss of degree of freedom or guinball lock of any 
sort can never happen. Using a D-H parameters method 
or any of its counterparts means a choice of different 
sort of embarassing and somehow awkward  three axes 
frames to be created and then allocated to each arm/ 
link; ‘providing’ our robot or mecanism with different 
direction axes and angles with very much complicated 
choice of signs (concerning the directions and the 
angles alike) to be chosen subject to some rules 
depending on the chosen method and model of robot. 

Choosing to use dual quaternions we only need 
to know the constants or values that concern the 
construction or space geometry of the given robot 
(directions (orientations and axes) , rotations ,distances, 
lengths of links) to evaluate its kinematics without any 
threat to be lost in the maze or a jungle of choices .Most 
of all, it will prevent us from using the only other existing 
method, or one of  its options, which is that of the 
Denavit and Hartenberg parameters that mainly  
consists of: 
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1. Choosing 3D frames attached to each link upon 
certain conditions /conventions,

2. Schematic of the numbering of bodies and joints in 
a robotic manipulator, following the convention for 
attaching reference frames to the bodies, this will 
help to create:

3. A table for exact definition of the four parameters, ai, 
αi, di, and θi, that locate one frame relative to 
another,

4. The (4x4 ) rigid transformation matrix that will have 
the given form : 𝑻𝑻𝒊𝒊

−
𝟏𝟏

𝒊𝒊 .   (See 10,3.)

             This chapter provided a taste of the potential 
advantages of dual-quaternions, and one can only 
imagine the further future possibilities that they can offer. 
For example, there is a deeper investigation of the 
mathematical properties of dual-quaternions (e.g., zero 
divisions). There is also the concept of dual-dual-
quaternions (i.e., dual numbers within dual numbers) 
and calculus for multi-parametric objects for the reader 
to pursue if he desires.



We should emphasize on the fact that Matlab 
software was used, throughout this work and whenever 
necessary, concerning all kinds of products or 
multiplication of quaternions or rigid transformation 
matrices. 

Finally we hope all efforts should be conjugated 
to create a common ‘PROJECT MATLAB 
QUATERNION/MATRIX platform’ to be used for the 
straightforward calculations and manipulation of 
Quaternions and / or Dual Quaternions as well as  
conversions from or into 3D or 4D rigid body matrices. 

X. Appendices 

a) Quaternion-Matlab Implementation Class: 

>> % See paragraph 3; Example 1: Rotations 
represented by Quaternions 

>> %   A first rotation of angle π/2 around the x -axis ,q1 
, followed by  a rotation of angle π/2 around the y -axis , 
q2 will result in a rotation given by the  product  n1 = 
q2.q1 : 

 >> q1 =[ cos(pi/4) sin(pi/4) 0 0 ]; 

q2 =[cos(pi/4) 0 sin(pi/4) 0 ]; 

>> n1 = quatmultiply (q2,q1)  

n1 = 0.5000    0.5000    0.5000   -0.5000 

>> %  If the order is inversed  the result will be given  
by the quaternion  n2 = q1.q2 

>> n2 = quatmultiply (q1,q2) 

n2 = 0.5000    0.5000    0.5000    0.5000 

>> % Using 3*3 matrices; if the rotation R1 is 
performed  first the rotation product is R2*R1: 

R1 = [1 0 0;0 0 -1;0 1 0 ]; 

R2 = [ 0 0 1; 0 1 0;-1 0 0]; 

prod1 = R2*R1 

prod1 = 

     0     1     0 

     0     0    -1 

    -1     0     0 

>> % if the order is inversed the multiplication will be 
R1*R2: 

prod2 = R1*R2  

prod2 = 

     0     0     1 

     1     0     0 

     0     1     0 

 

i. Quaternions or rotation representation  
Quaternions were first discovered and 

described by the Irish mathematician Sir Rowan 
Hamilton in 1843. Indeed quaternion’s representation 
and axis-angle representation are very similar. 

Both are represented by the four dimensional 
vectors. Quaternions also implicitly represent the 
rotation of a rigid body about an axis. It also provides 
better means of key frame interpolation and doesn’t 
suffer from singularity problems. 

The definition of a quaternion can be given as 
(s, m) or (s, 𝑞𝑞 x, 𝑞𝑞 y, 𝑞𝑞 z) where m is a 3D vector, so 
quaternions are like imaginary (complex) numbers with 
the real scalar part s and the imaginary vector part m. 

Thus it can be also written as: s + 𝑞𝑞x i + 𝑞𝑞y j + 𝑞𝑞z k. 

There are conversion methods between 
quaternions, axis-angle and rotation matrix. 

