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The Kinematics of a Puma Robot using Dual
Quaternions

Mahmoud Gouasmi®, Belkacem Gouasmi® & Mohamed Ouali®

Abstract- This chapter presents mainly, on the light of both
main concepts; The first being the screw motion or/ and dual
quaternions kinematics while the second concerns the
classical ‘Denavit and Hartenberg parameters’ method, the
direct kinematics of a Puma 560 robot.

Kinematics analysis studies the relative motions,
such as, first of all, the displacement in space of the end
effector of a given robot, and thus its velocity and acceleration,
associated with the links of the given robot that is usually
designed so that it can position its end-effector with a three
degree-of-freedom of translation and three degree-of-freedom
of orientation within its workspace.

First of all, examples of basic solid movements such
as rotations, translations, their combinations and general
screw motions are studied using both (4x4) rigid body
transformations and dual quaternions so that the reader could
compare and note the similarity of the results obtained using
one or the other method. Both dual quaternions technique as
well as its counterpart the classical ‘Denavit and Hartenberg
parameters method’ are finally applied to the first three degree
of freedom of a Puma 560 robot. Finally, we and the reader,
can observe that the two methods confirm exactly one another
by giving us the same results for the considered application,
while noting that the fastest, simplest more straightforward and
easiest to apply method, is undoubtedly the one using dual
quaternions. As a result this chapter may as well act as a
beginners guide to the practicality of using dual-quaternions to
represent the rotations and translations in character-based
hierarchies.

We must emphasize the fact that the use of both
Matlab software and quaternions and / or dual quaternions in
the processing of 3D rotations and/or screw movements is
and will always be the most efficient, fast and accurate first
choice. Dual quaternion direct kinematics method could be
generalised, in the future, to all kind of spatial and/ or industrial
robots as well as to articulated and multibody systems.
Keywords. dual quaternions, forward kinematics, screw
motion, denavit and hartenberg parameters.

I. [NTRODUCTION

any research students have a great deal of
M trouble  understanding  essentially  what

quaternions are [1], [2], [3] and how they can
represent rotation. So when the subject of dual-
quaternions is presented, it is usually not welcomed with
open arms. Dual-quaternions are a break from the norm
(i.e., matrices) which we hope to entice the reader into
supporting willingly to represent their rigid transforms.

Author o o p: Algerian Structural Mechanics Research Laboratory,
Mechanical Engineering Department, Blida 1 University.
e-mail: ygouasmi@hotmail.com

The reader should walk away from this analysis with a
clear understanding of what dual-quaternions are and
how they can be used [4]. First we begin with a short
recent and related work that emphasises the power of
dual-quaternions:

The dual-quaternion has been around since
1882 [5],[6],[7] but has gained less attention compared
to quaternions alone; while the most recent work which
has taken hold and has demonstrated the practicality of
dual-quaternions, both in robotics and computer
graphics can be resumed in: - Kavan [8] demonstrated
the advantages of dual-quaternions in character
skinning and blending. - Ivo [9] extended Kavan's work
with dual-quaternions and g-tangents as an alternative
method for representing rigid transforms instead of
matrices, and gives evidence that the results can be
faster with accumulated transformations of joints if the
inferences per vertex are large enough. - Selig [10]
address the key problem in computer games. - Vasilakis
[11] discussed skeleton-based rigid-skinning for
character animation. - Kuang [12] presented a strategy
for creating real-time animation of clothed body
movement.-Pham [13] solved linked chain inverse
kinematic (IK) problems using Jacobian matrix in the
dual-quaternion space. -Malte [14] used a mean of
multiple computational (MMC) model with dual-
guaternions to model bodies. - Ge [15] demonstrated
dual-quaternions to be an efficient and practical method
for interpolating three-dimensional motions. -Yang -
Hsing [16] calculated the relative orientation using dual-
quaternions. - Perez [17] formulated dynamic
constraints for articulated robotic systems using dual-
quaternions.- Further reading on the subject of dual
numbers and derivatives is presented by Gino [18].

In the last three decades, the field of robotics
has widened its range of applications, due to recent
developments in the major domains of robotics like
kinematics, dynamics and control, which leads to the
sudden growth of robotic applications in areas such as

manufacturing, medical surgeries, defense, space
vehicles, under-water explorations etc.
To wuse robotic manipulators in  real-life

applications, the first step is to obtain the accurate
kinematic model [19]. In this context, a lot of research
has been carried out in the literature, which leads to the
evolution of new modeling schemes along with the
refinement of existing methodologies describing the
kinematics of robotic manipulators.
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Screw theory based solution methods have
been widely used in many robotic applications. The
elements of screw theory can be traced to the work of
Chasles and Poinsot [20], [21], in the early 1800’s and
Whittaker [22]. Using the theorems of Chasles and
Poinsot as a starting point, Robert S. Ball developed
[23] a complete theory of screws which he published
in 1900. Throughout the development of kinematics,
numerous mathematic theories [24] and tools have
been introduced and applied. The first pioneer effort for
kinematic modeling of robotic manipulators was made
by Denavit and Hartenberg in introducing a consistent
and concise method to assign reference coordinate
frames to serial manipulators, allowing the (4x4)
homogeneous transformation matrices to be used (in
1955) [25], followed by Lie groups and Lie Algebra by
J.M Selig and others, [26], [27], [28]) and quaternions
and dual quaternions introduced by Yang and
Freudenstein (1964) [29], see also Bottema and Roth
(1979) [30] and McCarthy (1990) [31].The original D-H
parameter method has many counterparts: Distal
variant, proximal variant, ...to name but a few. There
even exist different options for these counterparts.

In this method, four parameters, popularly
known as D-H parameters, are defined to provide the
geometric description to serial mechanisms. Out of the
four, two are known as link parameters, which describe
the relative location of two attached axes in space.
These link (See appendix 10,3,1.) parameters are: The
link length (a;) and the link twist (a;).

The remaining two parameters are described as
joint parameters, which describe the connection of any
link to its neighboring link. These are the joint offset (d)
and the joint angle (8;).

Modeling the movement of the rigid body by the
theory of the helicoidal axis: a combination of an amount
of rotation about and an amount of translation along a
certain axis, hence the term helicoidal axis is used in

various fields such as computer vision and
biomechanics. The application of this theory in the field
of robotics is taking more and more space. We can
consider the motion of a joint segment as a series of
finite displacements. In this case the movement is
characterized by an angle of rotation about and an
amount of translation along an axis defined in space by
its position and its orientation. This axis is referred to as
the finite helicoidal axis (FHA), because of the
discretization of the movement into a series of
displacements. On the other hand and by taking the
continuity of the movement into account, this movement
will be characterized by a rotational speed (angular
velocity) about and translation speed along an axis
defined by the instantaneous position and orientation in
space. One speaks in this case of an instantaneous
helicoidal axis (IHA).The application of the helicoidal
theory with its two versions (FHA and IHA) is used to
describe and understand the joint movement, and to
study in biomechanics, for example, the different
positioning techniques of protheses. Thus there are
several methods to estimate the helicoidal axis from a
set of points representing a rigid body.

Any displacement of a rigid body is a helicoidal
motion which may be decomposed into an angular
rotational movement about and a linear translational
movement along a certain axis in 3D space. The
methods differ in the way of mathematically representing
these two movements. These movements can be
expressed using rotation matrices and translation
vectors, homogeneous matrices, unit quaternions, dual
quaternions, ....

The two representations; using (3x3) matrices or
(4x4) homogeneous matrices and dual quaternions will
be simultaneously used for all and each examples or
applications studied so that comparisons for each case
could be done.

