
© 2020. C. K. Amuzuvi & H. Warden. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial 
use, distribution, and reproduction in any medium, provided the original work is properly cited.   

 
  

Volume 20 Issue 2 Version 1.0  Year 2020 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  

 Online ISSN: 2249-4596 & Print ISSN: 0975-5861 

 

Failure Prediction of Induction Motors: A Case Study using 
CSLGH900/6-214, 5.8 MW, 11 kV/3ph/50 Hz Sag Mill Motor 
at Goldfields, Damang Mine              

 By C. K. Amuzuvi & H. Warden  
University of Mines and Technology 

Abstract- This paper proposes a generalised feed-forward artificial neural network model that 
fulfils the failure prediction of a three phase 5.8MW, 11 kV Slip-Ring SAG Mill Induction Motor at 
Goldfields Ghana Limited, Damang Mine. It provides a general understanding of three phase 
induction motors, faults associated with induction motors and also emphasizes the use of 
intelligent systems, particularly artificial neural network, a modern failure prediction technology of 
induction motors. Site analysis and motor data (Current, Power and Winding Temperatures) 
collection were conducted at the Damang Mine. Simulation results are presented using MATLAB 
software (2017a) package to develop the fault prediction model. The proposed feed-forward 
neural network used the Levenberg-Marquardt and Bayesian Regularisation in training.   

Keywords: SAG mill induction motor, feed-forward neural network, multilayer perceptron.  

GJRE-F  Classification: FOR Code: 090699 

 

 FailurePredictionofInductionMotorsACaseStudyusingCSLGHMWkVph50HzSagMillMotoratGoldfieldsDamangMine                       
 
                             

             
                                                Strictly as per the compliance and regulations of: 

  
 
 
 

    

Global Journal of Researches in Engineering: F
Electrical and Electronics Engineering



 

 

Failure Prediction of Induction Motors: A Case 
Study using CSLGH900/6-214, 5.8 MW, 11 
kV/3ph/50 Hz Sag Mill Motor at Goldfields, 

Damang Mine 
C. K. Amuzuvi α & H. Warden σ

Abstract- This paper proposes a generalised feed-forward 
artificial neural network model that fulfils the failure prediction 
of a three phase 5.8MW, 11 kV Slip-Ring SAG Mill Induction 
Motor at Goldfields Ghana Limited, Damang Mine. It provides 
a general understanding of three phase induction motors, 
faults associated with induction motors and also emphasizes 
the use of intelligent systems, particularly artificial neural 
network, a modern failure prediction technology of induction 
motors. Site analysis and motor data (Current, Power and 
Winding Temperatures) collection were conducted at the 
Damang Mine. Simulation results are presented using 
MATLAB software (2017a) package to develop the fault 
prediction model. The proposed feed-forward neural network 
used the Levenberg-Marquardt and Bayesian Regularisation in 
training. The use of Log sigmoid and Tan sigmoid was also 
employed as the activation functions of the hidden layer, with 
hidden layer size kept at 10. Simulation and calculations are 
done in real time on load measurement from the SAG Mill 
motor. Analysis of the model’s output performance were 
conducted by correlation of coefficient of network 
performance, R and Mean Squared Error, MSE. The proposed 
implemented model resulted in an increase in the SAG Mill 
motor availability, an improved reliability and a great impact on 
safety of employees and equipment. It is therefore, worthwhile, 
to invest in the deployment of this model to augment the 
condition monitoring needs of the SAG Mill motor and other 
such equipment in the plant. 
Keywords: SAG mill induction motor, feed-forward neural 
network, multilayer perceptron. 

I. Introduction 

amang Gold Mine, a subsidiary of Goldfields 
International is a world class mining operation 
consisting of a 25 MTPA open pit mining and a 

5.2 MTPA Carbon in Leach (CIL) metallurgical plant. 
Located in the south western part of Ghana, 300 km by 
road from the capital of Ghana, Accra, the mine exploits 
oxide and fresh hydrothermal mineralization in addition 
to Witwatersrand – style transitional paleo placer gold. 
The plant is designed to treat 5.2 MTPA of gold ore from 
a blend of approximately 20% oxide ore and 80% fresh 
ore sourced from  various  open  pit  mining  operations. 
 
 
Author α:  University of Mines and Technology, Box 237, Tarkwa, 
Ghana. e-mail: ckamuzuvi@umat.edu.gh 
Author σ: Goldfields Ghana Limited, Damang Mine, Damang, Ghana. 

Process feed for the 12-month period of 2016 
comprised 4.3 Mt at a yield of 1.17 g/t for a 148 koz of 
gold. 

The plant has 2×5.8 MW ball mill and sag mill, 
a 1×600 kW primary gyratory crusher, 1×375 kW 
pebble crusher, 8×CIL tanks and a secondary crushing 
plant with a maximum electric power draw of 17.5 MW at 
peak times. The mine uses a lot if induction motors at 
the crushing circuit, milling circuit, CIL circuit, elution 
circuit, tailings, etc., because of its strength, mechanical 
simplicity and adaptability to a variety of applications 
[1]. The plant is often faced with issues associated with 
burnt induction motors. Unfortunately, the exact causes 
are not clearly known. 

Induction motors are the mainstay for every 
industry. They are widely used in transportation, mining, 
petrochemical, manufacturing and in almost every other 
field using electrical power. These motors are simple, 
efficient, highly robust and rugged, thus, offering a very 
high degree of reliability. However, like any other 
machine, they are susceptible to faults, which if left 
unmonitored, might lead to catastrophic failure of the 
machine in the long run especially due to heavy duty 
cycles, poor working environment alongside with 
installation and manufacturing factors. 