Common operations such as addition, inner 
product etc can be defined over quaternions.  
Given the definition of 𝑞𝑞1 and 𝑞𝑞2 :    

𝑞𝑞1 = 𝑠𝑠1 + 𝑞𝑞x1 𝑖𝑖 + 𝑞𝑞y1 𝑗𝑗 + 𝑞𝑞z1 𝑘𝑘  or  𝑞𝑞1 = (𝑠𝑠1, m1) 

𝑞𝑞2 = 𝑠𝑠2 + 𝑞𝑞x2 𝑖𝑖 + 𝑞𝑞y2 𝑗𝑗 + 𝑞𝑞z2 𝑘𝑘  or  𝑞𝑞2 = (𝑠𝑠2, m2) 

Addition operation is defined as: 
 𝑞𝑞1 + 𝑞𝑞2 = (𝑠𝑠1 + 𝑠𝑠2, m1 + m2) = (𝑠𝑠1 + 𝑠𝑠2) + (𝑞𝑞x1 + 𝑞𝑞x2)i 

+ (𝑞𝑞y1 + 𝑞𝑞y2)j + (𝑞𝑞z1 + 𝑞𝑞z2)k 

dot (scalar, inner): product operation(.) as: 

𝑞𝑞1. 𝑞𝑞2 = 𝑠𝑠1. 𝑠𝑠2 + m1. m2 

Quaternion multiplication is non commutative, but it is 
associative.  
Multiplication identity element is defined as: (1, (0, 0, 0)) 

We can also perform the multiplication in the 
imaginary number domain using the definitions: 

𝑖𝑖2 = 𝑗𝑗2 = 𝑘𝑘2 = −1;   𝑖𝑖. 𝑗𝑗  = 𝑘𝑘 ,   𝑗𝑗. 𝑘𝑘 = 𝑖𝑖 ,  𝑘𝑘. 𝑖𝑖 = 𝑗𝑗 ;            
𝑗𝑗. 𝑖𝑖   = − 𝑘𝑘 ,  𝑘𝑘. 𝑗𝑗 = − 𝑖𝑖 ,   𝑖𝑖. 𝑘𝑘 = − 𝑗𝑗 

Equations (A1) to (A15) state the definitions, 
rules and properties of dual quaternion algebra. 
Quaternion multiplication (⨂) is defined as: 

 𝑞𝑞1⨂𝑞𝑞2 = (𝑠𝑠1. 𝑠𝑠2 – m1. m2, 𝑠𝑠1. m2 + 𝑠𝑠2. m1 + m1 ∧m2) 
(A1) 

Each quaternion has a conjugate 𝑞𝑞∗  (except 
zero quaternion) defined by:  

  𝑞𝑞∗  = ( s, – m )       (A2) 

and an inverse  𝑞𝑞−1 = ( 1
|𝑞𝑞 |

)2𝑞𝑞∗  ; (𝑞𝑞 ≠ 0)     Where    |𝑞𝑞|2 

= s 2 + 𝑞𝑞x 
2 + 𝑞𝑞y 

2 + 𝑞𝑞z 
2 = 𝑞𝑞 ⨂ 𝑞𝑞∗ = 𝑞𝑞∗⨂ 𝑞𝑞 

Rotations are defined by unit quaternions. Unit 
quaternions must satisfy |𝑞𝑞| = 1. Since multiplication of 
two unit quaternions will be a unit quaternion, N 
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b) Quaternions and Dual Quaternions (Dq)



rotations can be combined into one unit quaternion   qR 
= qR1 .qR2. qR3 .... qRN 

It is also possible to rotate a vector directly by 
using quaternion multiplication. To do this, we must 
define a 3D vector V = (vx, vy, vz) that we want to rotate in 
quaternion definition as qv = (0, v) = 0 + vx i+ vy j+ vz k. 
The rotated vector   V ′ = (vx ′, vy ′, vz ′) can be defined as 
qv’ = (0, v ′) = 0 + vx ′i + vy ′j + vz ′k 

Noting that, in quaternion rotation 𝑞𝑞−1 = 𝑞𝑞∗ (For 
unit quaternion). So, rotation of qv  by quaternion q  can 
be calculated as:                    

 qv’ =  q ⨂ qv ⨂ 𝑞𝑞−1  = q ⨂ qv ⨂ 𝑞𝑞∗    (A3) 

And, assuming another quaternion rotation p, two 
rotations can be applied to the vector V such as: 

qv’ = p ⨂(q ⨂ qv ⨂ 𝑞𝑞−1) ⨂ 𝑝𝑝−1  =  (p ⨂q )⨂ qv ⨂ (𝑞𝑞−1 
⨂ 𝑝𝑝−1 ) = C ⨂ qv ⨂ 𝐶𝐶−1   (A4)                                                                               

Providing that quaternion C = (p ⨂ q) is a 
combinaison of the precedent quaternions  q and p .  