[I.  DuAL QUATERNIONS

a) « Producttype » dual quaternions

The dual quaternions have two forms thus two readings which are complementary and simultaneous: The

first is the < < product type > > description:

Tr.TR

’T‘G={TR+£ -

and T = (0{T.,T,,T,}= (0 {T})

Then, the transformation is:

} With: T, = {cos i,n.sinﬁ} = {cos f, sinf.nx,sinf.n
2 2 2 2 2

LY
y,Sin=.n,

T‘G: {TR + s%} = {cos %,n sin%} + 8{0, Z}.{cos f,n sinf}

T‘G:{cos %,n sin%} + s{— (T—n) sinﬂ,{”—n sinw +§cos ﬂ}}

2

b) <« Dual type » dual quaternions

2 2 2

15 5y > << product type >> (1)

Indeed a general transformation, screw type, can be also described using dual angles and dual vectors and

have therefore the following form << Dual type >>:

© 2020 Global Journals



~ g . 8 - 6 . 6 d . 0 .6 d 0
Tz{cos 7 sm;w} = {cos E,sm;n} + s{— 5 sin> ,{m sm;+5n cosE}} << dual type >> )

It is defined by the dual angle § and the dual
vector w the rotation being represented by the angle 6
around the axis n = (n, n, n) of norm 1, and a
translation d along the same vector n.

The vector m = (m,, m,, m,) is the moment of
the vector n about the origin of reference (O, x, vy, 2); it is
named the moment of the axis n, with: § = 6 + ¢ d
with d being the amplitude of the translation along the
dual vector w = n +em with m = p x n (the green
vector see figure 1) that defines the vector according to

[

777

Pllcker coordinates, p, (the blue vecor), being the
vector that gives the position of n ,(the red vector), using
the vector OO, (see figure (1)).

The parameters of the transformation, the angle
6, the axis of rotation n, the magnitude of the translation
d and the moment m are the four characteristics of all,
any and every 3D rigid body transformation (4x4)
matrix, a screw motion or a helicoidal movement of any
kind (or type ).

&

Figure 1: Helicoidal or screw motion

Note that this form resembles that used for
classic quaternions; using the dual angle and the dual
unitary vector instead of the classical ones.

And as a matter of fact: The screw
displacement is the dual angle 8 = 6 + ¢ d, along the

screw axis defined by the dual vector [ or § or in our
case w = n +&m; such that we will obtain (respecting
the rules of derivation and multiplication of dual
numbers), dual vectors, quatemions and dual
quaternions (see appendix 10,2. and eq (A15)):

P 0 . 0 . 0 d . 6 .8 d 0
T:{cos -, sm—w} = [cos= —¢& =sin—, (sin-+ €= cos—) (N +em )] =
2 2 2 272 2 2 2

0 d . 6 0 d 8 .6
cos— —& —sin_, nsin- +e(n 7 cos— + sin- m) = (

2 2 2

The geometric interpretation of these quantities
is related to the screw-type motion. The angle 8 is the
angle of rotation around n, the vector unit n represents
the direction of the rotation axis. The element d is the
translation or the displacement amplitude along the
vector n, m being the vector moment of the vector axis n
relative to the origin of the axes. The vector m is an
unambiguous description of the position of an axis in
space, in accordance with the properties of Plickér
coordinates defining lines in space.

This form gives another interesting use:
Whereas the classics quaternions can only represent
rotations whose axes pass through the origin O of the
coordinate system (O, x, y, z), the dual quaternions can
represent rotations about arbitrary axes in space,

6 6

) d . 6 .6 d 8
cos—, nsin-) +£(——sm—,sm5m+n5c055) )

2 2 2 2

translations as well as any combination of both these
two basic spatial motions.
These two forms < < product type >> eq (1) or

<< dual type >>eq (2) represent the same motion
that describe the same movement ‘the screw motion’:

[11.  EXAMPLE 1: ROTATIONS REPRESENTED
BY QUATERNIONS
Let's apply two successive rotations to a rigid

body: the first one of amplitude 6, =% around the axis
Ox followed by a second rotation of the same

s

amplitude 6, = 7 around the Oy axis:
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Using quaternions the first rotation will be written; since = % then cos 92—1 = sin 02—1 =

_ 22 : g T 01 _ im0 _
ql—(z,z,0,0),havmg > —4then cos —- =sin— =

MRS

The second rotation will have the form: g, = (g , 0, g ,0)

The final composition of the two movements will be given by the quaternion g such that:

V2 vz VZ V2 111 1
=00 = (5.0,5,0).5.5.0,0)=(5,3,5.—3)

Using quaternion’s definition (A5) and quaternions properties:

=G 2G5 -E) o G g B

It is then easy to extract both the amplitude and the resulting axis of the rotation from the result g:

1
COoSs g =% and sin g = g; wich implies the first solution @ = + 120 °, around the unitary axis (n) = %; 1
-1
or
0 1 ) V3 (7L
cos 5 =7 and sin 3 =5 wich implies a second solution 8 = —120 °, around the unit axis (—n) = 7 -1
1

In fact the two solutions represent the same and similar solution since for any g we have q (0, n) = q (—8, —n).

Using our classical (3x3) rigid transformations we get:

0 0 1N/1 0 O 0 1 0
-1 0 0/\0 1 O -1 0 O

Here it is very important to note that unlike the quaternion method we cannot extract the needed results
easily and straightforwardly but we must follow a long and sometimes complicated process (determinant, trace,
antisimmetry, angle and axis of rotations signs,axis/angle (or conversions to Olinde Rodrigues (Axis, Angle)
parameters) ...

1
Whichever used technique we will find: A rotation of @ = 2?" = 120 ° around the unit axis n = %{ 1

-1
To show the anti commutativity of the product let's do the inverse and start by the second rotation instead:
VZ V2 VZ V2 1 1 1 V3,1 1 1 1 V3 1 1
qi = 91-92 = (71?1010)(?101710)

1 1
) TG EE)Tes G oy TR
%)

1 -1
and that will imply 8; = 120 © around the axis n = ! ;1 , or 6, =—120° around the axis (-n) = —;— 1

V3
1
Which of course will imply that:  ¢q. g2 # q2- ¢4

1 0 O 0 0 1 0 0 1
Using matrices : R, = R, R, = (0 0 -1 )( 0 1 0) = <1 0 0) # R; = R, R, which implies:
01 0 -1 0 O 0 1 0

1
A rotation of 8 = 2?" =120° around the unit axis n= %{1 equivalent to a rotation of 8 = —2?” = —120 ° around the

1
taxis n= —L
unitaxis n = \/Bil

Using MATLAB (See Appendix 10,1.) we can calculate easily both the two quaternions multiplications: g=
n1 = g2.q1 and g, = n2 = g1.g2 and the two equivalent product of matrices R,, = R,R, and R, = R, R..

© 2020 Global Journals



[V. IMPORTANT NOTES: WHAT ABOUT TRANSLATIONS?

We must recall that rotations act on translations, the reverse being not true; in fact when multiplying by

blocks:

For a rotation followed by a translation: (1
translation.

While for a translation followed by a rotation: (

rotation.

0 1

R 0
0 1

) (R 0) = (R t); the rotation is not affected by the

0 1 0 1

)((I) i) = (g th); the translation is affected by the

When translations are performed first we can thus assume that the translation vector of the resulting matrix
product; Rt acts as the translation vector t of a rotation followed by a translation .Or more generally speaking
considering two six degree of freedom general rigid body transformations T, followed by T, we will have:

-G 0 -

The translation vector t of the product of the two transformations is {t =

R20R1 R2t11+ tz):(g D
p = Rt = (7 D{§ {7

The same analysis as the last one could then be done whatever the order and the number of the successive
transformations being performed over the rigid body: The final result of the products of all the undertaken rigid body
transformations will be finally the helicoidal, the helical or the screw motion given by the (4x4) matrix:

m=T.T.nT=% 1 ©)

0 1

With T; representing either a rotation, a translation, a rotation followed by a translation, a translation followed by a
rotation or even simply a no movement (ie: the 4x4 identity matrix | ).