In a bid to detect fault and avoid complete 
breakdown of induction motors with its concomitant 
production losses, on-line condition monitoring of the 
induction motors must be implemented for effective 
operation of these machines. With increasing demands 
for reliability and efficiency, fault prediction in induction 
motors has become necessary, particularly in industries 
that make use of these rotary equipment of which the 
Damang Gold Mine is no exception [2]. Various fault 
conditions of induction motors as well as methods of 
their detection and prediction are presented in this 
paper. 

a) Some Impacts of the Occurrence of Faults 
With the mines current maintenance cost of 

electrical motors on the high, the mine must come up 
with strategies to bring the overall cost of engineering 
maintenance down. Figure 1(a) is a graph showing 
annual motor change-out from 2012 to 2016 and Figure 
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1(b) is the probability of occurrence of faults in an 
operating induction motor [2]. Research has shown that, 
failures associated with induction motors are often 
caused by rotor, stator, and bearing failures, etc. [2].  

With the current price of gold on the downside, 
the maintenance department is under intense pressure 
to efficiently maintain the plant machinery to continue to 

stay in business. Table 1 show gold prices from 2012 to 
2016 respectively. This research work seeks to identify 
and assess in detail, all the various root causes of 
induction motor failures in the mine and suggest a 
means of accurately predicting future failures. 
 

 

(a) 

 

(b)

Figure 1: (a) Graph Showing Number of Annual Motor Change – Out; and                                                                   
(b) Probability of Occurrence of Faults 

Table 1: Gold Price from 2012 to 2016 Year 

Year Closing Price Year Open Year High Year Low Year Close % Change 
2012 $1,668.86 $1,590.00 $1,790.00 $1,537.50 $1,664.00 5.68% 
2013 $1,409.51 $1,681.50 $1,692.50 $1,192.75 $1,201.50 −27.79% 
2014 $1,266.06 $1,219.75 $1,379.00 $1,144.50 $1,199.25 −0.19% 
2015 $1,158.86 $1,184.25 $1,298.00 $1,049.60 $1,060.20 −11.59% 
2016 $1,251.92 $1,075.20 $1,372.60 $1,073.60 $1,151.70 8.63% 

          (Source: [3]) 
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b) Induction Motor 
An induction motor is a type of asynchronous 

alternating current (AC) motor, where power is supplied 
to the rotating device (rotor) by means of 
electromagnetic induction. There are two types, namely 
wound or slip-ring induction motor and squirrel-cage 
induction motor.  

Squirrel-cage induction motors are the preferred 
choice for industries due to their low cost, high reliability, 
absence of slip-rings and brushes, which eliminate the 
risk of sparking thereby, making them explosion proof 
with high efficiency over a wide range of power outputs. 

They also have the ability of speed control. From a 
constant frequency source, they operate as constant 
speed drives. For continuous speed control over a wide 
speed range, a solid-state variable-frequency converter 
provides an indirect source of supply [4]. 

c) Induction Motor Failure 
Induction motors are rugged, low cost, low 

maintenance, reasonably small sized, reasonably highly 
efficient and operating with an easily available power 
supply. They are reliable in operations but are subject to 
different types of undesirable faults.  

Internal
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Figure 2: (a) Block Diagram Presentation of Internal Faults; and                                                                                         
(b) Block Diagram Representation of External Faults

Sources of induction motor faults may be 
internal or external. In Figure 2(a) and Figure 2(b) [2], 
block diagrams of internal and external faults are 
depicted. The most vulnerable parts for fault in the 
induction motor are bearing, stator winding, rotor bar, 

and shaft. Besides, due to non-uniformity of the air gap 
between stator-inner surface and rotor-outer surface, 
motor faults occur [5]. Faults in induction motors can be 
categorized as: 
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1. Electrical-related faults due to unbalance supply 
voltage or current, single phasing, under or over 
voltage or current, reverse phase sequence, earth 
fault, overload, inter-turn short-circuit fault, and 
crawling; 

2. Mechanical-related faults due to broken rotor bar, 
mass unbalance, air gap eccentricity, bearing 
damage, rotor winding failure and stator winding 
failure; and 

3. Environmental-related faults such as ambient 
temperature, external moisture as well as vibrations 
of machine due to reasons like installation defect 
and foundation defect affect the performance of 
induction motor. 

Figure 3(a) [5] show the rotor and parts of a 
broken rotor bar and Figure 3(b) a rotor with mass 
unbalance fault, with a hole drilled into one bar. 
 

(a) (b)
Figure 3: (a) Photograph of Rotor and Parts of Broken Rotor Bar; and                                                                              

(b) Rotor with Mass Unbalance Fault 
Industrial processes make use of a large 

number of asynchronous motors even in sensitive 
applications. Consequently, a defect can induce high 
losses in terms of cost and can be dangerous in terms 
of security and safety. Motor failures are mostly directly 
or indirectly caused by insulation breakdown, bearing 
wear or extensive heating of different motor parts 
involved in motor operation [6]. Multiple faults may 
occur simultaneously in an induction motor, which may 
result in unbalanced stator currents and voltages, 
oscillations in torque, reduction in efficiency and torque, 
overheating and excessive vibration. Normally, electric 
motors do not fail suddenly. It happens over time and 
regular inspection will detect a problem before a serious 
situation develops. Three main components of electric 
motors that experience faults are the stator, rotor and 
bearings. These faults may be a growing one with only 
small effects on the operation, a partial non-catastrophic 
one with emergency operation possible or a 
catastrophic one with total drive breakdown [6]. Incipient 
fault detection is preferably done to find faults before 
complete motor failure in order to avoid service 
downtime and large losses. 

d) Condition Monitoring and Its Necessity 
Induction motors are the main workhorse of 

industrial prime movers due to their ruggedness, low 
cost, low maintenance, reasonably small size, 
reasonably high efficiency, and operating with an easily 
available power supply. About 50% of the total 
generated power of a nation is consumed by these 
induction motors[5]. These statistics gives an idea 
regarding the use of huge number of induction motors, 
but they have some limitations in their operating 

conditions. If these conditions are exceeded, then some 
premature failure may occur in the stator or/and rotor. 
This failure, in many applications in industry, may lead to 
a shut down, even, the entire industrial process resulting 
in loss of production time and money. It is, therefore, an 
important issue to avoid any kind of failure of an 
induction motor. Operators and technicians of induction 
motors are under continual pressure to prevent 
unscheduled downtime and also to reduce maintenance 
cost of motors. 