The equation implies that vector V is first rotated 
by the rotation represented by q followed by the rotation 
p. 

A quaternion q that defines a rotation about 
(around) the axis n denoted by the unit vector (nx, ny , nz) 
of an angle 𝜃𝜃 could be written as : 

q = cos 𝜃𝜃
2
 + sin 𝜃𝜃

2
 (nxi  + ny j + nz k)        (A5) 

This same quaternion represents a rotation of 
amplitude (− 𝜃𝜃 ) around the opposite axis ( −n ) 

ii. Dual quaternions 
Dual Quaternions (DQ) were proposed by 

William Kingdom Clifford in 1873.They are an extension 
of quaternions. They represent both rotations and 
translations whose composition is defined as a rigid 
transformation. 

They are represented by the following eight 
dimensional vector: 

 

𝑞𝑞�  = ( 𝑠𝑠 �, 𝑚𝑚�  ) = (s , 𝑞𝑞x , 𝑞𝑞y, 𝑞𝑞z , 𝑞𝑞 𝜀𝜀 𝑠𝑠 , 𝑞𝑞𝜀𝜀𝑥𝑥 , 𝑞𝑞𝜀𝜀𝑦𝑦 , 𝑞𝑞𝜀𝜀𝑧𝑧) = ( 𝑠𝑠 �, 𝑥𝑥� ,𝑦𝑦 � , 𝑧𝑧 �)        (A6)   

Such that:      𝑞𝑞�  = 𝑞𝑞 + 𝜀𝜀𝑞𝑞𝜀𝜀  = s + 𝑞𝑞x i + 𝑞𝑞y j + 𝑞𝑞z k  + 𝜀𝜀 (𝑞𝑞 𝜀𝜀 𝑠𝑠 + 𝑞𝑞𝜀𝜀𝑥𝑥+ 𝑞𝑞𝜀𝜀𝑦𝑦 + 𝑞𝑞𝜀𝜀𝑧𝑧  ) 

Dual quaternion multiplication is defined by: 

 𝑞𝑞�1⨂ 𝑞𝑞�2 = 𝑞𝑞1⨂ 𝑞𝑞2 + 𝜀𝜀 (𝑞𝑞1⨂ 𝑞𝑞 2𝜀𝜀  + 𝑞𝑞 1𝜀𝜀⨂ 𝑞𝑞2 )      (A7) 

With  𝜀𝜀2 = 0; 𝜀𝜀 being the second order nilpotent dual factor. 
The dual conjugate (analogous to complex conjugate) is denoted by:  

     𝑞𝑞�� = 𝑞𝑞 - 𝜀𝜀𝑞𝑞𝜀𝜀                                                                           (A8) 

This conjugate operator can lead to the definition of the inverse of  𝑞𝑞�  which is: 

𝑞𝑞�−1 = 1
𝑞𝑞�
 = 𝑞𝑞

��

𝑞𝑞��
1
𝑞𝑞�
 = 1

𝑞𝑞
  − 𝜀𝜀 𝑞𝑞𝜀𝜀

𝑞𝑞2 ; which means that a pure dual number (𝑖𝑖𝑖𝑖: 𝑞𝑞 = 0) does not have an inverse) 

𝑞𝑞�  = = 𝑞𝑞� ⨂ 𝑞𝑞�−1
 = (𝑞𝑞 + 𝜀𝜀𝑞𝑞𝜀𝜀 )( 1

𝑞𝑞
  − 𝜀𝜀 𝑞𝑞𝜀𝜀

𝑞𝑞2 ) =  𝑞𝑞
𝑞𝑞
 − 𝜀𝜀 𝑞𝑞𝑞𝑞𝜀𝜀

𝑞𝑞2  + 𝜀𝜀𝑞𝑞𝜀𝜀
𝑞𝑞

  = 𝑞𝑞
𝑞𝑞
 − 𝜀𝜀 𝑞𝑞𝜀𝜀

𝑞𝑞
 + 𝜀𝜀𝑞𝑞𝜀𝜀

𝑞𝑞
  = 1− 0 = 1 

A second conjugation operator is defined for DQs. It is the classical quaternion conjugation and is denoted 
by:   𝑞𝑞�∗ =  𝑞𝑞∗ + 𝜀𝜀𝑞𝑞𝜀𝜀∗   