V.  SCREW MOTION

Any screw motion would be given by the following (4x4) matrix [ T ]:

=G D™ =6 -

0 1

The middle matrix is a screw about a line
through the origin; that is, a rotation of @ radians around
the axis n followed by a translation along n. The outer
matrices conjugate the screw and serve to place the line
at an arbitrary position in space. The parameter p is the
pitch of the screw, it gives the distance advanced along
the axis for every complete turn, exactly like the pitch on
the thread of an ordinary nut or bolt. When the pitch is
zero the screw is a pure rotation, positive pitches
correspond to right hand threads and negative pitches
to left handed threads.

To show that a general rigid motion is a screw
motion, we must show how to put a general
transformation into the form derived above. The unit
vector in the direction of the line n is easy since it must
be the eigenvector of the rotation matrix corresponding
to the unit eigenvalue.(This fails if R = /, that is if the
motion is a pure translation). The vector u is more
difficult to find since it is the position vector of any point
on the rotation axis. However we can uniquely specify u
by requiring that it is normal to the rotation axis. So we
impose the extra restriction that n.u = 0. So to put the

(R(H,n) Pt —R(e,n)u> - m (3)

0 1

t

1
solve the following system of linear equations:

general matrix (I; ) into the above form we must

0
n+ (I —Ru=t

Now n.Ru = n.u = 0, since the rotation is about
n. So we can dot the above equation with n to give:
0 = n( t—g—:) this enables us to find the pitch:

p=2—"n.t

0

All we need to do now is to solve the equation
system: (I —R)u = ({-(n.fH)n) ;

This is possible even though det (I — R) = 0O,
since the equations will be consistent.

This entire analysis established through this
long paragraph concerning the helicoidal motion or rigid
(4x4) transformation matrix [T] is contained in only one
line enclosed in its counterpart dual quaternion T of the
form:
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- o . 0 -
T =1{cos —,sin-w
2 2

}:

T,.

1. T,.T = {cos %,sin%.n} + ¢ {— %sin% ,{m sin%+§.n cos%}} or eq (2) = eq (d)

These equations are best represented by the figures (2,1) or/and (2,2) :

(¥ 4y

Figure: (2, 1): A semi cubic solid performing simultaneously a rotation 6 around the axis I and a displacement d

along the same axis.

Figure: (2, 2): The same rigid (4D) transformation (R,t) represented by its screw axis S and displacement d.

VI.  EXAMPLE 2: GENERAL MOVEMENT OR A SCREW MOTION
Let's apply two successive screw motions to a rigid body: the first one around the Oy axis of
amplitude 64 =§ and of pitch ( p = %"t = 4) followed by a second one around the axis Ox and of the same

amplitude 6, = g and same pitch p = 4 corresponding to a translation of 1 unit along any of the two chosen axes:

1 00 1,,/,0 0 1 0 00 11
(o 0o -1 0\f0 1 0 1|\ (1 0 0 O

T2'T1_0100—1000_0101 “)
0 o0 1/\0 o0 0 1 000 1

The rotation part of the product corresponds to that of the precedent example of successive rotations R, = R, R,

with amplitude 8 = —

2m
3

1
120 © around the unit axis n = i{l ; its translation part being t = {0

1

V3
1
1

1
We can find its pitch p = %"(n.t) =1 {1.{0 = %:2\/3

=3
1 g

V3

1
The axis of rotation will keep its same original direction n = i{l, it will go through a new centre C given by the

1

shifting vector u which could be found by the linear equations system : (/-R)u =t - 2—1‘: n

1 1 1

1 0 —1\(% (1 I\ff 1 I\ff Ig
2r 6 2

(‘1 1 0){%—{0—55 %—{0—@ )73

0 -1 1 Uy 1 li 1 li Ll

V3 V3 3

1

The vector translation T (or t ) of the movement {0 is the sum of the two main perpendicular vectors T, +

1

T, such as T, is to be chosen parallel to n while the rest T, is the translation vector part responsible for the shifting of
the axis to its final position through the new center C as such we have:

(2

3
T1={§ and T2={—

1

© 2020 Global Journals

(

\

1

Wl wiNW

T, being the translation part parallel to n while T, being the perpendicular part with n.



. . . 1 2 1
The solutions to the system of linear equations are: u, —u, = 30 Ut Uy = o and —u,+u,= 3 (5)

Choosing the centre C to belong to the plane ( y-z); u, = 0 or (C, = 0 ) would imply the two coordinates
representing the point C intersection of the shifted axis n with the (y-z) plane to be:

C, = —;2 and C, =—§1.

For the (z-x) plane ; u, =0or (C,=0) : CZ=;1 and CX=;2
1

And finally considering the (x-y) plane ; u, =0 or (C,=0): C, = 3 and C, = —;1

So that to confirm these results ; we can finally check the following conjugation matrices :

001 0\/0013\/0010
=2 5 2 0 011
100 3|{1 00 ][t 003|_[1t00o0)|_
010 flg 1 0 2/l01 02 010 1)=®WOn
3 3 3 00 01
000 1/\g g o 31/ V0001
2
2 /0 0 1 2 2
/0015\/ 32\/001? 00 11
|100||1003i|100_01:(1)(1’8(1’s(4)
2 —_
\010/010;\0103 o 1o
0 0 0 000 1/ 0o 1
2
1\ /0 0 1 = -1
001 3 3\(0 01 5\ 00 11
-1 £ 1
Orfinally; |1 0 0 —|f1 0 0 3 10052(1)(1)325(4)
010 gflo1o 2[lo10
3 000 1
000 1/\g oo 3/ 0 00 1

Whenever necessary, Matlab was, throughout the chapter implemented, concerning all kinds of products or
multiplication of quaternions or matrices.

VII.  THE SAME GENERAL EXAMPLE USING DUAL QUATERNIONS
~ . . TR
q=q+eq. = qp+5(ti+t,j+6,k)®q =R+e—

The two transformations T, and T, are basic centered helicoidal movements through the origin O of the
axes, that can be written:

For the first movement around and along Oy: c71=q1 +i G, =0G,=( ,0,s , 0 +§( st,,0,ct,,0) =
T . T & . T T _ \/— & \/7 \/—
(CosZ,O,st,O)+E(—sm4—.1,0,cosz.1,0)—( , 0, - O)+E(—7,O ER ,0)
followed by the second movement around and along Ox: §, = q; +§ 4, =G,=(C ,s ,0,0)+ %(— st,,ct,,0
[0) = (cosT,sin 0,0 +5(-sinT.1,c08%.1 ,0,0):(2,2,0,0)#(—@,@ 0,0)
4 4 2 2 2 2 2

The dual quaternlon product of the two screw movements is:

G201 = (@ +35 ) (@ +50ey) = a2 @1 + 5 (A2 Gey + deyr1) =

(22 00+5(-2. 2 0001202 0+2(-2 0, 2 0=
(220,020 2,0+50(2,2.0,0.(-2,0, 2 0)+(-2,2.00). (2,02 0=
(3G 3 P +sl5. (5.3 . P+3.. =330 =
2L, L D) +5(-1.00,0,1) ©)

© 2020 Global Journals

Global Journal of Researches in Engineering (H) Volume XX Issue I Version I H Year 2020



(H) Volume XX Issue I Version I n Year 2020

amccrmg

<}

Global Journal of Researches in En

Another way of doing it: We could get this same result starting from the (4x4) rigid transformation eq(4)