Maintenance of electrical motors can be done in 
three forms: breakdown maintenance, fixed-time 
maintenance, and condition-based maintenance. In 
breakdown maintenance, the strategy is ‘run the motor 
until it fails’ which means maintenance action is taken 
only when the motor gets breakdown. In this case, 
though the motor may run comparatively for a long time 
before the maintenance is done, when breakdown 
occurs, it is necessary to replace the entire machine, 
which is much costlier compared to replacing or 
repairing the faulty parts of the motor. Also, it causes 
loss of productivity due to downtime. 

In fixed-time maintenance, the motor is required 
to stop for inspection, which causes long downtime. 
Also, trained and experienced technical persons are 
required to recognise each and every fault correctly. All 
these necessitate the condition-based maintenance of 
the motor. In this form of maintenance, the motor is 
allowed to run normally and action is taken at the very 
first sign of an incipient fault. 

In condition monitoring, when a fault has been 
identified, sufficient data is required for the plant 
operator for the best possible decision making on the 
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correct course of action. If the data is insufficient, there 
remains the chance for wrong diagnosis of fault, which 
leads to inappropriate replacement of components, and 
if the root of the problem is not identified properly, the 
replacement or any other action taken already will 
succumb to the same fate. In condition monitoring, 
signals from the concerned motor are continuously fed 
to the data acquisition system and the health of the 
motor is continuously evaluated during its operation for 
which it is also referred as online condition monitoring of 
the motor, and hence, it is possible to identify the faults 
even while they are developing. The operator/technician 
can take preparation for the preventive maintenance and 
can arrange for necessary spare parts in advance, for 
repairing. Thus, condition monitoring can optimise 
maintenance schedule and minimise motors downtime 
and thereby increase the reliability of the motor. 
Advantages of using condition monitoring can be 
mentioned point wise as follows: 

1. Prediction of motor failure; 
2. Optimisation of the maintenance schedule of the 

motor; 
3. Reduction of maintenance cost; 
4. Reduction of the downtime of the machine; and 
5. Improvement of the reliability of the motor. 

Condition monitoring and fault detection are 
usually carried out by investigating the corresponding 
anomalies in the machine current, voltage and leakage 
flux. Other methods include monitoring the core 
temperature, bearing vibration level and pyrolysed 
products. Fault conditions such as insulation defects 
and bearing degradation may also be diagnosed [2]. 

e) Failure Prediction Methods or Techniques 
According to [7], online failure prediction aims 

to identify situations that will evolve into a failure. 
Classification of failure prediction methods are usually 
based on the type of input data used, namely: data from 
failure tracking, symptom monitoring, detected error 
reporting and undetected error auditing. System 
monitoring, however, is mostly used as it is effective and 
offers reliable data based on analysis of time series 
and/or type of symptoms. In order to build high 
availability systems based on failure prediction, methods 
are developed not only to capture, select, or interpret 
essential data and predict future system states but also 
to provide proactive recovery and failure avoidance 
schemes, which build on these predictions and help to 
self-manage the system. 

Thus, it has become necessary to diagnose 
motor faults for effective maintenance plans by 
management, so as to avoid complete failure of 
systems or machines in the future. Using baseline 
characteristics of a healthy motor as a reference data, 
any deviation in motor operating characteristics 
obtained from system monitoring may be used to 
perform fault detection and diagnosis, irrespective of 

unavoidable manufacturing defects in the system. 
Depending on the region of fault occurrence, five main 
categories of faults, namely: stator faults, eccentricity 
faults, rotor faults, bearing faults and vibration faults are 
diagnosed based on various failure prediction        
methods [2]. 

i. Vibration Spectrum Analysis 
This technique is used to detect bearing faults. 

High frequency components of vibration are created due 
to friction or forces occurring in the rolling element 
bearing in electrical machines under normal conditions. 
In case of a defect in the bearings or breaks in the 
lubrication layer between the friction surfaces, shock 
pulses are produced. 

The method analyses the vibration spectrum of 
an induction machine using piezoelectric accelerometer, 
which works on Fast Fourier Transform to extract from a 
time domain signal, the frequency domain 
representation. In diagnosing bearing fault, the 
harmonic vibration spectrum of the healthy motor and 
that with defective bearing is analysed individually. Upon 
comparison, it is realized that the vibration amplitude for 
faulty motor is larger than that of a healthy motor. 
Dynamic simulation of motor running with bearing fault 
to analyse frequency spectrum of electromagnetic 
torque produced by the faulty motor may provide similar 
result when compared with its vibration spectrum. 

ii. Park Vector Approach and Complex Wavelets 
Park vector transformation approach is used to 

diagnose stator faults on a three-phase induction motor 
due to the impact of fault on the machine current. This 
technique uses Park’s Transform to derive a two-
dimensional Park’s current vector components, which 
are expressed as functions of the phase currents of the 
three-phase induction motor. Thus, the locus of 
instantaneous spatial vector sum of the measured three 
phase stator currents forms the basis for Park’s vector. 