Combining these two conjugation operators will lead to the formalization of DQ transformation on 3D points. 
Use of both conjugations on 𝑞𝑞� can be denoted 𝑞𝑞��∗.Using definitions (A2), (A6) and (A8) we finally have: 

  𝑞𝑞��∗ =   (s ,−𝑞𝑞x ,−𝑞𝑞y,−𝑞𝑞z , − 𝑞𝑞 𝜀𝜀𝑠𝑠 , 𝑞𝑞𝜀𝜀𝑥𝑥  , 𝑞𝑞𝜀𝜀𝑦𝑦  , 𝑞𝑞𝜀𝜀𝑧𝑧)                    (A9) 

It is well know that we can use dual quaternions to represent a general transformation subject to the 
following constraints: 

The DQ screw motion operator 𝑞𝑞�: = (𝑞𝑞, 𝑞𝑞𝜀𝜀 ) must be of unit magnitude:    |𝑞𝑞�| = (𝑞𝑞 + 𝜀𝜀𝑞𝑞𝜀𝜀 )2 = 1                 

This requirement means two distinct conditions or constraints: 

s 2 + 𝑞𝑞x
2 + 𝑞𝑞y

2 + 𝑞𝑞z
2  = 1    and 

s 𝑞𝑞 𝜀𝜀 𝑠𝑠   + 𝑞𝑞x  𝑞𝑞𝜀𝜀𝑥𝑥  + 𝑞𝑞y 𝑞𝑞𝜀𝜀𝑦𝑦  + 𝑞𝑞z 𝑞𝑞𝜀𝜀𝑧𝑧    = 0             (A10) 

Which imposed on the eight (8) parameters of a general DQ, effectively reduce the number of degree of 
freedom (8 − 2) = 6; equivalent to the degree of freedom of any free rigid body in 3-D space 
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iii. Dual Quaternions or general 3D rigid transformation representation 
While equation (A5) defines completely and unambiguously (without any singularity like guimbal lock and 

other loss of degree of freedom) all 3D rotations in the physical space, dual quaternions can represent translations; 

A DQ defined as: 𝑞𝑞�𝑇𝑇   = 1+ 𝜀𝜀
2
 �𝑡𝑡𝑥𝑥𝑖𝑖 + 𝑡𝑡𝑦𝑦𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 � corresponds to the translation vector 𝑇𝑇�⃗   = (𝑡𝑡𝑥𝑥  , 𝑡𝑡𝑦𝑦  , 𝑡𝑡𝑧𝑧  )t   

which could symbolically be noted T; so     𝑞𝑞�𝑇𝑇   = 1+ 𝜀𝜀 𝑇𝑇
2
 

The translation T on the vector 𝑣⃗𝑣 can be computed by:  𝑞𝑞�𝑣𝑣′ = 𝑞𝑞�𝑇𝑇  ⨂𝑞𝑞�𝑣𝑣  ⨂𝑞𝑞��𝑇𝑇∗    

So fortunately using def (A9), we have:  

𝑞𝑞��𝑇𝑇∗   = 𝑞𝑞�𝑇𝑇  = 1+ 𝜀𝜀 𝑇𝑇
2
 , then 𝑞𝑞�𝑣𝑣′ = 𝑞𝑞�𝑇𝑇  ⨂𝑞𝑞�𝑣𝑣  ⨂𝑞𝑞��𝑇𝑇∗   = 𝑞𝑞�𝑇𝑇  ⨂𝑞𝑞�𝑣𝑣  ⨂𝑞𝑞�𝑇𝑇 = [1+ 𝜀𝜀

2
 �𝑡𝑡𝑥𝑥𝑖𝑖 +  𝑡𝑡𝑦𝑦 𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 �] ⨂ [1+ 𝜀𝜀 �𝑣𝑣𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑦𝑦𝑗𝑗 +

𝑣𝑣𝑧𝑧𝑘𝑘 )]⨂[1 +  𝜀𝜀
2

 �𝑡𝑡𝑥𝑥𝑖𝑖 + 𝑡𝑡𝑦𝑦𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 �] = 

1+ 𝜀𝜀 [�𝑣𝑣𝑥𝑥 + 𝑡𝑡𝑥𝑥)𝑖𝑖 +  (𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦)𝑗𝑗 + (𝑣𝑣𝑧𝑧 + 𝑡𝑡𝑧𝑧)𝑘𝑘 �] 

Which correspond to the transformed vector:      𝑣⃗𝑣′  = �𝑣𝑣𝑥𝑥 + 𝑡𝑡𝑥𝑥)𝑖𝑖 +  (𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦)𝑗𝑗 + (𝑣𝑣𝑧𝑧 + 𝑡𝑡𝑧𝑧)𝑘𝑘  �  

iv. Combining rotation and translation 
Transformations represented by DQs can be combined into one DQ (similar to quaternions combination  