1
matrix defined before: A rotation of amplitude 6 =2?" = 120 © around the unit axis n = % 1 followed by a
1
1 TR
translationt = {0 suchthat : § =q +eq, = qz + %(txi +t,j+t,k)®qr =R +e— =
1
1v3,1 1 1 1,1 1 1
;75 & ﬁ))JF%[(O 0. (5.(5.3:90)1=
1V3,1 1 1 £ 1 1
(355 B @) +3(=1,0,0,0)+0,G.0.2)+ 0, (=5.0,)=
V3 €
(35(F 5 F) +5(-1.(0,0,1) (6)

At this stage we know the complete integrality of informations concerning this movement thanks to our

magic, rapid and powerful dual quaternion :The rotation part, as seen before, having amplitude 6 = 2?” =

1
around the unit axisn; n = %{1
1

rotation; using eq (2): s{— %sin%

{msin9+dncosa} =
! 2 2 2J)

120 °

; the dual part will provide us gratefully with the translation along the axis of

2(=1,(0,0,1) =& (=3(0,0,3)

We thus have the scalar part: — dsin? =48 _ 1 implying that d = 2._2B and pitch p = 2V3
2 2 22 2 V3 3
We can also have the vector part: {m sing + gn cos %} =(0,0 %) hich implies:
V3, V¥311_ Vi 1 _ 3,¥311 ﬁl ﬂﬂil_ B,1_1
X7+?_35_mx7+€_0’ my >+ THE; My oty 0 and m s T3l Mty =
(L
3v3
We can then deduce the vector moment m %
2
33

Finally we can have the right position of the shifted axis u that have the same direction as the rotation axis n

by defining the coordinates u, ,u, and u, of a point or a center C belonging to it so that: m =uAn
1
3v3 Uy 1 uy —u,
Or % = {uy /\%{1 = %{uz —Ux implying that: u, —u, = _? ‘u, —u, = _?1 and u, —u, = =
L 2 u; 1 Uy — uy
3V3

Which confirm the same obtained results eq (5) using the (4x4) rigid transformation matrix:

_1.
ux_uz_;l

APPLICATION 2: KINEMATICS OF THE
PuMA 560 RoBoT

VIII.

The first three joints of this manipulator (Waist,
Shoulder, Elbow) characterize for the first joint to be a
rotation about a vertical axis , for the second and the
third rotations about horizontal axes whose movements
are identified by the variables q, , g,, and q,. The last
three joints, which constitute the wrist of the robot arm,
are characterized by the rotations g, , gs, and gg
whose axes intersect at the center of the wrist (See
appendix 10,3. Figures (3),(4) and Table 1 for the
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—Uytu, =

;; and —uy+u2:;1 (5)
forward kinematic solution using the Denavit and
Hartenberg convention.

The elegant , most accurate , rapid and finally
the best manner to get the forward kinematic solutions
of this Puma 560 robot is to use the dual quaternions:

For the sake of comparaison let us choose the
same home position for the robot with its geometry (g
and d) given in table (1) and the same absolute home
initial frame (%, Yo ,Zo) With its origin O taken in link1 at
the intersection of the base axis with the link1 axis (see
figure (3)), assuming mobile frames at the centers of the
six rotations: (x,,Y,,z,) which axes remain parallel to the



‘home position’ or initial axes (X, Yo .Zy). Let us equations A3 or A14 from appendix 10,2,1. to find the
begin, with the first two rotations using either  new vector position of the center O, (a,, d,, 0):

038,79 ¢ =4 44,6 ) (7)

44,95 =(,,0,s,,0)[1+€(a,d, 0)](c,,0,-s,,0)
Using correctly the rules for both quaternions eq (A1) and dual quaternions multiplications eq (A7) we have :

43,4, =(c,,0,s,,0) +e(=s,d,,C,a, C,dy, =S, 8,) and

4,8,9; =1 +¢€(0,a,cos0,,d,,—a,sin6,) thus
G18,8,954; =(;,0,0,8)[1+¢€(0,a,cos8,,d,,—a,sin6,)] (c;,0,0,—5s,)
Performing the product and using the trigonometric properties we can have the new quaternion vector position:
1+ ¢(0,a,cos 6, cos 6; —d,sin 6,, a, cos 8, sin 6; + d, cos 6;,—a, sin 6 )

a, cos 0, cos 61 — d,sin 6,
or the three coordinates vector: a, cos 0, sin 8, + d,cos 6, 8)
—a,sin 0,

This result is confirmed (see appendix 10,3,2.) by the fourth or last column of the matrix T¢ :

¢, 0-s5 0\ /¢ =50 ac C1€2  —C1S; — S1 016 — daSy

0 ays siC —51S; € a,c,s1 +dyc

— TiT2 =R R =|S1 0 ¢ OS2 C 252 | — 1C2 152 €1 2251 2€1
01 T -1 0 0 0 0 1 dz —S —Cy 0 —aySy
0 0 01 0 0 0 1 0 0 0 1

The third rotation of the third link is around the axis Oy, , with the center O4 being displaced or shifted and
thus having the position coordinates with respect to the asolute frame O, (a,, d,, 0).

Note: The conjugation (TRT")technique could be used in its dual quaternion form or its (4x4) rigid
transformation form.
The dual quaternion (§) definition (2) may be used instead,;

PO S N IPN 6 . 6 d . 6 .6 d ]
q =T={cos 7 smgw}:{cos E,sm;n}+e{— Esm;,{msm;+;ncos;}} << dual type >> (2)

So replacing d = 0 in eq (2), will give: §5 :{cos g, sin%W} = [c3,(0,53,0)] + £{0, {m s3}}

dy 0 0
The moment m, w- r - t the axis of rotation y; , ism = {dzl\il = ;0 so that g3 = [c3, (0, 53,0)]+ £{0,{(0,0,a,53}}
0 0 dy

(0182)838, G5 (@ §1) = (c1,0,0,50) (c2,0,52,0)83G,33(c2,0,—52,0) (c1,0, 0,=sy)

To find the new vector position of the wrist center O, :(a, + a5, d, + d;, 0) = (A, D, 0) result of the three
successives rotations we must start from the central operation namely :

§,,= 038,33 = [(c3,0,53,0)+ &(0,0,a,5)] [(1+& (A D, 0)] [§3] =
[(c3,0,53,0) + £(0,0,a,55)+e(—s3D, c3A , c3D,—s3A)] [ 5;]:
[(c3,0,53,0 +e(—s3D, c3A, 3D, s53(=A)] [(c3,0,—53,0 )+ € (0,0,azs5)] =

(c3%+ s52,0, =383 + €355, 0) +&(—c353D + s3¢3D , s32a; + c32A + 532 (a; —A), 532D + ¢3%D , c353a;, —c353 A
+ @353 —Cc353 A)

Using the basic trigonometric rules and properties we can write the solution vector:

A

4, = 436,45 =1+€(0,a, +ascosB;,d2+ds, —assinB; ) =1+ € (a, + as cos B3, d2 + ds, —assin 63)
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scalar part

. . 0, coord.

For a better use of space we may adopt to write our result dual quaternions vectors under the form: Oxcoord
y .

0, coord.