This maps a circle, which has its centre at the 
origin of the coordinates. This locus is distorted by 
stator winding faults and thus provides easy fault 
diagnosis. In other words, a graphical representation of 
the Park’s current vector for a faulty motor gives an 
elliptical shape, which is a distortion of the circularly 
shaped Park’s current vector representation of a healthy 
motor. The amount of distortion of the circular shape 
depends on the level of stator fault of the motor. 
Simulation and experimental results are finally analysed 
using complex wavelets. 

iii. Motor Current Signature Analysis (MCSA) 
This technique can be used to detect rotor 

faults and eccentricity. In case of a fault, current 
harmonics in the stator current, caused by a backward 
rotating field in the air gap, are analysed by MCSA. This 
requires only one current sensor, whose function is 
based on signal processing techniques like the Fast 
Fourier Transform (FFT). 
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An equipment set-up, which comprises current 
transformer, signal conditioning unit, data 
collector/analyser and computer, is used for measuring 
the motor current. Data is acquired by performing FFT 
on the stator current. The data obtained, is analysed 
after FFT is normalized as a function of the first 
harmonic amplitude. Conversely, harmonic contents or 
percentage amplitude for harmonics, increase with 
increase in the level of faults, like the number of broken 
rotor bars and eccentricity. 

iv. Intelligent Techniques 

Several intelligent techniques like Fuzzy logic 
systems, Artificial Neural Networks and Neuro-Fuzzy 
Systems usually have three prime steps for induction 
motor condition monitoring. These are: i) Signature 
extraction; ii) Fault detection; and iii) Fault severity 
estimation. 

Apart from the above-mentioned techniques, 
some other methods for incipient fault detection of 
induction motors are the finite element method, vibration 
testing and analysis, Concordia transform, external 
magnetic field analysis, multiple reference frames 
theory, power decomposition technique, zero crossing 
time method and modal analysis method. This work, 
however, makes use of the artificial neural network for 
failure prediction of induction motors. 

f)
 

Artificial Neural Network 
 

According to [8], Artificial Neural Network (ANN) 
is a non-linear mapping structure inspired by observed 
process in natural network of neurons in the human 
brain. It consists of highly interconnected simple 
computational units called neurons. It imitates the 
learning process of the human brain and can process 
problems, which involve complex, non-linear, imprecise 
and noisy data. It is ideally suited for modelling and 
predicting the outcome of new independent input data 
after training.

 

ANNs are parallel computational models 
consisting of densely interconnected adaptive 
processing units. They are used for a wide variety of 
applications where statistical methods are traditionally 
employed. ANN is therefore being recognised as a 
powerful tool for data analysis. By their adaptive nature, 
“learning by example” replaces “programming” in 
solving problems. This feature makes such 
computational models very appealing especially in 
application domains, where a problem to be solved is 
not understood fully but training data is readily available. 
Back

 
propagation algorithm is the most widely used 

learning algorithm in an ANN. Various types of ANN 
include Multilayered Perceptron, Radial Basis Function 
and Kohonen networks. In fact, majority of the networks 
are more closely related to traditional mathematical 
and/or statistical models, such as non-parametric 
pattern classifiers, clustering algorithms, non-linear 

filters, and statistical regression models than they are to 
neurobiology models. 

ANNs are constructed with layers of units. All 
units in a particular layer perform similar tasks. The first 
and last layers of a multilayer ANN consist of input units 
(independent variables) and output units (dependent or 
response variables) respectively. All other units (hidden 
units) make up the hidden layer. The behaviour of a unit 
is governed by an input function and an output or 
activation function. These functions are normally the 
same for all units within the whole ANN. Input into a 
node is a weighted sum of outputs from nodes 
connected to it. There exists a threshold term, which is a 
baseline input to a node in the absence of any other 
inputs. A weight is termed inhibitory if it is negative as it 
decreases net input, otherwise it is called excitatory. 

Each unit takes its net input and applies an 
activation function to it. In instances where the inputs 
and outputs are binary encoded, the threshold function 
becomes very useful. The activation function mainly 
maps the outlying values of the obtained neural input 
back to a bounded interval. The activation function 
shows a great variety. However, the most common 
choice is the sigmoid function since it maps a wide 
domain of values into the interval. 

i. Development of an ANN Model 
A neural network forecasting model is 

developed by the following steps: 

1. Variable selection; 
2. Formation of training, testing and validation sets; 
3. Neural network architecture; and 
4. Model building. 

Suitable variable selection procedures are used 
to select the input variables, important for modelling or 
forecasting variable(s) under study in the first step. This 
is followed by the formation of three distinct data sets 
called training, testing and validation sets. These data 
sets are used by the neural network not only to learn 
current data patterns (training set) and evaluate the 
overall ability of the supposedly trained network (testing 
set), but also to check the performance of the trained 
network using the validation set. The third step defines 
the network structure, which includes a number of 
hidden layers and hidden nodes as well as the number 
of output nodes and the activation function. The next 
step involves model building.  

The model of a very popular and frequently 
used multilayer feed-forward neural network (FFNN) or 
multilayer perceptron (MLP) learned by back 
propagation algorithm is constructed based on 
supervised procedure or on examples of data with 
known output. The examples presented are assumed to 
implicitly contain the information necessary to establish 
the relation for building the model. An MLP allows 
prediction of an output object for a given input object. Its 
non-linear elements or neurons are arranged in 
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successive layers with a unidirectional flow of 
information from input layer to output layer through 
hidden layer(s). With adequate data, only one hidden 
layer is always sufficient for an MLP as it can learn to 
approximate virtually any function to any degree of 
accuracy. MLPs are therefore also known as universal 
approximates. Generally, learning methods in neural 
networks are classified into three basic types, namely; 
supervised learning, unsupervised learning or reinforced 
learning. A neural network learns off-line if the learning 
phase and the operation phases are distinct. On-line 
learning occurs when it learns and operates at the same 
time. Supervised learning is usually performed off-line 
based on training data, whereas unsupervised learning 
is performed on-line based on given data. In reinforced 
learning, data is usually not given, but generated by 
interactions with the environment. 