Assuming:  𝑞𝑞� and then 𝑝̂𝑝 , two DQ transformations applied successively and in that order to  a DQ position 
vector 𝑞𝑞�𝑣𝑣; Their combined DQ transformation 𝐶̂𝐶 applied to 𝑞𝑞�𝑣𝑣  gives: 

 𝑞𝑞�𝑣𝑣′ = 𝑝̂𝑝⨂( 𝑞𝑞� ⨂ 𝑞𝑞�𝑣𝑣  ⨂𝑞𝑞��∗ ) ⨂ 𝑝̅̂𝑝∗ = ( 𝑝̂𝑝 ⨂ 𝑞𝑞� ) ⨂ 𝑞𝑞�𝑣𝑣 ⨂ (𝑞𝑞��∗⨂ 𝑝̅̂𝑝∗ )  = 𝐶̂𝐶  ⨂ 𝑞𝑞�𝑣𝑣 ⨂ 𝐶̂𝐶̅∗                      (A11)         

It is very important to notice that the most inner transformation of the equation is applied first with an inside 
to outside manner.  
In eq (22),  𝑞𝑞� is the first transformation followed by the second one  𝑝̂𝑝. 

The successive composition or combination of unit DQ rotation 𝑞𝑞�𝑅𝑅  = R followed by a DQ translation   𝑞𝑞�𝑇𝑇   = 
1+ 𝜀𝜀

2
 �𝑡𝑡𝑥𝑥𝑖𝑖 +  𝑡𝑡𝑦𝑦 𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 �   

will give: 

 𝑞𝑞�𝑇𝑇  ⨂ 𝑞𝑞�𝑅𝑅  = (1+ 𝜀𝜀
2
 �𝑡𝑡𝑥𝑥𝑖𝑖 +  𝑡𝑡𝑦𝑦𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 �) ⨂ qR = qR + 𝜀𝜀

2
 �𝑡𝑡𝑥𝑥 𝑖𝑖 +  𝑡𝑡𝑦𝑦 𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 �⨂ qR = R + 𝜀𝜀  𝑇𝑇𝑇𝑇

2
  (A12) 

Its inverse being: ( R  + 𝜀𝜀  𝑇𝑇𝑇𝑇
2

 )−1 =  𝑅𝑅∗ −  𝑅𝑅∗𝑇𝑇
2

 

If the translation is applied first:  

 𝑞𝑞�𝑅𝑅  ⨂ 𝑞𝑞�𝑇𝑇 =  𝑞𝑞�𝑅𝑅⨂(1 + 𝜀𝜀
2

 �𝑡𝑡𝑥𝑥 𝑖𝑖 +  𝑡𝑡𝑦𝑦 𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 �)  = qR +  𝑞𝑞�𝑅𝑅⨂  𝜀𝜀
2

 �𝑡𝑡𝑥𝑥𝑖𝑖 + 𝑡𝑡𝑦𝑦𝑗𝑗 + 𝑡𝑡𝑧𝑧𝑘𝑘 � qR = R + 𝜀𝜀  𝑅𝑅𝑅𝑅
2

       (A13) 

Its inverse being: ( R  + 𝜀𝜀  𝑅𝑅𝑅𝑅
2

 )−1 =  𝑅𝑅∗ −  𝑇𝑇𝑅𝑅∗

2
  

v. Several transformations 
Suppose that the vector V in its dual quaternion form 𝑞𝑞�𝑣𝑣  = 1 +  𝜀𝜀 𝑣𝑣  is under a sequence of rigid 

transformations represented by the dual quaternions 𝑞𝑞�1, 𝑞𝑞�2, . . . , 𝑞𝑞�n. The resulting vector is encapsulated in the dual 
quaternion: 

1+  𝜀𝜀  𝑣𝑣  ′  = 𝑞𝑞�n  ⨂  (𝑞𝑞�n−1 ⨂  ….⨂  (𝑞𝑞�1  ⨂  (1+  𝜀𝜀  𝑣𝑣) ⨂  𝑞𝑞��∗1) ⨂  …..⨂  𝑞𝑞��∗  n−1) ⨂  𝑞𝑞��∗n         (A14) 

= (𝑞𝑞�n ⨂…⨂𝑞𝑞�1 ) ⨂ (1+ 𝜀𝜀 𝑣𝑣) ⨂ (𝑞𝑞��∗1 ⨂…. ⨂ 𝑞𝑞��∗n) 

We denote the product dual quaternion as 𝑞𝑞�  = 𝑞𝑞� n  ⨂…⨂𝑞𝑞� 1. The effect is equivalent to a single rigid 
transformation represented by 𝑞𝑞�; namely, 

1+ 𝜀𝜀 𝑣𝑣 ′  = 𝑞𝑞� ⨂ (1+ 𝜀𝜀 𝑣𝑣) ⨂ 𝑞𝑞��∗. 