0
a, + a3 cos 0 a, + az cos 63
So that the precedent result could be written § , = 2 d _ﬁ d or simply as a vector d, + d3
2778 — az sin 63
— az sin 63

Following the second transformation we have: (c,,0,S,,0) g ,(c;,0,—s;,0) =

N

(c,,0,s,,0)1+¢

(CZ 10152 10) +é&

(c3%+ 5,%,0, —Cp8, +C35, , 0)+¢ |

1+ ¢ |

) \
/ 2% (@, + a3 cos 63) - ;8,23 sin B3—c,s,a; sin B3—s,2(a, + a3 cos 63)
¢;*(dy + d3) +5,%(dz + ds) /

G, =C5,0,8,,0[1+&(0,a, + agcosfs,d; + d3,—azsinb3)](c;,0,—s5,,0) =

0
a, + azcosf; =,
d, + ds 4]
—az sin ;3
—sp(dz + d3)
cy;(a, + azcosb3) —s,az sin O,
cp(dy + d3)
— cpaz sin 03 —s,(a; + az cos 63)

—282(dy + d3) +p5,(dy + d3) \
c;%(a; + az cos 03) —c,5,a3 sin O3—c,s,a5 sin O3—s,2(a, + a3 cos 03) |

¢*(dy + d3) +5,°(dz + d)
— c;%a;3 sin B3 —c,5,(az + as cos 3)—c,5,(ay + az cos O3) + s,%a3 sin O

(CZ'O'_SZJO)=

— cy%a;3 sin 65 - ¢;5,(ay + a3 cos B3)—c,5,(a, + a3 cos O3) + s,2a3 sin 65

0
cos 6,(a, + az cos f3) — azsin B,sin O
(dz + d3)
—azcos 6,sin 63 — sin 8,(a, + azcos 63)

We can finally get the transformed vector G,

4, =1+ ¢el(azcos (0, + 03) +aycos 0, , (d; + d3), —azsin (6, + 03 ) —a,sin 6, )]

We can finally perform the first but last transformation given by the following dual quaternions products:
(C1 ) 0 ) 0 ) 87) (CZ ) 0  So, O) Q3QV§§ (CZ ,0,—52 '0)((:1 '0' 0,—51) =

(C7 s O ,0 y 87) qu (Cl; 0; 0: _sl) =

(€,,0,0,8,) [1+€ (agcos (6, + O3) + a,cos B, , (dy, + d3) , —azsin (6, + 05 ) —a,sin 6, )] §;

0
azcos (6, + 03) + a,cos 0,

]
@“O,Q&41+s d, + ds ha]=
|

l —ajzsin (6, + 63 ) -a;sin 0,

az sysin (6, + 03 ) + a,s;sin 6, 1
/33 cicos (8, + 63) + azcicos B, —si(d, + d3)\‘ [:*]
)T

[
l(c1 ,0,0,5)+¢ \01(012 + dj3) + a3 s;cos (8, + 65 ) + ays;cos b,
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—azcq sin (6, + 63 ) —aycq sin 6;)



az sysin (6, + 63 ) + a,s;sin 6,

(¢1,0, 0,s9) +¢

az cycos (6, + 03 ) + aycicos B, —s;(d, + d3)
ci1(dy, + d3) +azsycos (8, + 63) + azsicos b,

(Cl :O ) 0! _Sl) =

—azcy sin (6, + 03 ) —aycq sin 6,

(c12+ 5,20, —¢y81 + ¢151,0) +

az ¢15;15in (6, + 03 ) + aycysysin 0, — azcq sysin (0, + 03 ) — a,cq s1sin 6,
az c;2cos (6, + 03 ) + ayci?cos B, —cys1(d, + d3) —si¢(dy + d3) —ag s;2cos (B, + 03 ) — ays;®cos B,

c12(d; + d3) +as ¢ys1c0s (0, + 63) + aycis;c0s B, + ag s;cicos (B, + 03) + azsycicos B, — s;2(d, + ds)

—asc%sin (0, + 65) —aycy?sin B, — ag s;%sin (6, + 03 ) — a, 5;%sin 6,

0

ds C12C23 + azC'lzCOS 02 - Clsl(dz + d3) - Slcl(dz + d3) — djg 512C23 - a2512COS 02

1+ ¢

c12(dy + d3) +a3¢1S1C3 + ay¢15,€08 O, + a3 S1¢1Cy3 + ap51¢1c0s O, — 5;2(d, + ds)

—a30;2Sy3 —ayc1%sin B, — a3 525,35 — ay 5;2sin 6,

With Cy3 = COS (02 + 03) and Sp3 = sin (62 + 03)

cosB, (azcosf, + azcy3) —sinb,(d, + di3)

The result vector is then:

sinf,(aycos6, + az cy3) + cosf;((d, + d3)

- (azsingz + ds 523)

Which is confirmed by the last column (see appendix (10, 3, 2.) of the matrix Tg .

We can also, using the Denavit and Hartenberg
formalism or the dual quaternions alike easily calculate
the coordinates of the terminal element (or the end
effector) and so the final positioning of our Puma 560
robot relative to the base or fixed absolute frame.

[X. CONCLUSION

We hope that the reader should not get us
wrong: We never pretend that the D-H parameters
method is wrong or obsolete and that it should be a
thing of the past; recognising that this important
classical method was the precursor that enlightened the
path to modern robotics; we only say that there exist
through the DQ parameters another short, free of
singularities and easy to work with, when dealing with
robot direct kinematics. On the light of the obtained
results one has to say that the most perfect (not
suffering singularities of any kind), easiest and rapid way
to perform a 3D rigid transformation of any sort is to use
the dual quaternion that caracterise that movement.
Most of all we are free to use the 3D space, being sure
that no loss of degree of freedom or guinball lock of any
sort can never happen. Using a D-H parameters method
or any of its counterparts means a choice of different
sort of embarassing and somehow awkward three axes
frames to be created and then allocated to each arm/
link; ‘providing’ our robot or mecanism with different
direction axes and angles with very much complicated
choice of signs (concerning the directions and the
angles alike) to be chosen subject to some rules
depending on the chosen method and model of robot.

Choosing to use dual quaternions we only need
to know the constants or values that concern the
construction or space geometry of the given robot
(directions (orientations and axes) , rotations ,distances,
lengths of links) to evaluate its kinematics without any
threat to be lost in the maze or a jungle of choices .Most
of all, it will prevent us from using the only other existing
method, or one of its options, which is that of the
Denavit and Hartenberg parameters that mainly
consists of:

1. Choosing 3D frames attached to each link upon
certain conditions /conventions,

2. Schematic of the numbering of bodies and joints in
a robotic manipulator, following the convention for
attaching reference frames to the bodies, this will
help to create:

3. A table for exact definition of the four parameters, a;,
a, d, and 6, that locate one frame relative to
another,

4. The (4x4 ) rigid transformation matrix that will have
the given form: T¢ ;. (See 10,3.)

This chapter provided a taste of the potential
advantages of dual-quaternions, and one can only
imagine the further future possibilities that they can offer.
For example, there is a deeper investigation of the
mathematical properties of dual-quaternions (e.g., zero
divisions). There is also the concept of dual-dual-
quaternions (i.e., dual numbers within dual numbers)
and calculus for multi-parametric objects for the reader
to pursue if he desires.
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We should emphasize on the fact that Matlab
software was used, throughout this work and whenever
necessary, concerning all kinds of products or
multiplication of quaternions or rigid transformation
matrices.

Finally we hope all efforts should be conjugated
to create a common ‘PROJECT MATLAB
QUATERNION/MATRIX platform’ to be used for the
straightforward calculations and manipulation  of
Quaternions and / or Dual Quaternions as well as
conversions from or into 3D or 4D rigid body matrices.

X.  APPENDICES
a) Quaternion-Matlab Implementation Class:

>> % See paragraph 3; Example 1: Rotations

represented by Quaternions

>> % Afirst rotation of anglen/2 around the x -axis ,q1
, followed by a rotation of angler/2 around the y -axis ,
g2 will result in a rotation given by the product n1 =

g2.q1:

>> g1 =[ cos(pi/4) sin(pi/4) 00 ];

g2 =[cos(pi/4) 0 sin(pi/4) 0 ];

>>n1 = quatmultiply (92,91)

n1 = 0.5000 0.5000 0.5000 -0.5000

>> % If the order is inversed the result will be given
by the quaternion n2 = g1.g2

>>n2 = quatmultiply (q1,02)
n2 = 0.5000 0.5000 0.5000 0.5000

>> % Using 3*3 matrices; if the rotation R1 is
performed first the rotation product is R2*R1:

R1=[100,00-1,0101;
R2=[001;,010;-100];
prod1 = R2*R1

prodl =
0 1 0
0 0 -1
-1 0 0

>> % if the order is inversed the multiplication will be
R1*R2:

prod2 = R1*R2

prod2 =
0 0 1
10 O
0 1 O

© 2020 Global Journals

b) Quaternions and Dual Quaternions (Dq)

i. Quaternions or rotation representation

Quaternions  were  first  discovered and
described by the Irish mathematician Sir Rowan
Hamilton in 1843. Indeed quaternion’s representation
and axis-angle representation are very similar.