ii. Architecture of Neural Networks 
The two most widely used ANN architecture are 

the feed-forward networks and the feedback or recurrent 
networks. Other types of ANN architecture include 
stochastic network, physical network, bi-directional 
network, Elman and Jordan network, Hopfield network, 
self-organising map and long short-term memory 
networks. Feed-forward networks have no feedback 
loops and are extensively used in pattern recognition. 
Thus, signals are allowed to travel one way only; from 
input to output. The output layer does not affect that 
same layer. In feedback networks however, signals do 
not travel in one way only due to the presence of a 
feedback loop. In addition, their state changes 
continuously (dynamic) until an equilibrium point is 
reached. They remain at this point until the input 
changes and a new equilibrium needs to be found. 

The MLP network is trained using a supervised 
learning algorithm like the backpropagation algorithm. 
The backpropagation algorithm uses data to adjust the 
network’s weights and thresholds so as to reduce the 
error in its prediction on the training set. It computes 
how fast the error, which is the difference between the 
actual and the desired activity, changes due to an 
alteration in:i) the activity of an output unit; ii) the total 
input received by an output unit; iii) weight on the 
connection into an output unit; and iv) the activity of a 
unit in the previous layer. 

According to [9], some of the uses and 
applications of Artificial Neural Networks are for; 
classification, pattern matching, pattern completion, 
optimisation; control, function approximation/times 
series modelling, and data mining. 

g) Related Works 
Lizarraga-Morales et al. [10] proposed a novel 

FPGA-based methodology for early broken rotor bar 
(BRB) detection and classification through homogeneity 
estimation. Obtained results demonstrated the high 
efficiency of the proposed methodology as a 

deterministic technique for incipient BRB diagnosis in 
induction motors, which can detect and differentiate 
among half, one, or two BRBs with very high accuracy. 

Kayri [11] did a comparative study on the 
predictive ability of Bayesian regularization with 
Levenberg-Marquardt artificial neural networks. Analysis 
were done by sum squared error (SSE), sum squared 
weight (SSW) and correlation of regression and 
concluded that the Bayesian regularization training 
algorithm shows better performance than the 
Levenberg-Marquardt algorithm. 

Araujo et al. [12] provides an analysis about 
early incipient and recurring failures in three-phase 
induction motor bearings when driven by pulse width 
modulation inverters, focusing on a real industrial 
process. Over the investigation, it was concluded that 
the presence of common-mode currents at the verified 
levels could cause damages to the motor bearings, 
which was confirmed when the machine stopped 
working due to another bearing failure. 

Yu et al. [13] developed a model-based 
remaining useful life (RUL) prediction method for 
induction motor with stator winding short circuit fault. 
The induction motor model with stator winding short 
circuit fault is introduced based on reference frame 
transformation theory. A particle filter method is used to 
realize unknown parameter estimation and RUL 
prediction. Simulation results were provided to validate 
the proposed method. 

Kraleti et al. [14] presented a paper on model-
based diagnostics and prognostics of three-phase 
induction motor for vapour compressor applications. 
Faults under consideration were incipient electrical 
faults: insulation degradation and broken rotor bars. 
Two online approximators were used to discover the 
system parameter degradation and facilitate fault 
isolation, or root-cause analysis, and a time to failure 
(TTF) prediction before the occurrence of a failure.  

Ghate and Dudul [15] developed the radial-
basis- function- multilayer- perceptron cascade 
connection neural-network based fault detection 
scheme for the small and medium sizes of three-phase 
induction motors. Simple statistical parameters of stator 
current were considered as input features and 
experimental results showed ability of the proposed 
classifier for detecting faults such as stator winding 
inter-turn short and/or rotor eccentricity. The network 
was tested for good classification accuracy with enough 
robustness to noises. The classifier was then found to 
be suitable for real world applications. 

The use of ANN’s in predicting failure of the 5.8 
MW 11 kV motor on nominal load provides a new area 
of research. The network is a generalised feed-forward 
network and the input data samples are current, winding 
temperatures and power all in the time domain. 
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II. Methods Used

In designing a model for the failure prediction of 
a 3 phase 5.8 MW, 11 kV slip-ring SAG Mill induction 
motor at Goldfields Ghana Limited, Damang mine, 
Artificial Neural Networks was employed in modelling 
and simulations on the data collected (power, current 
and winding temperatures) from the company. The 
materials used in this research for the collection of the 
motor data was the Citect and Laptop computer with 
MATLAB software (2017a) for modelling and simulation 
of the data.

a) Designing and Programming of ANN Models
Figure 4(a) [15] shows a generalized flow chart 

of ANN–based fault classification of induction motors. 
Designing ANN models follows a number of systemic 
procedures. In general, there are five basics steps: (1) 
collecting data, (2) pre-processing data, (3) building the
network, (4) train, and (5) validate and test the 
performance of model as shown in Figure 4(b). 

Figure 4: (a) General Flow of ANN–Based Fault Classification of Induction Motors; and
(b) Basic Flow Chart for Designing Artificial Neural Network Model



 

 

b) Data Collection 
Collecting and preparing sample data is the first 

step in designing ANN models. As it is outlined in Figure 
4(b), measurement data of the SAG Mill motor power 
(MW), motor current (A), and winding temperatures (°C) 
with the corresponding motor condition i.e. motor 
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healthy or motor faulty (MH/MF) for the Damang mine 
for a 93-day period from 6th January, 2019 to 8th April, 
2019 was collected through the Citect as shown in 
Figure 5 (a). A total of 5×879 data samples were 
collected. Figure 5(b) show graphs of trends of the SAG 
Mill motor current and power.