Using dual numbers and plucker coordinates and introducing the following dual angle and dual vector we can write: 

𝜃𝜃� = 𝜃𝜃 + 𝜀𝜀𝜀𝜀    and 

𝑙𝑙 = 𝑙𝑙 + 𝜀𝜀𝜀𝜀 

It can be easily shown that:  

The Kinematics of a Puma Robot using Dual Quaternions
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cos  𝜃𝜃 + 𝜀𝜀𝜀𝜀    

2
 = cos 𝜃𝜃

 

2
 −𝜀𝜀

 𝑑𝑑    

2
sin 𝜃𝜃 

2
          and 

(A15) 

sin  
𝜃𝜃  + 𝜀𝜀𝜀𝜀     

2  = sin 𝜃𝜃  
2

+ 𝜀𝜀  𝑑𝑑     
2

cos 
𝜃𝜃  
2  

vi. D-H Parameters For The Puma 560 Robot  

 

Figure 3: System of connections coordinates and parameters of joints for the PUMA 560 robot arm according to           
the Denavit and Hartenberg convention 

vii. Parameters of Denavit and Hartenberg 
The Denavit and Hartenberg Convention is a 

systematic method. It allows the passage between 
adjacent joints of a robotics system. It relates to the 
open kinematic chains where the joint possesses only 
one degree of freedom, and the adjacent surfaces 
remain in contact. For this aspect the use of hinges or 
slides is indispensable. The choice of the frames for the 
links facilitates the calculation of the DH homogeneous 
matrices and makes it possible to rapidly express 
information of the terminal element towards the base or 
the reverse.   

The steps for this technique are as follows: 

1. Numbering of the constituent segments of the 
manipulator arm from the base to the terminal 
element. The zero referential is associated with the 
base of it, and the order n to the terminal element 
(end effector); 

2. Definition of the main axes of each segment: 
• If zi and zi-1 do not intersect we choose xi so as to 

be the parallel with the axis perpendicular to zi  
and zi-1.  

• If zi and zi-1 are collinear, xi is chosen in the plane 
perpendicular to zi-1. 

3. Fix the four geometric parameters: di, θi, ai ,𝛂𝛂𝒊𝒊   (see 
Figure( 4)) for each joint such as: 
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Figure 4: Coordinate systems and parameters of  Denavit and Hartenberg 

• di  coordinate of the origin Oi on the axis zi-1 For a 
slide di  is a variable and for a hinge di is a constant. 

• θi is the angle obtained by screwing  xi-1 to xi around 
the axis zi-1.For a slide  𝒒𝒒𝒊𝒊  is a constant and for a 
hinge  𝒒𝒒𝒊𝒊 is a variable. 

• ai is the distance between the axes zi and zi-1 

measured on the axis xi negative from its origin up 
to the intersection with the axis zi-1. 

• α1 is the angle between zi et zi-1 obtained by 
screwing zi-1 to zi around xi. 

Finally, the homogeneous DH displacement 
matrix [𝑻𝑻𝒊𝒊−𝟏𝟏𝒊𝒊 ] which binds together the rotation and the 
translation is formed . Its left upper part defines the 
rotation matrix 𝑹𝑹𝒊𝒊−𝟏𝟏𝒊𝒊  and on its right the translation 
vector 

 [𝑇𝑇𝑖𝑖−1
𝑖𝑖 ]  :  � 𝑅𝑅𝑖𝑖−1

𝑖𝑖 𝑑𝑑𝑖𝑖−1
𝑖𝑖

0  0  0 1
�       (9) 

With                   𝑅𝑅𝑖𝑖−1
𝑖𝑖  = �

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 α𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 −𝑠𝑠𝑠𝑠𝑠𝑠 α𝑖𝑖  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖

0 𝑠𝑠𝑠𝑠𝑠𝑠 α𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖
�                          (10) 

And       𝑑𝑑𝑖𝑖−1
𝑖𝑖  =�

 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖
𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖
𝑑𝑑𝑖𝑖  

�                                     (11) 

Figure (4) represents the Denavit and Hartenberg parameters for a two successive frames (xi-1, yi-1 , zi-1 ) and  
(xi, yi , zi ). 