Both are represented by the four dimensional
vectors. Quaternions also implicitly represent the
rotation of a rigid body about an axis. It also provides
better means of key frame interpolation and doesn’t
suffer from singularity problems.

The definition of a quaternion can be given as
(s, m) or (s, q. q,, q,) where m is a 3D vector, so
quaternions are like imaginary (complex) numbers with
the real scalar part s and the imaginary vector part m.

Thus it can be also written as: s + g,/ + q,/ + q, k.

There are conversion methods
quaternions, axis-angle and rotation matrix.
Common operations such as addition, inner
product etc can be defined over quaternions.
Given the definition of ¢; and g5 :

between

G1 =5 T qui+q,j+q,k orq = (s, m)
Gz =S+ Gl +qpj+qpk or g = (s, my)
Addition operation is defined as:
g1+ qz = ($1 + 52, mg + I_nz) = (51 +52) + (@ + g0
+ (qy1 + qu)/ + (qﬂ + qz2)k
dot (scalar, inner): product operation(.) as:
q1-qz = S1. S, T my.my

Quaternion multiplication is non commutative, but it is

associative.

Multiplication identity element is defined as: (1, (0, 0, 0))
We can also perform the multiplication in the

imaginary number domain using the definitions:

i2=jt=k’=-1,ij=k, jk=i, ki=j;
ji =—k kj=—i, ik=—]j
Equations (A1) to (A15) state the definitions,

rules and properties of dual quaternion algebra.
Quaternion multiplication (®) is defined as:

¢1®q; = (51. S, —my. My, ;. My + 5. My + my Amy)
(A1)

Each quaternion has a conjugate q* (except
zero quaternion) defined by:

q° =(s,—-m)
1

and an inverse q~! = (lq—l)zq* (@ #0)

=s?+q,°+q,°+q,°=q®q" =q'®q

Rotations are defined by unit quaternions. Unit
quaternions must satisfy |q| = 1. Since multiplication of
two unit quaternions will be a unit quaternion, N

(A2)

Where |q|?



rotations can be combined into one unit quaternion gg
= Qg1 -Qro- Gp3 -+ Gy

It is also possible to rotate a vector directly by
using quaternion multiplication. To do this, we must
define a 3D vector V = (v,, v,, v,) that we want to rotate in
quaternion definition as q, = (0,v) = 0 + v, i+ v, j+ Vv, k.
The rotated vector V' = (v,',v,’, v, ') can be defined as
9, =0,v)=0+Vv,7+v,j+Vv,k

Noting that, in quaternion rotation g=* = q* (For
unit quaternion). So, rotation of g, by quaternion g can
be calculated as:

v =9®9,®q¢ "' =9®q,®q"

And, assuming another quaternion rotation p,
rotations can be applied to the vector V such as:

9 =pP®Q®q®¢HRp™! = P®)®Qq,® (¢
p!')=C®q,®C! (Ad)

Providing that quaternion C = (o0 ® q) is a
combinaison of the precedent quaternions g and p.

(A3)

two

Such that:

Dual quaternion multiplication is defined by:

With &% = 0; € being the second order nilpotent dual factor.

The equation implies that vector V is first rotated
by the rotation represented by g followed by the rotation
p.

A quaternion g that defines a rotation about
(around) the axis n denoted by the unit vector (n,, n,, n,)
of an angle 6 could be written as :

g=cosZ+sinZ(ni +nj+nk (A5
This same quaternion represents a rotation of
amplitude (— 6 ) around the opposite axis (—n)

ii. Dual quaternions

Dual Quaterions (DQ) were proposed by
William Kingdom Clifford in 1873.They are an extension
of quaternions. They represent both rotations and
translations whose composition is defined as a rigid
transformation.

They are represented by the following eight
dimensional vector:

The dual conjugate (analogous to complex conjugate) is denoted by:

g =(85m)=(5.90999e9er ey 4e,) = (5. %,5,7) (AB)

G=qteq.=s+qi+q,)+qkKk +e(@e;+qe, T4, +q,)
43®G.=q:®q, + £ (q:® 42, +q1,® q-) (A7)
qd=q-¢q. (A8)

This conjugate operator can lead to the definition of the inverse of § which is:

1
q q

éI\—l — - —

BN
IR
BT

~ A o Al 1 .
§==3®q"=(q+eq.)(; —sz—z):

4_ 99 | 8 _ a4 _ 4

=, which means that a pure dual number (ie: ¢ = 0) does not have an inverse)

glie p e 1 _gde g e — 4 =1
q q q q q

A second conjugation operator is defined for DQs. It is the classical quaternion conjugation and is denoted

by: §* = q" + eq.’

Combining these two conjugation operators will lead to the formalization of DQ transformation on 3D points.
Use of both conjugations on § can be denoted §*.Using definitions (A2), (A6) and (A8) we finally have:

5* = (s Ty Tz T Qe ey qu ’ qu)

(A9)

It is well know that we can use dual quaternions to represent a general transformation subject to the

following constraints:

The DQ screw motion operator §: = (q, q,) must be of unit magnitude:

1G] = (q +eq.)” =1

This requirement means two distinct conditions or constraints:

s®+q’+q°+q° =1

$qey t4x Ge, T4y 9, T 4:q:, =0

and
(A10)

Which imposed on the eight (8) parameters of a general DQ, effectively reduce the number of degree of
freedom (8 — 2) = 6; equivalent to the degree of freedom of any free rigid body in 3-D space
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ii. Dual Quaternions or general 3D rigid transformation representation
While equation (A5) defines completely and unambiguously (without any singularity like guimbal lock and
other loss of degree of freedom) all 3D rotations in the physical space, dual quaternions can represent translations;

A DQ defined as: gy = 1+ % (txi + t,j+ tzk) corresponds to the translation vector T = (&, t,,t, )

y )
which could symbolically be noted T; so gy = 1+ ¢ g

The translation T on the vector ¥ can be computed by: §, = §; ®4, @G

So fortunately using def (A9), we have:

Ax A T A1 ~ ~ Sk ~ ~ ~ . . . .
qr = Gr =1+ e, then g, = Gr ®4, 47 = Gr ®G, ®qr = [1+ - (t,i+ t,j + k)] ® [1+ & (vi + vyj +
vIOI®IL + = (i + tyj+ k)] =

1+ e[(ve+t)i+ (v, +t,)j + (W, +t)k)]
Which correspond to the transformed vector: 3" = (v, + t,)i + (v, +t,)j + (v, + t,)k )

iv. Combining rotation and translation
Transformations represented by DQs can be combined into one DQ (similar to quaternions combination
Assuming: ¢ and then p, two DQ transformations applied successively and in that order to a DQ position
vector §,; Their combined DQ transformation € applied to §, gives:

=PR(§®§,®7 )®p = (/®§)®3,®[®p) =C ®§,®C’ (A11)

It is very important to notice that the most inner transformation of the equation is applied first with an inside
to outside manner.
Ineq (22), § is the first transformation followed by the second one 3.