Figure 5: (a) Trends of SAG Mill Motor Current, Power and Winding Temperatures; and
(b) Graph Showing Trends of SAG Mill Motor Current and Power
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Figure 6: (a) Graph Showing Trends of SAG Mill Motor Winding Temperatures; and
(b) Graph Showing Trends of SAG Mill Motor Winding Temperatures after Normalisation

c) Data Pre-Processing
After data collection, data pre-processing 

procedures are conducted to train the ANNs more 
efficiently. The procedure is normalisation of data. 
Normalization procedure before presenting the input 
data to the network is generally a good practice, since 
mixing variables with large magnitudes and small 
magnitudes will confuse the learning algorithm on the 
importance of each variable and may force it to finally 
reject the variable with the smaller magnitude [16]. 
Figure 6(a) and Figure 6(b) are graphs showing SAG 

Mill motor winding temperatures and winding 
temperatures after normalisation. A total of 5×837 data 
samples were considered healthy after normalisation.

Data samples which were out of range after 
normalisation were taken to be faulty data samples. This 
data samples totalled 5×42 faulty data samples. Figure
7 is a graph showing faulty data samples. 



 

 

 

Figure 7: Graph Showing Trends of Faulty SAG Mill Motor Current and Power 

d) Building the network 
At this stage, the designer specifies the number 

of hidden layers, neurons in each layer, transfer function 
in each layer, training function, weight/bias learning 
function, and performance function. In this work, the 
generalised feed-forward neural network was used. 

Feed-Forward Neural Network with 
Backpropagation Algorithm 

In feed-forward neural networks, otherwise 
known as multilayer perceptrons, the input vector of 
independent variables is related to the target (SAG Mill 

motor condition) using the architecture depicted in 
Figure8. This figure shows one of the commonly used 
networks, namely; the layered feed-forward neural 
network with one hidden layer. Here, each single neuron 
is connected to those of a previous layer through 
adaptable synaptic weights. Knowledge is usually 
stored as a set of connection weights, and then, the 
weights are adjusted so that the network attempts to 
produce the desired output. The weights after training 
contain meaningful information, whereas before training 
they are random and have no meaning. 

Figure 8: Architecture of Feed-Forward Network 

e) Training the network 
Training is the process of modifying the network 

using a learning mode, in which an input is presented to 

the network along with the desired output. During the 
training process, the weights are adjusted in order to 
make the actual outputs (predicated) close to the target 
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(measured) outputs of the network. In this study, 70% of 
the data was used for training. Two different types of 
training algorithms were investigated for developing the 
feed-forward network. These are Levenberg-Marquardt 
algorithm and Bayesian Regularisation algorithm. 
MATLAB provides built-in transfer functions, which are 
used in this study; Linear (purelin), Hyperbolic Tangent 
Sigmoid (tansig) and Logistic Sigmoid (logsig).  

f)
 

Validating and Testing the Network
 

The next step is to validate and test the 
performance of the developed model. At this stage, 
unseen data are fed to the model. For this case study, 
15% of SAG Mill motor data was used for validating and 
another 15% used for testing the ANN models. 
Validation data generalise the network

 
validation and 

stops training before overfitting, which occurs when a 
network memorises the training data but not learn to 
generalise new inputs.

 

In order to evaluate the performance of the 
developed ANN models quantitatively and verify whether 
there is any underlying trend in performance of ANN 
models, statistical analysis involving mean squared error 
were conducted. MSE provides information on the short-
term performance, which is a measure of the variation of 
predicated values around the measured data. The lower 
the MSE, the more accurate is the estimation. The 
expressions for the aforementioned statistical 

 

parameter is:
 

  

where
  

Ip
 
denotes the predicted power of SAG Mill motor in MW;

 

Ii
 
denotes the measured power of SAG Mill motor in MW; 

and 
 

n denotes the number of observations.
 

On the other hand, regression is a statistical 
analysis assessing the correlation between two 
variables. The regression line equation can be written 
as:

 

   

 

  

where
  

a = the y intercept when x = 0;
 

b = the slope/gradient of the line;
 

N = number of data samples;
 

X = first group; and
 

Y = second group and regression coefficient.
 

R

 

is the correlation coefficient and is given as:

 

  

 

g)

 
Programming the Neural Network Model

 

MATLAB is a numerical computing environment 
and also a programming language. It allows easy matrix 
manipulation, plotting of functions and

 

data, 
implementation of algorithms, creating user interfaces 
and interfacing with programs in other languages. The 
Deep Learning Toolbox (formerly Neural Network 
Toolbox) provides a framework for designing and 
implementing deep neural networks with algorithms, 
pretrained models, and apps. Apps and plots help you 
visualize activations, edit network architecture, and 
monitor training progress (The Math

 

Works, 2019).

 

Figure

 

9(a) show the screen captions of the 
FFNN ANN training window obtained using the 
“nntraintool” GUI toolbox in MATLAB. Figure

 

9(b) show 
the

 

flow chart for the development of the feed

 

forward 
network using MATLAB.
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Figure 9: (a) FFNN Network Training Window; and (b) Flow Chart for Developing the Feed-forward                      
Networks Using MATLAB 
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h) Implementation of Proposed Methodology
The proposed methodology is implemented 

using a microprocessor to achieve online failure 
detection. In addition to the cost–effectiveness of the 
microprocessor implementation, it is flexible and its re-
configurability allows changes and refinements while in 
operation.

Figure 10 show the block diagram of the 
proposed methodology implementation. The data 
acquisition system receives current, power and three 
winding temperature signals from the sensors 
connected to the power supply to the stator windings of 
the motor. Signal processing is performed by the 
microprocessor and the result further analysed by a 
postprocessor decision-making block that simply states 
the motor condition in two possible values, i.e., MH (a 
healthy motor) and MF (a faulty motor), making the 
process online with no expert technician required for the 
diagnosis.