And finally the (4x4 )  rigid transformation matrix will have the form: 𝑻𝑻𝒊𝒊−𝟏𝟏𝒊𝒊    

�

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 α𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖
sin𝜃𝜃𝑖𝑖

0
𝑐𝑐𝑐𝑐𝑐𝑐α𝑖𝑖  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖

sinα𝑖𝑖
−𝑠𝑠𝑠𝑠𝑠𝑠α𝑖𝑖  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖
𝑎𝑎𝑖𝑖 sin 𝜃𝜃𝑖𝑖
𝑑𝑑𝑖𝑖

0 0                       0 1

�           (12) 

The definition of the frames associated with the 
links according to the Denavit and Hartenberg 
convention is as follows: 

Link1: Frame (x0 ,y0 ,z0) ;The origin O is taken in link1 at 
the intersection of the base axis with the link1 axis.  z0 
axis of rotation, + z0 upwards.+ y0 coincides with the 
axis of the link 1 and the axis  + z1.y1 is parallel to the 
link 2. 

Link 2: Frame (x1 ,y1 ,z1) ;The origin coincides with the 
origin of the frame (x0 ,y0 ,z0,) .z1 axis of rotation, + z1 is 
perpendicular to the link 2 and parallel to the axis  + 

z2.+ y1 downwards, superimposed with the axis of the 
base and parallel with y2.+ x1 is parallel to the link 2. 

Link 3: Frame (x2 ,y2 ,z2) ;The origin is taken in link 2 at 
the intersection of the axis of the link 2 with the axis  of 
the joint 3.z2 axis of rotation, + z2 is perpendicular to link 
2 and axis z3.+ y2 downwards, opposite with  + z3.+ x2 
is parallel to the link 2. 
Link 4: Frame (x3, y3, z3); The origin is taken in link 3.z3 
axis of rotation, + z3 towards the wrist and 
perpendicular to +z4 .+ y3 is perpendicular to the link 2, 
and parallel to +z4.+ x3 is parallel to the link 2. 
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Link 5: Frame (x4 ,y4 ,z4) ;The origin is taken at the 
center of the wrist.z4 axis of rotation, + z4 is 
perpendicular to link 2 superposed with +z5 . + y4 is 
opposite to  + z5.+ x4 is parallel to link 2. 

Link 6: Frame (x5,y5, z5) ;The origin coïncides with the 
origin of  the link (x4,y4, z4).z5 axis of rotation, +z5 towards 
the effector parallel to  +z6.+ y5 coïncides with the axis 
of joint 5.+ y5 is perpendicular to the axis of joint 5.     

The end effector: Frame (x6,y6,z6) ;The origin coïncides 
with the origins of the links (x4,y4, z4)  and  (x5, y5, z5).  

+z6 is parallel to +z5. and   +y6 is parallel to + y5 . +x6 is 
parallel to +x5. 

By respecting the original position of the robot 
and the definition of the links and correspondant frames 
presented in Figure (3), the parameters of the PUMA 
560 robot arm given by the Denavit and Hartenberg 
Convention are shown in Table (1): 
 
 

Table 1: Puma 560  Denavit and Hartenberg Parameters 

The distance d6 is not shown in Table ( I)..This 
distance varies according to the effector used for the 
application (the effector is the tool attached to the wrist 
on the last articulation of the robot for the manipulation 
of the objects). In this application the distance between 
the end of the effector and the axis of the wrist is 
assumed to be null  d6 = 0. 

The dynamics of the last three articulations is 
negligible compared to the first three. Therefore, we 
have been interested in studying the movement of the 
three first joints of the PUMA 560 robot arm fixing the 
others to the original position (i.e., wrist attached to the 
original position: q4 = q5 = q6 = 0). 

v. D-H kinematics of the  PUMA 560 ROBOT 
The appropriate transformations for the first three considered articulations are: 

𝑇𝑇0
1  = �

𝑐𝑐1 −𝑠𝑠1 0 0
𝑠𝑠1 𝑐𝑐1   0 0
0 0     1 0

0     0      0      1

��
1 0     0 0
0 0      1 0
0 −1    0 0
0      0        0   1

�  =  �
𝑐𝑐1 0 −  𝑠𝑠1 0
𝑠𝑠1 0     𝑐𝑐1 0
  0 −1       0 0
 0       0       0    1

�          (13) 

𝑇𝑇1
2 =   �

𝑐𝑐2 −𝑠𝑠2 0 0
𝑠𝑠2 𝑐𝑐2   0 0
0 0     1 0

0     0      0      1

��

1 0     0 0
0 1      0 0
0 0    1 𝑑𝑑2
0     0   0      1

��
1 0     0 𝑎𝑎2
0 1      0 0
0 0    1 0
0      0    0       1

�  =   �

𝑐𝑐2 −𝑠𝑠2 0 𝑎𝑎2𝑐𝑐2
𝑠𝑠2 𝑐𝑐2   0 𝑎𝑎2𝑠𝑠2
0 0     1 𝑑𝑑2

0     0      0      1

�     (14) 