The successive composition or combination of unit DQ rotation gz = R followed by a DQ translation §r =
1+ % (ti+ t,j+tk)
will give:

Gr ®Gr = (1+ - (L + 6, + 6,k ) ® Q= qp + 5 (&i+ t,j+ 6,k )®Gr =R + ¢ ? (A12)

Its inverse being: (R + € —) 1= R* —RT*T
If the translation is applied first:

A A ~ £ . . A & . . RT
Gr®qr = Gr®(1 + - (txl+ ty]+tzk)) =Qg + qR®E (txl+ ty]+tzk)qR=R+e - (A13)

*_TR*

Its inverse being: (R + ¢ —) = 2

v. Several transformations
Suppose that the vector V in its dual quaternion form g, = 1+ €v is under a sequence of rigid
transformations represented by the dual quaternions G, §., . - ., §,- The resulting vector is encapsulated in the dual
quaternion:

1+ev'=3,®(G,1® .00 ®1+er)®F)® ... 7" ,)®7F", (A14)
=(3.®.84)®(1+ev)® [ ®..07")
q

We denote the product dual quaternion as § = 4, ®...®q
transformation represented by §; namely,

. The effect is equivalent to a single rigid

1+ev' =@ (1+ev)®q".
Using dual numbers and plucker coordinates and introducing the following dual angle and dual vector we can write:
6=6+ed and
[=1+em

It can be easily shown that:
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vi. D-H Parameters For The Puma 560 Robot
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Figure 3: System of connections coordinates and parameters of joints for the PUMA 560 robot arm according to
the Denavit and Hartenberg convention

vii. Parameters of Denavit and Hartenberg

The Denavit and Hartenberg Convention is a
systematic method. It allows the passage between
adjacent joints of a robotics system. It relates to the
open kinematic chains where the joint possesses only
one degree of freedom, and the adjacent surfaces
remain in contact. For this aspect the use of hinges or
slides is indispensable. The choice of the frames for the
links facilitates the calculation of the DH homogeneous
matrices and makes it possible to rapidly express
information of the terminal element towards the base or
the reverse.

The steps for this technique are as follows:

1. Numbering of the constituent segments of the
manipulator arm from the base to the terminal
element. The zero referential is associated with the
base of it, and the order n to the terminal element
(end effector);

2. Definition of the main axes of each segment:
* If z,and z_, do not intersect we choose x; so as to
be the parallel with the axis perpendicular to z
and z,.
* If z, and z, are collinear, x; is chosen in the plane
perpendicular to z,;.

3. Fix the four geometric parameters: d, 6, a;, a;
Figure( 4)) for each joint such as:

(see
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Figure 4. Coordinate systems and parameters of Denavit and Hartenberg

* d; coordinate of the origin O, on the axis z_, For a
slide d, is a variable and for a hinge d; is a constant.

* 6 is the angle obtained by screwing x,; to x, around
the axis z.,.For a slide gq; is a constant and for a
hinge q; is a variable.

* g; is the distance between the axes z and z,
measured on the axis x, negative from its origin up
to the intersection with the axis z,.

* q, is the angle between z et z, obtained by
screwing z, to z; around x.

Finally, the homogeneous DH displacement
matrix [Tt_,] which binds together the rotation and the
translation is formed . Its left upper part defines the
rotation matrix R:_; and on its right the translation
vector

; R! d:
T ] : i-1 1—1] 9
(Ti-i] 000 1 ©)
cos8; —cosa;sinf; sinq;siné;
With b= [sin 6; cosa;cosB; —sina;cos Gil (10)
0 sin q; cos q
a;cos 9,
And di_, _{ a;sin 6, (11)
d;
Figure (4) represents the Denavit and Hartenberg parameters for a two successive frames (x4, Vi1 , Z.; ) and
X ¥i,2).
And finally the (4x4 ) rigid transformation matrix will have the form: T:_;
cos@; —cosa;sin6; sina;sinf; a;cos 6,
sin@; cosa; cos §; —sina; cos 8; a;sino; (12)
0 sin o cos o d;
0 0 0 1

The definition of the frames associated with the
links according to the Denavit and Hartenberg
convention is as follows:

Link1: Frame (X, Yo ,Zo) ;The origin O is taken in link1 at
the intersection of the base axis with the link1 axis. z,
axis of rotation, + z, upwards.+ Yy, coincides with the
axis of the link 1 and the axis + z,.y, is parallel to the
link 2.

Link 2: Frame (x, ,Y4 ,Z;) ;The origin coincides with the
origin of the frame (X, .Y, ,Z0,) -Z; axis of rotation, + z, is
perpendicular to the link 2 and parallel to the axis +

© 2020 Global Journals

z,.+ y, downwards, superimposed with the axis of the
base and parallel with y,.+ x, is parallel to the link 2.

Link 3: Frame (X, .Y, ,Z,) ;The origin is taken in link 2 at
the intersection of the axis of the link 2 with the axis of
the joint 3.z, axis of rotation, + z, is perpendicular to link
2 and axis z;.+ Yy, downwards, opposite with + z;.+ X,
is parallel to the link 2.

Link 4: Frame (X5, Vs, Z5); The origin is taken in link 3.z,
axis of rotation, + z; towards the wrist and
perpendicular to +z, .+ v, is perpendicular to the link 2,
and parallel to +z,.+ x; is parallel to the link 2.



Link 5: Frame (x, Y, ,Z4) ;The origin is taken at the
center of the wristz, axis of rotation, + 2z, is
perpendicular to link 2 superposed with +z5 . + vy, is
opposite to + z5.+ X, is parallel to link 2.

Link 6: Frame (Xs,ys, Zs) ;The origin coincides with the
origin of the link (x,.y., z,).z;axis of rotation, +z,towards
the effector parallel to +2z,.+ y,coincides with the axis
of joint 5.4 y,is perpendicular to the axis of joint 5.

The end effector: Frame (Xg,y625) ;The origin coincides
with the origins of the links (X,.y. z,) and (Xs, Vs, Zs).

+z4is parallel to +z;. and  +y,is parallel to + y;5 . +xgis
parallel to +xs.

By respecting the original position of the robot
and the definition of the links and correspondant frames
presented in Figure (3), the parameters of the PUMA
560 robot arm given by the Denavit and Hartenberg
Convention are shown in Table (1):

Table 1: Puma 560 Denavit and Hartenberg Parameters

i o g; a; d;
Numeéro de la (degrés) Variable (métres) (métres)

liaison

1 -90 q, 0 0

2 0 q, @, d'.*

3 +90 qs a; d;

4 - 90 q 0 d,

5 +90 q. 0 0

6 0 qs 0 -

The distance dg is not shown in Table ( 1)..This

The dynamics of the last three articulations is

distance varies according to the effector used for the
application (the effector is the tool attached to the wrist
on the last articulation of the robot for the manipulation
of the objects). In this application the distance between
the end of the effector and the axis of the wrist is
assumed to be null dz = 0.

v. D-H kinematics of the PUMA 560 ROBOT

negligible compared to the first three. Therefore, we
have been interested in studying the movement of the
three first joints of the PUMA 560 robot arm fixing the
others to the original position (i.e., wrist attached to the
original position: g, = g5 = g5 = 0).