 

 

Three Phase
Induction
Motor

Power
 Supply

Current/
Voltage 
Sensor

Temperature
Sensor

Special
Conditioner

Microprocessor
Unit MH/MF

Figure 10: Overall Block Diagram of Implementation of Proposed Methodology 

III. Results and Discussion 

The results of MATLAB simulations using 
Artificial Neural Network tool box of SAG Mill motor 
current, temperature and power data from Goldfields 
Damang Mine are presented here. 

a) Simulation Results using Feed-Forward Network 
In this section, results of using current and 

winding temperature readings representing three sides 

of the SAG Mill motoris used as the input to the network 
with Mill motor power as the target of the network. Two 
training algorithms i.e. Levenberg-Marquardt (LM) and 
Bayesian Regularization (BR) were used in training the 
network. Simulation results of correlation coefficient for 
network performance (R), mean squared error (MSE) 
against epochs, error histograms and training state plot 
for model validation are presented here. 

i. Simulation Results of FFNN Using Levenberg-Marquardt Training Algorithm 

 

(a)
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(b)
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Figure 11: (a) Correlation Coefficient for Network Performance, R (LM); and
(b) Mean Squared Error (MSE) against Epochs (LM)



 

 

 
(b)

  

ii. Simulation Results of FFNN Using Bayesian Regularisation Training Algorithm 
 

 

Figure 13: Correlation Coefficient for Network Performance, R (BR) 
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Figure 12: (a) Error Histogram (LM); and (b) Training State Plot for Model Validation (LM)



 

 

 

(a) 

 

(b) 
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Figure 14: (a) Mean Squared Error (MSE) against Epochs (BR); and (b) Error Histogram (BR)



 

 

 

Figure 15: Training State Plot for Model Validation

b) Discussion of Simulation Results 
This section also presents discussions of the 

MATLAB simulated results using FFNN. Table 2 shows 
the computed values of mean squared error MSE and 
correlation coefficient of network performance, R. It 

shows values of MSE and R for different number of data 
samples for training, validation and testing of the 
generated FFNN. The data samples range from 100, 
200, 300, 400 and 500. 

Table 2: Statistical Error Parameters of Developed FFNN Models for Different Data Sample Size

Number 
of Data 

Samples 

Levenberg - Marquardt Algorithm Bayesian Regularisation Algorithm 

A/F – LOGSIG A/F – TANSIG A/F - LOGSIG A/F - TANSIG 

MSE R MSE R MSE R MSE R 

100 1.48E-04 0.99724 2.48E-04 0.99842 2.55E-04 0.99702 2.32E-04 0.99668 

200 1.03E-04 0.99894 2.76E-04 0.99751 1.87E-04 0.99812 1.67E-04 0.99843 

300 1.33E-04 0.99904 1.74E-04 0.99911 3.70E-04 0.99831 3.03E-04 0.99701 

400 8.93E-04 0.99565 4.46E-04 0.99685 5.50E-03 0.9755 5.41E-04 0.99738 

500 0.0064 0.96889 6.40E-03 0.96977 6.50E-03 0.96807 6.40E-03 0.96863 

In this study, the network was decided to 
consist of one hidden layer with 10 neurons. The 
criterion R and MSE were selected to evaluate the 
networks to find the optimum solution. The complexity 
and size of the network was also an important 
consideration and therefore smaller ANN’s had to be 
selected. A regression analysis between the network 
response and the corresponding targets was performed 
to investigate the network response in more detail. Thus,

 

LM and BR were selected. The R-values in Table 3 
represent the correlation coefficient between the outputs 
and targets. The R-values did

 
not increase beyond 10 

neurons in the hidden layer. Consequently, the network 
with 10 neurons in the hidden layer would be considered 
satisfactory. From all the networks trained, few ones 

could provide the low error condition, from which the 
simplest network was selected. The results showed that, 
the training algorithm of LM was sufficient for

 
predicting 

SAG Mill motor failures. There is a high correlation 
between the predicted values by the ANN model and 
the measured values collected from normal real time 

that the model succeeded in prediction of SAG Mill 
motor failures.

 

It can be observed in Figs. (11a, b, 12a, b and 
13) that, the ANN provided the best accuracy in 
modelling induction motor failures with correlation 
coefficients of 0.999 and 0.998 for LM and BR 
respectively. Generally, the ANN

 
offers the advantage of 

being fast, accurate and reliable in the prediction or 
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running of 5.8 MW, 11 kV SAG Mill motor, which imply 
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approximation affairs, especially when numerical and 
mathematical methods fail. There is also a significant 
simplicity in using ANN due to its power to deal with 
multivariate and complicated problems. 

The measured values collected from real time, 
on load running of the 5.8 MW, 11 kV SAG Mill motor 
showed some linearity between the current, 
temperatures and the power. The power of the SAG Mill 
motor at nominal load ranges from 4 MW – 5.6 MW with 
the current and temperatures reading 300 A – 349 A and 
80ºC – 109ºC respectively. 

From Table 2, it can be seen that, the ANN 
showed good R and MSE values when data samples of 
300 was used. This was the same for LM and BR, while 
using log-sigmoid and tan-sigmoid as transfer functions 
for the hidden layer. The results for R-values for data 
samples of 300 were 0.99904, 0.99911, 0.99831 and 
0.99701 respectively, while MSE values were 1.33E-04, 
1.74E-04, 3.70E-04 and 3.03E-04 respectively. This 
simulation was repeated for data samples of 100, 200, 
400 and 500. It was observed that, increasing the 
number of data samples resulted in bad R-values. Data 
samples of 100 gave better results than 200, 200 than 
400 and 400 than 500 in that order. 