Such that we will have :   𝑇𝑇0
2 =   𝑇𝑇0

1𝑇𝑇1
2  

=  �
𝑐𝑐1 0 – 𝑠𝑠1 0
𝑠𝑠1 0     𝑐𝑐1 0
  0 −1       0 0
 0       0       0    1

��

𝑐𝑐2 −𝑠𝑠2 0 𝑎𝑎2𝑐𝑐2
𝑠𝑠2 𝑐𝑐2   0 𝑎𝑎2𝑠𝑠2
0 0     1 𝑑𝑑2

0     0      0      1

� =  �

𝑐𝑐1𝑐𝑐2 −𝑐𝑐1𝑠𝑠2  −  𝑠𝑠1 𝑎𝑎2𝑐𝑐1𝑐𝑐2 − 𝑑𝑑2𝑠𝑠1
𝑠𝑠1𝑐𝑐2 −𝑠𝑠1𝑠𝑠2   𝑐𝑐1 𝑎𝑎2𝑐𝑐2𝑠𝑠1 + 𝑑𝑑2𝑐𝑐1
  −𝑠𝑠2 −𝑐𝑐2       0 −𝑎𝑎2𝑠𝑠2

0             0           0                    1

�            (15)       

We can also write: 

𝑇𝑇2
3 =  �

𝑐𝑐3 −𝑠𝑠3 0 0
𝑠𝑠3 𝑐𝑐3   0 0
0 0     1 0

0     0      0      1

��

1 0     0 0
0 1      0 0
0 0    1 𝑑𝑑3
0     0   0      1

��
1 0     0 𝑎𝑎3
0 1      0 0
0 0    1 0
0      0    0       1

��
1 0     0 0
0   0 − 1 0
0 1       0 0
  0      0      0   1

� =   �

𝑐𝑐3 0     𝑠𝑠3 𝑎𝑎3𝑐𝑐3
𝑠𝑠3 0     − 𝑐𝑐3 𝑎𝑎3𝑠𝑠3
  0 1       0 𝑑𝑑3

0       0       0         1

�  (16) 

And finally write   𝑇𝑇0
3 = 𝑇𝑇0

2𝑇𝑇2
3 = �

𝑐𝑐1𝑐𝑐2 −𝑐𝑐1𝑠𝑠2  −  𝑠𝑠1 𝑎𝑎2𝑐𝑐1𝑐𝑐2 − 𝑑𝑑2𝑠𝑠1
𝑠𝑠1𝑐𝑐2 −𝑠𝑠1𝑠𝑠2   𝑐𝑐1 𝑎𝑎2𝑐𝑐2𝑠𝑠1 + 𝑑𝑑2𝑐𝑐1
  −𝑠𝑠2 −𝑐𝑐2       0 −𝑎𝑎2𝑠𝑠2

0             0           0                    1

��

𝑐𝑐3 0     𝑠𝑠3 𝑎𝑎3𝑐𝑐3
𝑠𝑠3 0     − 𝑐𝑐3 𝑎𝑎3𝑠𝑠3
  0 1       0 𝑑𝑑3

0       0       0         1

� = 
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𝑇𝑇0
3 =  �

𝑐𝑐1𝑐𝑐23 −𝑠𝑠1𝑐𝑐1𝑠𝑠23 𝑐𝑐1(𝑎𝑎2𝑐𝑐2 + 𝑎𝑎3𝑐𝑐23) − (𝑑𝑑2 + 𝑑𝑑3)𝑠𝑠1
𝑠𝑠1𝑐𝑐23 𝑐𝑐1𝑠𝑠1𝑠𝑠23 𝑠𝑠1(𝑎𝑎2𝑐𝑐2 + 𝑎𝑎3𝑐𝑐23) + (𝑑𝑑2 + 𝑑𝑑3)𝑐𝑐1
 − 𝑠𝑠23 0       𝑐𝑐23 −(𝑎𝑎2𝑠𝑠2 + 𝑎𝑎3𝑠𝑠23 )

0          0         0                                        1                    

�    (17)    

With           𝑐𝑐𝑖𝑖  = cos 𝜃𝜃𝑖𝑖 , 𝑠𝑠1 = sin 𝜃𝜃𝑖𝑖,𝑐𝑐𝑖𝑖𝑖𝑖  = cos (𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗 ),𝑠𝑠𝑖𝑖𝑖𝑖  = sin (𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗 ) 
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