The appropriate transformations for the first three considered articulations are:

cgc —s10 0N ,/1 0 O O cg 0-s5 0
Tl — Sl Cl 0 0 0 0 1 0 — Sl 0 Cl 0 (13)
0 0 01 0f/{lo -1 0 0 0 -1 0 0
0 0 0 17 0 01 0 0 01
¢ —s,0 0y /1 0 0 O 1 0 0 a c; —5,0 ayc
Tz — Sy Cy O O 0 1 O O 0 1 0 0 _ 52 CZ 0 azsz (14)
! 0 01 0f/{0 01 dyflo 01 o0 0 0 1 d,
0 0 0 1 0 00 1 0 00 1 0 0 0 1
Such that we will have : T¢ = TAT?
g 0-s5 0\/¢2 =50 ac €16 —C1S; — 1 ApC1C — dpSy
sy 0 ¢ 0[Sz 20 as S1€2 —S1S2 €1 ApCpSy t+dacy (15)
0 -1 0 O 0 0 1 d =S ¢ 0 —azs;
0 0 01 0 0 0 1 0 0 0 1
We can also write:
c3 —s30 0\ /1 0 0 O 1 0 0 a3 )1 0 0 O cz 0 ascs
3—(s3 0 00 1 0 O0}f0 1 0 0)[0 0-1 0)_ [s3 0O —c3 ass; (1)
2 0 01 0/{0 01 dsflo 01 o)\lo 1 0 0 0 1 ds
0 0 0 1 0 00 1 0 00 1 0 0 01 0 0 1
C1€;  —C1S; — S1  QApC1Cy — dysy cz 0 s3  aszc
. . — 0 —c3 azs
And finally write T3 = 7273 = [ S1€2 S1S2 €1 @081 +dycy || S3 3 0383 | _
dfinally write T 072 -s, —c 0 —a,S; 0 1 o0 dj
0 0 0 1 0 0 O 1
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With

1.

10.

11,

12.

13.

C1C23  —S51C1523
T¢ = $1€23  €151523
—S;3 0 3
0 0 0

c1(azc; +azcyz) — (dy +d3)sy
s1(ayc; + azcy3) + (dy +d3)e

17
—(azs; + azsys) 17)
1

Ci = COSs 9i, Sl = Slﬂ Hi,Cl-j = COS (01 + Qj),Sij = Slﬂ (9, + 6])

REFERENCES REFERENCES REFERENCIAS

W. R. Hamilton. On quaternions; or on a new

system of imaginaries in algebra. London,
Edinburgh, and Dublin.
J. McDonald, “Teaching Quaternions is not

Complex,” Comp. Graphics Forum, v. 29, no. 8, pp.
2447-2455, Dec. 2010.

Chou JCK, Kamel M (1988) Quaternions approach
to solve the kinematic equation of rotation, of a
sensor mounted rob. manip. In: Proceedings of the
IEEE int. Conf. Rob.s and automation (ICRA),
Philadelphia, pp 656-662.

Gouasmi M, Quali M, Brahim F (2012) Rob. Kin.
using dual quat. Int. Jourl of Rob and Autom,
1(1):13-30.

W. K. Clifford. Preliminary sketch of bi-quaternions.
Proceedings of the London Mathematical,1882.
Perez, A, 2003, Dual Quaternion Synthesis of
Constrained Robotic Systems, Ph.D. Dissertation,
Department of Mechanical and Aerospace
Engineering, University of California, Irvine.

Perez, A. and McCarthy, J.M., 2003, “Dual Qua.
Synth. of Constr. Rob. Syst.”, Journal of Mechanical
Design, in press.

L. Kavan, S. Collins, J. Zéra, and C. O'Sullivan,
“‘Geometric  skinning with approximate dual
quaternion  blending,” ACM Transactions on
Graphics (TOG), vol. 27, no. 4, p. 105, 2008.

F. Z. Ivo and H. Ivo, “Spher. skin. with dual quat and
Q.Tangents,” ACM SIGGRAPH 2011 Talks, vol. 27,
p. 4503.

J. Selig, “Rat. Int. of r-b. m,” Adv. in the Theory of
Control, Sign. and Syst. with Phys. Mod., pp. 213-
224, 2011.

A. Vasilakis and |. Fudos, “Skeleton-based rigid
skinning for character animation,” in Proc. of the
Fourth International Conference on Computer
Graphics Theory and Applications, 2009, no.
February, pp. 302-308.

Y. Kuang, A. Mao, G. Li, and Y. Xiong, “A strategy of
real-time animation of clothed body movement,” in
Multimedia Technology (ICMT), 2011 International
Conference on, 2011, pp. 4793-4797.

H. L. Pham, V. Perdereau, B. V. Adormo, and P.
Fraisse, “Position and orientation control of robot
manipulators using dual quaternion feedback,” in
Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ Int. Conf., 2010, pp. 658-663.

© 2020 Global Journals

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Schilling, “Univer. manip body models - dual
quaternion rep. in lay. and dyn. MMCs,”
Autonomous Robots, 2011.

Q. Ge, A. Varshney, J. P. Menon, and C. F. Chang,
“Double quaternions for motion interpolation,” in
Proceedings of the ASME Design Engineering
Technical Conference, 1998.

Y. Lin, H. Wang, and Y. Chiang, “Estim. of real.
orientation using dual.quat,” Sys. Sci. and, no. 2,
pp. 413-416, 2010.

A. Perez and J. M. McCarthy, “Dual quat synthesis
of constr. rob. systs,” Jou. of Mech. Des, vol. 126, p.
425,2004.

G. van den Bergen, “Dual Numbers: Simple Math,
Easy C++ Coding, and Lots of Tricks,” GDC
Europe, 2009. [Online]. Available: www.gdcvault.
com/play/10103/Dual-Numbers-Simple-Math-Easy.
Amanpreet ,Singh, and Ashish, Singla, India 2016
Kinematic Modeling of Robotic. Manip”, The Nat.
Acad of Sciences.

Chasles, M. (1830). "Note sur les propriétés
générales du systeme de deux corps semblables
entreux". Bulletin des Sciences Mathématiques,
Astronomiques,  Physiques et  Chimiques (in
French). 14: 321-326

Louis Poinsot, Théorie nouvelle de la rotation des
corps, Paris, Bachelier, 1851, 170 p

E. T. Whittaker (1904), A Treatise on Analytical
Dynamics of Particles and Rigid Bodies, p. 4,
at Google Books.

R. S. Ball, “The Theory of Screws”, Cambridge,
U.K., Cambridge Univ.Press, 1900.

R.M. Murray, Z. Li, and S.S.Sastry, A Math. Intro. to
Robot Manip. Boca. Raton, FL: CRC Press, 1993.
Denavit, J., and Hartenberg, R.S., 1955, “A Kin. Not.
for Low-pair Mech.s Based on Matr.”, ASME Jour. of
App.Mech.s, 22:215-221.

J.M  Selig, introductory robotics.
international (UK) Ltd, 1992.

Selig, J.M., Geometrical fundamentals of Robotics,
Springer, second edition, 2004.

J.M. Selig. Lie groups and Lie algebras in robotics.
Course report, south bank university, London.

Yang, AT., and Freudenstein, F., 1964, “App. of
Dual-Num.Quat. Alg. to the Ana of Spa. Mec.”,
ASME Jour. of Ap. Mec., pp.300-308.

Bottema, O. and Roth, B., 1979, Theoretical
Kinematics, Dover Publications, New York.
McCarthy, J. M., 1990, Introduction to Theoretical
Kinematics. The MIT. Press, Cambridge, MA.

Prentice hall



	The Kinematics of a Puma Robot using Dual Quaternions
	Author
	Keywords
	I. Introduction
	II. Dual Quaternions
	a) «Product type» dual quaternions
	b) «Dual type» dual quaternions

	III. Example 1: Rotations Represented by Quaternions
	IV. Important Notes: What about Translations?
	V. Screw Motion
	VI. Example 2: General Movement or A Screw Motion
	VII. The Same General Example using Dual Quaternions
	VIII. Application 2: Kinematics of the Puma 560 Robot
	IX. Conclusion
	X. Appendices
	a) Quaternion-Matlab Implementation Class:
	b) Quaternions and Dual Quaternions (Dq)
	i. Quaternions or rotation representation
	ii. Dual quaternions
	iii. Dual Quaternions or general 3D rigid transformation representation
	iv. Combining rotation and translation
	v. Several transformations
	vi. D-H Parameters For The Puma 560 Robot
	vii. Parameters of Denavit and Hartenberg


	References Références Referencias