Training stops after 251 iterations. At this 
position, performance of network, 150×10-4, gradient 
decrease to 3.55×10-4 and also the value of mu = 10-7 

as shown in Figure 12(b). Validation performance 
reached the minimum at epoch 201. The training 
continued for 51 more iterations and stopped at epoch 
251. The gradient and mu increased gradually as shown 
in Figure 12(b). 

From the error histogram shown in Figure 12(a), 
most errors occurred between –0.04 to +0.05. Errors 
also occurred at 0.065, 0.087 and 0.094 of the training 
data on the histogram, and also represents the point for 
which output 4.5 – target value 4.6, output 4.8 – target 
4.9 and output 5.1 – target 5.2 on the training correlation 
coefficient for network performance, plot shown in 
Figure11(a). 

c) Discussions on Using the Network for Prediction 
Two matrices of 5×669 and 5×31 constructed 

by power, current and three winding temperature values 
normalised sample data of SAG Mill motor at healthy 
and faulty on load condition respectively as input are 
used to analyse network performance. Among them, 
70%, 15% and rest data are used as training, cross 
validation and testing data. The target of the network is 
1 or 0, with 1 indicating healthy motor condition and 0 
indicating faulty motor condition. For any output value 
between 1 and 0 represents the probability of fault 
condition, in training the network, there was 1 hidden 
layer with 10 neurons and tansigmoid as the transfer 
function. The output layer had 1 neuron and the transfer 
function was logsigmoid. 

Fresh data samples consisting of 5×169 and 
5×10 healthy and faulty on load power, current and 
three winding temperatures of the SAG Mill motor were 
fed into the network to detect health. Table 3, Figure 
16(a) and 16(b) show the detection efficiency and 
confusion plot of network using LM and BR algorithm 
respectively. Out of the 169 healthy data samples, using 
LM training algorithm could rightly predict them as true 
detection (TD) and false detection (FD) of 0. The 
network could also predict a TD of 10 out of 10 faulty 
data fed into it. This shows the network with LM training 
algorithm can detect healthy and faulty conditions of the 
SAG Mill motor with 100% accuracy. BR training 
algorithm could detect 169 healthy samples as TD and 9 
out of 10 faulty data samples as TD and 1 FD, therefore, 
network with BR could detect healthy and faulty 
conditions of the SAG Mill motor with 99.4% efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
(a) 

 

 
(b)

                           
 

Table 3:
 
Detection Accuracy

TOTAL NUMBER DATA 
SAMPLES

 HEALTHY
 

FAULTY
 

ACCURACY
 

TD
 

FD
 

TD
 

FD
 

Levenberg-Marquardt
 

169/169
 

0/169
 

10/10
 

0/10
 

100%
 

Bayesian Regularization
 

169/169
 

0/169
 

9/10
 

1/10
 

99.4%
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Figure 16: (a) Plot of Confusion Matrix Using Levenberg-Marquardt Algorithm; and 
(b) Plot of Confusion Matrix Using Bayesian Regularization Algorithm



 

 

  

  
 

 

1. A smaller Feed-Forward Neural Network size of 4-
10-1 provides optimum performance for prediction 
of SAG Mill motor failures; 

2. Though Bayesian Regularisation training algorithm 
has not been extensively used in failure prediction of 
three phase slip-ring induction motor as compared 
to Levenberg-Marquardt, yet it gives acceptable 
results in terms of accuracy but at a relatively low 
efficiency; 

3. Data samples of 100, 200, 300, 400 and 500 were 
used in this work. Data samples of 300 with 
Levenberg-Marquardt training algorithm and 
tansigmoid activation function of the hidden layer 
provided the best results for R-values and MSE; 

4. The network stopped training at 251 iterations, a 
network performance of 150×10-4 at this position. 
The gradient decreases to 3.55×10-4 and mu =       
10-7. Validation performance reaches minimum at 
epoch 201; and 

5. The network with Levenberg-Marquardt training 
algorithm can detect healthy and faulty conditions of 
the SAG Mill motor with 100% accuracy and 99.4% 
using Bayesian Regularization as the training 
algorithm. 

IV. Conclusions and Recommendations 

a) Conclusions 
From the results and discussions, the following 

conclusions can be drawn: 
1. The proposed Feed-Forward Neural Network with 

Levenberg-Marquardt training algorithm is capable 
of predicting imminent faults ofon load 5.8MW, 11 
kV SAG Mill three phase slip-ring induction motor at 
Goldfields Ghana Ltd., DamangMine with 100% 
accuracy; 

2. Correlation coefficient of network performance, R 
and mean squared error, MSE proved to be very 
good statistical tools for artificial neural network 
model analysis; and 

3. Bayesian Regularisation training algorithm proved to 
be a good alternative to Levenberg-Marquardt 
algorithm in failure prediction networks. 

b) Recommendations 
The following are recommended based on the 

conclusions drawn: 

1. Similar research could be carried out on the Ball Mill 
motor and other important motors at the plant; 

2. Since it will be very difficult to set up a prototype for 
the 3 phase 5.8 MW, 11 kV slip-ring induction motor 

taking into consideration the size and cost, 
MATLAB/SIMULINK and Finite Element Method 
Magnetics could be considered in generating 
signals for this research; and 

3. Wavelet techniques and Fuzzy logic could be used 
to find exact location of fault, identification and 
evaluation of fault severity. 
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d) Summary of Findings
The findings as regards simulations of data 

samples measured on the 5.8 MW, 11 kV SAG Mill 
motor at the Goldfields Ghana Ltd., Damang Mine from 
6th January, 2019 to 8th April, 2019 are summarised as 
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